

Report No. : FR100638G

FCC RADIO TEST REPORT

FCC ID	:	2AG7G-J1A
Equipment	:	Plume Adaptive Wi-Fi
Brand Name	:	Plume Design, Inc.
Model Name	:	J1A
Applicant	:	Plume Design, Inc.
		325 Lytton Ave., Palo Alto, CA 94301
Manufacturer	:	Plume Design, Inc.
		325 Lytton Ave., Palo Alto, CA 94301
Standard	:	47 CFR FCC Part 15.517

The product was received on Oct. 19, 2021, and testing was started from Oct. 30, 2021 and completed on Dec. 22, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Win

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

Hi st	story of this test report			
Sun	nmary of Test Result4			
1.	General Description			
1.1.	Product Feature of Equipment Under Test			
1.2.	Modification of EUT6			
1.3.	Type of EUT6			
1.4.	Testing Applied Standards			
1.5.	Testing Location Information			
1.6.	Measurement Uncertainty7			
2.	Test Configuration of EUT8			
2.1.	Test Mode			
2.2.	The Worst Case Measurement Configuration			
2.3.	Test Setup Diagram			
2.4.	Support Unit used in test configuration and system10			
3.	Transmitter Test Result11			
3.1.	AC Power-line Conducted Emissions11			
3.2.	UWB bandwidth12			
3.3.	Technical requirements for indoor UWB systems			
3.4.	Peak Power Measurement			
3.5.	Radiated Emissions			
4.	Test Equipment and Calibration Data			

Appendix A. Conducted Emission Test Results

Appendix B. Setup Photographs

History	of	this	test	report
----------------	----	------	------	--------

Report No.	Version	Description	Issued Date
FR100638G	01	Initial issue of report	Jan. 19, 2022
FR100638G	02	 Revise test standard and Summary Revise Radiated Emissions above 960MHz Limit Revise Radiated Emissions (960MHz – 18GHz) 	Mar. 04, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.2	15.203	Antenna Requirement	PASS	15.203
-	15.207	AC Power-line Conducted Emissions	PASS	15.207
3.1	15.503	UWB Bandwidth	PASS	≥ 500MHz
3.3	15.517(a)(5)	Technical requirements for indoor UWB systems	PASS	15.517(a)(5)
3.4	15.517(e)	Peak Power Measurement	PASS	≤0 dBm/50MHz
3.5	15.517(c) /15.517(d)	Radiated Emissions	PASS	UWB Emissions: 15.517(c) GPS Emissions: 15.517(d) Digital Emissions: 15.209

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Danny Lee

Report Producer: Lucy Wu

General Description 1.

1.1. Product Feature of Equipment Under Test

Bluetooth-LE, Wi-Fi 2.4GHz 802.11b/g/n/ac/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, Wi-Fi 6GHz 802.11a/n/ac/ax and UWB.

Product Specification subjective to this standard			
	WLAN		
	<2400 MHz ~ 2483.5 MHz>		
	<ant. 3="">: IFA Antenna</ant.>		
	<ant. 4="">: IFA Antenna</ant.>		
	<5180 MHz ~ 5240 MHz>		
	<ant. 1="">: IFA Antenna</ant.>		
	<ant. 2="">: IFA Antenna</ant.>		
	<ant. 3="">: IFA Antenna</ant.>		
	<ant. 4="">: IFA Antenna</ant.>		
	<5260 MHz ~ 5320 MHz>		
	<ant. 1="">: IFA / Slot Antenna</ant.>		
	<ant. 2="">: IFA / Slot Antenna</ant.>		
	<ant. 3="">: IFA / Slot Antenna</ant.>		
	<ant. 4="">: IFA / Slot Antenna</ant.>		
	<5500MHz ~ 5825 MHz>		
	<ant. 1="">: IFA / Slot Antenna</ant.>		
	<ant. 2="">: IFA / Slot Antenna</ant.>		
	<ant. 3="">: IFA / Slot Antenna</ant.>		
	<ant. 4="">: IFA / Slot Antenna</ant.>		
	<5925 MHz ~ 6425 MHz>		
Antenna Type	<ant. 5="">: IFA Antenna</ant.>		
	<ant. 6="">: IFA Antenna</ant.>		
	<ant. 7="">: IFA Antenna</ant.>		
	<ant. 8="">: IFA Antenna</ant.>		
	<6425 MHz ~ 6525 MHz>		
	<ant. 5="">: IFA Antenna</ant.>		
	<ant. 6="">: IFA Antenna</ant.>		
	<ant. 7="">: IFA Antenna</ant.>		
	<ant. 8="">: IFA Antenna</ant.>		
	<6525 MHz ~ 6875 MHz>		
	<ant. 5="">: IFA Antenna</ant.>		
	<ant. 6="">: IFA Antenna</ant.>		
	<ant. 7="">: IFA Antenna</ant.>		
	<ant. 8="">: IFA Antenna</ant.>		
	<6875 MHz ~ 7125 MHz>		
	<ant. 5="">: IFA Antenna</ant.>		
	<ant. 6="">: IFA Antenna</ant.>		
	<ant. 7="">: IFA Antenna</ant.>		
	<ant. 8="">: IFA Antenna</ant.>		
	Bluetooth - LE: IFA Antenna		
	UWB: IFA Antenna		

Antenna information		
Antenna Gain	<ant. 1="">:</ant.> 4 dBi	
(CH5 and CH9)	<ant. 2="">:</ant.> 3 dBi	

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2. Modification of EUT

No modifications are made to the EUT during all test items.

1.3. Type of EUT

	Operational Condition				
EUT	Power Type	AC mains: AC voltage 120 V			
	Type of EUT				
	Stand-alone				
	Combined (EU	T where the radio part is fully integrated within another device)			
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.4. Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 414788 D01 Radiated Test Site v01r01

Remark: The TAF code is not including all the FCC KDB listed without accreditation.

1.5. Testing Location Information

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
	No.52, Huaya 1st Rd., Guishan Dist.,		
Test Site Location	Taoyuan City 333, Taiwan (R.O.C.)		
	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Toot Site No	Sporton Site No.		
Test Site No.	CO05-HY, DF02-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No	Sporton Site No.		
Test Sile No.	03CH20-HY (TAF Code: 3876)		
RemarkThe Radiated Spurious Emission test item subcontracted to Spurious International Inc. Wensan Laboratory.			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
Conducted	DF02-HY	PH Yang	24~26 °C 45~50 %	Dec. 22, 2021
Conduction	CO05-HY	Calvin Wang	23~26 °C 45~55 %	Dec. 14, 2021
Radiated	03CH20-HY	JC Liang	19~20 °C 65~67 %	Oct. 30, 2021~ Nov. 13, 2021

1.6. Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
AC Conduction (150kHz ~ 30MHz)	3.1 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1000MHz)	5.9 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	5.2 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	5.7 dB	Confidence levels of 95%

2. Test Configuration of EUT

2.1. Test Mode

Test Configuration				
Mode Antenna UWB Channel UWB Freq				
1	1	5	6489.6	
2	1	9	7987.2	
3	2	5	6489.6	
4	2	9	7987.2	

Test Cases			
AC Conducted	Mode 1: LN/P Link + LAN Link + W/ANLLink		
Emission	WODE I: UVVB LINK + LAN LINK + WAN LINK		

2.2. The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item	Tests Item AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz			
Operating Mode CTX			
1	Adapter Mode		
Remark: Please refer to 15.207 which states, "Measurements to demonstrate compliance with the conducted limits are not required for devices employ Battery for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines".			

The Worst Case Mode for Following Conformance Tests				
Tests Item	UWB Bandwidth, Peak Power Measurement, Radiated Emissions			
Test Condition	Radiated measurement			
Operating Mode	CTX			
1	Adapter Mode			
Mode 1 configuration was tested	and found to be the wors	st case and measured dur	ing the test.	
Operating Mode > 1GHz	CTX			
	X Plane	Y Plane	Z Plane	
Orthogonal Planes of EUT				
Worst Plane of Test Mode 1		V		
Worst Plane of Test Mode 2	V			
Worst Plane of Test Mode 3			V	
Worst Plane of Test Mode 4	V			
Remark: The measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X plane as worst plane, and recorded in this report.				

2.3. Test Setup Diagram

2.4. Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	DELL	Latitude5310	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
2.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	PC	msi	9461NGW	PD99461NG	Unshielded, 3.0m	Unshielded, 1.8m
4.	Plume Adaptive Wi-Fi	Plume Design Inc	J1A	2AG7G-J1A	N/A	N/A

3. Transmitter Test Result

3.1. AC Power-line Conducted Emissions

3.1.1. AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit			
Frequency Emission (MHz)	Quasi-Peak	Average	
0.15-0.5	66 - 56 *	56 - 46 *	
0.5-5	56	46	
5-30	60	50	
Note 1: * Decreases with the logarithm of the frequency.			

3.1.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3. Test Procedures

	Test Method	
-	Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.	

3.1.4. Test Setup

3.1.5. Test Result

Please refer to Appendix A.

TEL: 886-3-327-3456	Page Number	: 11 of 47
FAX : 886-3-328-4978	Issued Date	: Mar. 04, 2022
Report Template No.: BU5-FR15F Version 2.1	Report Version	: 02

3.2. UWB bandwidth

3.2.1. UWB bandwidth Limit

UWB bandwidth Limit

UWB bandwidth \geq 500 MHz or Fractional bandwidth \geq 0.2; Fractional bandwidth $= 2(f_H - f_L)/(f_H + f_L)$

3.2.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3. Test Procedures

Test Method
For the UWB bandwidth shall be measured using one of the options below:
Refer as ANSI C63.10, clause 6.9.2 and clause 10.1 for UWB bandwidth testing.

3.2.4. Test Setup

Spectrum Analyzer

3.2.5. Test Result of UWB Bandwidth

Test	F _L	F _H	UWB Bandwidth	Bandwidth limit	Result	Pol [H/V]
mode	(1411 12)	(141112)	(1411 12)	(1411 12)		
1	6238.00	6783.00	545	≥ 500	Pass	Н
2	7736.00	8259.00	523	≥ 500	Pass	Н
3	6237.00	6754.00	517	≥ 500	Pass	Н
4	7667.00	8240.00	573	≥ 500	Pass	Н

3.3. Technical requirements for indoor UWB systems

3.3.1. Technical Requirements for transmission Limit

FCC 15.517(a) (5) a communications system shall transmit only when the intentional radiator is sending information to an associated receiver.

3.3.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3. Test Procedure

Follow the test step as below:

- 1. Turn on both EUT and companion receiver.
- 2. Check if the EUT transmit without setting up the companion receiver. (see plot 1 in clause 3.3.5)
- 3. Set the companion receiver to RX mode.
- 4. Set the EUT to associate the companion receiver and start to transmit.
- 5. Disable the RX function of the companion receiver to disassociate the EUT.
- 6. Check if EUT stop transmitting once step 5 is made. (see plot 2 in clause 3.3.5)

3.3.4. Test Setup

3.3.5. Test Result

: 15 of 47 : Mar. 04, 2022

: 02

3.4. **Peak Power Measurement**

3.4.1. Peak Power Measurement Limit

Peak Powe	r Measurement Limit
-----------	---------------------

 $\mathbf{P_{eirp}} = 0 \text{ dBm}/50 \text{MHz}$

3.4.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3. Test Procedures

Test Method				
Peak Power Measurement				
Refer as ANSI C63.10, clause 10.3.1 for radiated measurement procedure testing.				
■ Refer as ANSI C63.10, clause 10.3.2 for measurement distance is 3m.				
Refer as ANSI C63.10, clause 10.3.5 for peak detector procedure testing.				
Refer as ANSI C63.10, clause 10.3.6 for bandwidth conversion of peak power.				
 Frequency of max peak power is pre-located: The span bandwidth is continuously reduced to find the worst frequency. Once the worst frequency is found, the setting of spectrum analyzer is set as below: Central frequency: Worst frequency point Span: Zero span RBW: 40MHz VBW: 40MHz Detector: Peak detector Trace: Max hold 				

3.4.4. Test Setup

3.4.5. Test Result of Peak Power Measurement

Peak Measurement Result								
Test Mode	Freq. (MHz)	E-Field (dBuV/m)	ERIP _{40MHz} (dBm)	ERIP _{50MHz} Limit (dBm)	EIRP _{40MHz} Limit (dBm)	Margin (dB)	Result	Pol [H/V]
1	6644.85	88.31	-6.92	0	-1.94	-4.98	Pass	Н
2	8142.05	86.71	-8.52	0	-1.94	-6.58	Pass	Н
3	6524.55	88.53	-6.70	0	-1.94	-4.76	Pass	Н
4 7830.90 83.69 -11.54 0 -1.94 -9.60 Pass H								
Note 1: EIRP [dBm] = E-Field [dBuV/m] - 95.23; Note 2: Bandwidth Correction Factor (BWCF) = 20 log (40MHz/50MHz).								

Note 3: EIRP_{40MHz} Limit = EIRP_{50MHz} Limit + BWCF, FCC Part 15.521(g).

Note 4: Measurement worst emissions of receive antenna polarization.

3.5. Radiated Emissions

3.5.1. Radiated Emissions Limit

Radiated Emissions below 960MHz and Emissions from Digital Circuitry Limit				
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)	
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300	
0.490~1.705	24000/F(kHz)	33.8 - 23	30	
1.705~30.0	30	29	30	
30~88	100	40	3	
88~216	150	43.5	3	
216~960	200	46	3	
Above 960	500	54	3	

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Radiated Emissions above 960MHz Limit			
Frequency Range (MHz)	EIRP (dBm), RBW = 1MHz		
960-1610	-75.3		
1610-1990	-63.3		
1990-3100	-51.3		
3100-10600	-41.3		
Above 10600	-51.3		

Radiated Emissions in GPS Bands Limit			
Frequency Range (MHz)	EIRP (dBm), RBW ≥ 1kHz		
1164-1240	-85.3		
1559-1610	-85.3		

Note E (dBuv/m) = EIRP (dBm) + 95.23, example, E(dBuV/m) = -85.3 + 95.23 = 9.93dBuV/m

3.5.2. Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3. Test Procedures

	Test Method for Radiated Emissions above 960MHz				
	Radiated Emissions above 960MHz				
I	■ Refer as ANSI C63.10, clause 10.3.1 for radiated measurement procedure testing.				
	Refer as ANSI C63.10, clause 10.3.2 for measurement distance is 3m. In some cases, it may be necessary to measure the radiated UWB emissions at a closer distance to obtain enough signal and margin to overcome the measurement system noise floor. Distance extrapolation factor = 20 log (test distance [X m]/specific distance [3 m]) (dB)				
	Refer as ANSI C63.10, clause 10.3.4 for rms detector procedure testing.				
I	■ Refer as ANSI C63.10, clause 10.3.7 for evaluating AVG-PSD (RBW=1MHz).				
	■ Refer as ANSI C63.10, clause 10.3.10 for evaluating AVG-PSD in GPS Band (RBW≥1kHz).				
	For radiated measurement.				
I	■ Refer as ANSI C63.10, clause 10.3.8 following eirp can be used radiated test configuration.				
I	■ Refer as ANSI C63.10, clause 10.3.9 following eirp can be directly determined using the field strength.				
	Test Method for Radiated Emissions below 960MHz and Emissions from Digital Circuitry				
	Massurements may be performed at a distance other than the limit distance provided they are not				

ay be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements) for above 30MHz-960MHz; 40dB/decade for frequency below 30MHz.

For the transmitter unwanted emissions shall be measured using following options below:

Refer as ANSI C63.10, clause 4.1.4 Detector functions and selection of bandwidth

Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions. Adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms). Average emission = peak emission + 20 log (duty cycle).

Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.

For radiated measurement.

Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.

Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.

If the noise floor can't meet the limit, the test distance will be shorten and described in the report.

Any unwanted emissions level shall not exceed the fundamental emission level.

3.5.4. Test Setup

TEL : 886-3-327-3456	Page Number	: 23 of 47
FAX : 886-3-328-4978	Issued Date	: Mar. 04, 2022
Report Template No.: BU5-FR15F Version 2.1	Report Version	: 02

Note 1: Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna and the frequency range of 1 GHz to 40 GHz using a calibrated horn antenna. Note 2: If test distance other than 3m is used, the used test distance will be recorded in test result.

3.5.5. Radiated Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

TEL: 886-3-327-3456	Page Number	: 24 of 47
FAX : 886-3-328-4978	Issued Date	: Mar. 04, 2022
Report Template No.: BU5-FR15F Version 2.1	Report Version	: 02

3.5.6. Radiated Emissions (Fundamental)

Test mode	Frequency (MHz)	Emission Level (dBuV/m)	Emission Limit (dBm/MHz)	Emission Limit (dBuV/m)	Margin (dB)	Result	Pol [H/V]
1	6591.00	52.69	-41.3	53.93	-1.24	Pass	Н
2	7987.00	52.65	-41.3	53.93	-1.28	Pass	V
3	6490.00	52.72	-41.3	53.93	-1.21	Pass	Н
4	7878.00	48.98	-41.3	53.93	-4.95	Pass	Н

	Radiated Emissions (Fundamental)			
Operating Eurotian	Adapter Mode	Polarization	V	
Operating Function		Test Distance	3m	
		Mode 2: Cl	1 09_Ant. 1	
		Level (dBuV/m)	Date: 2021-11-03	
		87.5		
		75.0		
		62.5		
		50.0		
		37.5		
		25.0		
		12.5		
		0 7500 7600. 7700. 7800. 7900. Fre	8000. 8100. 8200. 8300. 8400. 8500 quency (MHz)	
		Site :03CH20-HY Condition :FCC_UWB_HAND 3m 9120D_ :RBW:1000.000KHz VBW:3000 Project :100638 EUT :#5 Channel :CH9 Settion :32	002360_1091103 VERTICAL 000KHz SWT:1.000sec	
		Over Limit Rea Freq Level Limit Line Leve	dAntenna Cable Preamp A/Pos T/Pos l Factor Loss Factor Remark	
		MHz dBuV/m dB dBuV/m dBu	/ dB/m dB dB cm deg	
		1 7987.00 52.65 -1.28 53.93 39.0	3 37.00 15.52 38.90 Average	

3.5.7. Radiated Emissions (30MHz – 1GHz)

(Note: Aux Factor = Filter loss (dB), Aux 2 Factor = Distance extrapolation factor (dB))

(Note: Aux Factor = Filter loss (dB), Aux 2 Factor = Distance extrapolation factor (dB))

(Note: Aux Factor = Filter loss (dB), Aux 2 Factor = Distance extrapolation factor (dB))

3.5.8. Radiated Emissions (960MHz – 18GHz)

Radiated Emissions (960MHz – 18GHz)				
Test Mode	Mode 1: CH 05_Ant. 1			
Operating Function	Adapter Mode			
Test Distance	Distance The test distance between the receiving antenna and the EUT is as following: 3 m for 1.61 GHz ~ 10.60 GHz frequency range 1 m for 1 GHz ~ 1.61 GHz 0.5 m for other frequency ranges.			
Po	larization: H	Polarization: V		
$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ \\$	Image: product of the product of th	<text><text><text><text><text><text></text></text></text></text></text></text>		
Note 1: >200B means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: Average emission setting outside GPS Bands: RBW=1MHz; VBW=3MHz. Note 5: Average emission setting in GPS bands: RBW=100kHz; VBW=300kHz. Note 6: #5 is fundamental signal.				
 Note 7: Distance extrapolation factor = 20 log (test distance [X m]/specific distance [3 m]) (dB) Corrected Reading: Antenna Factor (dB/m) + Cable Loss (dB) + Read Level (dBuV) - Preamp Factor (dB) + Aux Factor (dB) = Level (dBuV/m) (Note: For Frequency below 1GHz, Aux Factor = Filter loss (dB), Aux 2 Factor = Distance extrapolation factor (dB); For Frequency above 1GHz, Aux Factor = Distance extrapolation factor (dB), Aux 2 Factor = Filter loss (dB)) 				

	Radiated Emissions (960MHz – 18GHz)			
Test Mode	Mode 2: CH 09_Ant. 1			
Operating Function	Adapter Mode			
Test Distance	The test distance between the receiving antenna and the EUT is as following: 3 m for 1.61 GHz ~ 10.60 GHz frequency range 1 m for 1 GHz ~ 1.61 GHz 0.5 m for other frequency ranges.			
Po	larization: H	Polarization: V		
0	Address Address Address Address Address Address Address Address Address Address Address Address	<text><text><text><text><text><text></text></text></text></text></text></text>		
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: Average emission setting outside GPS Bands: RBW=1MHz; VBW=3MHz. Note 5: Average emission setting in GPS bands: RBW=100kHz; VBW=300kHz. Note 6: #5 is fundamental signal.				
 Note 7: Distance extrapolation factor = 20 log (test distance [X m]/specific distance [3 m]) (dB) Corrected Reading: Antenna Factor (dB/m) + Cable Loss (dB) + Read Level (dBuV) - Preamp Factor (dB) + Aux Factor (dB) = Level (dBuV/m) (Note: For Frequency below 1GHz, Aux Factor = Filter loss (dB), Aux 2 Factor = Distance extrapolation factor (dB); For Frequency above 1GHz, Aux Factor = Distance extrapolation factor (dB), Aux 2 Factor = Filter loss (dB)) 				

Radiated Emissions (960MHz – 18GHz)									
Test Mode	Mode 3: CH 05_Ant. 2								
Operating Function	Adapter Mode	Adapter Mode							
Test Distance	The test distance between the r 3 m for 1.61 GHz ~ 10.60 GHz f 1 m for 1 GHz ~ 1.61 GHz 0.5 m for other frequency range	receiving antenna and the EUT is as following: frequency range s.							
Po	larization: H	Polarization: V							
4 1 3 3 4 4 4 4 4 1 3 3 4 1 4 1 4 1 4 1 3 3 4 1 1 4 1 1	bit	<text><text><text><text><text><text></text></text></text></text></text></text>							
Note 1: ">20dB" mear Note 2: "N/F" means I Note 3: Measurement Note 4: Average emis Note 5: Average emis Note 6: #5 is fundame	ns spurious emission levels that of Nothing Found spurious emission receive antenna polarization: H sion setting outside GPS Bands: sion setting in GPS bands: RBW ental signal.	exceed the level of 20 dB below the applicable limit. ns (No spurious emissions were detected.) (Horizontal), V (Vertical) RBW=1MHz; VBW=3MHz. '=100kHz; VBW=300kHz.							
Note 7: Distance extrapo Corrected Readi Factor (dB) + Au (Note: For Frequ factor (dB); For I = Filter loss (dB)	plation factor = 20 log (test distar ng: Antenna Factor (dB/m) + Ca ux Factor (dB) = Level (dBuV/m) uency below 1GHz, Aux Factor = Frequency above 1GHz, Aux Fac)	nce [X m]/specific distance [3 m]) (dB) ble Loss (dB) + Read Level (dBuV) - Preamp Filter loss (dB), Aux 2 Factor = Distance extrapolation ctor = Distance extrapolation factor (dB), Aux 2 Factor							

Radiated Emissions (960MHz – 18GHz)							
Test Mode	Mode 4: CH 09_Ant. 2						
Operating Function	Adapter Mode						
Test Distance	The test distance between the r 3 m for 1.61 GHz ~ 10.60 GHz 1 m for 1 GHz ~ 1.61 GHz 0.5 m for other frequency range	receiving antenna and the EUT is as following: frequency range s.					
Po	larization: H	Polarization: V					
0 1	address bdrawn bdrawn bdrawn address bdrawn bdrawn bdrawn address bdrawn bdrawn bdrawn address bdrawn bdrawn bdrawn	<text><text><text><text><text><text></text></text></text></text></text></text>					
Note 1: ">20dB" mear Note 2: "N/F" means Note 3: Measurement Note 4: Average emis Note 5: Average emis Note 6: #5 is fundame	ns spurious emission levels that on Nothing Found spurious emission receive antenna polarization: H resion setting outside GPS Bands: resion setting in GPS bands: RBW rental signal.	exceed the level of 20 dB below the applicable limit. ns (No spurious emissions were detected.) (Horizontal), V (Vertical) RBW=1MHz; VBW=3MHz. '=100kHz; VBW=300kHz.					
Note 7: Distance extrapt Corrected Readi Factor (dB) + Au (Note: For Frequ factor (dB); For = Filter loss (dB)	blation factor = 20 log (test distar ng: Antenna Factor (dB/m) + Ca ux Factor (dB) = Level (dBuV/m) uency below 1GHz, Aux Factor = Frequency above 1GHz, Aux Fac))	nce [X m]/specific distance [3 m]) (dB) ble Loss (dB) + Read Level (dBuV) - Preamp Filter loss (dB), Aux 2 Factor = Distance extrapolation ctor = Distance extrapolation factor (dB), Aux 2 Factor					

3.5.9. Radiated Emissions (1164MHz – 1240MHz)

3.5.10. Radiated Emissions (1559MHz – 1610MHz)

3.5.11. Radiated Emissions (18GHz – 40GHz)

Radiated Emissions (18GHz – 40GHz)						
Test Mode	Mode 3: CH 05_Ant. 2					
Operating Function	Adapter Mode	Test Distance 0.5m				
Ро	larization: H	Polarization: V				
86.59 Level (HBuVm) 74.6	but contribute amission lovels that					
Note 1: ">20dB" mear Note 2: "N/F" means Note 3: Measurement	ns spurious emission levels that Nothing Found spurious emissio receive antenna polarization: H	exceed the level of 20 dB below the applicable limit. Ins (No spurious emissions were detected.) (Horizontal), V (Vertical)				
Note 4: Average emis Note 5: Distance extrapo	blation factor = 20 log (test dista	=3MHz. nce [X m]/specific distance [3 m]) (dB)				
Factor (dB) + Au (Note: Aux Factor	$F_{\rm actor}$ (dB) = Level (dBuV/m) or = Distance extrapolation facto	r (dB), Aux 2 Factor = Filter loss (dB))				

4. Test Equipment and Calibration Data

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	Rohde & Schw arz	FSV3044	101048	10Hz~44GHz	Apr. 20, 2021	Dec. 22, 2021	Apr. 19, 2022	Conducted (DF02-HY)
Coupler	Woken	10dB 30W SMA	DOM5CIW3A 1	0.5-18GHz	Calibration from System	Dec. 22, 2021	Calibration from System	Conducted (DF02-HY)
Pow er Divider	Woken	2Way Divider	DCMB1KW7A 1	0.5GHz-18GHz	Calibration from System	Dec. 22, 2021	Calibration from System	Conducted (DF02-HY)
Pow er Divider	Woken	2Way Divider	DCMB1KW7A 2	0.5GHz-18GHz	Calibration from System	Dec. 22, 2021	Calibration from System	Conducted (DF02-HY)
RF Cable	Woken	S05(100cm)	161202-01	30 kHz~18GHz	Calibration from System	Dec. 22, 2021	Calibration from System	Conducted (DF02-HY)
RF Cable	Woken	S05(100cm)	161202-02	30 kHz~18GHz	Calibration from System	Dec. 22, 2021	Calibration from System	Conducted (DF02-HY)
RF Cable	Woken	S05(100cm)	161202-03	30 kHz~18GHz	Calibration from System	Dec. 22, 2021	Calibration from System	Conducted (DF02-HY)
RF Cable	Woken	S05(100cm)	161202-04	30 kHz~18GHz	Calibration from System	Dec. 22, 2021	Calibration from System	Conducted (DF02-HY)
RF Cable	Woken	S05(100cm)	161202-05	30 kHz~18GHz	Calibration from System	Dec. 22, 2021	Calibration from System	Conducted (DF02-HY)
RF Cable	Woken	S05(100cm)	161202-06	30 kHz~18GHz	Calibration from System	Dec. 22, 2021	Calibration from System	Conducted (DF02-HY)
AC Pow er Source	ChainTek	APC-1000W	N/A	N/A	N/A	Dec. 14, 2021	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schw arz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2021	Dec. 14, 2021	Nov. 30, 2022	Conduction (CO05-HY)
LISN	Rohde & Schw arz	ENV216	100080	9kHz~30MHz	Dec. 03, 2021	Dec. 14, 2021	Dec. 02, 2022	Conduction (CO05-HY)
Softw are	Rohde & Schw arz	EMC32	N/A	N/A	N/A	Dec. 14, 2021	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Dec. 14, 2021	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020	Dec. 14, 2021	Dec. 30, 2021	Conduction (CO05-HY)
EMI Test Receiver	Keysight	N9010B	MY 60240520	10Hz~44GHz	Dec. 02, 2020	Oct. 30, 2021~ Nov. 13, 2021	Dec. 01, 2021	Radiation (03CH20-HY)
Preamplifier	COM-POWER	PAM-103	18020201	1MHz-1000MHz	Jan. 04, 2021	Oct. 30, 2021~ Nov. 13, 2021	Jan. 03, 2022	Radiation (03CH20-HY)
Amplifier	EMCI	EMC118A45S E	980792	N/A	Nov. 16, 2020	Oct. 30, 2021~ Nov. 13, 2021	Nov. 15, 2021	Radiation (03CH20-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 22, 2021	Oct. 30, 2021~ Nov. 13, 2021	Jun. 21, 2022	Radiation (03CH20-HY)
Loop Antenna	Rohde & Schw arz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Oct. 30, 2021~ Nov. 13, 2021	Jan. 03, 2022	Radiation (03CH20-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802 N1D01N-06	55606 & 08	30MHz~1GHz	Oct. 17, 2021	Oct. 30, 2021~ Nov. 13, 2021	Oct. 16, 2022	Radiation (03CH20-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02294	1GHz~18GHz	Jun. 23, 2021	Oct. 30, 2021~ Nov. 13, 2021	Jun. 22, 2022	Radiation (03CH20-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00991	18GHz-40GHz	May 12, 2021	Oct. 30, 2021~ Nov. 13, 2021	May 11, 2022	Radiation (03CH20-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	519229/2,804 015/2,804027 /2	N/A	Jan. 20, 2021	Oct. 30, 2021~ Nov. 13, 2021	Jan. 19, 2022	Radiation (03CH20-HY)
Softw are	Audix	E3 6.2009-8-24	RK-002156	N/A	N/A	Oct. 30, 2021~ Nov. 13, 2021	N/A	Radiation (03CH20-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Oct. 30, 2021~ Nov. 13, 2021	N/A	Radiation (03CH20-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Oct. 30, 2021~ Nov. 13, 2021	N/A	Radiation (03CH20-HY)

: Mar. 04, 2022

: 02

Appendix A. AC Conducted Emission Test Results

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 100638 Mode 1 120Vac/60Hz Line

Full Spectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.156750		33.08	55.63	22.55	L1	OFF	19.6
0.156750	48.11		65.63	17.52	L1	OFF	19.6
0.161250		36.77	55.40	18.63	L1	OFF	19.6
0.161250	48.46		65.40	16.94	L1	OFF	19.6
0.168000		34.05	55.06	21.01	L1	OFF	19.6
0.168000	47.43		65.06	17.63	L1	OFF	19.6
0.174750		28.83	54.73	25.90	L1	OFF	19.6
0.174750	44.37		64.73	20.36	L1	OFF	19.6
0.183750		27.78	54.31	26.53	L1	OFF	19.6
0.183750	44.35		64.31	19.96	L1	OFF	19.6
0.195000		31.91	53.82	21.91	L1	OFF	19.6
0.195000	45.34		63.82	18.48	L1	OFF	19.6
0.208500		26.81	53.27	26.46	L1	OFF	19.6
0.208500	42.04		63.27	21.23	L1	OFF	19.6
0.219750		26.77	52.83	26.06	L1	OFF	19.6
0.219750	40.71		62.83	22.12	L1	OFF	19.6
0.228750		28.84	52.50	23.66	L1	OFF	19.6
0.228750	42.14		62.50	20.36	L1	OFF	19.6
0.240000		26.22	52.10	25.88	L1	OFF	19.6
0.240000	40.18		62.10	21.92	L1	OFF	19.6
0.255750		26.59	51.57	24.98	L1	OFF	19.6

0.255750	38.04		61.57	23.53	L1	OFF	19.6
0.271500		25.83	51.07	25.24	L1	OFF	19.6
0.271500	38.55		61.07	22.52	L1	OFF	19.6
0.294000		26.69	50.41	23.72	L1	OFF	19.6
0.294000	37.14		60.41	23.27	L1	OFF	19.6
0.321000		26.11	49.68	23.57	L1	OFF	19.6
0.321000	34.76		59.68	24.92	L1	OFF	19.6
0.343500		25.23	49.12	23.89	L1	OFF	19.6
0.343500	34.71		59.12	24.41	L1	OFF	19.6
0.366000		24.83	48.59	23.76	L1	OFF	19.6
0.366000	31.87		58.59	26.72	L1	OFF	19.6
0.388500		25.70	48.10	22.40	L1	OFF	19.6
0.388500	33.88		58.10	24.22	L1	OFF	19.6
0.420000		24.51	47.45	22.94	L1	OFF	19.6
0.420000	30.79		57.45	26.66	L1	OFF	19.6
0.449250		24.46	46.89	22.43	L1	OFF	19.7
0.449250	30.38		56.89	26.51	L1	OFF	19.7
0.476250		24.34	46.40	22.06	L1	OFF	19.7
0.476250	31.80		56.40	24.60	L1	OFF	19.7
0.498750		23.85	46.02	22.17	L1	OFF	19.7
0.498750	29.63		56.02	26.39	L1	OFF	19.7
0.516750		25.30	46.00	20.70	L1	OFF	19.8
0.516750	32.12		56.00	23.88	L1	OFF	19.8
0.564000		23.51	46.00	22.49	L1	OFF	19.8
0.564000	26.86		56.00	29.14	L1	OFF	19.8
0.667500		24.28	46.00	21.72	L1	OFF	19.9
0.667500	34.64		56.00	21.36	L1	OFF	19.9
0.690000		27.78	46.00	18.22	L1	OFF	19.9
0.690000	40.16		56.00	15.84	L1	OFF	19.9
0.726000		23.71	46.00	22.29	L1	OFF	19.9
0.726000	28.61		56.00	27.39	L1	OFF	19.9
0.777750		24.37	46.00	21.63	L1	OFF	20.0
0.777750	28.49		56.00	27.51	L1	OFF	20.0
25.998000		26.55	50.00	23.45	L1	OFF	20.6
25.998000	28.48		60.00	31.52	L1	OFF	20.6

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 100638 Mode 1 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.154500		32.31	55.75	23.44	Ν	OFF	19.6
0.154500	49.10		65.75	16.65	Ν	OFF	19.6
0.163500		35.50	55.28	19.78	Ν	OFF	19.6
0.163500	50.52		65.28	14.76	Ν	OFF	19.6
0.170250		31.20	54.95	23.75	Ν	OFF	19.6
0.170250	48.17		64.95	16.78	Ν	OFF	19.6
0.179250		27.95	54.52	26.57	Ν	OFF	19.6
0.179250	45.03		64.52	19.49	Ν	OFF	19.6
0.188250		29.73	54.11	24.38	Ν	OFF	19.6
0.188250	44.59		64.11	19.52	Ν	OFF	19.6
0.197250		31.40	53.73	22.33	Ν	OFF	19.6
0.197250	45.63		63.73	18.10	Ν	OFF	19.6
0.208500		26.95	53.27	26.32	Ν	OFF	19.6
0.208500	41.66		63.27	21.61	Ν	OFF	19.6
0.217500		27.51	52.91	25.40	Ν	OFF	19.6
0.217500	41.39		62.91	21.52	Ν	OFF	19.6
0.233250		27.69	52.33	24.64	Ν	OFF	19.6
0.233250	41.14		62.33	21.19	Ν	OFF	19.6
0.246750		26.01	51.87	25.86	Ν	OFF	19.6
0.246750	39.16		61.87	22.71	Ν	OFF	19.6
0.255750		27.09	51.57	24.48	Ν	OFF	19.6

0.255750	39.00		61.57	22.57	Ν	OFF	19.6
0.271500		26.02	51.07	25.05	Ν	OFF	19.6
0.271500	38.36		61.07	22.71	Ν	OFF	19.6
0.287250		26.25	50.60	24.35	Ν	OFF	19.6
0.287250	37.76		60.60	22.84	Ν	OFF	19.6
0.303000		25.78	50.16	24.38	Ν	OFF	19.6
0.303000	36.04		60.16	24.12	Ν	OFF	19.6
0.321000		27.72	49.68	21.96	Ν	OFF	19.6
0.321000	36.29		59.68	23.39	Ν	OFF	19.6
0.345750		26.73	49.06	22.33	Ν	OFF	19.6
0.345750	35.60		59.06	23.46	Ν	OFF	19.6
0.366000		25.57	48.59	23.02	Ν	OFF	19.6
0.366000	33.75		58.59	24.84	Ν	OFF	19.6
0.379500		25.19	48.29	23.10	Ν	OFF	19.6
0.379500	33.49		58.29	24.80	Ν	OFF	19.6
0.393000		26.59	48.00	21.41	Ν	OFF	19.6
0.393000	35.30		58.00	22.70	Ν	OFF	19.6
0.415500		24.33	47.54	23.21	Ν	OFF	19.7
0.415500	30.82		57.54	26.72	Ν	OFF	19.7
0.438000		24.40	47.10	22.70	Ν	OFF	19.7
0.438000	31.64		57.10	25.46	Ν	OFF	19.7
0.467250		24.30	46.56	22.26	Ν	OFF	19.7
0.467250	32.99		56.56	23.57	Ν	OFF	19.7
0.489750		26.68	46.17	19.49	Ν	OFF	19.7
0.489750	35.36		56.17	20.81	Ν	OFF	19.7
0.523500		28.12	46.00	17.88	Ν	OFF	19.8
0.523500	36.90		56.00	19.10	Ν	OFF	19.8
0.575250		24.67	46.00	21.33	Ν	OFF	19.8
0.575250	31.11		56.00	24.89	Ν	OFF	19.8
0.624750		24.65	46.00	21.35	Ν	OFF	19.9
0.624750	30.57		56.00	25.43	Ν	OFF	19.9
0.663000		25.17	46.00	20.83	Ν	OFF	19.9
0.663000	35.98		56.00	20.02	Ν	OFF	19.9
0.687750		33.67	46.00	12.33	Ν	OFF	19.9
0.687750	44.99		56.00	11.01	Ν	OFF	19.9
0.723750		25.65	46.00	20.35	Ν	OFF	20.0
0.723750	34.10		56.00	21.90	N	OFF	20.0
0.782250		26.21	46.00	19.79	N	OFF	20.0
0.782250	30.39		56.00	25.61	N	OFF	20.0
28.529250		27.72	50.00	22.28	N	OFF	20.8
28.529250	30.16		60.00	29.84	Ν	OFF	20.8