

Report No.: FR100638A

FCC RADIO TEST REPORT

FCC ID : 2AG7G-J1A

Equipment : Plume Adaptive Wi-Fi Brand Name : Plume Design, Inc.

Model Name : J1A

Applicant : Plume Design, Inc.

325 Lytton Ave., Palo Alto, CA 94301

Manufacturer : Plume Design, Inc.

325 Lytton Ave., Palo Alto, CA 94301

Standard : FCC Part 15 Subpart C §15.247

The product was received on Oct. 07, 2021 and testing was performed from Oct. 21, 2021 to Dec. 27, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Wu

Approved by: Louis Wu

Sporton International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

Table of Contents

Report No.: FR100638A

His	tory o	of this test report	3	
Sui	nmar	y of Test Result	4	
1	General Description			
	1.1	Product Feature of Equipment Under Test	5	
	1.2	Modification of EUT	6	
	1.3	Testing Location	6	
	1.4	Applicable Standards	7	
2	Test	Configuration of Equipment Under Test	8	
	2.1	Carrier Frequency Channel	8	
	2.2	Test Mode	9	
	2.3	Connection Diagram of Test System	10	
	2.4	Support Unit used in test configuration and system	10	
	2.5	EUT Operation Test Setup	11	
	2.6	Measurement Results Explanation Example	11	
3	Test	Result	12	
	3.1	6dB and 99% Bandwidth Measurement	12	
	3.2	Output Power Measurement	17	
	3.3	Power Spectral Density Measurement	18	
	3.4	Conducted Band Edges and Spurious Emission Measurement	23	
	3.5	Radiated Band Edges and Spurious Emission Measurement	29	
	3.6	AC Conducted Emission Measurement	33	
	3.7	Antenna Requirements	35	
4	List	of Measuring Equipment	36	
5	Unce	ertainty of Evaluation	37	
Ap	pendi	x A. Conducted Test Results		
Ap	pendi	x B. AC Conducted Emission Test Result		
Apı	pendi	x C. Radiated Spurious Emission		
Apı	pendi	x D. Radiated Spurious Emission Plots		
Apı	pendi	x E. Duty Cycle Plots		
		x F. Setup Photographs		

TEL: 886-3-327-3456 Page Number : 2 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

History of this test report

Report No.: FR100638A

Report No.	Version	Description	Issue Date
FR100638A	01	Initial issue of report	Jan. 18, 2022

TEL: 886-3-327-3456 Page Number : 3 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

Summary of Test Result

Report No.: FR100638A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	1.09 dB under the limit at 2483.520 MHz
3.6	15.207	AC Conducted Emission	Pass	11.15 dB under the limit at 0.688 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Danny Lee Report Producer: Vivian Hsu

TEL: 886-3-327-3456 Page Number : 4 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth-LE, Wi-Fi 2.4GHz 802.11b/g/n/ac/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, Wi-Fi 6GHz 802.11a/n/ac/ax and UWB.

Report No.: FR100638A

Product Specification subjective to this standard					
	WLAN				
	<2400 MHz ~ 2483.5 MHz>				
	<ant. 3="">: IFA Antenna</ant.>				
	<ant. 4="">: IFA Antenna</ant.>				
	<5180 MHz ~ 5240 MHz>				
	<ant. 1="">: IFA Antenna</ant.>				
	<ant. 2="">: IFA Antenna</ant.>				
	<ant. 3="">: IFA Antenna</ant.>				
	<ant. 4="">: IFA Antenna</ant.>				
	<5260 MHz ~ 5320 MHz>				
	<ant. 1="">: IFA / Slot Antenna</ant.>				
	<ant. 2="">: IFA / Slot Antenna</ant.>				
	<ant. 3="">: IFA / Slot Antenna</ant.>				
	<ant. 4="">: IFA / Slot Antenna</ant.>				
	<5500MHz ~ 5825 MHz>				
	<ant. 1="">: IFA / Slot Antenna</ant.>				
	<ant. 2="">: IFA / Slot Antenna</ant.>				
	<ant. 3="">: IFA / Slot Antenna</ant.>				
	<ant. 4="">: IFA / Slot Antenna</ant.>				
	<5925 MHz ~ 6425 MHz>				
Antenna Type	<ant. 5="">: IFA Antenna</ant.>				
	<ant. 6="">: IFA Antenna</ant.>				
	<ant. 7="">: IFA Antenna</ant.>				
	<ant. 8="">: IFA Antenna</ant.>				
	<6425 MHz ~ 6525 MHz>				
	<ant. 5="">: IFA Antenna</ant.>				
	<ant. 6="">: IFA Antenna</ant.>				
	<ant. 7="">: IFA Antenna Ant. 0</ant.>				
	<ant. 8="">: IFA Antenna</ant.>				
	<pre><6525 MHz ~ 6875 MHz> <ant. 5="">: IFA Antenna</ant.></pre>				
	<ant. 5="">. IFA Antenna</ant.>				
	<ant. 5="">. IFA Antenna</ant.>				
	<ant. 7="">. IFA Antenna</ant.>				
	<6875 MHz ~ 7125 MHz>				
	<ant. 5="">: IFA Antenna</ant.>				
	<ant. 52:="" a="" achterna<="" ii=""> <ant. 62:="" a="" antenna<="" ifa=""></ant.></ant.>				
	<ant. 02:="" a="" achterna<="" ii=""> <ant. 7="">: IFA Antenna</ant.></ant.>				
	<ant. 8="">: IFA Antenna</ant.>				
	Bluetooth - LE: IFA Antenna				
	UWB: IFA Antenna				

TEL: 886-3-327-3456 Page Number : 5 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

Antenna information		
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	3

Report No.: FR100638A

Remark: The above EUT's information is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No. CO05-HY, 03CH07-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
rest site No.	TH05-HY (TAF Code: 3786)		
Damark	The Conducted test item subcontracted to Sporton International Inc. Wensan		
Remark	Laboratory.		

FCC designation No.: TW1190 and TW3786

TEL: 886-3-327-3456 Page Number : 6 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR100638A

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 7 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

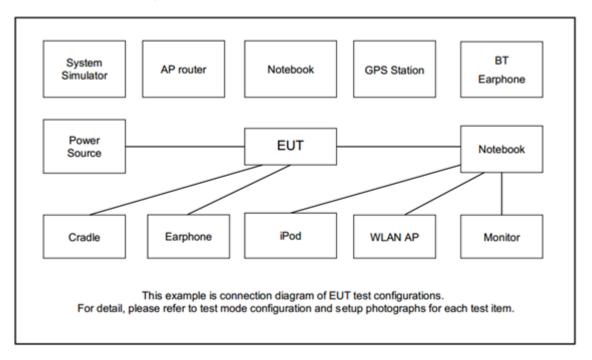
Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : 8 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane.

Report No.: FR100638A


b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	st Item Data Rate / Modulation					
	Bluetooth – LE / GFSK					
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
rest cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps					
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps					
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps					
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps					
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps					
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps					
AC Conducted	Mode 1: Bluetooth Link + WLAN (2.4GHz) Link + WLAN (5GHz) Link + WLAN					
Emission	(6GHz) Link + UWB Link + LAN Link + WAN Link					

TEL: 886-3-327-3456 Page Number : 9 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

2.3 Connection Diagram of Test System

Report No.: FR100638A

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMW 500	N/A	N/A	Unshielded, 1.8 m
2.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
3.	Notebook	Dell	P79G	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
4.	Notebook	DELL	Latitude E3340	FCC DoC/ Contains FCC ID: PD97260NGU	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	PC	msi	9461NGW	PD99461NG	Unshielded, 3.0m	Unshielded, 1.8m
6.	Plume Adaptive Wi-Fi	Plume Design Inc.	J1A	2AG7G-J1A	N/A	N/A

TEL: 886-3-327-3456 Page Number : 10 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

2.5 EUT Operation Test Setup

The RF test items, utility "Putty Release 0.62" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

Report No.: FR100638A

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 Page Number : 11 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3 Test Result

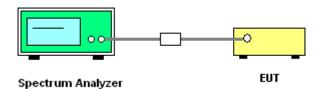
3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

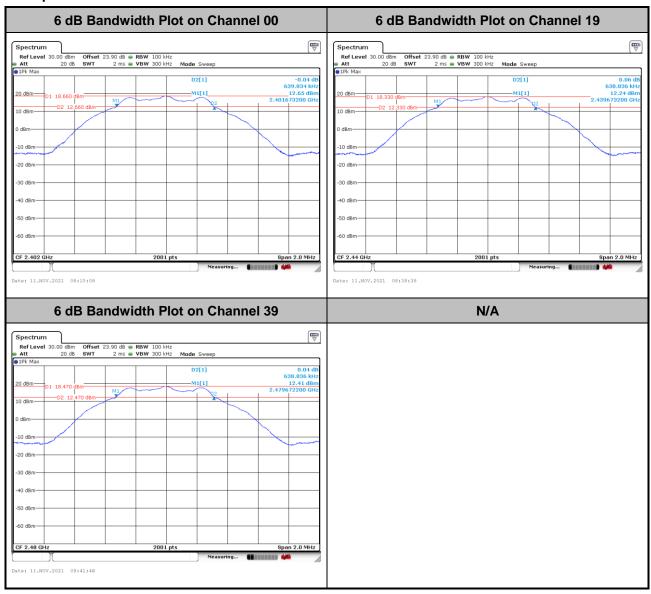

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.

Report No.: FR100638A

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set
 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 6. Measure and record the results in the test report.

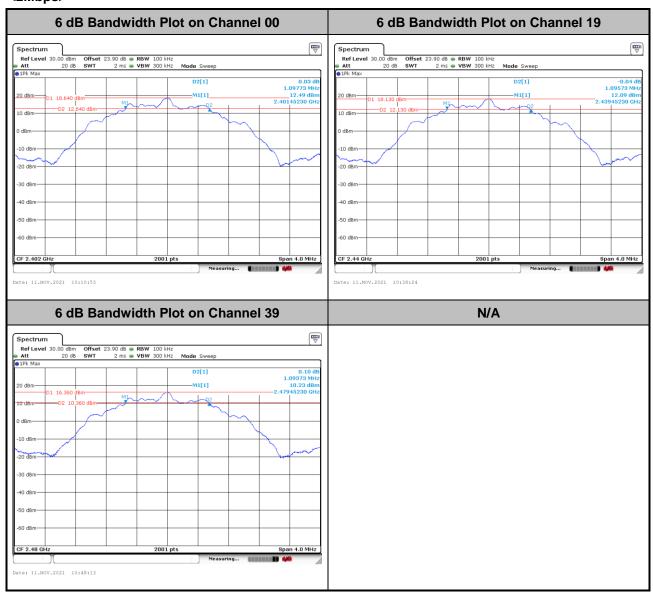
3.1.4 Test Setup



TEL: 886-3-327-3456 Page Number : 12 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3.1.5 Test Result of 6dB Bandwidth

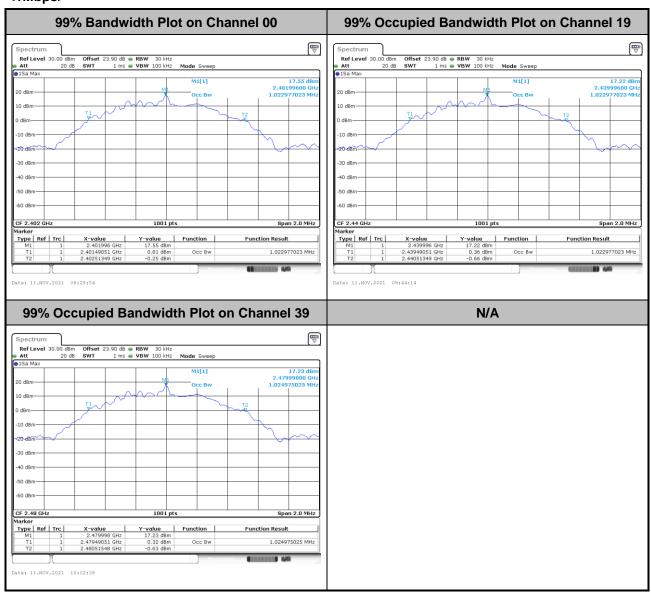
Please refer to Appendix A.


<1Mbps>

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : 13 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

<2Mbps>

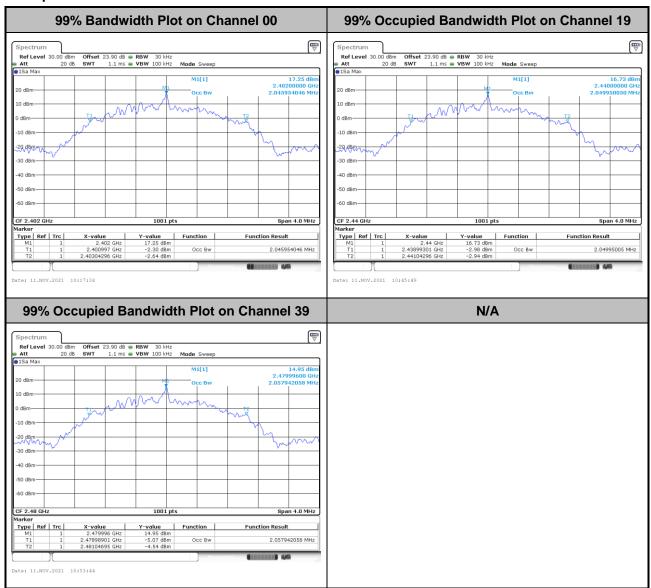

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : 14 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>



Report No.: FR100638A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 15 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

<2Mbps>

Report No.: FR100638A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

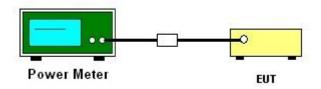
TEL: 886-3-327-3456 Page Number : 16 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR100638A


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

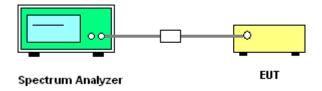
TEL: 886-3-327-3456 Page Number: 17 of 37
FAX: 886-3-328-4978 Issue Date: Jan. 18, 2022

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

Report No.: FR100638A

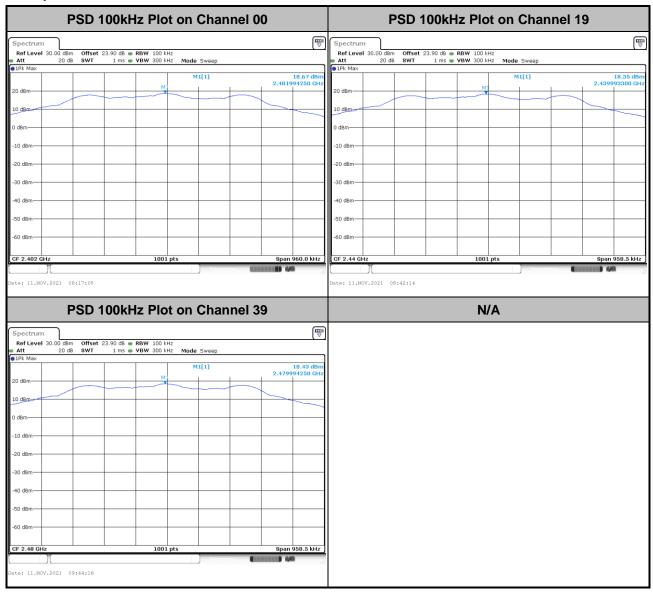

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

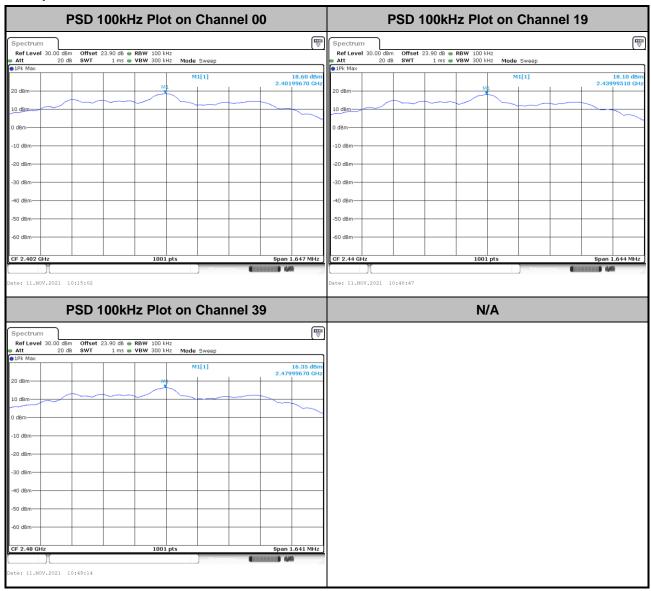
3.3.4 Test Setup


3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 18 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

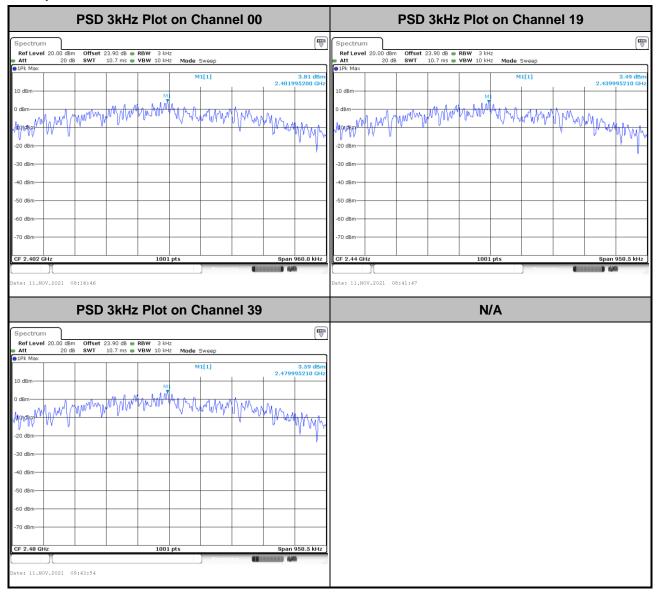
3.3.6 Test Result of Power Spectral Density Plots (100kHz)


<1Mbps>

Report No.: FR100638A

TEL: 886-3-327-3456 : 19 of 37 Page Number FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022 : 01

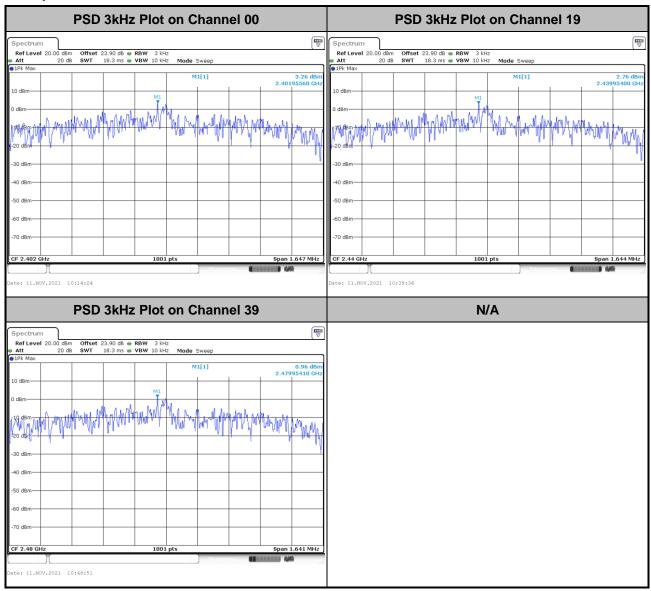
<2Mbps>



Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : 20 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3.3.7 Test Result of Power Spectral Density Plots (3kHz)


<1Mbps>

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : 21 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

<2Mbps>

Report No.: FR100638A

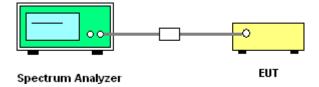
TEL: 886-3-327-3456 Page Number : 22 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

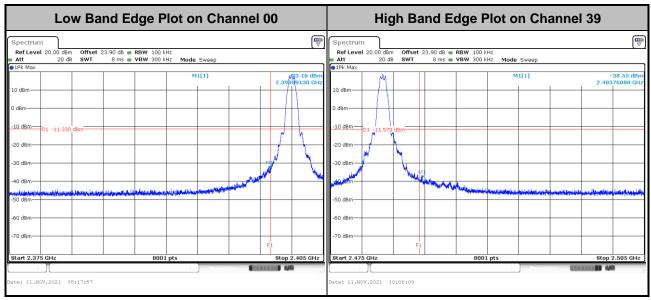
Report No.: FR100638A


3.4.2 Measuring Instruments

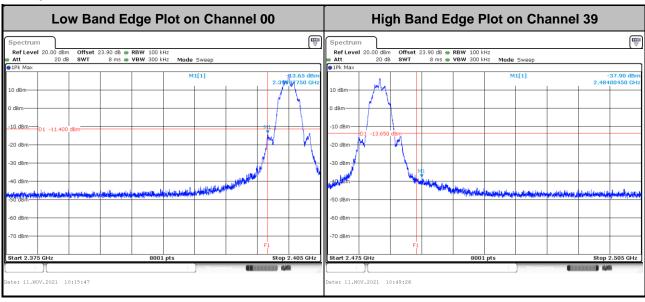
Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

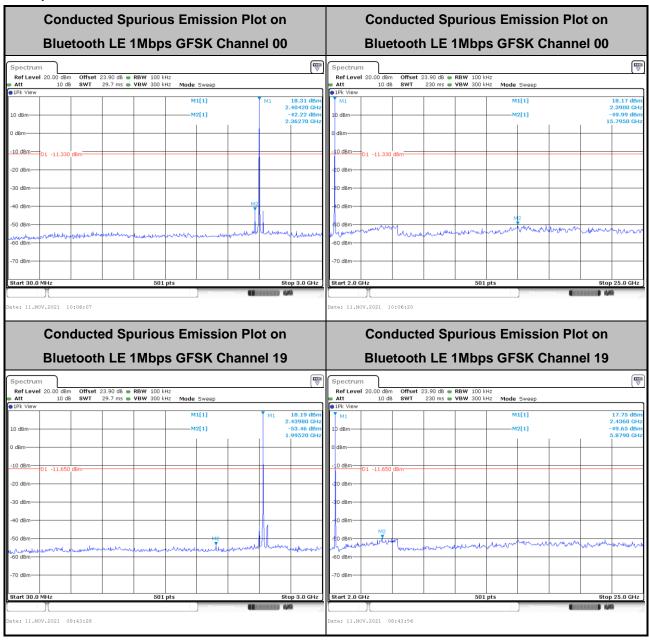

3.4.4 Test Setup

TEL: 886-3-327-3456 Page Number : 23 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

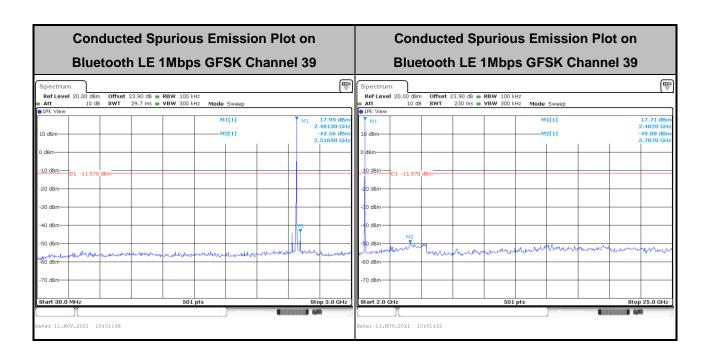

3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

Report No.: FR100638A

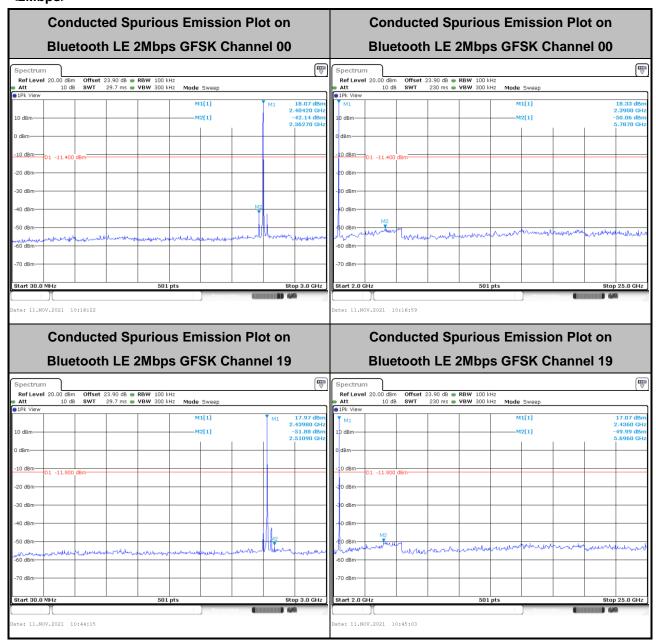

<2Mbps>

TEL: 886-3-327-3456 Page Number : 24 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

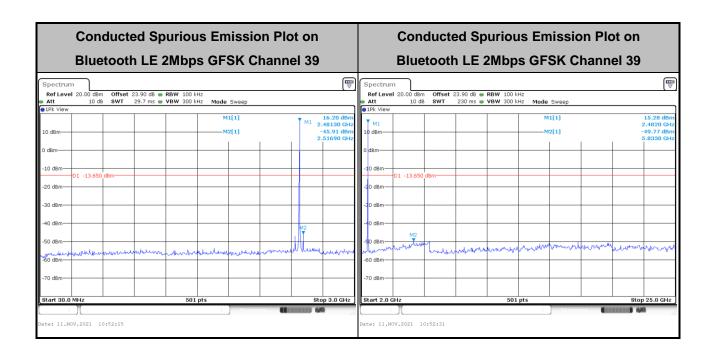

3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>

Report No.: FR100638A


TEL: 886-3-327-3456 Page Number : 25 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

Report No.: FR100638A


TEL: 886-3-327-3456 Page Number : 26 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

<2Mbps>

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : 27 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : 28 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR100638A

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

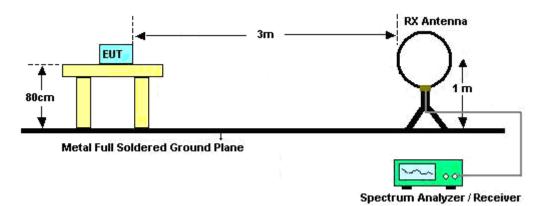
TEL: 886-3-327-3456 Page Number : 29 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

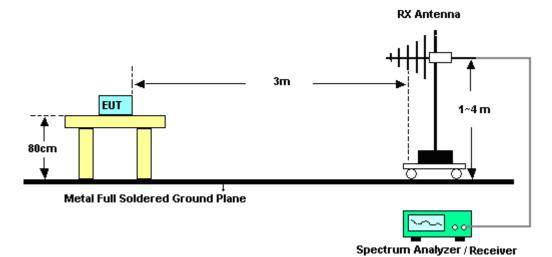
Report No.: FR100638A

- The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for $f \ge 1$ GHz for peak measurement.

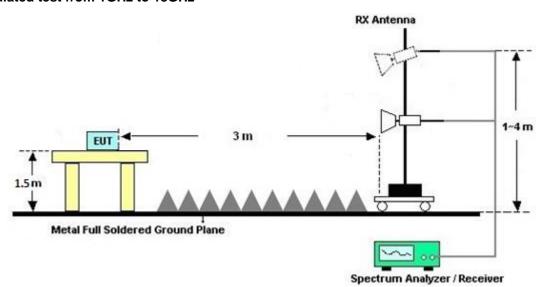

For average measurement:

- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

TEL: 886-3-327-3456 Page Number : 30 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

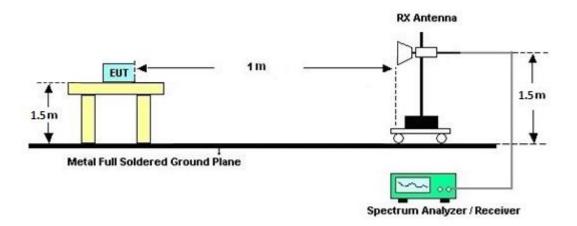

3.5.4 Test Setup

For radiated test below 30MHz



Report No.: FR100638A

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-3456 Page Number : 31 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

For radiated test above 18GHz

Report No.: FR100638A

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 32 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

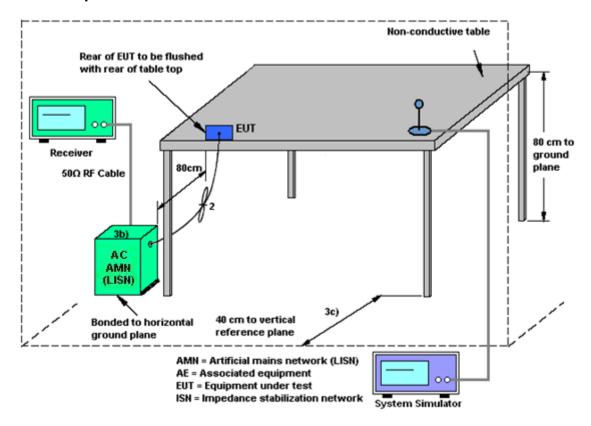
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR100638A

Eroquonov of omission (MHz)	Conducted limit (dBμV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 Page Number: 33 of 37
FAX: 886-3-328-4978 Issue Date: Jan. 18, 2022

3.6.4 Test Setup

Report No.: FR100638A

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 34 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR100638A

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 35 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Oct. 21, 2021~ Dec. 27, 2021	Jan. 03, 2022	Radiation (03CH07-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N- 06	35419 & 03	30MHz~1GHz	Apr. 28, 2021	Oct. 21, 2021~ Dec. 27, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 01, 2020	Oct. 21, 2021~ Nov. 28, 2021	Nov. 30, 2021	Radiation (03CH07-HY)
Horn Antenna	ESCO	3117	00066584	1GHz~18GHz	Oct. 25, 2021	Nov. 29, 2021~ Dec. 27, 2021	Oct. 24, 2022	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170251	18GHz~40GHz	Dec. 02, 2020	Oct. 21, 2021~ Nov. 29, 2021	Dec. 01, 2021	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170251	18GHz~40GHz	Nov. 30, 2021	Nov. 30, 2021~ Dec. 27, 2021	Nov. 29, 2022	Radiation (03CH07-HY)
Preamplifier	COM-POWER		161241	10MHz~1GHz	Oct. 04, 2021	Oct. 21, 2021~ Dec. 27, 2021	Oct. 03, 2022	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-00101 800-30-10P	1590075	1GHz~18GHz	Apr. 22, 2021	Oct. 21, 2021~ Dec. 27, 2021	Apr. 21, 2022	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Oct. 04, 2021	Oct. 21, 2021~ Dec. 27, 2021	Oct. 03, 2022	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Jul. 23, 2021	Oct. 21, 2021~ Dec. 27, 2021	Jul. 22, 2022	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Jul. 22, 2021	Oct. 21, 2021~ Dec. 27, 2021	Jul. 21, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682-4	30MHz to 18GHz	Feb. 24, 2021	Oct. 21, 2021~ Dec. 27, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971-4	9kHz to 18GHz	Feb. 24, 2021	Oct. 21, 2021~ Dec. 27, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655-4	9kHz to 18GHz	Feb. 24, 2021	Oct. 21, 2021~ Dec. 27, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2,8016 06/2	18GHz~40GHz	Feb. 24, 2021	Oct. 21, 2021~ Dec. 27, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 17, 2021	Oct. 21, 2021~ Dec. 27, 2021	Sep. 16, 2022	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	N/A	Oct. 21, 2021~ Dec. 27, 2021	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Oct. 21, 2021~ Dec. 27, 2021	N/A	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	N/A	N/A	N/A	Oct. 21, 2021~ Dec. 27, 2021	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A	Mar. 09, 2021	Oct. 21, 2021~ Dec. 27, 2021	Mar. 08, 2022	(030007-01)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Dec. 14, 2021	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2021	Dec. 14, 2021	Nov. 30, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 03, 2021	Dec. 14, 2021	Dec. 02, 2022	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Dec. 14, 2021	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Dec. 14, 2021	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020		Dec. 30, 2021	Conduction (CO05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO12	10MHz~6GHz	Dec. 16, 2020	Nov. 08, 2021~ Nov. 11, 2021	Dec. 15, 2021	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101565	10Hz ~ 40GHz	Nov. 13, 2020	Nov. 08, 2021~ Nov. 11, 2021	Nov. 12, 2021	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	Nov. 08, 2021~ Nov. 11, 2021	Mar. 16, 2022	Conducted (TH05-HY)

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : 36 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.1 dB
of 95% (U = 2Uc(y))	3.1 UB

Report No.: FR100638A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1 dB
of 95% (U = 2Uc(y))	3.1 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	5.6 UB

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	40.10
of 95% (U = 2Uc(y))	4.0 dB

TEL: 886-3-327-3456 Page Number : 37 of 37
FAX: 886-3-328-4978 Issue Date : Jan. 18, 2022

Report Template No.: BU5-FR15CBT4.0 Version 2.4 Report Version : 01

Report Number: FR100638A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Eason Huang	Temperature:	21~25	°C
Test Date:	2021/11/8~2021/11/11	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Moo	I. Data	NITY	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLI	1Mbp	s 1	0	2402	1.023	0.640	0.50	Pass
BLI	1Mbp	s 1	19	2440	1.023	0.639	0.50	Pass
BLI	1Mbp	s 1	39	2480	1.025	0.639	0.50	Pass

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	N TX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	18.70	30.00	3.00	21.70	36.00	Pass
BLE	1Mbps	1	19	2440	18.30	30.00	3.00	21.30	36.00	Pass
BLE	1Mbps	1	39	2480	18.30	30.00	3.00	21.30	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	18.67	3.81	3.00	8.00	Pass
BLE	1Mbps	1	19	2440	18.35	3.49	3.00	8.00	Pass
BLE	1Mbps	1	39	2480	18.43	3.59	3.00	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

Report Number: FR100638A

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.046	1.098	0.50	Pass
BLE	2Mbps	1	19	2440	2.050	1.096	0.50	Pass
BLE	2Mbps	1	39	2480	2.058	1.094	0.50	Pass

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	18.60	30.00	3.00	21.60	36.00	Pass
BLE	2Mbps	1	19	2440	18.30	30.00	3.00	21.30	36.00	Pass
BLE	2Mbps	1	39	2480	16.10	30.00	3.00	19.10	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	18.60	3.26	3.00	8.00	Pass
BLE	2Mbps	1	19	2440	18.10	2.76	3.00	8.00	Pass
BLE	2Mbps	1	39	2480	16.35	0.96	3.00	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

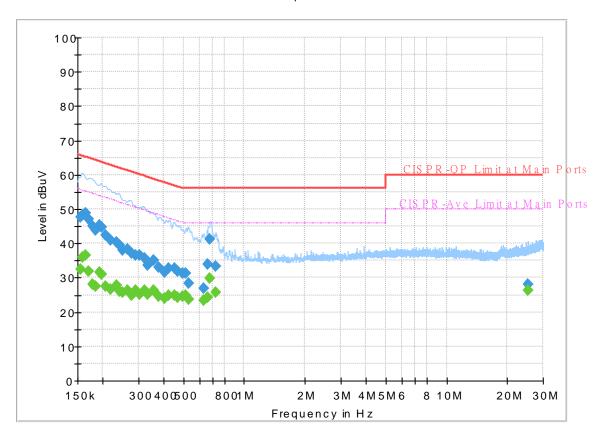
Appendix B. AC Conducted Emission Test Results

Test Engineer :	Calvin Wang	Temperature :	23~26 ℃
rest Engineer:	Calvin Wang	Relative Humidity:	45~55%

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : B1 of B

EUT Information


 Report NO :
 100638

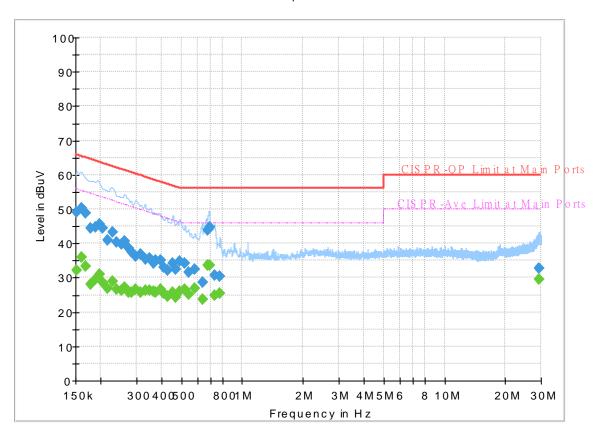
 Test Mode :
 Mode 1

 Test Voltage :
 120Vac/60Hz

Phase: Line

FullSpectrum

Final Result


Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.154500	-	32.41	55.75	23.34	L1	OFF	19.6
0.154500	47.70		65.75	18.05	L1	OFF	19.6
0.159000		35.89	55.52	19.63	L1	OFF	19.6
0.159000	48.32		65.52	17.20	L1	OFF	19.6
0.163500	-	36.68	55.28	18.60	L1	OFF	19.6
0.163500	48.80		65.28	16.48	L1	OFF	19.6
0.170250		32.00	54.95	22.95	L1	OFF	19.6
0.170250	46.95		64.95	18.00	L1	OFF	19.6
0.177000		28.04	54.63	26.59	L1	OFF	19.6
0.177000	44.96		64.63	19.67	L1	OFF	19.6
0.183750	-	27.46	54.31	26.85	L1	OFF	19.6
0.183750	43.72		64.31	20.59	L1	OFF	19.6
0.192750		31.47	53.92	22.45	L1	OFF	19.6
0.192750	45.37		63.92	18.55	L1	OFF	19.6
0.197250		31.09	53.73	22.64	L1	OFF	19.6
0.197250	44.77		63.73	18.96	L1	OFF	19.6
0.206250		27.41	53.36	25.95	L1	OFF	19.6
0.206250	42.34		63.36	21.02	L1	OFF	19.6
0.217500		26.52	52.91	26.39	L1	OFF	19.6
0.217500	41.03		62.91	21.88	L1	OFF	19.6
0.233250		27.74	52.33	24.59	L1	OFF	19.6

			1	1			
0.233250	40.33		62.33	22.00	L1	OFF	19.6
0.242250		25.95	52.02	26.07	L1	OFF	19.6
0.242250	39.38		62.02	22.64	L1	OFF	19.6
0.251250		25.61	51.72	26.11	L1	OFF	19.6
0.251250	37.88		61.72	23.84	L1	OFF	19.6
0.264750		26.36	51.28	24.92	L1	OFF	19.6
0.264750	38.42		61.28	22.86	L1	OFF	19.6
0.278250		24.94	50.87	25.93	L1	OFF	19.6
0.278250	37.10		60.87	23.77	L1	OFF	19.6
0.289500		26.25	50.54	24.29	L1	OFF	19.6
0.289500	36.64		60.54	23.90	L1	OFF	19.6
0.305250		25.29	50.10	24.81	L1	OFF	19.6
0.305250	36.62		60.10	23.48	L1	OFF	19.6
0.321000	-	26.21	49.68	23.47	L1	OFF	19.6
0.321000	35.64		59.68	24.04	L1	OFF	19.6
0.334500		25.16	49.34	24.18	L1	OFF	19.6
0.334500	33.57		59.34	25.77	L1	OFF	19.6
0.354750		26.34	48.85	22.51	L1	OFF	19.6
0.354750	35.03		58.85	23.82	L1	OFF	19.6
0.377250		24.59	48.34	23.75	L1	OFF	19.6
0.377250	33.04		58.34	25.30	L1	OFF	19.6
0.404250	-	24.06	47.77	23.71	L1	OFF	19.6
0.404250	31.51	-	57.77	26.26	L1	OFF	19.6
0.424500	-	24.93	47.36	22.43	L1	OFF	19.7
0.424500	32.72		57.36	24.64	L1	OFF	19.7
0.453750		24.85	46.81	21.96	L1	OFF	19.7
0.453750	32.75		56.81	24.06	L1	OFF	19.7
0.469500	-	24.18	46.52	22.34	L1	OFF	19.7
0.469500	31.83		56.52	24.69	L1	OFF	19.7
0.494250	-	24.44	46.10	21.66	L1	OFF	19.7
0.494250	31.14		56.10	24.96	L1	OFF	19.7
0.514500		24.73	46.00	21.27	L1	OFF	19.8
0.514500	31.30		56.00	24.70	L1	OFF	19.8
0.530250		23.81	46.00	22.19	L1	OFF	19.8
0.530250	28.47		56.00	27.53	L1	OFF	19.8
0.631500		23.29	46.00	22.71	L1	OFF	19.9
0.631500	27.00		56.00	29.00	L1	OFF	19.9
0.660750		24.30	46.00	21.70	L1	OFF	19.9
0.660750	33.81		56.00	22.19	L1	OFF	19.9
0.676500		29.75	46.00	16.25	L1	OFF	19.9
0.676500	41.26		56.00	14.74	L1	OFF	19.9
0.721500		25.85	46.00	20.15	L1	OFF	19.9
0.721500	33.38	-	56.00	22.62	L1	OFF	19.9
25.161000		26.35	50.00	23.65	L1	OFF	20.6
25.161000	28.19		60.00	31.81	L1	OFF	20.6
		1				1	·

EUT Information

Report NO: 100638
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		32.13	55.88	23.75	N	OFF	19.6
0.152250	49.21		65.88	16.67	N	OFF	19.6
0.161250		36.07	55.40	19.33	N	OFF	19.6
0.161250	50.39		65.40	15.01	N	OFF	19.6
0.168000		33.37	55.06	21.69	N	OFF	19.6
0.168000	48.91		65.06	16.15	N	OFF	19.6
0.177000		28.18	54.63	26.45	N	OFF	19.6
0.177000	44.52		64.63	20.11	N	OFF	19.6
0.188250		29.62	54.11	24.49	N	OFF	19.6
0.188250	44.75		64.11	19.36	N	OFF	19.6
0.197250		31.12	53.73	22.61	N	OFF	19.6
0.197250	45.67		63.73	18.06	N	OFF	19.6
0.204000		28.68	53.45	24.77	N	OFF	19.6
0.204000	44.49		63.45	18.96	N	OFF	19.6
0.215250		26.90	53.00	26.10	N	OFF	19.6
0.215250	40.97		63.00	22.03	N	OFF	19.6
0.228750		28.82	52.50	23.68	N	OFF	19.6
0.228750	43.19		62.50	19.31	N	OFF	19.6
0.240000		26.73	52.10	25.37	N	OFF	19.6
0.240000	40.34		62.10	21.76	N	OFF	19.6
0.253500		26.21	51.64	25.43	N	OFF	19.6

0.253500	39.65		61.64	21.99	N	OFF	19.6
0.262500		27.29	51.35	24.06	N	OFF	19.6
0.262500	40.59		61.35	20.76	N	OFF	19.6
0.273750		25.74	51.00	25.26	N	OFF	19.6
0.273750	38.68		61.00	22.32	N	OFF	19.6
0.282750		25.62	50.74	25.12	N	OFF	19.6
0.282750	37.55		60.74	23.19	N	OFF	19.6
0.298500		26.51	50.28	23.77	N	OFF	19.6
0.298500	36.26		60.28	24.02	N	OFF	19.6
0.314250	-	25.65	49.86	24.21	N	OFF	19.6
0.314250	36.85		59.86	23.01	N	OFF	19.6
0.332250		26.37	49.40	23.03	Ν	OFF	19.6
0.332250	35.38		59.40	24.02	N	OFF	19.6
0.350250		26.36	48.96	22.60	N	OFF	19.6
0.350250	35.65		58.96	23.31	N	OFF	19.6
0.363750	-	26.05	48.64	22.59	N	OFF	19.6
0.363750	34.18		58.64	24.46	N	OFF	19.6
0.375000	-	25.88	48.39	22.51	N	OFF	19.6
0.375000	35.12		58.39	23.27	N	OFF	19.6
0.393000		26.52	48.00	21.48	N	OFF	19.6
0.393000	35.08		58.00	22.92	N	OFF	19.6
0.408750		25.34	47.67	22.33	N	OFF	19.6
0.408750	32.95		57.67	24.72	N	OFF	19.6
0.429000		24.57	47.27	22.70	N	OFF	19.7
0.429000	32.04		57.27	25.23	N	OFF	19.7
0.453750	-	25.64	46.81	21.17	N	OFF	19.7
0.453750	34.18		56.81	22.63	N	OFF	19.7
0.467250	-	24.40	46.56	22.16	N	OFF	19.7
0.467250	32.32		56.56	24.24	N	OFF	19.7
0.492000	-	26.15	46.13	19.98	N	OFF	19.7
0.492000	34.87		56.13	21.26	N	OFF	19.7
0.516750	-	26.52	46.00	19.48	N	OFF	19.8
0.516750	34.17		56.00	21.83	N	OFF	19.8
0.543750	-	25.02	46.00	20.98	N	OFF	19.8
0.543750	31.69		56.00	24.31	N	OFF	19.8
0.584250		26.89	46.00	19.11	N	OFF	19.8
0.584250	32.53		56.00	23.47	N	OFF	19.8
0.636000		23.68	46.00	22.32	N	OFF	19.9
0.636000	28.60		56.00	27.40	N	OFF	19.9
0.676500		33.54	46.00	12.46	N	OFF	19.9
0.676500	43.94		56.00	12.06	N	OFF	19.9
0.687750		33.62	46.00	12.38	N	OFF	19.9
0.687750	44.85		56.00	11.15	N	OFF	19.9
0.728250		24.74	46.00	21.26	N	OFF	20.0
0.728250	30.80		56.00	25.20	N	OFF	20.0
0.777750		25.45	46.00	20.55	N	OFF	20.0
0.777750	30.41		56.00	25.59	N	OFF	20.0
29.370750	1	29.58	50.00	20.42	N	OFF	20.8
29.370750	32.61		60.00	27.39	N	OFF	20.8

Appendix C. Radiated Spurious Emission

Test Engineer :	Jesse Wang, Stan Hsieh and Ken Wu	Temperature :	17.9~24.6°C
rest Engineer .		Relative Humidity :	53.1~69.0%

Report No.: FR100638A

<1Mbps>

2.4GHz 2400~2483.5MHz BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2363.445	56.44	-17.56	74	42.01	31.83	18	35.4	297	279	Р	Н
		2363.655	50.99	-3.01	54	36.56	31.83	18	35.4	297	279	Α	Н
	*	2402	109.84	-	-	95.21	31.9	18.15	35.42	297	279	Р	Н
BLE	*	2402	109.37	-	-	94.74	31.9	18.15	35.42	297	279	Α	Н
CH 00													Н
2402MHz		2340.765	55.31	-18.69	74	41	31.8	17.91	35.4	100	123	Р	V
2402WII 12		2363.55	48.65	-5.35	54	34.22	31.83	18	35.4	100	123	Α	V
	*	2402	106.83	-	-	92.2	31.9	18.15	35.42	100	123	Р	V
	*	2402	106.15	-	-	91.52	31.9	18.15	35.42	100	123	Α	V
													V
		2315.88	54.15	-19.85	74	40.01	31.73	17.8	35.39	119	293	Р	Н
		2387.7	45.64	-8.36	54	31.02	31.9	18.13	35.41	119	293	Α	Н
	*	2440	109.47	-	-	94.48	32.2	18.22	35.43	119	293	Р	Н
	*	2440	108.88	-	-	93.89	32.2	18.22	35.43	119	293	Α	Н
DI E		2489.22	54.88	-19.12	74	39.49	32.6	18.24	35.45	119	293	Р	Н
BLE CH 19		2491.25	46.35	-7.65	54	30.95	32.6	18.25	35.45	119	293	Α	Н
2440MHz		2381.82	54.68	-19.32	74	40.11	31.87	18.11	35.41	100	0	Р	V
2440WII 12		2383.92	45.3	-8.7	54	30.72	31.87	18.12	35.41	100	0	Α	٧
-	*	2440	105.28	-	-	90.29	32.2	18.22	35.43	100	0	Р	V
	*	2440	104.77	-	-	89.78	32.2	18.22	35.43	100	0	Α	V
		2498.32	54.56	-19.44	74	39.16	32.6	18.26	35.46	100	0	Р	V
		2499.72	46.39	-7.61	54	30.99	32.6	18.26	35.46	100	0	Α	٧

TEL: 886-3-327-3456 Page Number : C1 of C14

*	2480	107.65	-	-	92.4	32.47	18.23	35.45	321	282	Р	Н
*	2480	107.22	-	-	91.97	32.47	18.23	35.45	321	282	Α	Н
	2484.24	57.18	-16.82	74	41.93	32.47	18.23	35.45	100	287	Р	Н
	2483.64	50.1	-3.9	54	34.85	32.47	18.23	35.45	100	287	Α	Н
												Н
*	2480	105.68	-	-	90.43	32.47	18.23	35.45	341	351	Р	V
*	2480	105.01	-	-	89.76	32.47	18.23	35.45	341	351	Α	V
	2483.8	57.47	-16.53	74	42.22	32.47	18.23	35.45	338	0	Р	V
	2483.84	48.98	-5.02	54	33.73	32.47	18.23	35.45	338	0	Α	V
												V
	*	* 2480 2484.24 2483.64 * 2480 * 2480 2483.8	* 2480 107.65 * 2480 107.22 2484.24 57.18 2483.64 50.1 * 2480 105.68 * 2480 105.01 2483.8 57.47	* 2480 107.65 - * 2480 107.22 - 2484.24 57.18 -16.82 2483.64 50.1 -3.9 * 2480 105.68 - * 2480 105.01 - 2483.8 57.47 -16.53	* 2480 107.65 - - * 2480 107.22 - - 2484.24 57.18 -16.82 74 2483.64 50.1 -3.9 54 * 2480 105.68 - - * 2480 105.01 - - 2483.8 57.47 -16.53 74	* 2480 107.65 - - 92.4 * 2480 107.22 - - 91.97 2484.24 57.18 -16.82 74 41.93 2483.64 50.1 -3.9 54 34.85 * 2480 105.68 - - 90.43 * 2483.8 57.47 -16.53 74 42.22	* 2480 107.65 - - 92.4 32.47 * 2480 107.22 - - 91.97 32.47 2484.24 57.18 -16.82 74 41.93 32.47 2483.64 50.1 -3.9 54 34.85 32.47 * 2480 105.68 - - 90.43 32.47 * 2483.8 57.47 -16.53 74 42.22 32.47	* 2480 107.65 - - 92.4 32.47 18.23 * 2480 107.22 - - 91.97 32.47 18.23 2484.24 57.18 -16.82 74 41.93 32.47 18.23 2483.64 50.1 -3.9 54 34.85 32.47 18.23 * 2480 105.68 - - 90.43 32.47 18.23 * 2483.8 57.47 -16.53 74 42.22 32.47 18.23	* 2480 107.65 - - 92.4 32.47 18.23 35.45 * 2480 107.22 - - 91.97 32.47 18.23 35.45 2484.24 57.18 -16.82 74 41.93 32.47 18.23 35.45 2483.64 50.1 -3.9 54 34.85 32.47 18.23 35.45 * 2480 105.68 - - 90.43 32.47 18.23 35.45 * 2483.8 57.47 -16.53 74 42.22 32.47 18.23 35.45	* 2480 107.65 - - 92.4 32.47 18.23 35.45 321 * 2484.24 57.18 -16.82 74 41.93 32.47 18.23 35.45 100 2483.64 50.1 -3.9 54 34.85 32.47 18.23 35.45 100 * 2480 105.68 - - 90.43 32.47 18.23 35.45 341 * 2483.8 57.47 -16.53 74 42.22 32.47 18.23 35.45 338	* 2480 107.65 - - 92.4 32.47 18.23 35.45 321 282 * 2484.24 57.18 -16.82 74 41.93 32.47 18.23 35.45 100 287 2483.64 50.1 -3.9 54 34.85 32.47 18.23 35.45 100 287 * 2480 105.68 - - 90.43 32.47 18.23 35.45 341 351 * 2483.8 57.47 -16.53 74 42.22 32.47 18.23 35.45 338 0	* 2480 107.65 - - 92.4 32.47 16.23 35.45 321 262 P * 2480 107.22 - - 91.97 32.47 18.23 35.45 321 282 A 2483.64 57.18 -16.82 74 41.93 32.47 18.23 35.45 100 287 P 2483.64 50.1 -3.9 54 34.85 32.47 18.23 35.45 100 287 A * 2480 105.68 - - 90.43 32.47 18.23 35.45 341 351 P * 2480 105.01 - - 89.76 32.47 18.23 35.45 341 351 A 2483.8 57.47 -16.53 74 42.22 32.47 18.23 35.45 338 0 P

Remark

TEL: 886-3-327-3456 Page Number : C2 of C14

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

Report No.: FR100638A

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	42.04	-31.96	74	53.32	34	12.71	57.99	-	-	Р	Н
		14475	46.55	-27.45	74	43.29	39.28	22.07	58.09	-	-	Р	Н
		15855	48.77	-25.23	74	41.51	40.76	23.45	56.95	-	-	Р	Н
		15855	37.9	-16.1	54	30.64	40.76	23.45	56.95	-	-	Α	Н
		17820	51.33	-22.67	74	40.31	41.9	25.21	56.09	-	-	Р	Н
		17820	41.38	-12.62	54	30.36	41.9	25.21	56.09	-	-	Α	Н
													Н
													Н
													Н
													Н
DI E													Н
BLE CH 00													Н
2402MHz		4804	42.32	-31.68	74	53.6	34	12.71	57.99	-	-	Р	V
2402111112		14499	46.56	-27.44	74	43.26	39.3	22.09	58.09	-	-	Р	V
		15705	48.56	-25.44	74	41.74	40.6	23.3	57.08	-	-	Р	V
		15705	37.54	-16.46	54	30.72	40.6	23.3	57.08	-	-	Α	V
		17775	52.18	-21.82	74	41.24	41.88	25.17	56.11	-	-	Р	V
		17775	41.22	-12.78	54	30.28	41.88	25.17	56.11	-	-	Α	V
													V
													V
													V
													V
													V
													V

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Remark

- 3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.
- 4. The emission level close to 18GHz is checked that the average emission level is noise floor only.

TEL: 886-3-327-3456 Page Number: C3 of C14

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		, .		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	4150
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4880	42.38	-31.62	74	53.52	34.1	12.66	57.9	-	-	P	Н
		7320	41.73	-32.27	74	49.19	35.6	14.86	57.92	-	-	Р	Н
		14499	46.72	-27.28	74	43.42	39.3	22.09	58.09	-	-	Р	Н
		15885	49	-25	74	41.65	40.8	23.48	56.93	-	-	Р	Н
		15885	38.18	-15.82	54	30.83	40.8	23.48	56.93	-	-	Α	Н
		17880	51.73	-22.27	74	40.62	41.9	25.26	56.05	-	-	Р	Н
		17880	41.46	-12.54	54	30.35	41.9	25.26	56.05	-	-	Α	Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19 2440MHz		4880	43.45	-30.55	74	54.59	34.1	12.66	57.9	-	-	Р	V
244UNITZ		7320	41.17	-32.83	74	48.63	35.6	14.86	57.92	-	-	Р	V
		14475	47	-27	74	43.74	39.28	22.07	58.09	-	-	Р	V
		15840	49.03	-24.97	74	41.82	40.74	23.44	56.97	-	-	Р	V
		15840	37.7	-16.3	54	30.49	40.74	23.44	56.97	-	-	Α	٧
		17865	51.63	-22.37	74	40.54	41.9	25.25	56.06	-	-	Р	٧
		17865	41.43	-12.57	54	30.34	41.9	25.25	56.06	-	-	Α	٧
													٧
													٧
													٧
													V
													V
	1. No	other spurious	s found.						<u> </u>			1	<u> </u>

Remark

The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

4. The emission level close to 18GHz is checked that the average emission level is noise floor only.

TEL: 886-3-327-3456 Page Number : C4 of C14

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4960	41.22	-32.78	74	52.21	34.2	12.62	57.81	-	-	Р	Н
		7440	42.52	-31.48	74	49.97	35.6	14.99	58.04	-	-	Р	Н
		14475	46.97	-27.03	74	43.71	39.28	22.07	58.09	-	-	Р	Н
		15870	48.25	-25.75	74	40.94	40.78	23.47	56.94	-	-	Р	Н
		15870	37.95	-16.05	54	30.64	40.78	23.47	56.94	-	-	Α	Н
		17790	51.5	-22.5	74	40.53	41.9	25.18	56.11	-	-	Р	Н
		17790	41.4	-12.6	54	30.43	41.9	25.18	56.11	-	-	Α	Н
													Н
													Н
													Н
DI E													Н
BLE CH 39													Н
2480MHz		4960	40.67	-33.33	74	51.66	34.2	12.62	57.81	-	-	Р	V
240011112		7440	39.98	-34.02	74	47.43	35.6	14.99	58.04	-	-	Р	V
		14499	46.51	-27.49	74	43.21	39.3	22.09	58.09	-	-	Р	V
		15795	48.39	-25.61	74	41.32	40.68	23.4	57.01	-	-	Р	V
		15795	37.88	-16.12	54	30.81	40.68	23.4	57.01	-	-	Α	V
		17910	51.05	-22.95	74	39.89	41.9	25.29	56.03	-	-	Р	V
		17910	41.5	-12.5	54	30.34	41.9	25.29	56.03	-	-	Α	V
													V
													V
													V
													V
													V

- No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

Remark

- 3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.
- 4. The emission level close to 18GHz is checked that the average emission level is noise floor only.

TEL: 886-3-327-3456 Page Number: C5 of C14

<2Mbps>

2.4GHz 2400~2483.5MHz

Report No.: FR100638A

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos (deg)	Avg.	/U//
		2363.445	56.74	(dB)	(dBµV/m) 74	(dBµV) 42.31	(dB/m) 31.83	(dB) 18	(dB) 35.4	(cm) 299	258	(P/A)	(n/v) H
		2363.34	51.19	-2.81	54	36.76	31.83	18	35.4	299	258	Α	Н
	*	2402	110.42	-	-	95.79	31.9	18.15	35.42	299	258	Р	Н
	*	2402	109.32	-	-	94.69	31.9	18.15	35.42	299	258	Α	Н
													Н
BLE													Н
CH 00		2363.34	55.5	-18.5	74	41.07	31.83	18	35.4	100	118	Р	V
2402MHz		2363.655	49.43	-4.57	54	35	31.83	18	35.4	100	118	Α	٧
	*	2402	107.32	-	-	92.69	31.9	18.15	35.42	100	118	Р	٧
	*	2402	106.23	-	-	91.6	31.9	18.15	35.42	100	118	Α	V
													V
													V
		2330.44	54.25	-19.75	74	40.01	31.77	17.86	35.39	121	288	Р	Н
		2381.96	46.65	-7.35	54	32.11	31.87	18.08	35.41	121	288	Α	Н
	*	2440	108.64	-	-	93.68	32.2	18.19	35.43	121	288	Р	Н
	*	2440	107.6	-	-	92.64	32.2	18.19	35.43	121	288	Α	Н
DI E		2499.93	55.34	-18.66	74	39.95	32.6	18.25	35.46	121	288	Р	Н
BLE CH 19		2489.36	47.8	-6.2	54	32.41	32.6	18.24	35.45	121	288	Α	Н
2440MHz		2370.62	54.36	-19.64	74	39.88	31.87	18.02	35.41	400	323	Р	V
2440141112		2386.44	47.07	-6.93	54	32.48	31.9	18.1	35.41	400	323	Α	V
	*	2440	105.81	-	-	90.85	32.2	18.19	35.43	400	323	Р	V
	*	2440	104.72	-	-	89.76	32.2	18.19	35.43	400	323	Α	V
		2491.53	55.05	-18.95	74	39.66	32.6	18.24	35.45	400	323	Р	V
		2493.7	47.52	-6.48	54	32.14	32.6	18.24	35.46	400	323	Α	V

TEL: 886-3-327-3456 Page Number : C6 of C14

	*	2480	104.74	-	-	89.49	32.47	18.23	35.45	277	272	Р	Н
	*	2480	103.66	-	-	88.41	32.47	18.23	35.45	277	272	Α	Н
		2483.72	59.67	-14.33	74	44.42	32.47	18.23	35.45	277	268	Р	Н
		2483.52	52.91	-1.09	54	37.66	32.47	18.23	35.45	277	268	Α	Н
51.5													Н
BLE													Н
CH 39 2480MHz	*	2480	102.75	-	-	87.5	32.47	18.23	35.45	332	1	Р	V
2400WII 12	*	2480	101.5	-	-	86.25	32.47	18.23	35.45	332	1	Α	V
		2483.64	57.03	-16.97	74	41.78	32.47	18.23	35.45	338	329	Р	V
		2483.52	50.58	-3.42	54	35.33	32.47	18.23	35.45	338	329	Α	V
													V
													V
	1. No	o other spuriou	s found.										
Remark		I results are PA		Peak and	Average lir	nit line.							

TEL: 886-3-327-3456 Page Number : C7 of C14

2.4GHz 2400~2483.5MHz

Report No.: FR100638A

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		Troquency	20101	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		4804	41.72	-32.28	74	53	34	12.71	57.99	-	-	Р	Н
		14490	46.55	-27.45	74	43.26	39.3	22.08	58.09	-	-	Р	Н
		15855	48.49	-25.51	74	41.23	40.76	23.45	56.95	-	-	Р	Н
		15855	37.93	-16.07	54	30.67	40.76	23.45	56.95	-	-	Α	Н
		17910	51.25	-22.75	74	40.09	41.9	25.29	56.03	-	-	Р	Н
		17910	41.31	-12.69	54	30.15	41.9	25.29	56.03	-	-	Α	Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 00		4804	42.12	-31.88	74	53.4	34	12.71	57.99	-	-	Р	V
2402MHz		14505	46.57	-27.43	74	43.26	39.3	22.1	58.09	-	-	Р	٧
		16155	49.21	-24.79	74	41.09	41.15	23.74	56.77	-	-	Р	٧
		16155	38.78	-15.22	54	30.66	41.15	23.74	56.77	-	-	Α	٧
		17925	51.51	-22.49	74	40.33	41.9	25.3	56.02	-	-	Р	٧
		17925	41.39	-12.61	54	30.21	41.9	25.3	56.02	-	-	Α	٧
													٧
													٧
													V
													V
													V
													V
	-		1		L	1	l	1		1			

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Remark

 The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

4. The emission level close to 18GHz is checked that the average emission level is noise floor only.

TEL: 886-3-327-3456 Page Number: C8 of C14

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		/ \ \		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4880	41.22	-32.78	74	52.36	34.1	12.66	57.9	-	-	Р	Н
		7320	42.86	-31.14	74	50.32	35.6	14.86	57.92	-	-	Р	Н
		14490	47.12	-26.88	74	43.83	39.3	22.08	58.09	-	-	Р	Н
		15810	48.76	-25.24	74	41.64	40.7	23.41	56.99	-	-	Р	Н
		15810	37.71	-16.29	54	30.59	40.7	23.41	56.99	-	-	Α	Н
		17955	51.28	-22.72	74	40.06	41.9	25.33	56.01	-	-	Р	Н
		17955	41.41	-12.59	54	30.19	41.9	25.33	56.01	-	-	Α	Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19 2440MHz		4880	41.25	-32.75	74	52.39	34.1	12.66	57.9	-	-	Р	V
2440WII 12		7320	41.43	-32.57	74	48.89	35.6	14.86	57.92	-	-	Р	V
		14475	46.94	-27.06	74	43.68	39.28	22.07	58.09	-	-	Р	V
		15840	48.28	-25.72	74	41.07	40.74	23.44	56.97	-	-	Р	٧
		15840	37.85	-16.15	54	30.64	40.74	23.44	56.97	-	-	Α	V
		17835	50.94	-23.06	74	39.9	41.9	25.22	56.08	-	-	Р	V
		17835	41.13	-12.87	54	30.09	41.9	25.22	56.08	-	-	Α	V
													٧
													٧
													٧
													V
													V
	1. No	other spurious	s found.						1				
ı		results are PA		eak and	Average lim	it line.							

Remark

- The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.
- 4. The emission level close to 18GHz is checked that the average emission level is noise floor only.

TEL: 886-3-327-3456 Page Number: C9 of C14

MHz) 4960 7440 4475 5855 5855 7985	(dBµV/m) 41.6 40.76 46.35 49.24 38 51.46 41.36	Limit (dB) -32.4 -33.24 -27.65 -24.76 -16 -22.54 -12.64	Line (dBμV/m) 74 74 74 74 74 74 74 74	Level (dBμV) 52.59 48.21 43.09 41.98 30.74	Factor (dB/m) 34.2 35.6 39.28 40.76	Loss (dB) 12.62 14.99 22.07 23.45	Factor (dB) 57.81 58.04 58.09 56.95	Pos (cm)	Pos (deg)	Avg. (P/A) P P	(H/V) H H H
4960 7440 4475 5855 5855 7985	41.6 40.76 46.35 49.24 38 51.46	-32.4 -33.24 -27.65 -24.76 -16 -22.54	74 74 74 74 54 74	52.59 48.21 43.09 41.98 30.74	34.2 35.6 39.28 40.76	12.62 14.99 22.07 23.45	57.81 58.04 58.09	-	-	P P	Н
4475 5855 5855 7985	46.35 49.24 38 51.46	-27.65 -24.76 -16 -22.54	74 74 54 74	43.09 41.98 30.74	39.28 40.76	22.07 23.45	58.09	-	-	Р	
5855 5855 7985	49.24 38 51.46	-24.76 -16 -22.54	74 54 74	41.98 30.74	40.76	23.45					Н
5855 7985	38 51.46	-16 -22.54	54 74	30.74			56.95	-	_	_	
7985	51.46	-22.54	74		40.76	00.45				Р	Н
				40.40		23.45	56.95	-	-	Α	Н
7985	41.36	-12.64		40.19	41.9	25.36	55.99	-	-	Р	Н
			54	30.09	41.9	25.36	55.99	-	-	Α	Н
											Н
											Н
											Н
											Н
											Н
4960	41.32	-32.68	74	52.31	34.2	12.62	57.81	1	-	Р	V
7440	40.85	-33.15	74	48.3	35.6	14.99	58.04	1	-	Р	V
4475	46.46	-27.54	74	43.2	39.28	22.07	58.09	1	-	Р	V
5975	48.12	-25.88	74	40.42	40.97	23.58	56.85	1	-	Р	V
5975	38.14	-15.86	54	30.44	40.97	23.58	56.85	1	-	Α	V
7880	51.42	-22.58	74	40.31	41.9	25.26	56.05	1	-	Р	V
7880	41.27	-12.73	54	30.16	41.9	25.26	56.05	1	-	Α	V
											V
											V
											V
											V
											V
		anurious found	spurious found.	spurious found	spurious found.	spurious found.	spurious found.	spurious found.	spurious found.	spurious found.	spurious found.

Remark

 The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

4. The emission level close to 18GHz is checked that the average emission level is noise floor only.

TEL: 886-3-327-3456 Page Number : C10 of C14

Emission above 18GHz

Report No.: FR100638A

2.4GHz BLE (SHF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V
		19295	38.1	-35.9	74	54.99	37.83	5.08	59.8	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE		24531	36.61	-37.39	74	48.92	38.7	6.77	57.78	_	_	Р	V
SHF													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

Remark

- 2. All results are PASS against Peak and Average limit line.
- 3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

TEL: 886-3-327-3456 Page Number : C11 of C14

Emission below 1GHz 2.4GHz BLE (LF)

Report No.: FR100638A

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		105.33	31.7	-11.8	43.5	43.42	16.52	1.75	29.99	-	-	Р	Н
		183.63	31.99	-11.51	43.5	44.88	14.81	2.27	29.97	-	-	Р	Н
		216.57	33	-13	46	45.89	14.64	2.44	29.97	-	-	Р	Н
		338.5	29.39	-16.61	46	36.49	19.94	2.94	29.98	-	-	Р	Н
		500.2	30.99	-15.01	46	33.47	23.82	3.55	29.85	-	-	Р	Н
		959.4	32.66	-13.34	46	25.62	30.8	4.91	28.67	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE LF		30	33.25	-6.75	40	37.81	24.57	0.9	30.03	-	-	Р	٧
LF		57	28.78	-11.22	40	45.27	12.17	1.35	30.01	-	-	Р	٧
		198.75	33.45	-10.05	43.5	46.11	14.96	2.35	29.97	-	-	Р	٧
		500.2	34.09	-11.91	46	36.57	23.82	3.55	29.85	-	-	Р	V
		881.7	31.66	-14.34	46	27.36	28.69	4.64	29.03	-	-	Р	٧
		953.8	32.84	-13.16	46	26.16	30.49	4.89	28.7	-	-	Р	V
													٧
													٧
													V
													V
													V
													V
	1. No	o other spuriou	s found						1				

1. No other spurious found.

Remark

2. All results are PASS against Peak and Average limit line.

 The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

TEL: 886-3-327-3456 Page Number: C12 of C14

Note symbol

Report No.: FR100638A

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C13 of C14

A calculation example for radiated spurious emission is shown as below:

Report No.: FR100638A

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

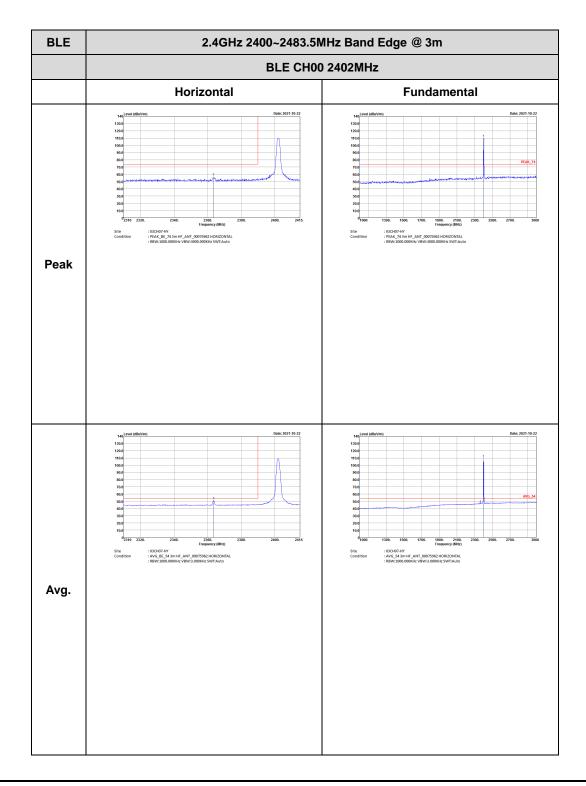
TEL: 886-3-327-3456 Page Number : C14 of C14

Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Jesse Wang, Stan Hsieh and Ken Wu	Temperature :	17.9~24.6°C
rest Engineer:		Relative Humidity :	53.1~69.0%

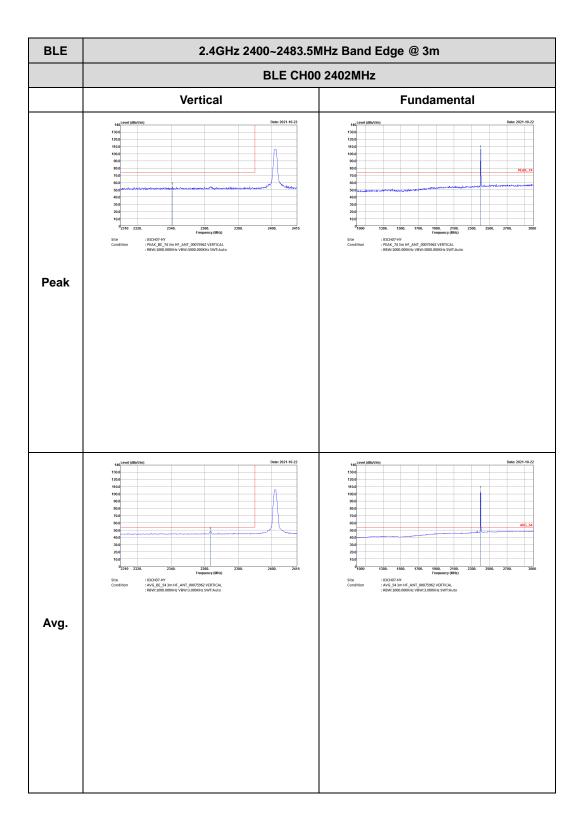
Report No.: FR100638A

Note symbol

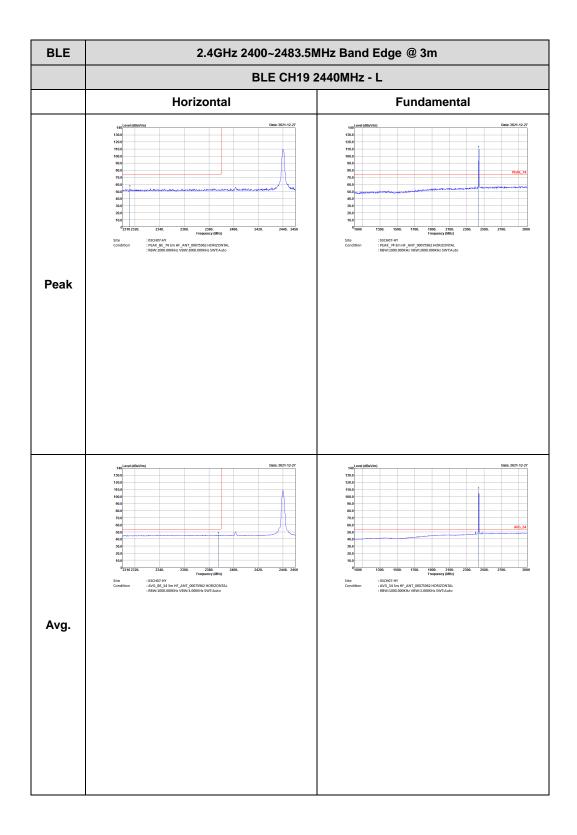

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 Page Number: D1 of D25

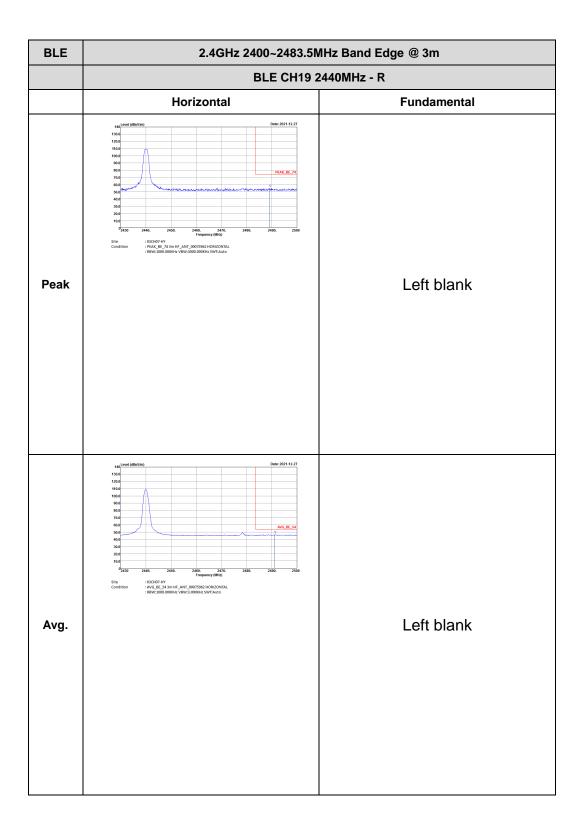
<1Mbps>


2.4GHz 2400~2483.5MHz BLE (Band Edge @ 3m)

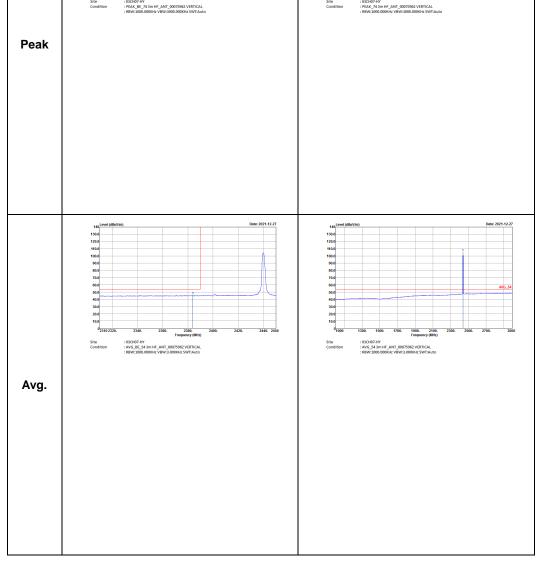
Report No.: FR100638A

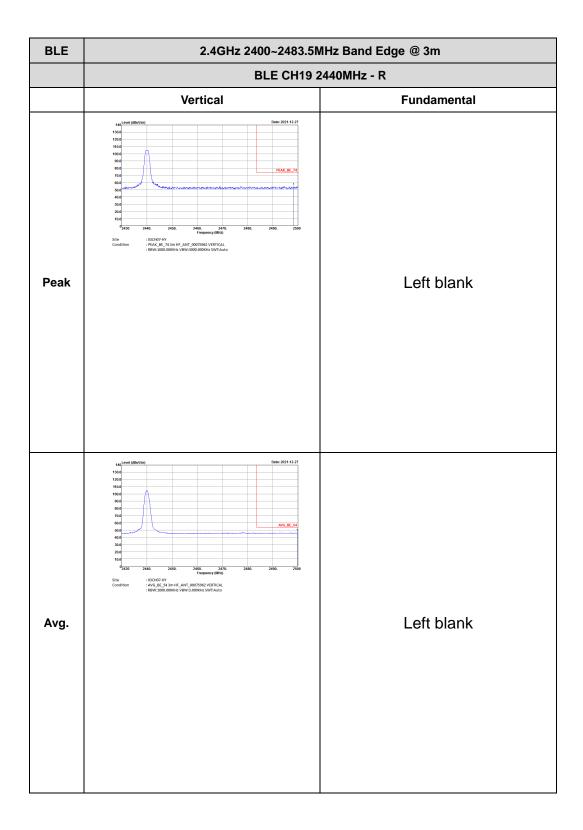


TEL: 886-3-327-3456 Page Number: D2 of D25



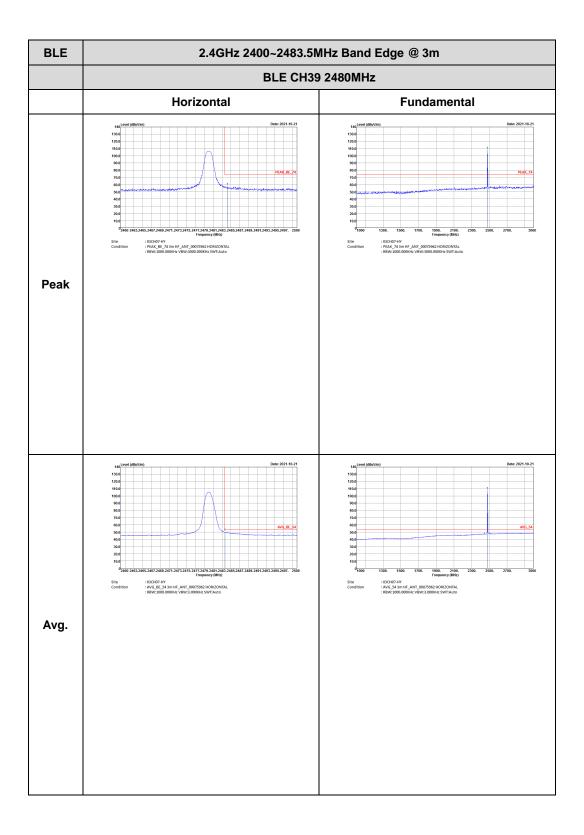
: D3 of D25 TEL: 886-3-327-3456 Page Number


TEL: 886-3-327-3456 Page Number : D4 of D25

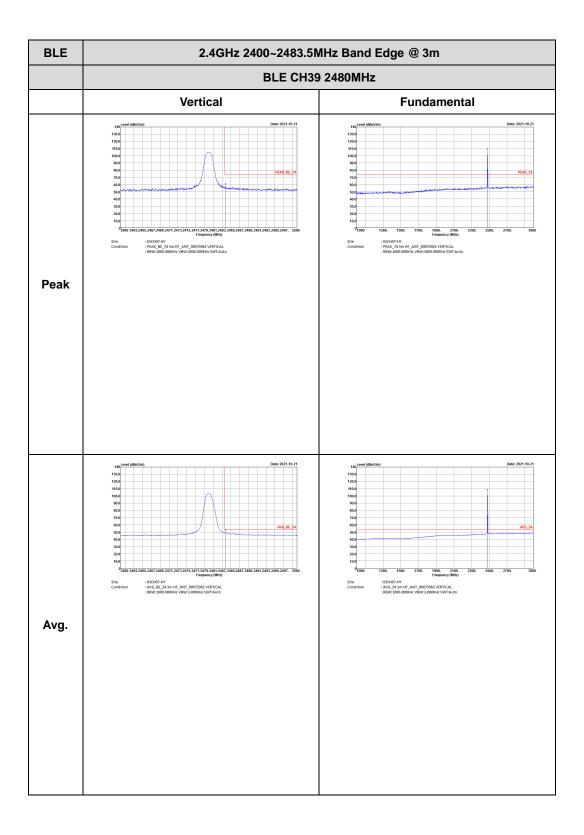

TEL: 886-3-327-3456 Page Number: D5 of D25

BLE 2.4GHz 2400~2483.5MHz Band Edge @ 3m BLE CH19 2440MHz - L Vertical **Fundamental** Peak

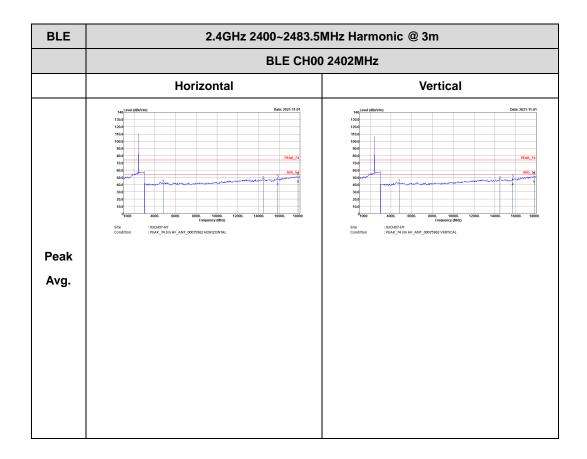
Report No.: FR100638A

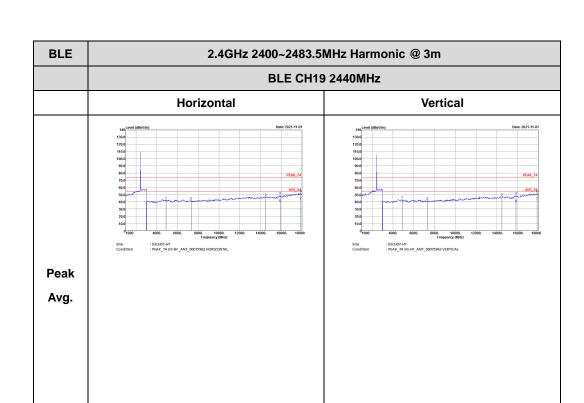


: D6 of D25 TEL: 886-3-327-3456 Page Number

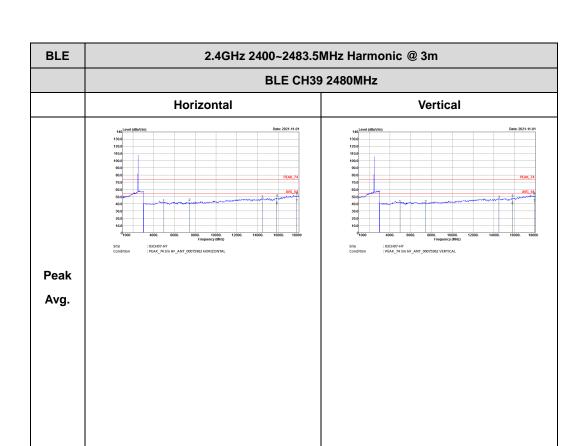


TEL: 886-3-327-3456 Page Number: D7 of D25


: D8 of D25 TEL: 886-3-327-3456 Page Number


: D9 of D25 TEL: 886-3-327-3456 Page Number

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

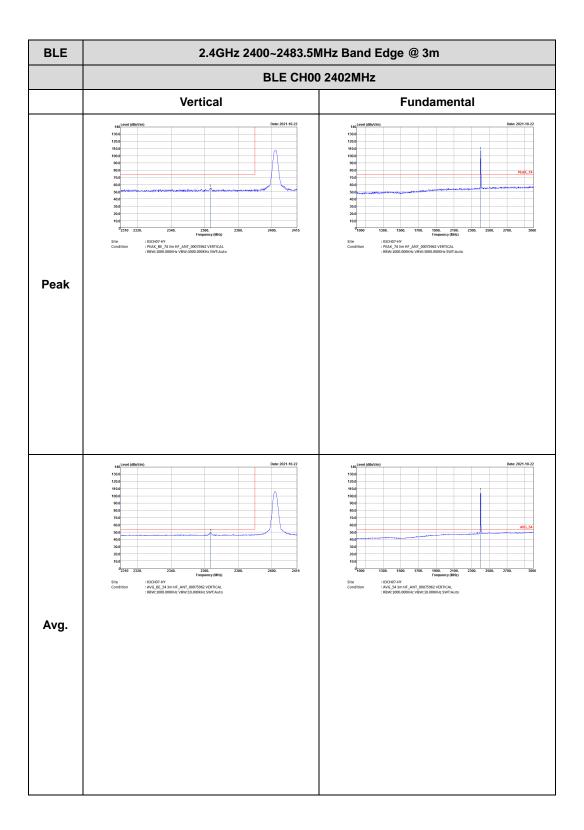

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : D10 of D25

TEL: 886-3-327-3456 Page Number : D11 of D25

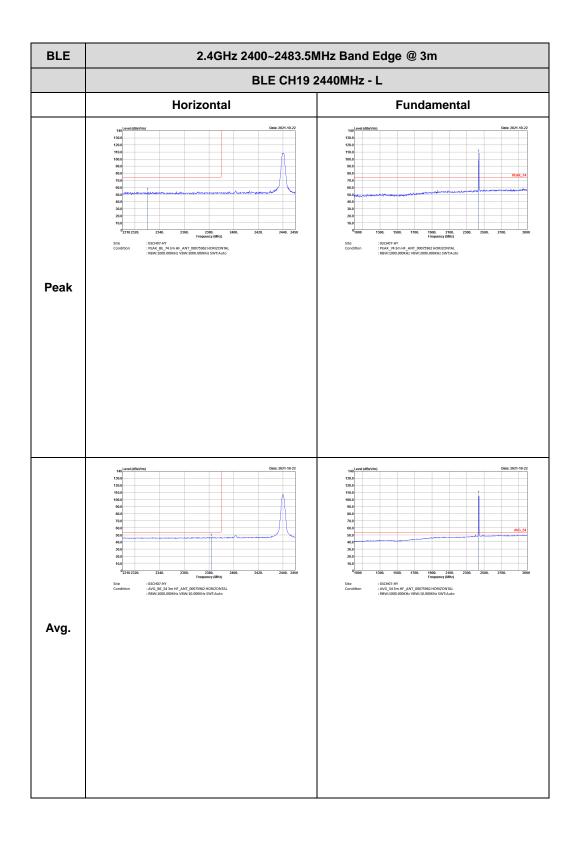


TEL: 886-3-327-3456 Page Number : D12 of D25

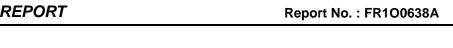

<2Mbps>

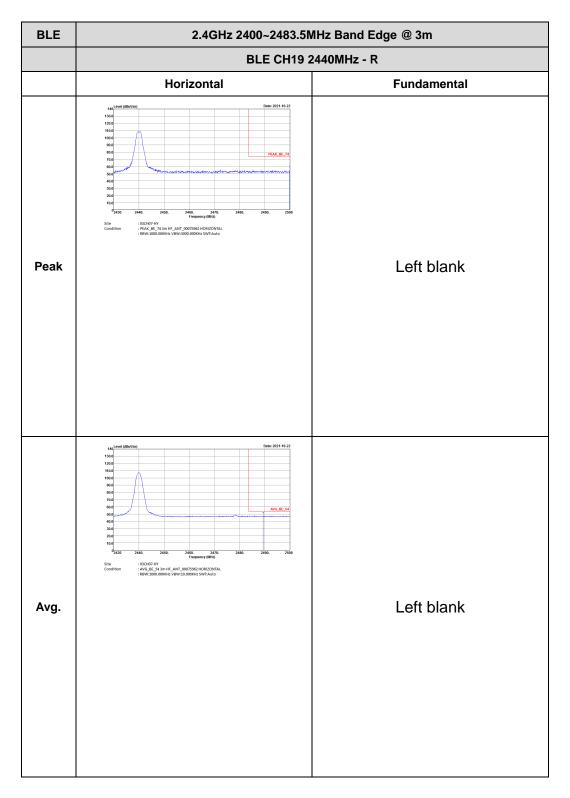
2.4GHz 2400~2483.5MHz BLE (Band Edge @ 3m)

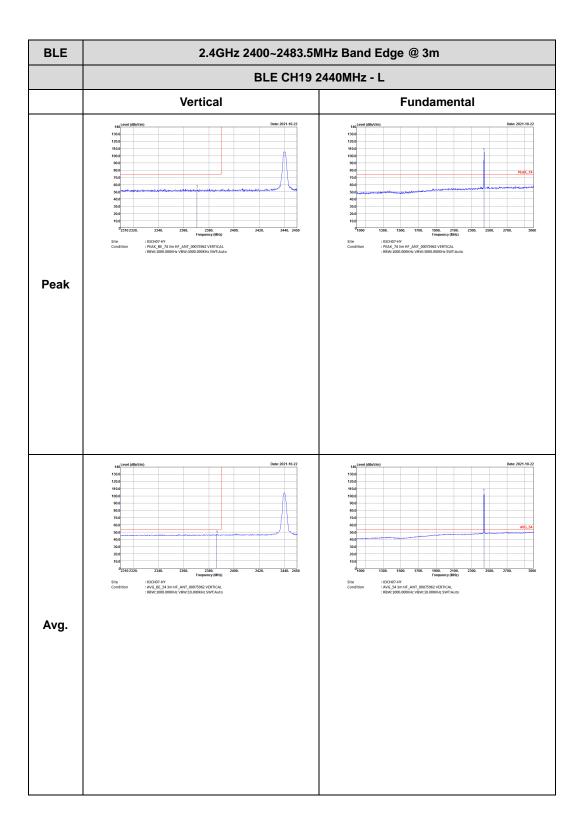
Report No.: FR100638A

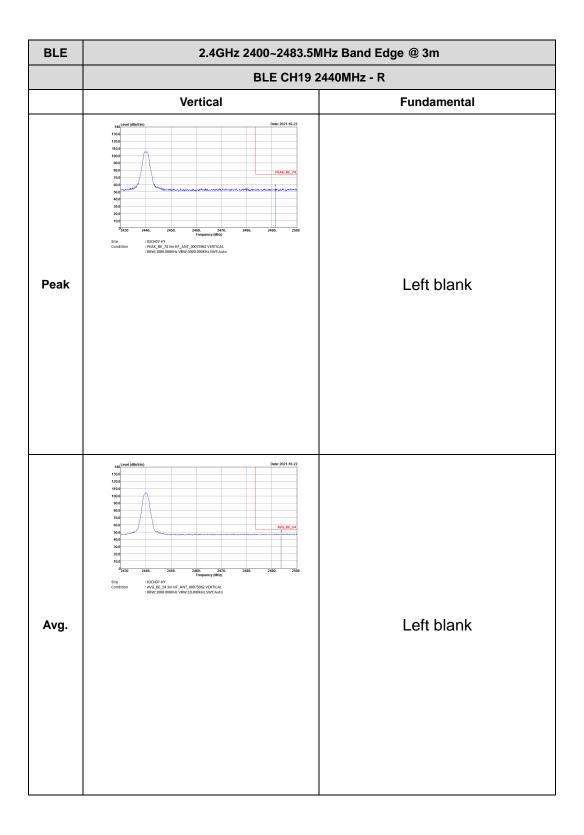


TEL: 886-3-327-3456 Page Number : D13 of D25

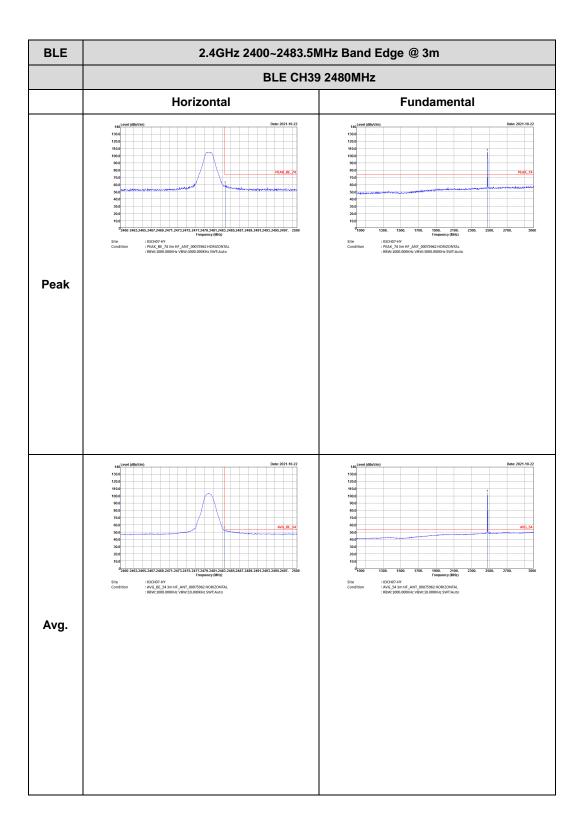



TEL: 886-3-327-3456 Page Number : D14 of D25

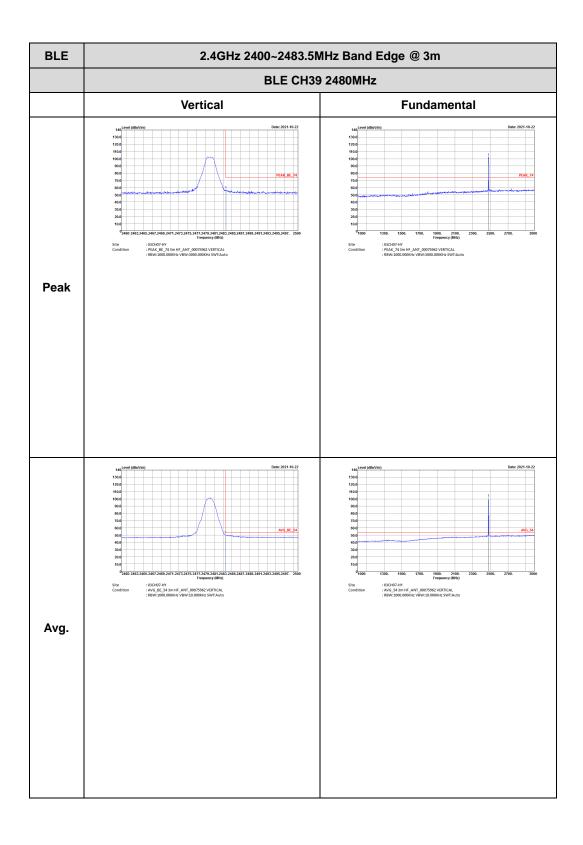

TEL: 886-3-327-3456 Page Number : D15 of D25



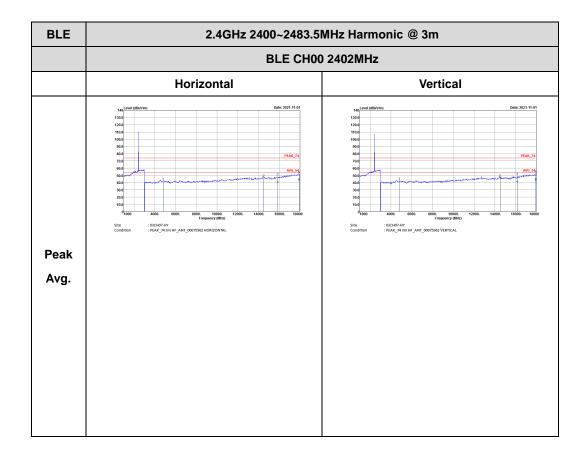
TEL: 886-3-327-3456 Page Number : D16 of D25

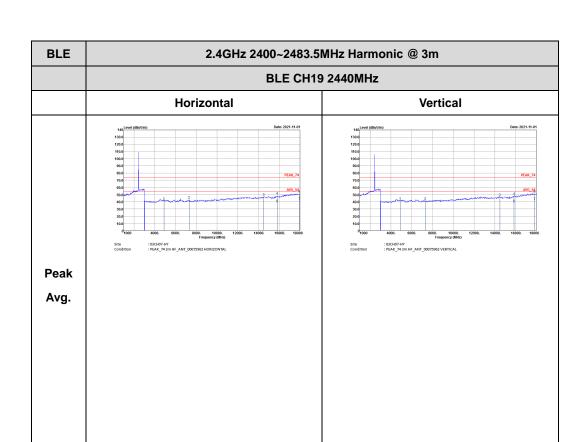


TEL: 886-3-327-3456 Page Number : D17 of D25

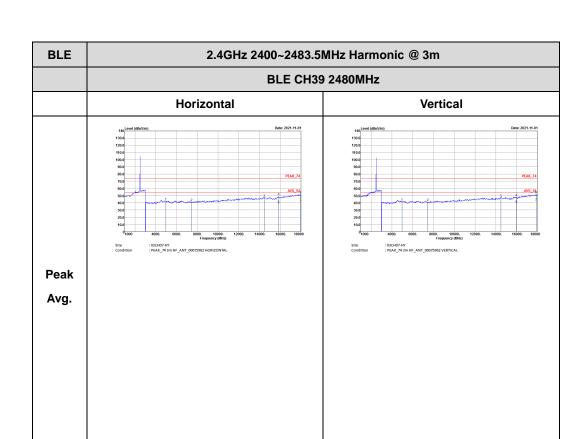

TEL: 886-3-327-3456 Page Number : D18 of D25

TEL: 886-3-327-3456 Page Number : D19 of D25

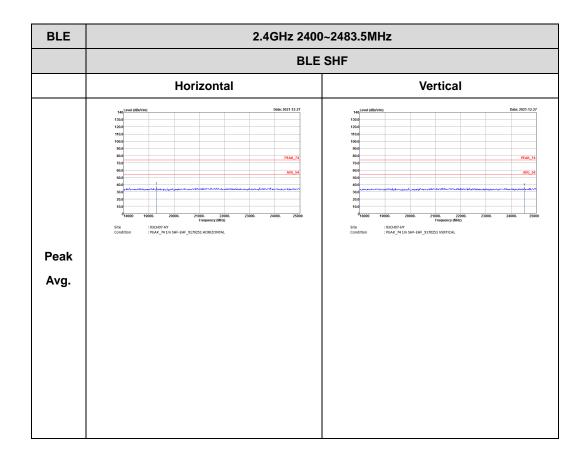



TEL: 886-3-327-3456 Page Number : D20 of D25

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

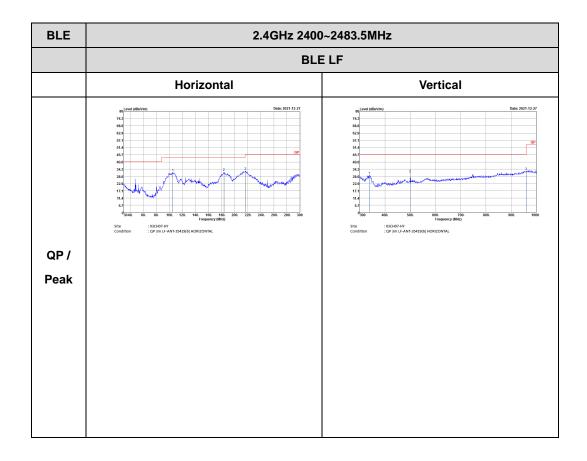

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : D21 of D25


TEL: 886-3-327-3456 Page Number : D22 of D25

TEL: 886-3-327-3456 Page Number: D23 of D25

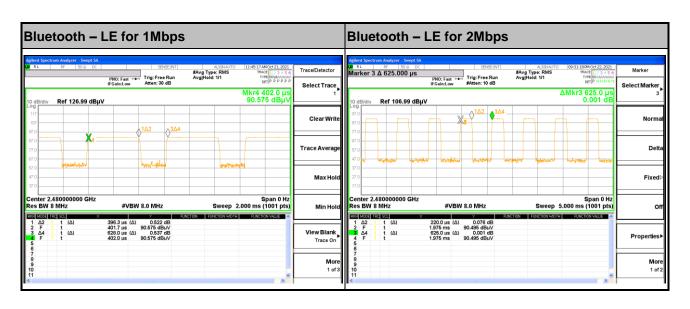
Emission above 18GHz 2.4GHz BLE (SHF @ 1m)


Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : D24 of D25

Emission below 1GHz 2.4GHz BLE (LF)

Report No.: FR100638A



TEL: 886-3-327-3456 Page Number : D25 of D25

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	63.11	396	2.52	3kHz
Bluetooth - LE for 2Mbps	35.20	220	4.55	10kHz

Report No.: FR100638A

TEL: 886-3-327-3456 Page Number : E1 of E1