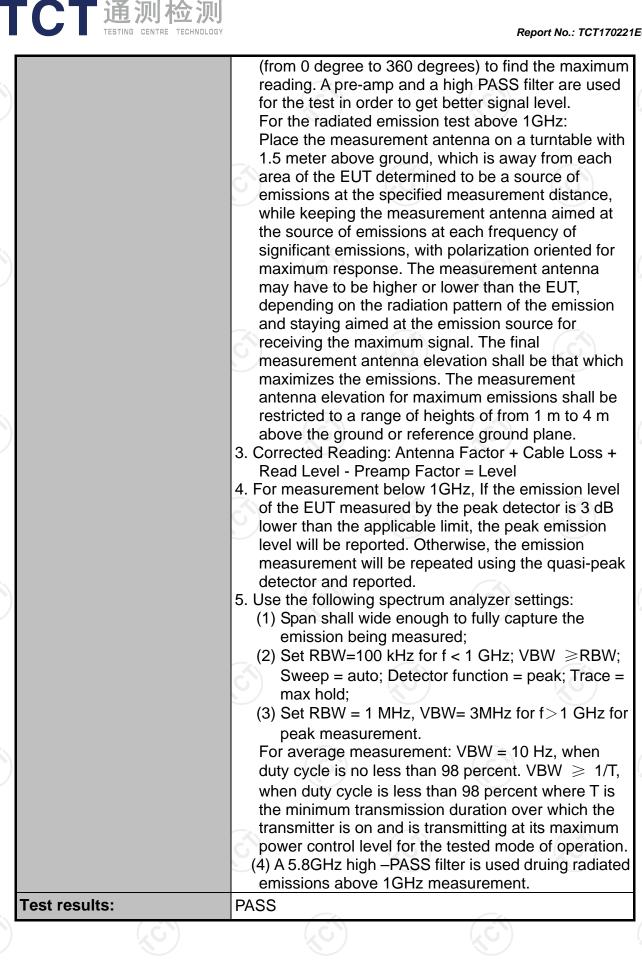


Note: All the 20MHz bandwidth modulation are tested and all antennas are tested, the 802.11a and the ANT 0 was the worst and record in the report. All the 40MHz bandwidth modulation are tested, the 802.11n (HT40) and the ANT 0 was the worst and record in the report.

Page 122 of 150

6.8. Spurious Emission

TCT通测检测 TESTING CENTRE TECHNOLOGY


6.8.1. Restrict Bands Measurement

6.8.1.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.209							
Test Method:	KDB 789033 D02 v01r02							
Frequency Range:	Band I & II: 4.5 GHz to 5.15 GHz and 5.35GHz to 5.46GHz Band III &IV: 5.35 GHz to 5.46 GHz							
Measurement Distance:	3 m Horizontal & Vertical							
Antenna Polarization:								
Operation mode:	Transmitting mode with modulation							
	Frequency Detector RBW VBW Remark							
Receiver Setup:	Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value							
Limit:	Frequency Limit Remark (dBuV/m @3m)							
	Above 1GHz 74 Peak Value 54 Average Value							
Test setup:	Aritemia Tomor Gine della del							
	1. The testing follows FCC KDB Publication No. 78903 D02 General UNII Test Procedures New Rules							

Page 123 of 150

Report No.: TCT170221E005

Page 124 of 150

Report No.: TCT170221E005

6.8.1.1 Test Instruments

	Dedicted Fre	inclass Tool Of		
	Radiated Em	ission Test Sit		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 11, 2016
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Sep. 11, 2016
Spectrum Analyzer	ROHDE&SCHW ARZ	FSP40	100056	Sep. 11, 2016
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016
Pre-amplifier	HP	8447D	2727A05017	Sep. 11, 2016
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 13, 2016
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 13, 2016
Horn Antenna	Schwarzbeck	BBHA 9170	373	Sep. 13, 2016
Coax cable	тст	RE-low-01	N/A	Sep. 11, 2016
Coax cable	тст	RE-high-02	N/A	Sep. 11, 2016
Coax cable	тст	RE-low-03	N/A	Sep. 11, 2016
Coax cable	тст	RE-High-04	N/A	Sep. 11, 2016
Antenna Mast	CCS	CC-A-4M	N/A	Sep. 12, 2016
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.8.1.2 Test Data

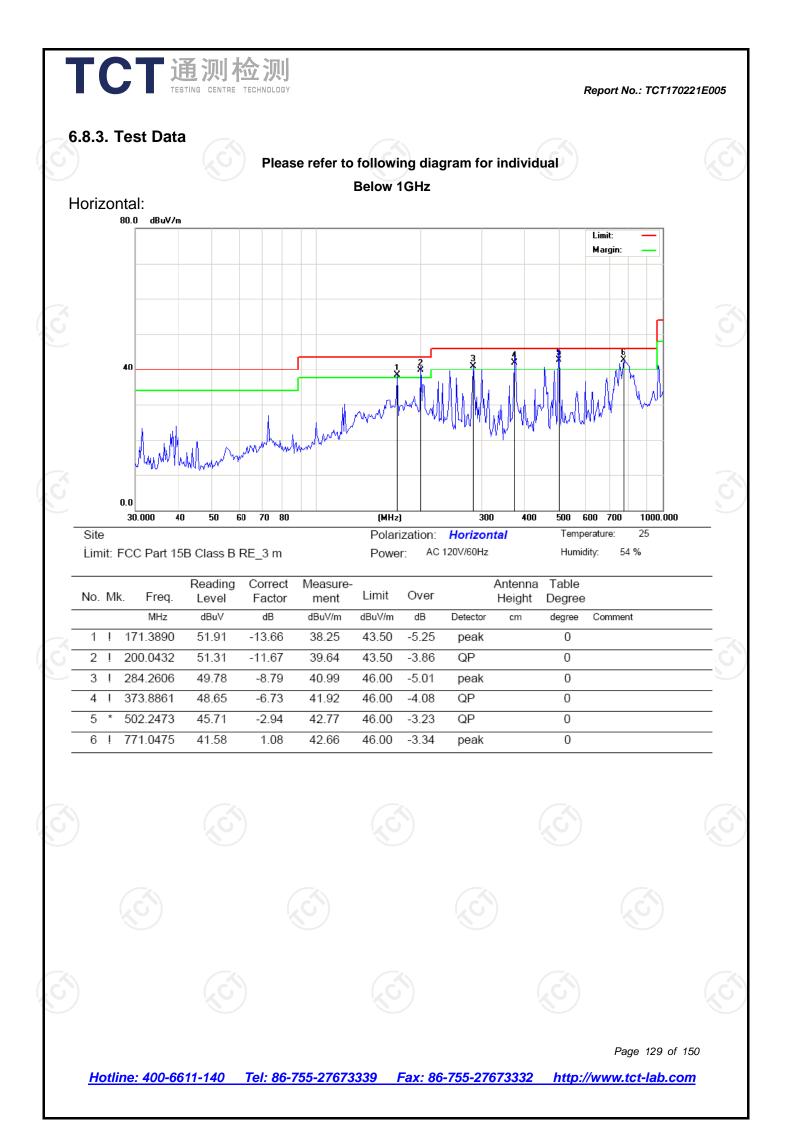
TCT 通测检测 TESTING CENTRE TECHNOLOGY

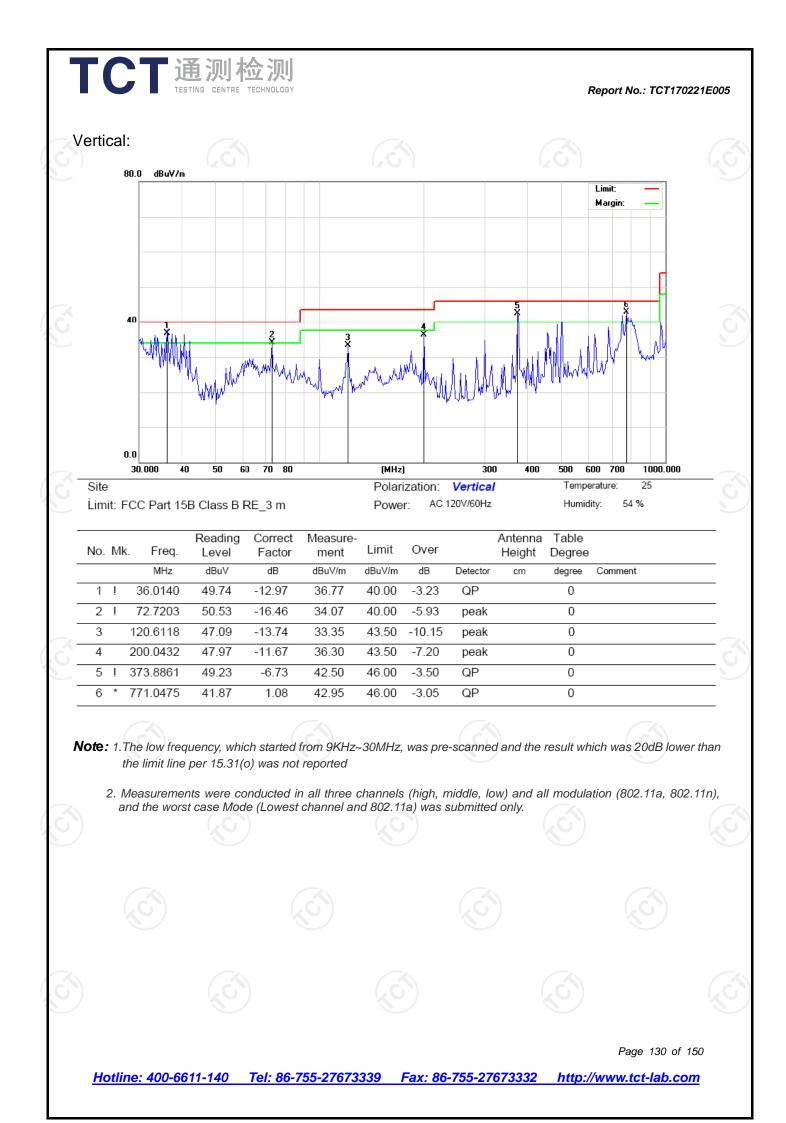
			Restric	t band aro	und funda	mental			
				11a CH36:	5180MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
5137.57	Н	49.31	C	0.53	49.84	. C. 	74	54	-4.16
5187.19	Н	49.67		0.59	50.26		74	54	-3.74
5186.28	Н	49.11		0.57	49.68		74	54	-4.32
5137.09	V	51.24		0.53	51.77		74	54	-2.23
5186.28	V	52.51		0.54	53.05		74	54	-0.95
5186.28	V	51.26		0.57	51.83		74	54	-2.17
			11r	n (HT40) CF	H36: 5180N	1Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (DbµV)	AV reading (dBuV)	Correction Factor (Db/m)	Emissic Peak (DbµV/m)	n Level AV (DbµV/m)	Peak limit (DbµV/m)	AV limit (DbµV/m)	Margin (Db)
5142.20	GН	50.11		0.55	50.66	\mathcal{O}^{+}	74	54	-3.34
5150.00	H	52.2		0.66	52.86		74	54	-1.14
5183.20	Н	49.11		0.86	49.97		74	54	-4.03
5150.00	Н	48.57		0.66	49.23		74	54	-4.77
5187.19	Н	48.52		0.85	49.37		74	54	-4.63
		(G)	•	2.)			(.G)		()
5142.65	V	49.87		0.55	50.42		74	54	-3.58
5150.03	V	50.41		0.66	51.07		74	54	-2.93
5183.29	V	49.88		0.58	50.46		74	54	-3.54
5150.00	V	49.16		0.66	49.82		74	54	-4.18
5187.28	V	49.62		0.57	50.19		74	54	-3.81
			11a	ac(HT80) Cl	-138: 5190N	ИНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
5135.98	Н	49.98		0.57	50.55	(= p ,)	74	54	-3.45
5207.33	Н	52.51		0.86	53.37		74	54	-0.63
5135.98	V	50.21		0.57	50.78		74	54	-3.22
5207.33	V	41.75		0.85	50.55		74	54	-3.45

Note: All the 20MHz bandwidth modulation are tested, the 802.11a was the worst and record in the report. All the 40MHz bandwidth modulation are tested, the 802.11n (HT40) was the worst and record in the report.

Page 126 of 150

6.8.2. Unwanted Emissions out of the Restricted Bands


6.8.2.1. Test Specification


TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC CFR47	Part 15 Se	ection 15	.407 & 1	5.209 & 15.205
Test Method:	KDB 789033				
Frequency Range:	9kHz to 40G	Hz			
Measurement Distance:	3 m				
Antenna Polarization:	Horizontal &	Vertical			
Operation mode:	Transmitting	mode with	n modulat	ion	
	Frequency	Detector	RBW	VBW	Remark
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value
·	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above IGHZ	Peak	1MHz	10Hz	Average Value
	Frequency 0.009-0.490	(Field Strengt microvolts/m 2400/F(KHz)	neter)	Measurement Distance (meters) 300
	0.490-1.705		24000/F(KHz		30
l imit:	1.705-30	3	,	30	
imit:	30-88	X 1		3	
			00		
	88-216) 1	50	$(\mathbf{z}^{\mathbf{G}})$	3
	88-216 216-960	1	50 200	(\mathcal{G})	3 3
	88-216	1	50	(\mathbf{G})	3
	88-216 216-960	1 2 5	50 200	m @3m)	3 3
	88-216 216-960 Above 960	1 2 5 1 7	50 200 500 .imit (dBuV/r '4.0	m @3m)	3 3 3 Detector Peak
	88-216 216-960 Above 960 Frequency	1 2 5 1 7	50 200 500 .imit (dBuV/r	m @3m)	3 3 3 Detector
Test setup:	88-216 216-960 Above 960 Frequency Above 1G For radiated	1 2 5 1 7 5	50 200 500 .imit (dBuV/r 74.0 54.0)MHz	3 3 3 Detector Peak

1	FCT 通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT170221	E005
		EUT Turm Table Antenna Tower Antenna Antenna RF Test Receiver Turm Table	
		Ground Plane Above 1GHz	
		Arigning Tower Ground Reference Russ Test Receiver	
		 The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum 	
	Test Procedure:	 meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 	
		 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified andthen reported in a data sheet. 	
	Test results:	PASS	

Page 128 of 150

TC	TEST	NG CENTRE TEC	HNOLOGY				ĸ	eport No.: TC	1170221E0
			Ν	/lodulation	Type: Band	1			
			-		: 5180MHz		-		
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissic Peak	on Level AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBuV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	51.2		0.66	51.86		74	54	-2.14
15540	Н	40.70		9.5	50.20		74	54	-3.8
/	H							-	
10360	V	50.69		0.66	51.35		74	54	-2.65
15540	V	43.87		9.5	53.37		74	54	-0.63
	V								
					: 5220MHz		1	r	
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10440	Н	50.98		0.99	51.97		74	54	-2.03
15660	Н	39.7		9.85	49.55		74	54	-4.45
(Н				(
10440	V	51.99		0.99	52.98		74	54	-1.02
15660	V	41.52		9.85	52.96		74	54 54	-2.63
	V								
X				11a CH48	: 5240MHz			II	
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	(dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	<u>H</u>	49.34		1.33	50.67		74	54	-3.33
15720	<u>H</u> H	42.51		10.22	52.73		74	54	-1.27
	<u>67</u>								
10480	V	51.64		1.33	52.97		74	54	-1.03
15720	V	40.52		10.22	50.74		74	54	-3.26
	V								
			4.4		100 540014				(
		Peak		Correction	H36: 5180M	n Level			
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10360	Н	53.28		0.66	53.94	(abµ (/////)	74	54	-0.06
15540	GH	41.9		9.5	51.4	2G .)	74	54	-2.60
}	Н								
10360	V	50.15		0.66	50.81		74	54	-3.19
15540	V	44.26		9.5	53.76		74	54 54	-0.24
	V						-		
			111	· · ·	H44: 5220M			· · ·	
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio Peak	on Level AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10440	Н	51.81	-	0.99	52.8		74	54	-1.20
15660	СĤ	41.55	140	9.85	51.4		74	54	-2.6
	H								
						1	1		
	1/	E0 60		0.00	E1 CO		71	E A	$\gamma \gamma \gamma$
10440	V V	50.69 43.43		0.99 9.85	51.68 53.28		74 74	54 54	-2.32 -0.72

Page 131 of 150

	TEST	NG CENTRE TEC	HNOLOGY				R	eport No.: TC	T170221E0
			11	n(HT20) CF	148: 5240M	Hz			
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10480	Н	51.76		1.33	53.09		74	54	-0.91
15720	Н	40.95		10.22	51.17		74	54	-2.83
	Н								
		1					1		
10480	V	51.68	- 	1.33	53.01	0+	74	54	-0.99
15720	V	42.24		10.22	52.46	<u> </u>	74	54	-1.54
	V		11	 n(HT40) CF	 138: 5190M	 H7			
_		Peak		Correction		on Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10380	Н	50.14		0.66	50.8		74	54	-3.2
15570	Н	41.62		9.5	51.12		74	54	-2.88
	Н								
10000	V	E4 00		0.00	E4 75	G	74	E A G	0.05
10380 15570	V	51.09 39.87		0.66 9.5	51.75 49.37		74 74	54 54	-2.25 -4.63
15570	V			9.5	49.37				-4.03
	V				146: 5230M				
-		Peak	1	Correction		on Level	Dealdlimit		Marain
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10460	Н	48.47		0.99	49.46		74	54	-4.54
15690	Н	40.96		9.85	50.81		74	54	-3.19
	Н								
10460	v	17.50		0.00	10 EE	<u>, G`)</u>	74	EA	E / E
10460 15690	V	47.56 39.6		0.99 9.85	48.55 49.45	<u> </u>	74 74	54 54	-5.45 -4.55
	V			9.00	49.45				-4.00
			11a	ac(HT20) C	H36: 5180N				
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBuV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dĔ)
10360	H	48.51		1.33	49.84		74	54	-4.16
15540	Н	39.45		10.22	49.67		74	54 	-4.33
10360	V	49.15		1.33	50.48		74	54	-3.52
15540	V	40.71		10.22	50.93		74	54	-3.07
	V								
			11a		H44: 5220N				
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10440 15660	H H	50.46		0.66 9.5	51.12 51.73		74 74	54 54	-2.88 -2.27
15660	H	42.23		9.5	51.73			54 	-2.27
10440	V	51.63		0.66	52.29		74	54	-1.71
15660	V	43.58		9.5	53.08		74	54	-0.92
	V								
		$(\mathbf{c}^{(1)})$			3				

Page 132 of 150

			11a	c(HT20) C	H48: 5240N	/Hz			
Fraguanay	Ant Dol	Peak		Correction		on Level	Dealelimit	A)/ limit	Margin
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10480	Н	52.36		0.99	53.35		74	54	-0.65
15720	Н	41.96		9.85	51.81		74	54	-2.19
	Н								
		1					•		
10480	GV	49.17	G`	0.99	50.16	G^{1}	74	54	-3.84
15720	V	42.7		9.85	52.55		74	54	-1.45
	V								
	-		11a	c(HT40) C	H38: 5190N	/Hz	1		
-		Peak		Correction		on Level	– – – – –		
Frequency	Ant. Pol.	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	50.26		1.33	51.59		74	54	-2.41
15570	Н	40.8		10.22	51.02		74	54	-2.98
	H								
10380	V	51.74	10	1.33	53.07	<u>ko :)</u>	74	54	-0.93
15570	V	42.69		10.22	52.91		74	54	-1.09
	V								
			11a	C(HT40)	H46: 5230N	/Hz		1 1	
_		Peak		Correction	Emissio	on Level			
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10460	Н	51.51		0.66	52.17		74	54	-1.83
15690	H	41.8		9.5	51.3		74	54	-2.7
	H								
		1							
10460	V	50.3		0.66	50.96		74	54	-3.04
15690	V	41.51		9.5	51.01		74	54	-2.99
	V								
	v				H42: 5210N				
		Peak		Correction		on Level			
	1147	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
Frequency	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBhA/w)	(dBµV/m)	(dB)
Frequency (MHz)		48.96		0.99	49.95		74	54	-4.05
(MHz)	Н			9.85	51.01		74	54	-2.99
(MHz) 10420	H H	41.16		0.00					
(MHz) 10420 15630	Н	41.16							
(MHz) 10420		41.16				G	•		
(MHz) 10420 15630 	н Н)			74	54)
(MHz) 10420 15630	Н	1	(Ú	 0.99 9.85	 52.23 50.71	$\langle O \rangle$	74 74	54 54	-1.77 -3.29

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

▶ ● 〒 诵 测 检 测

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.

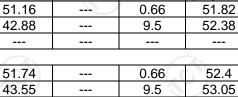
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 133 of 150

_			M	lodulation T	ype: Band): 5745MHz		_		_
			1						
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11490	Н	52.68		0.66	53.34		74	54	-0.66
17235	Н	43.49		9.5	52.99		74	54	-1.01
	H								
	\mathcal{G}				()	\mathcal{S}	•	(\mathcal{O})	
11490	V	51.5		0.66	52.16		74	54	-1.84
17235	V	44.24		9.5	53.74		74	54	-0.26
	V								
				(
				11a CH157	': 5785MHz				
Frequency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	H	52.83		0.99	53.82		74	54	-0.18
17355	Н	43.33		9.85	53.18		74	54	-0.82
	C H							<u>N</u>	
11570	V	49.4		0.99	50.39		74	54	-3.61
17355	V	42.65		9.85	52.5		74	54	-1.5
	V			(
)		<u>k</u> U/			<u>)</u>				
			1		: 5825MHz		1	[]	
⁻ requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	Н	51.74		1.33	53.07		74	54	-0.93
17475	Н	42.62		10.22	52.84		74	54	-1.16
	H								
								,	
11650	V	52.51		1.33	53.84		74	54	-0.16
17475	V	42.9		10.22	53.12		74	54	-0.88
/	V			()		· · · · ·		
			11r	(HT20) CH	149: 5745N	ЛНz			
	Arch Dal	Peak		Correction		on Level	De als limit		Manain
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11490	H	51.16		0.66	51.82		74	54	-2.18
17235	Н	42.88		9.5	52.38		74	54	-1.62
	Н								
					-1.				

11490

17235


٧

V

V

43.55

74

74

54

54

-1.6

-0.95

Page 134 of 150

Report No.: TCT170221E005

			11n	1 /	157: 5785N				
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	50.39		0.66	51.05		74	54	-2.95
17355	H	39.48		9.5	48.98		74	54	-5.02
	KH								
	(\mathbf{O})		(LG)		()	\mathcal{G}		(C)	
11570	V	51.26		0.66	51.92		74	54	-2.08
17355	V	42.75		9.5	52.25		74	54	-1.75
	V								
<u>(</u>	•		•	(X	•		•	
			11n	(HT20) CH	161: 5825N	/IHz			í.
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissic	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	H	52.37		0.99	53.36		74	54	-0.64
17475	Н	40.16	-	9.85	50.01		74	54	-3.99
1	H					<u> </u>		×.	
11650	V	51.36		0.99	52.35		74	54	-1.65
17475	V	39.85		9.85	49.7		74	54	-4.3
	V								(
				No.)				
			11n	(HT40) CH	151: 5755N	/Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11510	Н	51.66	(C)	1.33	52.99		74	54	-1.01
17265	Н	40.59		10.22	50.81		74	54	-3.19
	Н								
11510	V	50.57		1.33	51.9		74	54	-2.1
17265	V	40.35		10.22	50.57		74	54	-3.43
	V	40.33			50.57				-3.43
	V								

			11n	(HT40) CH	159: 5795N	/IHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
11590	H	52.41		0.66	53.07		74	54	-0.93
17385	Н	38.75		9.5	48.25		74	54	-5.75
	Н								
X					X				(
11590	V	51.68		0.66	52.34		74	54	-1.66
17385	V	39.67		9.5 🔍	49.17		74	54	-4.83
	V								

Report No.: TCT170221E005

Page 135 of 150

			44-						
		Deals	11a	<u> </u>	-1149: 5745I		[г – т	
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11490	Н	52.86		0.66	53.52		74	54	-0.48
17235	Н	43.6		9.5	53.1		74	54	-0.9
	Н								
11490	<u> </u>	53.19	L'O	0.66	53.85	\mathcal{O}^{-1}	74	54	-0.15
17235	V	43.66		9.5	53.16		74	54	-0.84
	V								
			11 a		H157: 5785				
		Peak		Correction		on Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	51.45		0.99	52.44		74	54	-1.56
17355	Н	43.9		9.85	53.75		74	54	-0.25
	H					-			
11570	V	52.63		0.99	53.62		74	54	-0.38
17355	V	40.38		9.85	50.23		74	54	-3.77
	V								
			11a	<i>(</i>	<u>1161: 5805</u>		[
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	Н	52.36		1.33	53.69		74	54	-0.31
17475	. Н	39.85		10.22	50.07	<u> </u>	74	54	-3.93
	Н							-	
11650	V	51.24		1.33	52.57		74	54	-1.43
17475	V	42.1		10.22	52.32		74	54	-1.68
	V								
				X		•			N N
			11a	c(HT40) CH	H151: 5755	MHz			
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	ОН	50.97	- H	0.66	51.63	<u>()</u>	74	54	-2.37
17265	H	42.96		9.5	52.46		74	54	-1.54
	Н								
11510	V	51.66		0.66	52.32		74	54	-1.68
17265	V	43.41		9.5	52.91		74	54	-1.09
				7 /// ·	and the second s				1.4

Report No.: TCT170221E005	鱼测检测 IING CENTRE TECHNOLOGY	TC
11ac(HT40) CH159: 5795MHz		

			11a	C(H140) CF	1159: 57951	VIHZ			
Frequency	Ant. Pol.	Peak	AV reading			Peak limit	AV limit	Margin	
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Н	52.78		0.99	53.77		74	54	-0.23
17385	Н	42.54		9.85	52.39		74	54	-1.61
	Н								
11590	V	51.86		0.99	52.85		74	54	-1.15
17385	V	43.73		9.85	53.58		74	54	-0.42
	V								
						•	•		

			11ao	c(HT80) CH	1155: 5775N	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11550	Н	50.57		1.33	51.9		74	54	-2.10
17325	H	42.81		10.22	53.03		74	54	-0.97
	Н								
				/				Ke l	/
11550	V	52.25		1.33	53.58		74	54	-0.42
17325	V	39.66		10.22	49.88		74	54	-4.12
	V								
Matai									

Note:

Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
 Margin (dB) = Emission Level (Peak) (dBμV/m)-Average limit (dBμV/m)

The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 137 of 150

Report No.: TCT170221E005

6.9. Frequency Stability Measurement

6.9.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 Section 15.407(g) & Part2 J Section 15.407(g)	ection 2.1055
Test Method:	ANSI C63.10: 2013	(\mathbf{c})
Limit:	The frequency tolerance shall be maintain band of operation frequency over a variation of 0 degrees to 35 degrees C at r voltage, and for a variation in the primary s from 85% to 115% of the rated supply temperature of 20 degrees C.	temperature ormal supply upply voltage
	Temperature Chamb	er
est Setup:	Spectrum Analyzer EUT	
	AC/DC Power supply	
Test Procedure:	The EUT was placed inside the enviro chamber and powered by nominal AC/D Turn the EUT on and couple its output to analyzer. c. Turn the EUT off and set the ch highest temperature specified. d. Allow s (approximately 30 min) for the temper chamber to stabilize. e. Repeat step 2 and temperature chamber set to the lowest te The test chamber was allowed to state degree C for a minimum of 30 minutes voltage was then adjusted on the EUT 115% and the frequency record.	C voltage. b. o a spectrum namber to the sufficient time ature of the nd 3 with the emperature. f. pilize at +20 . The supply
Test Result:	PASS	
Remark:	Pre-scan was performed at Antenna 0, Ant Antenna 2, no worst case was found. Only of Antenna 0 was shown in this report.	

Report No.: TCT170221E005

Test plots as follows:

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test mode:	802.1	1a	Freque	ncy(MHz):		5180	
Temperature (°C)	Voltage(VDC)	Measu Frequen	rement cy(MHz)	Delta Frequency(ł	Hz)	Result	
45	(.ć	5180	5180.0092			PASS	
35		5180	.0064	6400		PASS	
25	3.3	5179	.9878	-12200		PASS	
15	3.3	5179	.9983	-1700		PASS	
5		5180	.0038	3800		PASS	
0		5180	.0042	4200		PASS	N.
	3.795	5179	.9831	-16900		PASS	
20	3.3	5180	.0034	3400		PASS	
	2.805	5179	.9825	-17500		PASS	
	K)					

Test mode	Test mode:		la	Freque	Frequency(MHz):		5200	
Temperature (°C	e (°C) Voltage(VAC)		Measu Frequen	rement	Delta Frequency		Result	
45	2)	1	.0090	9000	· · · ·	PASS	4
35			5200.	.0089	8900		PASS	
25		2.2	5200	.0078	7800		PASS	
15		3.3	5200	.0043	4300		PASS	
5			5199.	.9980	-2000)	PASS	
0			5199	.9879	-1210)	PASS	
		3.795	5199.	.9957	-4300)	PASS	
20		3.3	5200.	.0031	3100	<u></u>	PASS	
	(.c	2.805	5200	.0053	5300	(\mathbf{O})	PASS	
$\overline{\mathcal{I}}$			J .					0

Test mode:	802.1	1a Fred	a Frequency(MHz):		
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MH		lz) Result	
45		5240.0043	4300	PASS	
35		5240.0029	2900	PASS	
25	3.3	5240.0024	2400	PASS	
15	3.3	5239.9991	-900	PASS	
5		5239.9983	-1700	PASS	
0		5239.9979	-2100	PASS	
	3.795	5240.0035	3500	PASS	
20	20 3.3		1000	PASS	
KO)	2.805	5239.9985	-1500	PASS	

Test mode:	802.1	1a	Freque	ency(MHz):	5745
Temperature (°C)	Voltage(VAC)	C) Measuremon Frequency(N		Delta Frequency(F	lz) Result
45		5745.	0118	11800	PASS
35		5745.	0082	8200	PASS
25	3.3	5745.	0078	7800	PASS
15	3.3	5745.	0031	3100	PASS
5		5744.	9962	-3800	PASS
0		5744.	9982	-1800	PASS
	3.795	5745.0013		1300	PASS
20	3.3	5745.	0014	1400	PASS
	2.805	5745.	0024	2400	PASS

Test mode:	802.1	1a	Freque	ency(MHz):	5785
Temperature (°C)	Voltage(VAC)		rement	Delta	Result
	(), (), (), (), (), (), (), (), (), (),	Frequen	cy(MHz)	Frequency(F	Hz)
45		5785	.0086	8600	PASS
35		5785	.0029	2900	PASS
25	3.3	5785	.0021	2100	PASS
15	5.5	5785	.0009	900	PASS
5		5785	.0028	2800	PASS
0		5785	.0037	3700	PASS
	3.795	5785	.0033	3300	PASS
20	3.3	5785.0014		1400	PASS
	2.805	5784	.9976	-2400	PASS

Test mode:	802.1	l1a	Freque	ency(MHz):	5825
Temperature (°C) Voltage(VAC)		Measurement		Delta	、 Result
• • • •	U ()		cy(MHz)	Frequency(H	/
45		5825	.0097	9700	PASS
35		5825	.0042	4200	PASS
25	3.3	5825	.0023	2300	PASS
15	3.3	5824	.9989	-1100	PASS
5		5824	.9975	-2500	PASS
0		5824	.9964	-3600	PASS
	3.795	5825	.0032	3200	PASS
20	3.3	5825	.0013	1300	PASS
-	2.805	5825	.0025	2500	PASS

Page 140 of 150

Report No.: TCT170221E005

Test mode:	Test mode: 802.11n(H		Freque	5180	
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)			
45		5180	5180.0095		PASS
35		5180	.0034	3400	PASS
25	3.3	5179	.9984	-1600	PASS
15	3.3	5179	.9991	-900	PASS
5		5180	.0023	2300	PASS
0		5180.	.0032	3200	PASS
	3.795	5180	.0024	2400	PASS
20	3.3	5179.	.9994	-600	PASS
	2.805	5179.	.9990	-1000	PASS

Test mode:	Test mode: 802.11n(F		Freque	ency(MHz):	5200
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)		Delta Frequency(H	rz) Result
45			.0089	8900	PASS
35		5200	.0043	4300	PASS
25		5200	.0032	3200	PASS
15	3.3	5200	.0013	1300	PASS
5		5200	.0029	2900	PASS
0		5200	.0044	4400	PASS
	3.795	5199.9974		-2600	PASS
20	3.3	5199.9993		-700	PASS
	2.805	5200	.0037	3700	PASS

Test mode:	802.11n(HT20)	Freque	ency(MHz):	5240
Temperature (°C)	Voltage(VAC)		rement cy(MHz)	Delta Frequency(H	z) Result
45	0		.0092	9200	PASS
35		5240	.0024	2400	PASS
25		5240	.0038	3800	PASS
15	3.3	5240	.0013	1300	PASS
5		5240	.0042	4200	PASS
0		5240	.0045	4500	PASS
	3.795	5240	.0036	3600	PASS
20	3.3	5239	.9995	-500	PASS
35 25 15 5 0	2.805	5239	.9985	-1500	PASS

Page 141 of 150

Report No.: TCT170221E005

Test mode:	802.11n(l	HT20)	Freque	ency(MHz):	5745
Temperature (°C)	Voltage(VAC)	Measu Frequen	rement cy(MHz)	Delta Frequency(H	Hz) Result
45		5745.0076		7600	PASS
35		5745.	.0028	2800	PASS
25	3.3	5745.	.0035	3500	PASS
15	3.3	5.5 5745.		2400	PASS
5		5745.	.0013	1300	PASS
0		5745.	.0034	3400	PASS
	3.795	5745.	.0042	4200	PASS
20	3.3	5744.	.9979	-2100	PASS
45 35 25 15 5 0 20	2.805	5745.	.0035	3500	PASS

Test mode:	802.11n(H	IT20)	Freque	ency(MHz):	5785
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)		Delta Frequency(Hz	:) Result
45		5785.0106		10600	PASS
35		5785.0048		4800	PASS
25	22	5785.0	0029	2900	PASS
15	3.3	5784.9	9987	-1300	PASS
5		5784.9	9944	-5600	PASS
0		5785.0	0024	2400	PASS
(<u>k</u> C)	3.795	5785.0	0038	3800	PASS
20	3.3	5785.0	0021	2100	PASS
	2.805	5785.0	0052	5200	PASS

Test mode:	802.11n	(HT20)	Freque	ency(MHz):	5825
Temperature (°C)	Voltage(VAC)		rement cy(MHz)	Delta Frequency(H:	z) Result
45			.9813	-18700	PASS
35		5824	.9952	-4800	PASS
25		5824	.9953	-4700	PASS
15	3.3	5824	.9985	-1500	PASS
5		5825	.0015	1500	PASS
0		5825	.0046	4600	PASS
)	3.795	5825	.0042	4200	PASS
20	3.3	5824	.9987	-1300	PASS
	2.805	5825	.0024	2400	PASS

Page 142 of 150

Report No.: TCT170221E005

Test mode:	802.11n(l	HT40)	Freque	ency(MHz):	5190
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)		Delta Frequency(H	Hz) Result
45		5190.0127		12700	PASS
35		5190	.0110	11000	PASS
25	3.3	5190.	0104	<u> </u>	PASS
15	3.3	5190.	0035	3500	PASS
5		5190.	0062	6200	PASS
0		5190.	0078	7800	PASS
	3.795	5189.	.9910	-9000	PASS
20	3.3	5189.	9978	-2200	PASS
-	2.805	5190.	0042	4200	PASS

Test mode:	802.11n(l	HT40)	Freque	ency(MHz):		5230
Temperature (°C)	Voltage(VAC)		rement	Delta	1->	Result
, ,	. . ,	Frequen	cy(MHz)	Frequency(H	1Z)	
45		5230.0128		30.0128 12800		PASS
35		5230.	.0120	12000		PASS
25	3.3	5230.0099		9900	5)	PASS
15	3.3	5229.	.9988	-1200		PASS
5		5229.	.9981	-1900		PASS
0		5230	.0052	5200		PASS
(c)	3.795	5230	.0042	4200		PASS
20	3.3	5230	.0029	2900		PASS
	2.805	5229	.9978	-2200		PASS

Page 143 of 150

Report No.: TCT170221E005

Test mode:	802.11ac(HT20)	Freque	ency(MHz):		5180	
Temperature (°C)	Voltage(VAC)	Measu Frequen		Delta Frequency/H	Delta Frequency(Hz)		
45			5180.0056		5600		
35		5180.0032		3200		PASS	
25	3.3	5180.	.0074	7400		PASS	
15	3.3	5180.	.0040	4000		PASS	
5		5179.	9991	-900		PASS	
0		5179.	9980	-2000	-	PASS	
6	3.795	5180.	0055	5500		PASS	(
20	3.3	5180.	0065	6500		PASS	0
	2.805	5180.	.0042	4200		PASS	

Test mode:	802.11ac(HT20)	Freque	ency(MHz):		5220
Temperature (°C)	Voltage(VAC)	Measu	rement cy(MHz)	Delta Frequency(H		Result
45		5220.0043		4300	12)	PASS
35		5220.	0051	5100	X	PASS
25		5220.0038		3800)	PASS
15	3.3	5220.0020		2000		PASS
5		5220.	.0089	8900		PASS
0		5220.	.0024	2400		PASS
	3.795	5220.	0075	7500		PASS
20	3.3	5219.	.9973	-2700		PASS
	2.805	5219.	9965	-3500		PASS

Test mode:	802.11ac	:(HT20)	Frequency(MHz):		5240
Temperature (°C)	mperature (°C) Voltage(VAC)		irement	Delta	. Result
		Frequer	icy(MHz)	Frequency(F	lz)
45		5240	.0029	2900	PASS
35		5240	.0085	8500	PASS
25	3.3	5239	.9975	-2500	PASS
15	3.3	5239	.9964	-3600	PASS
5		5240	.0054	5400	PASS
0		5240	.0038	3800	PASS
	3.795	5240	.0016	1600	PASS
20	3.3	5240	.0042	4200	PASS
	2.805	5240	.0060	6000	PASS

Page 144 of 150

Report No.: TCT170221E005

	测检测 G CENTRE TECHNOLOGY				Report No.: TCT170221E005
Test mode:	802.11ac(HT20)	Freque	ency(MHz):	5745
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)		Delta Frequency(Hz	z) Result
45		5745.	.0012	1200	PASS
35		5745.	.0014	1400	PASS
25		5744.	.9960	-4000	PASS
15	3.3	5744.	.9955	-4500	PASS
5		5745.	.0033	3300	PASS
0		5745.	.0041	4100	PASS
Y	3.795	5745.	.0076	7600	PASS
20	3.3	5745.	.0071	7100	PASS
	2.805	5745.	.0021	2100	PASS

Test mode:		802.11ac(I	HT20)	Freque	ency(MH	z):		5785	
Temperature (°C)	Voltage(VAC)		Measurement		Delta		Re	sult	
Temperature (C)	VOILE		Frequen	cy(MHz)	Freque	ncy(ł	Hz)	I C	Suit
45			5785.	0083	83	800		PA	SS
35			5785.	0030	30	000		PA	SS
25		3.3		0028	2800			PA	NSS
15		3.3	5785.0008		800			PASS	
5			5785.	0025	25	500		PA	SS
0			5785.0043		4300		PA	SS	
	3	3.795	5785.	0057	57	'00		PA	SS
20		3.3	5785.	0026	26	600		PA	SS
	2.805		5784.	9975	-2	500		PA	ISS

Test mode:	802.11ac(HT20)	Freque	ency(MHz):		5805	
Temperature (°C)	Voltage(VAC)	Measu Frequen		Delta Frequency(H	Hz)	Result	9
45		5805.0046		4600		PASS	
35		5805.	.0051	51 5100		PASS	
25	3.3	5805.	.0027	2700		PASS	
15	3.3	5805.	0049	4900		PASS	
5		5805.	.0088	8800		PASS	
0		5805.	0066	6600		PASS	
	3.795	5805.	.0023	2300		PASS	
20	3.3	5805.	.0015	1500		PASS	
	2.805	5804.	9993	-700		PASS	

Page 145 of 150

Test mode:	802.11ac(HT40)	Freque	ency(MHz):	5190
Temperature (°C)	Voltage(VAC)	Measu Frequen		Delta Frequency(H	Hz) Result
45		5190.	.0034	3400	PASS
35	3.3	5190.0058		5800	PASS
25		5189.	9953	-4700	PASS
15		5190.	.0021	2100	PASS
5		5190.	.0037	3700	PASS
0		5190.	0061	6100	PASS
	3.795	5190.	.0025	2500	PASS
20	3.3	5189.	9945	-5500	PASS
	2.805	5190.	.0039	3900	PASS

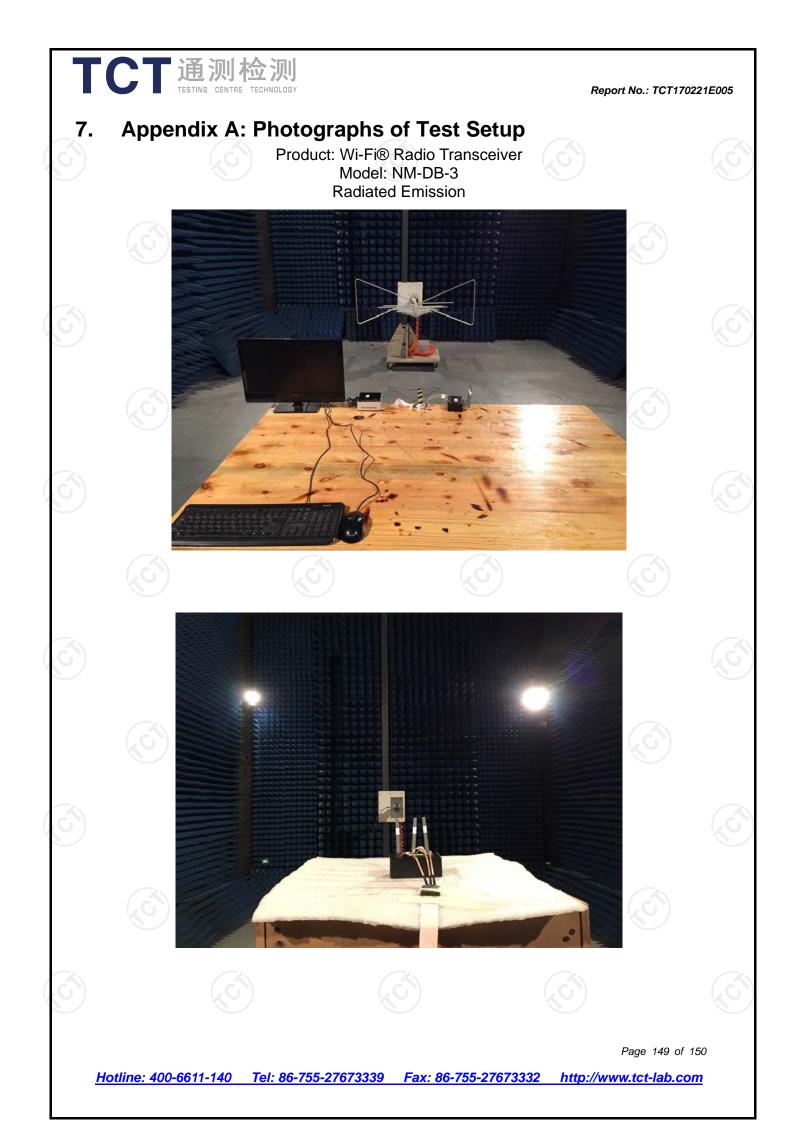
Test mode:	802.11ac(HT40)	Freque	ency(MHz):	5230
Temperature (°C)	Voltage(VAC)	Measu Frequen		Delta Frequency(H	Hz) Result
45		5230.0092		9200	PASS
35		5230.0013		1300	PASS
25		3.3 5230.00		3500	PASS
15	5.5	5230.	.0070	7000	PASS
5		5230.	.0081	8100	PASS
0		5230.	.0051	5100	PASS
	3.795	5230.	.0049	4900	PASS
20	3.3	5229.	9975	-2500	PASS
	2.805	5229.	9985	-1500	PASS

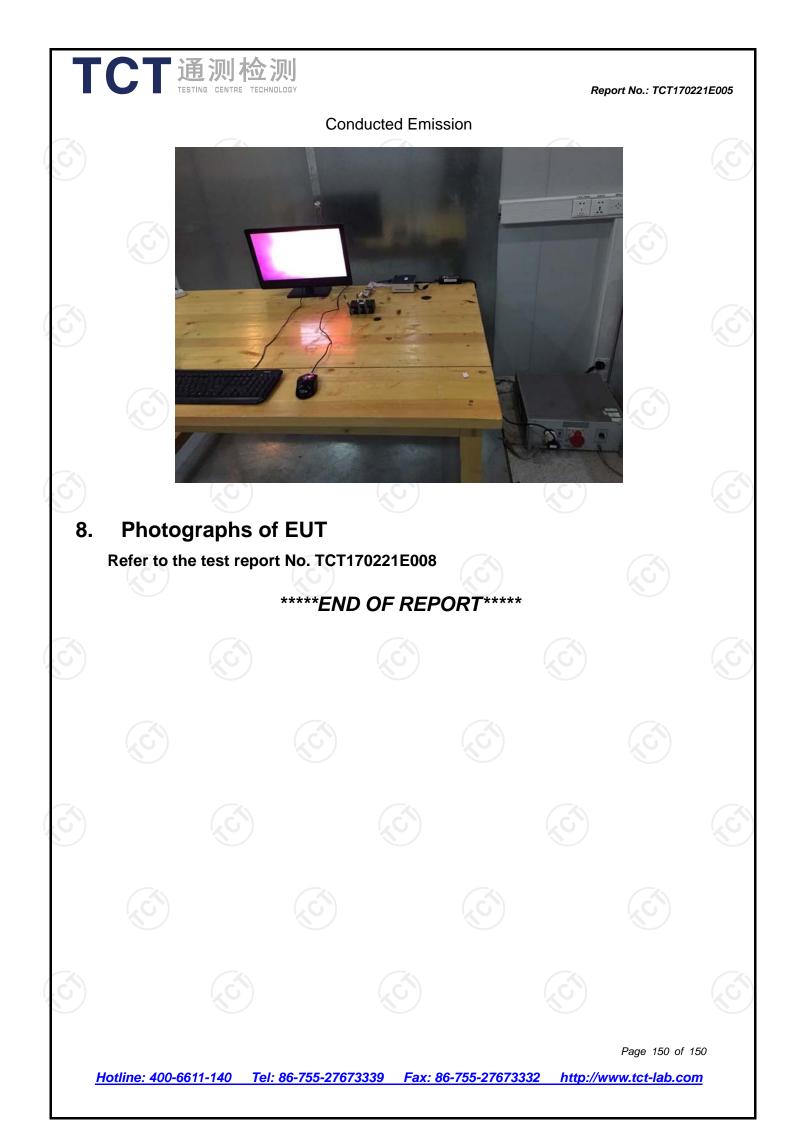
Page 146 of 150

Report No.: TCT170221E005

Test mode:	802.11ac(HT40)	Freque	ency(MHz):	5755	
Temperature (°C)	Voltage(VAC)	Measui Frequen		Delta Frequency(H	z) Result	
45		5755.	, ,	16400	PASS	
35	3.3	5755		0105	10500	PASS
25		5754.	9990	-1000	PASS	
15		5755.	0017	1700	PASS	
5		5755.	0089	8900	PASS	
0		5755.	0052	5200	PASS	
	3.795	5755.	0066	6600	PASS	
20	3.3	5755.	0023	2300	PASS	
-	2.805	5755.	0035	3500	PASS	

Test mode:	802.11ac(HT40)	Freque	ency(MHz):	5795
Temperature (°C)	Voltage(VAC)	Measurement		Delta	L_\ Result
,	0 ()	Frequen	cy(MHz)	Frequency(H	1Z)
45		5795.0083		8300	PASS
35	5795.0		.0025	2500	PASS
25		5795.0034		3400	PASS
15	3.3	5795.	.0012	1200	PASS
5		5795.	.0046	4600	PASS
0		5795.	.0059	5900	PASS
	3.795	5795.	.0075	7500	PASS
20	3.3	5794	.9970	-3000	PASS
	2.805	5794	.9945	-5500	PASS


Test mode:	802.11ac	(HT80)	Freque	ency(MHz):	5210
Temperature (°C)	Voltage(VAC)		irement hcy(MHz)	Delta Frequency(H:	z) Result
45			.0018	1800	PASS
35		5210	.0029	2900	PASS
25		5210	.0055	5500	PASS
15	3.3	5210	.0067	6700	PASS
5		5210	.0043	4300	PASS
0		5210	.0081	8100	PASS
	3.795	5209	.9910	-9000	PASS
20	3.3	5210	.0051	5100	PASS
	2.805	5209	.9925	-7500	PASS


Page 147 of 150

Report No.: TCT170221E005

	测检测 s centre technology				Report No.: TCT170
Test mode:	802.11ac(802.11ac(HT80)		ency(MHz):	5775
emperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)		Delta Frequency(H	z) Result
45		5775.	.0158	15800	PASS
35		5775.	.0084	8400	PASS
25		5775.	.0042	4200	PASS
15	3.3	5775.	.0025	2500	PASS
5		5775.	.0036	3600	PASS
0		5774	.9983	-1700	PASS
	3.795	5775.	.0021	2100	PASS
20	3.3	5775.	.0030	3000	PASS
	2.805	5775.	.0066	6600	PASS

Page 148 of 150

