

Global United Technology Services Co., Ltd.

Report No.: GTS202010000025-01

TEST REPORT

Applicant: FCC: SALUS North America, Inc.

IC: SALUS North America, Inc.,

Address of Applicant: FCC: 4700 Duke Drive Suite 200, Mason, Ohio 45040, United States

IC: 4700 Duke Drive, Suite 200 Mason OH 45040 United States Of

America

Manufacturer: FCC: SALUS North America, Inc.

IC: SALUS North America, Inc.,

Address of FCC: 4700 Duke Drive Suite 200, Mason, Ohio 45040, United States Manufacturer: IC: 4700 Duke Drive, Suite 200 Mason OH 45040 United States Of

America

Factory: 1. Computime Electronics (Shenzhen) Company Limited

2. Computime (Malaysia) Sdn Bhd

Address of Factory: 1. Yuekenguangyu Industrial Park, Kangqiao Road 88#, Danzhutou

Community, Nanwan Street office, Longgang District, Shenzhen,

China.

2. 3065, Tingkat Perusahaan 4A, Kawasan Perusahaan Bebas Prai,

13600 Prai, Penang, Malaysia

Equipment Under Test (EUT)

Product Name: Z-wave Smart Plug

FCC Model No.: SZA2AP1AC, SC428ZW

IC Model No.: SC428ZW

Trade Mark: Salus

FCC ID: 2AG86-SC428ZW

IC: 21063-SC428ZW

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249

RSS-Gen Issue 5

RSS-210 Issue 10

Date of sample receipt: October 12, 2020

Date of Test: October 13-26, 2020

Date of report issued: October 26, 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 24

2 Version

Version No.	Date	Description
00	October 26, 2020	Original

Prepared By:	Tiger. Chen	Date:	October 26, 2020
	Project Engineer		
Check By:	Johnson Lux	Date:	October 26, 2020
	Reviewer		

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
_	VEROICIT	
3	CONTENTS	3
4	TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	
	5.8 Additional Instructions	6
6	TEST INSTRUMENTS LIST	7
7	TEST RESULTS AND MEASUREMENT DATA	9
	7.1 ANTENNA REQUIREMENT	9
	7.2 CONDUCTED EMISSIONS	
	7.3 RADIATED EMISSION METHOD	
	7.3.1 Field Strength of The Fundamental Signal and spurious emissions	
	7.3.2 Spurious emissions	
	7.4 20DB OCCUPY BANDWIDTH AND 99% OCCUPIED BANDWIDTH	22
8	TEST SETUP PHOTO	24
9	EUT CONSTRUCTIONAL DETAILS	24
J		

4 Test Summary

Test Item	Section	Result	
Antenna requirement	RSS-Gen Section 6.8	Pass	
AC Dawer Line Conducted Emission	15.207	Dago	
AC Power Line Conducted Emission	RSS-Gen Section 8.8	Pass	
Field strength of the fundamental signal	15.249 (a)	Pass	
Field strength of the fundamental signal	RSS-210 B10(a)	Pass	
	15.249 (a) (d)/15.209		
Spurious emissions	Spurious emissions RSS-210 B10(b)&		
	RSS-Gen Clause 8.9&8.10		
	15.249 (d)/15.205		
Band edge	RSS-210 B10(b)&	Pass	
	RSS-Gen Clause 8.9&8.10		
20dB Occupied Bandwidth and 99%	15.215 (c)	Pass	
Occupied Bandwidth	RSS-Gen 6.7	F d 5 5	

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10: 2013 and ANSI C63.4: 2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	rtainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Z-wave Smart Plug	
FCC Model No.:	SZA2AP1AC, SC428ZW	
IC Model No.:	SC428ZW	
Remark: All above models a	are identical in the same PCB layout, interior structure and electrical circuits.	
The only difference is mode	l name for commercial purpose.	
Serial No.:	10365-14201-17494-16521-21567-47069-56847-02080	
Hardware Version:	SBR2	
Software Version:	SZA2AP1AC_V1.04_20201009	
Test sample(s) ID:	GTS202010000025-1	
Sample(s) Status:	Engineer sample	
Operation Frequency:	908.4MHz~916MHz	
Modulation type:	FSK, GFSK	
Antenna Type:	Integral Antenna	
Antenna gain:	0dBi(declare by applicant)	
Power supply:	AC 120V, 60Hz, max.15A	

Operation Frequency each of channel				
Channel	Frequency			
The lowest channel	908.4MHz			
The middle channel	908.42MHz			
The Highest channel	916MHz			

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data. All modulation have been tested, only worse case GFSK is reported.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	X	Υ	Z
Field Strength(dBuV/m)	90.84	93.61	92.42

5.3 Description of Support Units

N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0.

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

EUT Software Settings:

Mode	Special test firmware was pre built in by manufacturer, power set default

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021	
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021	
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021	
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021	
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021	
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

RF C	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021		

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021		
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:

FCC part 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

RSS-Gen 6.8:

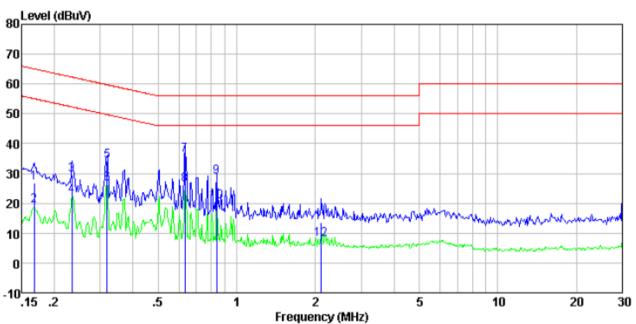
The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

EUT Antenna:

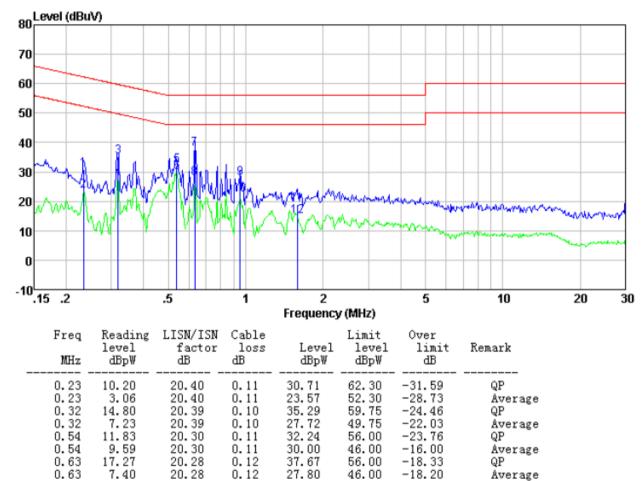
The antenna is Integral antenna, the best case gain of the antenna is 0 dBi, reference to the appendix II for details

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207		
	RSS-Gen Section 8.8		
Test Method:	ANSI C63.10:2013 and RSS-0	Gen	
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	veen time=auto	
Limit:		Limit (c	IRu\/\
Lillit.	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	of the frequency.	
Test setup:	Reference Plane		
	AUX Equipment Test table/Insulation plane Remark E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow	
Test procedure:	 The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). Both sides of A.C. line are content interference. In order to find positions of equipment and 	n network (L.I.S.N.). The edance for the measuring also connected to the in h/50uH coupling imped to the block diagram of thecked for maximum the maximum emissionall of the interface cab	is provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed
	according to ANSI C63.10:2		asurement.
Test Instruments:	Refer to section 6.0 for details		
Test mode:	AC 120V 60Hz		
Test results:	Pass		

Measurement data:



Freq MHz	Reading level dBpW	LISN/ISN factor dB	Cable loss dB	Level dBpW	Limit level dBpW	Over limit dB	Remark
0.17	6.31	20.40	0.09	26.80	65.08	-38.28	QP
0.17	-1.33	20.40	0.09	19.16	55.08	-35.92	Average
0.23	9.07	20.40	0.11	29.58	62.30	-32.72	QP
0.23	1.93	20.40	0.11	22.44	52.30	-29.86	Average
0.32	13.79	20.39	0.10	34.28	59.75	-25.47	QP
0.32	6.05	20.39	0.10	26.54	49.75	-23.21	Average
0.63	15.80	20.28	0.12	36.20	56.00	-19.80	QP
0.63	5.82	20.28	0.12	26.22	46.00	-19.78	Average
0.84	8.51	20.23	0.14	28.88	56.00	-27.12	QP
0.84	0.17	20.23	0.14	20.54	46.00	-25.46	Average
2.11	-6.92	20.20	0.18	13.46	56.00	-42.54	QP
2.11	-12.52	20.20	0.18	7.86	46.00	-38.14	Average

Neutral:

Notes:

0.95

0.95

1.59

1.59

7.44

1.69

-1.39

-5.30

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

0.15

0.15

0.17

0.17

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

27.80

22.05

18.98

15.07

56.00

46.00

56.00

46.00

-28.20

-23.95

-37.02

-30.93

QP

QΡ

Average

Average

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

20.21

20.21

20.20

20.20

7.3 Radiated Emission Method

7.5 Radiated Emission We	tiioa							
Test Requirement:	FCC Part15 C Section	on 15	.209					
	RSS-210 B10(a)& RSS-210 B10(b)& RSS-Gen Clause 8.9&8.10							
Test Method:	ANSI C63.10:2013 a	nd R	SS-Gen					
Test Frequency Range:	9kHz to 10GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		etector	RBV	V VB	W	Value	
	9KHz-150KHz	Qu	ıasi-peak	200F	Hz 600)Hz	Quasi-peak	
	150KHz-30MHz	Q	ıasi-peak	9KH	z 30k	Ήz	Quasi-peak	
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz 300l	KHz	Quasi-peak	
	Above 1GHz		Peak	1M⊢	lz 3M	Hz	Peak	
	ABOVE TOTIZ		Peak	1M⊢	lz 10	Hz	Average	
Limit:	Frequency		Limit		m @3m)		Remark	
(Field strength of the	902-928MHz	<u>.</u>		94.00		Α	verage Value	
fundamental signal)				114.0	0		Peak Value	
Limit: (Spurious Emissions)	Frequency		Limit (u\	//m)	Value		Measurement Distance	
	0.009MHz-0.490M		2400/F(k		QP		300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)	QP		30m	
	1.705MHz-30MH	z	30		QP		30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz		150		QP			
	216MHz-960MH		200		QP		3m	
	960MHz-1GHz		500		QP			
	Above 1GHz		500 5000)	Average Peak			
Limit: (band edge)	Emissions radiated of harmonics, shall be a fundamental or to the whichever is the less	atten e ger	uated by at neral radiate	least 5	0 dB belov	w the	level of the	
Test setup:	Below 30MHz							
	Tum Table EUT		< 3m > Test A	ntenna lm				

Below 1GHz Test Antenna < 1m ... 4m > EUT Turn Table < 80cm Turn Tables Receiver Preamplifier. Above 1GHz Test Antenna-< 1m ... 4m > EUT Turn Table+ <150cm; Receiver Preamplifier+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test environment: 25 °C Humid.: 52% Press.: 1 012mbar Temp.: Test Instruments: Refer to section 6.0 for details

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

7.3.1 Field Strength of The Fundamental Signal and spurious emissions

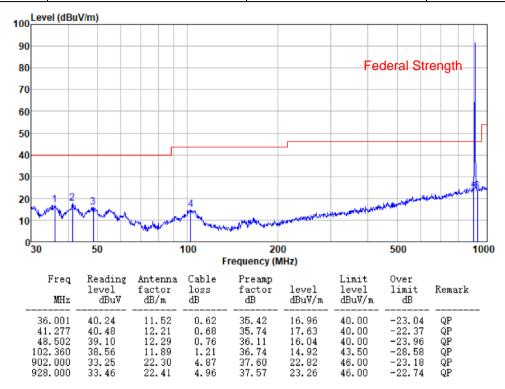
Peak value:

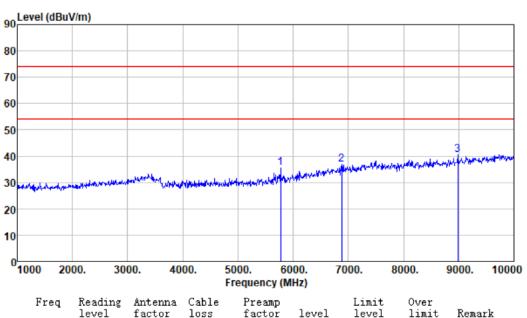
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
908.4	103.58	22.34	4.88	37.59	93.21	94	-0.79	Vertical
908.4	103.98	22.34	4.88	37.59	93.61	94	-0.39	Horizontal
908.42	103.57	22.34	4.88	37.59	93.2	94	-0.8	Vertical
908.42	103.19	22.34	4.88	37.59	92.82	94	-1.18	Horizontal
916	103.54	22.35	4.91	37.58	93.22	94	-0.78	Vertical
916	103.23	22.35	4.91	37.58	92.91	94	-1.09	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
908.4	102.24	22.34	4.88	37.59	91.87	94	-2.13	Vertical
908.4	102.33	22.34	4.88	37.59	91.96	94	-2.04	Horizontal
908.42	102.11	22.34	4.88	37.59	91.74	94	-2.26	Vertical
908.42	102.48	22.34	4.88	37.59	92.11	94	-1.89	Horizontal
916	102.7	22.35	4.91	37.58	92.38	94	-1.62	Vertical
916	101.54	22.35	4.91	37.58	91.22	94	-2.78	Horizontal

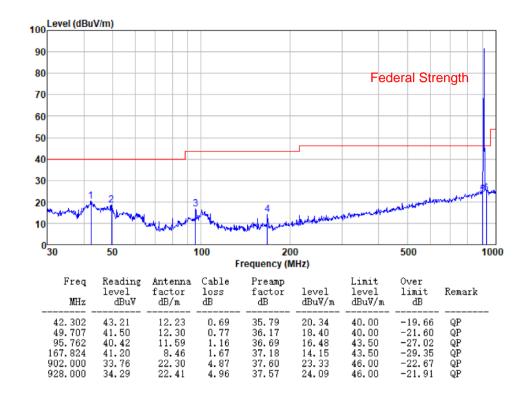
7.3.2 Spurious emissions

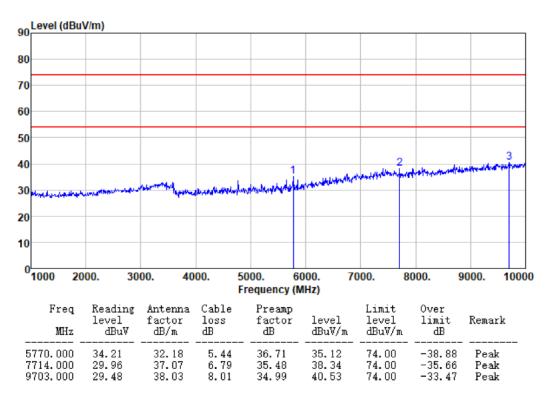

■ Below 30MHz


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

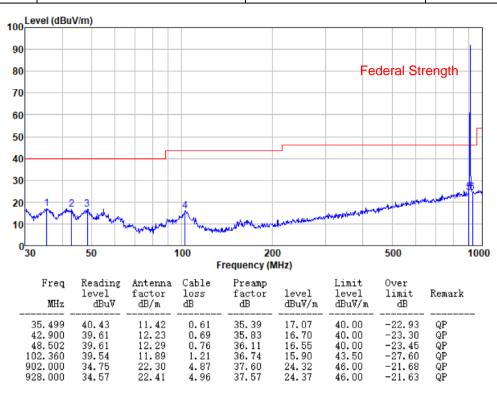
Above 30MHz

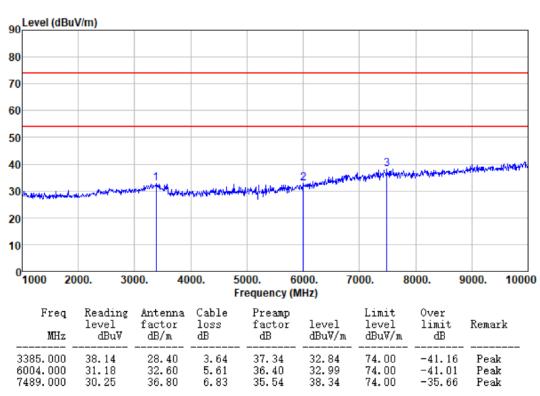
Test mode: transmitting mode (908.4MHz) Antenna Polarity: Horizontal

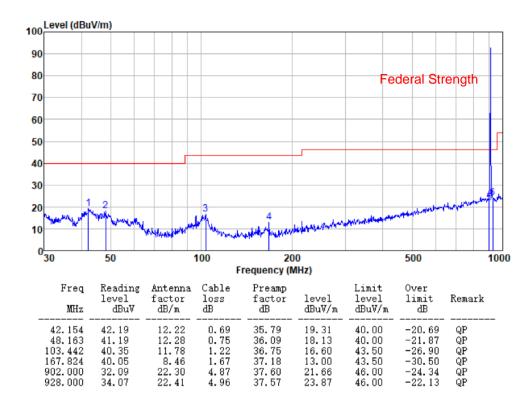


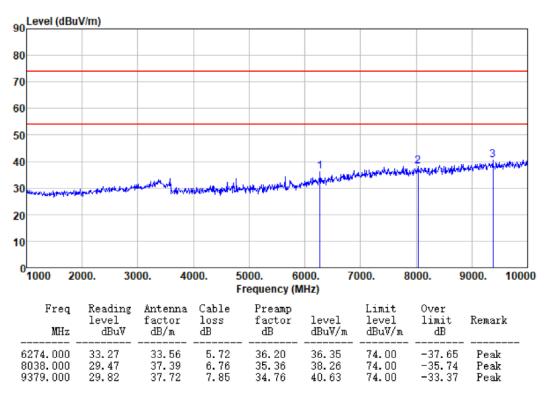


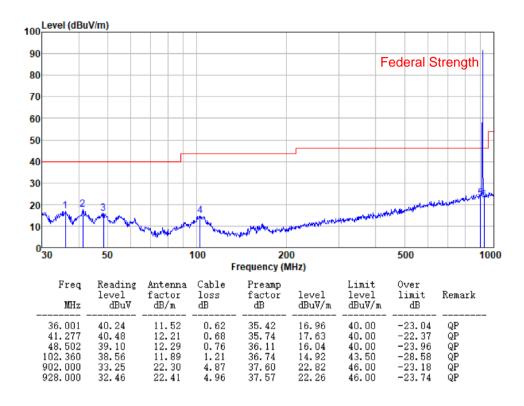
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
5770.000 6877.000 8983.000	34.54 31.17 30.00	32.18 35.39 37.50	5.44 6.14 7.56	36.71 35.78 34.50	35.45 36.92 40.56	74.00 74.00 74.00	-38.55 -37.08 -33.44	Peak Peak Peak

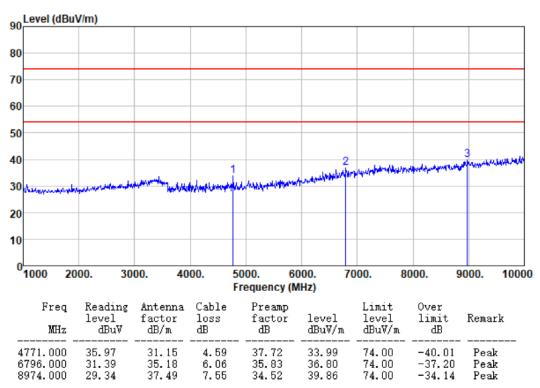

Test mode:	transmitting mode (908.4 MHz)	Antenna Polarity:	Vertical
------------	-------------------------------	-------------------	----------

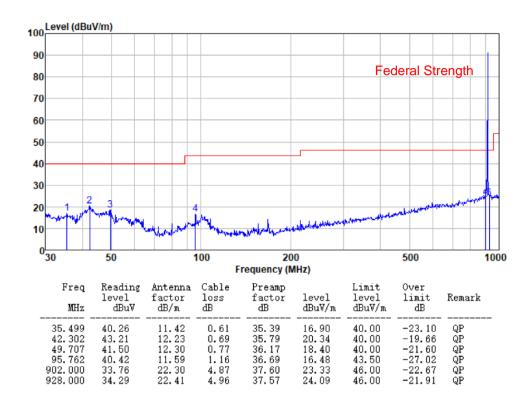


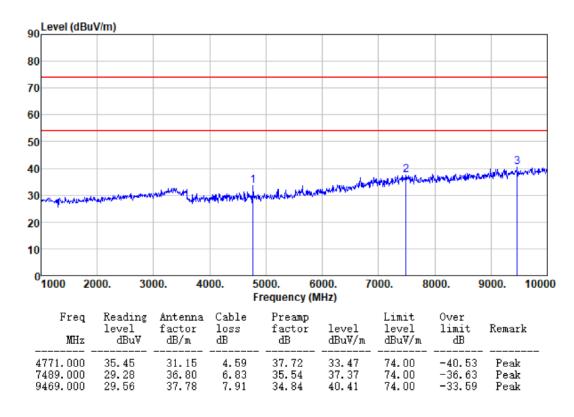

Test mode: transmitting mode (908.42MHz) Antenna Polarity: Horizontal

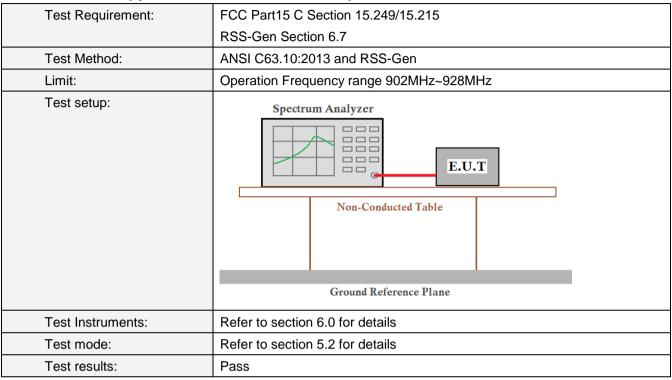



rest flode. transmiting flode (900.42MHz) Africality. Vertical	Test mode:	transmitting mode (908.42MHz)	Antenna Polarity:	Vertical
--	------------	-------------------------------	-------------------	----------

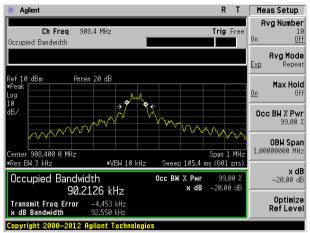



Test mode: tran	nsmitting mode (916MHz)	Antenna Polarity:	Horizontal
-----------------	-------------------------	-------------------	------------

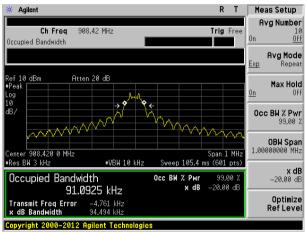


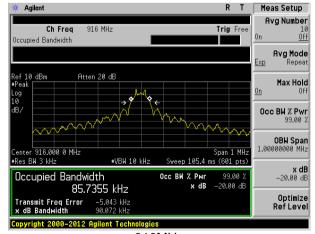

Test mode: transmitting mode (916MHz) Antenna Polarity: Vertical

7.4 20dB Occupy Bandwidth and 99% Occupied Bandwidth



Measurement Data


Operation Frequency	20dB bandwidth(kHz)	99% Occupied bandwidth(kHz)	Result
908.4MHz	92.550	90.2126	
908.42MHz	94.494	91.0925	Pass
916MHz	90.072	85.7355	


Test plot as follows:

908.4MHz

908.42MHz

916MHz

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details

-----End-----