

Global United Technology Services Co., Ltd.

Report No.: GTSE15120228902

FCC REPORT

Applicant: Salus Controls Inc.

Address of Applicant: 850 Main Street, Redwood City 94063, California, United

States

Equipment Under Test (EUT)

Product Name: Gateway

Model No.: SAU2AG1, SAU2AG2

Trade Mark: Salus

FCC ID: 2AG86-SAU2AG1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014

Date of sample receipt: December 23, 2015

Date of Test: December 24-31, 2015

Date of report issued: January 04, 2016

Test Result: PASS *

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	January 04, 2016	Original

Prepared By:	Edward.Pan	Date:	January 04, 2016
	Project Engineer		
Check By:	hank. yan	Date:	January 04, 2016
	Reviewer		

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4	TES.	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	7
	5.6	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES [.]	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	13
	7.4	CHANNEL BANDWIDTH	16
	7.5	POWER SPECTRAL DENSITY	19
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.1		
	7.7.2	Radiated Emission Method	30
8	TES	T SETUP PHOTO	37
۵	EUT	CONSTRUCTIONAL DETAILS	20

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes				
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)				
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)				
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)				
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)				
Note (1): The measurement unce	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

5 General Information

5.1 Client Information

Applicant:	Salus Controls Inc.	
Address of Applicant:	850 Main Street, Redwood City 94063, California, United States	
Manufacturer:	Salus Controls Inc.	
Address of Manufacturer:	850 Main Street, Redwood City 94063, California, United States	
Factory:	Computime Electronics (shenzhen) Company Limited	
Address of Factory:	Yuekenguangyu Industrial Park, Kangqiao Road 88#, Danzhutou Community, Nanwan Street Office Longgang District, Shenzhen, China	

5.2 General Description of EUT

Droduct Names	Gateway
Product Name:	Galeway
Model No.:	SAU2AG1, SAU2AG2
Operation Frequency:	2405MHz~2480MHz
Channel numbers:	16
Channel separation:	5MHz
Modulation type:	O-QPSK
Antenna Type:	PCB Antenna
Antenna gain:	-0.32dBi
Power supply:	Adapter:
	Model: SA895-WH
	Input: 120V-50, 60Hz,0.15A
	Output: 5V DC, 1A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2405MHz	5	2425MHz	9	2445MHz	13	2465MHz
2	2410MHz	6	2430MHz	10	2450MHz	14	2470MHz
3	2415MHz	7	2435MHz	11	2455MHz	15	2475MHz
4	2420MHz	8	2440MHz	12	2460MHz	16	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2445MHz
The Highest channel	2475MHz and 2480MHz

5.3 Test mode

he EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Description of Support Units

N/A

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radiated Emission:								
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 27 2015	Mar. 26 2016		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 3 2015	Dec. 2 2016		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 30 2015	June 29 2016		
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 30 2015	June 29 2016		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 26 2015	June 25 2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2015	Mar. 26 2016		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016		
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016		
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016		
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	July 01 2014	June 30 2015		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	July 01 2014	June 30 2015		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 26 2015	June 25 2016		
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016		
17	Power Meter	Anritsu	ML2495A	GTS540	June 30 2015	June 29 2016		
18	Power Sensor	Anritsu	MA2411B	GTS541	June 30 2015	June 29 2016		

Con	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2015	Sep. 06 2016			
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 30 2015	June 29 2016			
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 30 2015	June 29 2016			
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 30 2015	June 29 2016			
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	June 30 2015	June 29 2016			
6	Coaxial Cable	GTS	N/A	GTS227	June 30 2015	June 29 2016			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

Gen	eral used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016

Project No.: GTSE15120228902

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

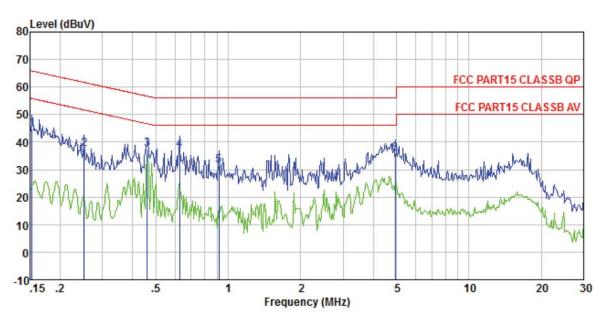
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB Antenna, the best case gain of the antenna is -0.32dBi


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:	Execution (MALLE) Limit (dBuV)						
	Frequency range (MHz) Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test setup:	Reference Plane		_				
	AUX Equipment E.U.T Filter AC power Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.						
	 The peripheral devices are also connected to the main power thr LISN that provides a 50ohm/50uH coupling impedance with 50ol termination. (Please refer to the block diagram of the test setup a photographs). 						
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.						
Test Instruments:	Refer to section 6.0 for details	i					
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

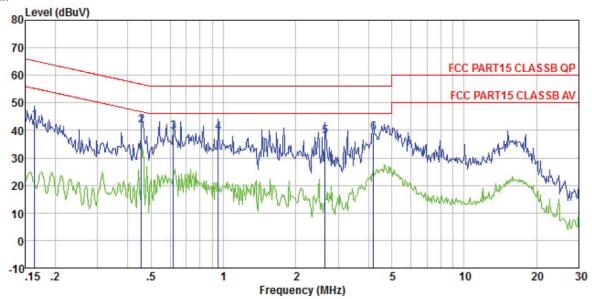
Measurement data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 2289RF


Test mode : Transmitting mode

Test Engineer: Arslan

050	Freq	Read Level	Leve1		LISN Factor		Over Limit	Remark	
	MHz	dBuV	dBuV	d₿	₫B	dBu√	dB		
1 2	0. 153 0. 252		44.75 37.56	0.12 0.11			-21. 07 -24. 13		
2	0.461	37.35	37.58	0.11	0.12	56.67	-19.09	QP	
4 5	0.627 0.914		37. 15 31. 66	0. 12 0. 13			-18.85 -24.34		
6	4.952	35.37	35.73	0.15	0.21	56.00	-20.27	QP	

Neutral:

Site : Shielded room

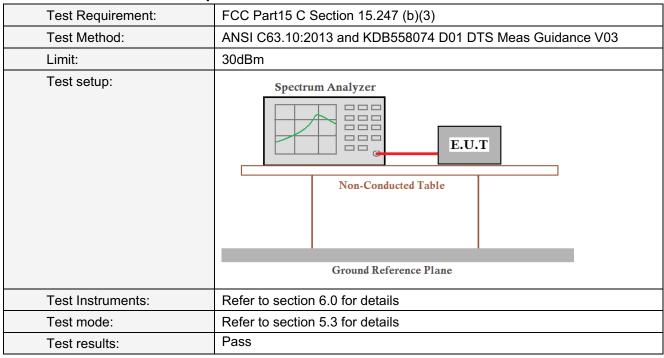
Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 2289RF

Test mode : Transmitting mode

Test Engineer: Arslan

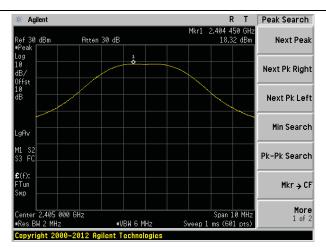
	Dugineer.	Read		Cable	LISN	Limit	Over	
	Freq	Leve1	Leve1	Loss	Factor	Line	Limit	Remark
	MHz	dBuV	dBuV	₫B	d₿	dBuV	dB	s :
1	0.164	43.44	43.63	0.12	0.07	65.25	-21.62	QP
2	0.456	41.64	41.81	0.11	0.06	56.76	-14.95	QP
3	0.621	39.20	39.39	0.12	0.07	56.00	-16.61	QP
4	0.953	38.95	39.15	0.13	0.07	56.00	-16.85	QP
5	2.650	37.58	37.83	0.15	0.10	56.00	-18.17	QP
6	4, 202	38. 93	39, 22	0.15	0.14	56,00	-16.78	QP


Notes:

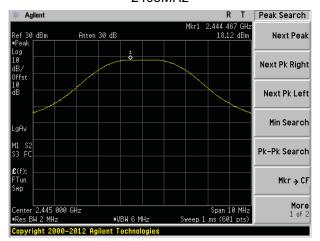
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

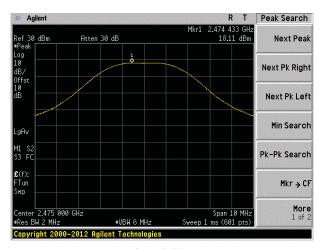
7.3 Conducted Peak Output Power



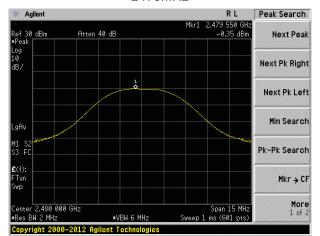
Measurement Data


Frequency (MHz)	Peak Output Power (dBm)	Limit(dBm)	Result	
2405	18.32			
2445	18.12	20	DACC	
2475	18.11	30	PASS	
2480	-0.35			

Test plot as follows:



2405MHz

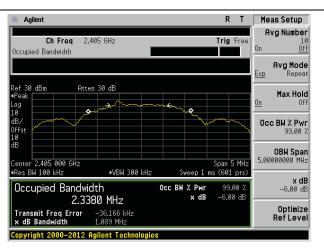


2445 MHz

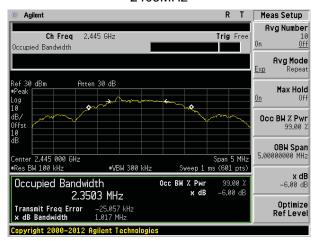
2475MHz

2480MHz

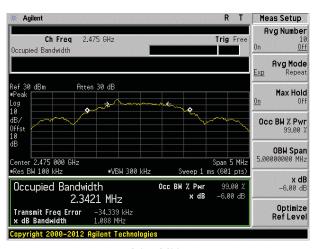
7.4 Channel Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

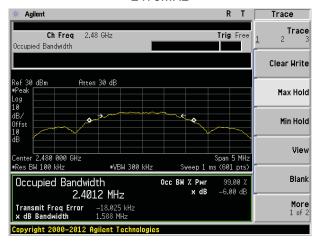
Measurement Data


Frequency (MHz)	Frequency (MHz) Channel Bandwidth (MHz)		Result	
2405	1.089			
2445	1.017	>E00	Dage	
2475	1.088	>500	Pass	
2480	1.588			

Test plot as follows:



2405MHz

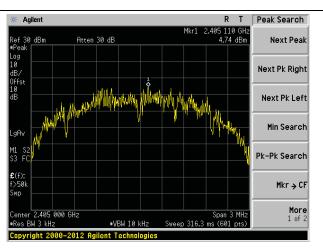


2445 MHz

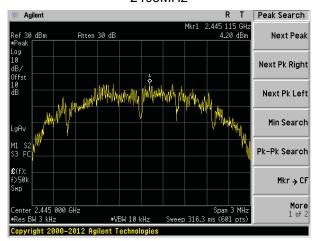
2475MHz

2480MHz

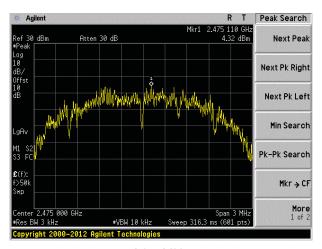
7.5 Power Spectral Density


Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03	
Limit:	8dBm/3kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

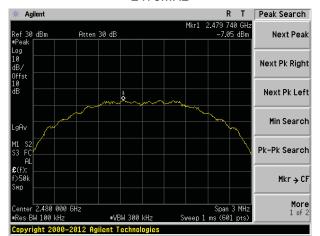
Measurement Data


Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm/3kHz)	Result
2405	4.74		
2445	4.20	9.00	Dana
2475	4.32	8.00	Pass
2480	-0.75		

Test plot as follows:



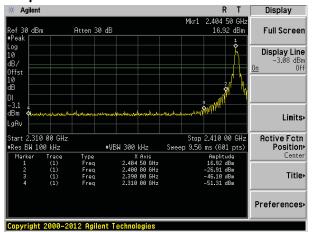
2405MHz



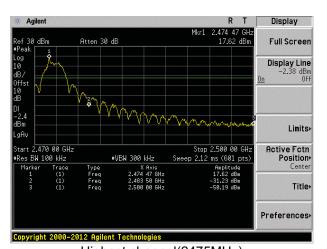
2445 MHz

2475MHz

2480MHz


7.6 Band edges

7.6.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Test plot as follows:

Lowest channel

Highest channel (2475MHz)

** Agilent

Ref 30 dBm

** Atten 40 dB

** Peak
Log
10
dB/

-2.3.60 dBm

** Atten 40 dB

** Atten 40 dB

** Atten 40 dB

** April 2.479 750 0 GHz

-3.60 dBm

** Next Pk Right

Next Pk Search

Min Search

Next Pk Search

Min Search

Pk-Pk Search

Mkr → CF

More
1 of 2

Highest channel(2480MHz)

7.6.2 Radiated Emission Method

Limit: Frequency Above 1GHz Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving	Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205				
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Value Peak 1MHz 3MHz Peak RMS 1MHz 3MHz Average Limit: Frequency Limit (dBuV/m @3m) Value Above 1GHz 74.00 Peak Peak Test setup: Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving	Test Method:	ANSI C63.10:2013						
Test site: Receiver setup: Frequency Detector RBW VBW Value	Test Frequency Range:	All of the restric	ct bands were	tested, only	the worst ba	ind's (2310MHz to		
Receiver setup: Frequency		2500MHz) data	was showed.					
Above 1GHz Peak 1MHz 3MHz Average RMS 1MHz 3MHz Average Limit: Frequency Limit (dBuV/m @3m) Value Above 1GHz Frequency Limit (dBuV/m @3m) Value 54.00 Average 74.00 Peak Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving		Measurement D	istance: 3m					
Limit: Frequency Above 1GHz Frequency Above 1GHz Frequency Above 1GHz Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving	Receiver setup:	Frequency	Detector	RBW	VBW	Value		
Limit: Frequency Above 1GHz Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving		Above 1GHz		_		Peak		
Above 1GHz Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving		Above Toriz	RMS	1MHz	3MHz	Average		
Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving	Limit:	Freque	Frequency Limit (dBuV/m @3m)					
Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving		Above 1	IGH ₇			Average		
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving		Above	OFIZ	74.0	0	Peak		
the ground at a 3 meter camber. The table was rotated 360 degree determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving	root ostap.	Turn Table	4m	Horn Ante Spectrum Analyzer	mna			
antenna, which was mounted on the top of a variable-height anter tower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Bot horizontal and vertical polarizations of the antenna are set to mak measurement. 4. For each suspected emission, the EUT was arranged to its worst and then the antenna was tuned to heights from 1 meter to 4 met and the rota table was turned from 0 degrees to 360 degrees to fit the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower that the limit specified, then testing could be stopped and the peak val of the EUT would be reported. Otherwise the emissions that did in have 10dB margin would be re-tested one by one using peak, quapeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis position And found the Y axis positioning which it is worse case, only the testing to the stopped and the peak value of the Y axis positioning which it is worse case, only the testing to the testing to the peak value of the Y axis positioning which it is worse case, only the testing to the testing	Test Procedure:	the ground a determine the 2. The EUT was antenna, whistower. 3. The antennas ground to de horizontal and measuremer. 4. For each sus and then the and the rota the maximum. 5. The test-reces Specified Ba. 6. If the emission the limit specified be an even sheet. 7. The radiation And found the sure was a specified be an even sheet.	t a 3 meter can e position of the s set 3 meters ch was mounted height is varie- termine the mail and vertical polar int. spected emission antenna was to table was turned in reading. eiver system was individed in the Estimated of the Estimated in the set would be reported age method as in measurement in m	mber. The talle highest race away from the don the top of the top	ble was rotated attion. The interference of a variable of a variable of the field of the antenna at the antenna at the arrange of the firm of the arrange of the firm of the enission of the report of the arrange of the enission of the arrange of the arr	ed 360 degrees to ce-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find ection and odB lower than I the peak values ons that did not sing peak, quasited in a data		
Test Instruments: Refer to section 6.0 for details	Test Instruments:	worst case mode is recorded in the report. Refer to section 6.0 for details						
Test mode: Refer to section 5.3 for details								
Test results: Pass			2.0.0.000000					

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	44.91	27.91	5.30	30.37	47.75	74.00	-26.25	Horizontal
2390.00	47.78	27.59	5.38	30.18	50.57	74.00	-23.43	Horizontal
2400.00	59.04	27.58	5.39	30.18	61.83	74.00	-12.17	Horizontal
2310.00	47.53	27.91	5.30	30.37	50.37	74.00	-23.63	Vertical
2390.00	55.16	27.59	5.38	30.18	57.95	74.00	-16.05	Vertical
2400.00	66.31	27.58	5.39	30.18	69.10	74.00	-4.90	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	34.82	27.91	5.30	30.37	37.66	54.00	-16.34	Horizontal
2390.00	35.38	27.59	5.38	30.18	38.17	54.00	-15.83	Horizontal
2400.00	46.61	27.58	5.39	30.18	49.40	54.00	-4.60	Horizontal
2310.00	34.90	27.91	5.30	30.37	37.74	54.00	-16.26	Vertical
2390.00	34.76	27.59	5.38	30.18	37.55	54.00	-16.45	Vertical
2400.00	43.25	27.58	5.39	30.18	46.04	54.00	-7.96	Vertical

Test channel:	2475MHz
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
2483.50	55.32	27.53	5.47	29.93	58.39	74.00	-15.61	Horizontal
2500.00	44.54	27.55	5.49	29.93	47.65	74.00	-26.35	Horizontal
2483.50	59.97	27.53	5.47	29.93	63.04	74.00	-10.96	Vertical
2500.00	44.29	27.55	5.49	29.93	47.40	74.00	-26.60	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
2483.50	37.46	27.53	5.47	29.93	40.53	54.00	-13.47	Horizontal
2500.00	34.04	27.55	5.49	29.93	37.15	54.00	-16.85	Horizontal
2483.50	39.89	27.53	5.47	29.93	42.96	54.00	-11.04	Vertical
2500.00	34.00	27.55	5.49	29.93	37.11	54.00	-16.89	Vertical

Test channel:	2480MHz
---------------	---------

Peak value:

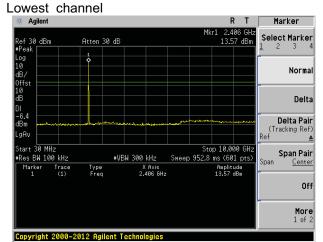
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	55.46	27.53	5.47	29.93	58.53	74.00	-15.47	Horizontal
2500.00	44.65	27.55	5.49	29.93	47.76	74.00	-26.24	Horizontal
2483.50	60.11	27.53	5.47	29.93	63.18	74.00	-10.82	Vertical
2500.00	44.41	27.55	5.49	29.93	47.52	74.00	-26.48	Vertical

Average value:

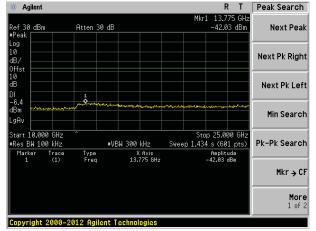
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.54	27.53	5.47	29.93	40.61	54.00	-13.39	Horizontal
2500.00	34.14	27.55	5.49	29.93	37.25	54.00	-16.75	Horizontal
2483.50	40.00	27.53	5.47	29.93	43.07	54.00	-10.93	Vertical
2500.00	34.10	27.55	5.49	29.93	37.21	54.00	-16.79	Vertical

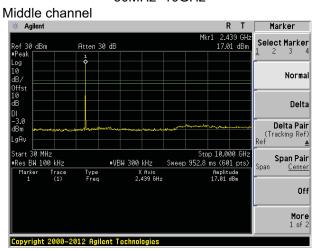
Remark:

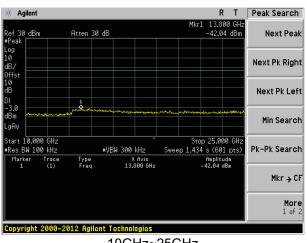
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

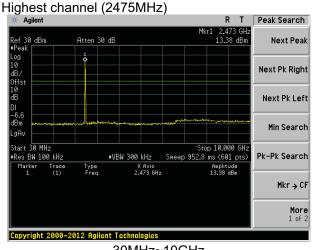

7.7 Spurious Emission

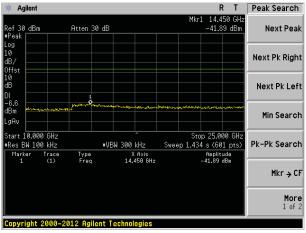
7.7.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

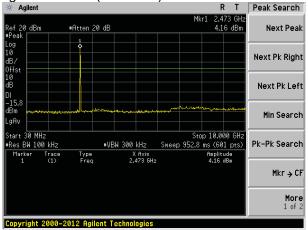

Test plot as follows:

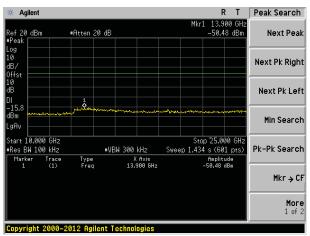

30MHz~10GHz


10GHz~25GHz


30MHz~10GHz

10GHz~25GHz


30MHz~10GHz


10GHz~25GHz

Highest channel (2480MHz)

10GHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10: 20	ANSI C63.10: 2013							
Test Frequency Range:	30MHz to 25GHz	<u>,</u>							
Test site:	Measurement Dis	stance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak				
	Above 1GHz	Peak 1MHz 3MHz							
	Above IGHZ	RMS	1MHz	3MHz	Average				
Limit:	Frequen	су	Limit (dBuV	/m @3m)	Value				
	30MHz-88	MHz	40.0	0	Quasi-peak				
	88MHz-216	6MHz	43.5	0	Quasi-peak				
	216MHz-96	0MHz	46.0	0	Quasi-peak				
	960MHz-1	GHz	54.0	0	Quasi-peak				
	A I 4.6	211=	54.0	0	Average				
	Above 10	Above 1GHz 74.00							
	Search Antenna RF Test Receiver Tum Table 0.8m 1m								
		^ _							

Test Procedure:	The EUT was placed on the top of a rotating table (0.8 meters for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

	0112							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
49.19	46.33	15.31	0.76	30.00	32.40	40.00	-7.60	Vertical
90.86	45.76	14.07	1.12	29.74	31.21	43.50	-12.29	Vertical
125.01	51.31	11.70	1.40	29.54	34.87	43.50	-8.63	Vertical
180.02	46.49	11.68	1.74	29.27	30.64	43.50	-12.86	Vertical
323.32	38.17	15.46	2.49	29.87	26.25	46.00	-19.75	Vertical
625.08	31.64	20.54	3.82	29.27	26.73	46.00	-19.27	Vertical
81.21	45.10	10.98	1.04	29.79	27.33	40.00	-12.67	Horizontal
125.01	53.84	11.70	1.40	29.54	37.40	43.50	-6.10	Horizontal
151.60	57.94	10.32	1.58	29.40	40.44	43.50	-3.06	Horizontal
268.49	47.90	14.34	2.21	29.79	34.66	46.00	-11.34	Horizontal
580.70	34.78	20.14	3.65	29.30	29.27	46.00	-16.73	Horizontal
798.98	35.05	22.06	4.45	29.20	32.36	46.00	-13.64	Horizontal

■ Above 1GHz

Test channel:

Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	35.85	31.78	8.60	32.09	44.14	74.00	-29.86	Vertical
7215.00	37.13	36.15	11.66	31.99	52.95	74.00	-21.05	Vertical
9620.00	27.09	38.01	14.14	31.60	47.64	74.00	-26.36	Vertical
12025.00	*					74.00		Vertical
14430.00	*					74.00	_	Vertical
4810.00	32.79	31.78	8.60	32.09	41.08	74.00	-32.92	Horizontal
7215.00	31.86	36.15	11.66	31.99	47.68	74.00	-26.32	Horizontal
9620.00	27.26	38.01	14.14	31.60	47.81	74.00	-26.19	Horizontal
12025.00	*					74.00		Horizontal
14430.00	*					74.00		Horizontal

Lowest

Average value:

Average var	ue.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	26.21	31.78	8.60	32.09	34.50	54.00	-19.50	Vertical
7215.00	26.75	36.15	11.66	31.99	42.57	54.00	-11.43	Vertical
9620.00	16.79	38.01	14.14	31.60	37.34	54.00	-16.66	Vertical
12025.00	*					54.00		Vertical
14430.00	*					54.00		Vertical
4810.00	22.72	31.78	8.60	32.09	31.01	54.00	-22.99	Horizontal
7215.00	21.84	36.15	11.66	31.99	37.66	54.00	-16.34	Horizontal
9620.00	17.34	38.01	14.14	31.60	37.89	54.00	-16.11	Horizontal
12025.00	*					54.00		Horizontal
14430.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel:

Report No.: GTSE15120228902

Peak value:				•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	34.30	31.86	8.67	32.13	42.70	74.00	-31.30	Vertical
7320.00	29.37	36.41	11.72	31.88	45.62	74.00	-28.38	Vertical
9760.00	26.61	38.43	14.27	31.62	47.69	74.00	-26.31	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	30.30	31.86	8.67	32.13	38.70	74.00	-35.30	Horizontal
7320.00	28.84	36.41	11.72	31.88	45.09	74.00	-28.91	Horizontal
9760.00	27.06	38.43	14.27	31.62	48.14	74.00	-25.86	Horizontal
12200.00	*					74.00		Horizontal
14640.00	*					74.00		Horizontal
Average val	ue:			,	•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	25.08	31.86	8.67	32.13	33.48	54.00	-20.52	Vertical
7320.00	19.96	36.41	11.72	31.88	36.21	54.00	-17.79	Vertical
9760.00	17.00	38.43	14.27	31.62	38.08	54.00	-15.92	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	20.93	31.86	8.67	32.13	29.33	54.00	-24.67	Horizontal
7320.00	19.32	36.41	11.72	31.88	35.57	54.00	-18.43	Horizontal
9760.00	16.88	38.43	14.27	31.62	37.96	54.00	-16.04	Horizontal
12200.00	*					54.00		Horizontal
	-							

Middle

Remark:

14640.00

Project No.: GTSE151202289RF

Horizontal

54.00

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel:

Report No.: GTSE15120228902

Dook voluer								
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4950.00	36.28	31.91	8.71	32.16	44.74	74.00	-29.26	Vertical
7425.00	28.19	36.56	11.79	31.80	44.74	74.00	-29.26	Vertical
9900.00	27.46	38.81	14.35	31.85	48.77	74.00	-25.23	Vertical
12375.00	*					74.00		Vertical
14850.00	*					74.00		Vertical
4950.00	31.39	31.91	8.71	32.16	39.85	74.00	-34.15	Horizontal
7425.00	27.86	36.56	11.79	31.80	44.41	74.00	-29.59	Horizontal
9900.00	27.63	38.81	14.35	31.85	48.94	74.00	-25.06	Horizontal
12375.00	*					74.00		Horizontal
14850.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4950.00	26.67	31.91	8.71	32.16	35.13	54.00	-18.87	Vertical
7425.00	18.69	36.56	11.79	31.80	35.24	54.00	-18.76	Vertical
9900.00	17.66	38.81	14.35	31.85	38.97	54.00	-15.03	Vertical
12375.00	*					54.00		Vertical
14850.00	*					54.00		Vertical
4950.00	21.27	31.91	8.71	32.16	29.73	54.00	-24.27	Horizontal
7425.00	17.90	36.56	11.79	31.80	34.45	54.00	-19.55	Horizontal
9900.00	17.96	38.81	14.35	31.85	39.27	54.00	-14.73	Horizontal
12375.00	*					54.00		Horizontal
14850.00	*					54.00		Horizontal

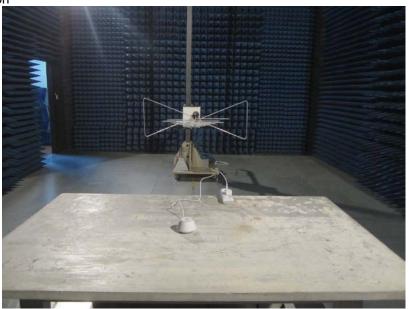
Highest (2475MHz)

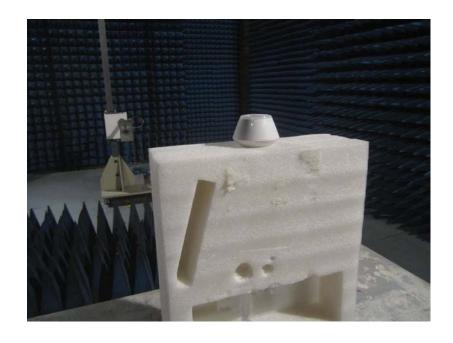
Test channel:

Report No.: GTSE15120228902

				0	`	,		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	31.16	31.93	8.73	32.16	39.66	74.00	-34.34	Vertical
7440.00	32.57	36.59	11.79	31.78	49.17	74.00	-24.83	Vertical
9920.00	27.93	38.81	14.38	31.88	49.24	74.00	-24.76	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	35.97	31.93	8.73	32.16	44.47	74.00	-29.53	Horizontal
7440.00	29.09	36.59	11.79	31.78	45.69	74.00	-28.31	Horizontal
9920.00	27.52	38.81	14.38	31.88	48.83	74.00	-25.17	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	20.41	31.93	8.73	32.16	28.91	54.00	-25.09	Vertical
7440.00	22.43	36.59	11.79	31.78	39.03	54.00	-14.97	Vertical
9920.00	17.68	38.81	14.38	31.88	38.99	54.00	-15.01	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	25.59	31.93	8.73	32.16	34.09	54.00	-19.91	Horizontal
7440.00	19.65	36.59	11.79	31.78	36.25	54.00	-17.75	Horizontal
9920.00	17.65	38.81	14.38	31.88	38.96	54.00	-15.04	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Highest (2480MHz)


Remark:


- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTSE15120228901

-----End-----

Project No.: GTSE151202289RF

Page 38 of 38