

Applicant	:	Plume Design, Inc.
Product Name	:	SuperPod Aon
Trade Name	:	Plume Design, Inc.
Model Number	:	G2A
Applicable Standard	:	FCC 47 CFR PART 15 SUBPART C FCC 47 CFR PART 15 SUBPART E ANSI C63.10:2013
Received Date	:	Nov. 23, 2022
Test Period	:	Dec. 14 ~ Dec. 17, 2022
Issued Date	:	Apr. 21, 2023

Issued by

Eurofins E&E Wireless Taiwan Co., Ltd. No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C.) Tel: +886-3-2710188 / Fax: +886-3-2710190

<u>Taiwan A</u>ccreditation <u>F</u>oundation accreditation number: 1330 Frequency Range : 9 kHz to 40 GHz Test Firm MRA designation number: TW0010

Note:

🛟 eurofins

The test results are valid only for samples provided by customers and under the test conditions described in this report.
This report shall not be reproduced except in full, without the written approval of Eurofins E&E Wireless Taiwan Co., Ltd.
The relevant information is provided by customers in this test report. According to the correctness, appropriateness or completeness of the information provided by the customer, if there is any doubt or error in the information which affects the validity of the test results, the laboratory does not take the responsibility.

Revision History

Version	Issued Date	Revisions	Revised By
00	Apr. 21, 2023	Initial Issue	Rowan Hsieh

Verification of Compliance

Applicant	:	Plume Design, Inc.
Product Name	:	SuperPod Aon
Trade Name	:	Plume Design, Inc.
Model Number	:	G2A
FCC ID	:	2AG7G-G2A
Applicable Standard	:	FCC 47 CFR PART 15 SUBPART C FCC 47 CFR PART 15 SUBPART E ANSI C63.10:2013
Test Result	:	Complied
Performing Lab.	:	Eurofins E&E Wireless Taiwan Co., Ltd. No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C.) Tel : +886-3-2710188 / Fax : +886-3-2710190 Taiwan Accreditation Foundation accreditation number: 1330

Eurofins E&E Wireless Taiwan Co., Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by Eurofins E&E Wireless Taiwan Co., Ltd. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Approved By :

TABLE OF CONTENTS

1	Gene	ral Information	5
	1.1.	Summary of Test Result	5
	1.2.	Measurement Uncertainty	6
2	EUT I	Description	7
	2.1.	Antenna System Description	8
3	Test	Methodology	9
	3.1.	Mode of Operation	9
	3.2.	EUT Test Step	. 11
	3.3.	Configuration of Test System Details	. 12
	3.4.	Test Instruments	
	3.5.	Test Site Environment	. 14
	3.6.	Measurement Environment	. 14
4	Meas	urement Method	. 15
	4.1.	Maximum Output Power & Beamforming Gain Measurement	. 15
5	Test	Results	. 17
	5.1	Maximum Output Power & Beamforming Gain Measurement	. 17

Appendix A. Test Setup Photographs Appendix B. Test Data

1 General Information

1.1. Summary of Test Result

Standard	Item	Result	Remark
15.247(b)	Maximum Output Power & Beamforming Gain		
15.407(a)	Maximum Output Power & Beamforming Gain		

Note 1: The above test items refer to the test standards.

E&E

Decision Rule

■ Uncertainty is not included.

□ Uncertainty is included.

Standard	Description
CFR47, Part 15, Subpart C	Intentional Radiators
CFR47, Part 15, Subpart E	Unlicensed National Information Infrastructure Devices
ANSI C63. 10: 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 558074 D01 15.247 Meas Guidance v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
KDB789033 D02 v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E
KDB 987594 D02 v01r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure 6 GHz (U-NII) Devices Part 15, Subpart E
KDB 412172 D01 Determining ERP and EIRP v01r01	GUIDELINES FOR DETERMINING THE EFFECTIVE RADIATED POWER (ERP) AND EQUIVALENT ISOTROPICALLY RADIATED POWER (EIRP) OF AN RF TRANSMITTING SYSTEM
KDB 662911 D01 v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc)
KD 662911 D03 MIMO Antenna Gain Measurement v01	Provision to Allow Measurement of Directional Gain of Multi-Antenna Systems for Compliance Verification

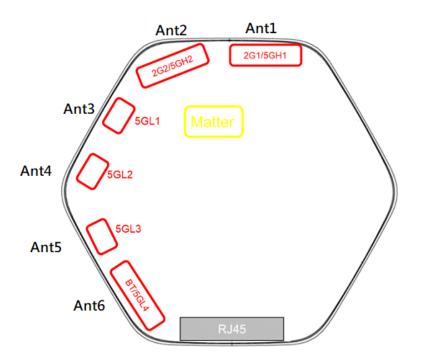
1.2. Measurement Uncertainty

E&E

Test Item Frequency Range		Uncertainty
Radiated Emission	1000 MHz ~ 12750 MHz	4.3 dB
Duty Cycle		2.4 %

2 EUT Description

Applicant	Plume Design, Inc. 325 Lytton Ave., Palo Alto, CA 94301								
Product Name	SuperPod Aon								
Trade Name	Plume Design, Inc.								
Model Number	G2A	G2A							
FCC ID	2AG7G-G2A	2AG7G-G2A							
	Frequency Ba	and	Frequency Range (MHz)	Number of Channels					
Operate Frequency (WLAN 2.4G)		IEEE 802.11g IEEE 802.11n 20 MHz (64QAM) IEEE 802.11n 20 MHz (256QAM)							
		IEEE 802.11n 40 MHz (64QAM) IEEE 802.11n 40 MHz (256QAM) IEEE 802.11ax 40 MHz							
		U-NII Band I	5180 – 5240	4					
	IEEE 802.11a IEEE 802.11n 5 GHz 20 MHz /	U-NII Band II-A	5260 – 5320	4					
	IEEE 802.11ac 20 MHz / IEEE 802.11ax 20 MHz	U-NII Band II-C	5500 – 5720	12					
		U-NII Band III	5745 – 5825	5					
		U-NII Band I	5190 – 5230	2					
	IEEE 802.11n 5 GHz 40 MHz /	U-NII Band II-A	5270 – 5310	2					
Operate Frequency	IEEE 802.11ac 40 MHz / IEEE 802.11ax 40 MHz /	U-NII Band II-C	5510 – 5710	6					
(WLAN 5G)		U-NII Band III	5755 – 5795	2					
		U-NII Band I	5210	1					
	IEEE 802.11ac 80 MHz /	U-NII Band II-A	5290	1					
	IEEE 802.11ax 80 MHz /	U-NII Band II-C	5530 – 5690	3					
		U-NII Band III	5775	1					
	IEEE 802.11ac 160 MHz /	U-NII Band I & II-A	5250	1					
	IEEE 802.11ax 160 MHz / U-NII Band II-C 5570 1								
Modulation Type	CCK / OFDM / OFDMA								
Antenna Delivery	Reference section 3.1								
Operate Temp. Range	-30 ~ +50 ℃								
EUT Power Rating	DC 12 V, 3 A/PoE+(IEEE 802.3at): 50-57 VDC, 0.6 A								


			Gain (dBi)						
Ant.	Ant. Type	2.4GHz		5G	Hz		6GHz		
			Band I	Band II-A	Band II-C	Band III			
1	IFA Antenna	3.50			5.90	5.90			
2	IFA Antenna	2.70			3.80	3.70			
3	IFA Antenna		4.00	3.30					
4	IFA Antenna		2.50	2.40					
5	IFA Antenna		3.80	3.80					
6	IFA Antenna		3.00	2.30					

2.1. Antenna System Description

🛟 eurofins

Specification		Ant. 1	Ant. 2	Ant. 3	Ant. 4	Ant. 5	Ant. 6	Remark
ŀ	IEEE 802.11 b/g/n/ac/ax	V						1X1
2.4G	IEEE 802.11 b/g/n/ac/ax	V	V					2x2
5G -	IEEE 802.11 a/n/ac/ax	V						1x1
	IEEE 802.11 a/n/ac/ax	V	V					2x2
	IEEE 802.11 a/n/ac/ax			V				1x1
	IEEE 802.11 a/n/ac/ax			V	V	V	V	4x4

Note 1: The above information is provided by the applicant. Please see Antenna Summary Report for G2X.

3 Test Methodology

3.1. Mode of Operation

In the test report use EUT model: G2A to operate testing.

E&E

Decision of Test ATL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test N	/lode
10001	10000

Mode 1: Beamforming off mode

Mode 2: Beamforming on mode

Note 1: Beamforming off mode

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes.

Note 2: Beamforming on mode

Software used to control the EUT for staying in continuous transmitting mode was programmed. After verification, all tests were carried out with the worst case test modes.

Test Mode	ANT-1+2	ANT-1+2	ANT-3+4+5+6
Band	2.4 GHz	5 GHz	5 GHz
Mode 1	V	V	V
Mode 2	V	V	V

WLAN 2.4 GHz:

E&E

Test Mode	Antenna Delivery	Bandwidth	Test Channel
Mode 1	07.7	20M	6
Mode 2	2TX	40M	6

WLAN 5 GHz:

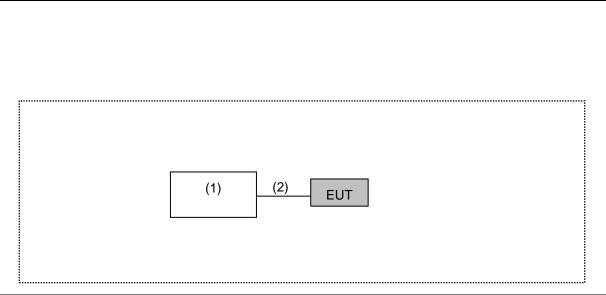
Test Mode	Antenna Delivery	Bandwidth	Band	Test Channel
			U-NII Band I	40
Mode 1		20M	U-NII Band II-A	56
Mode 2	4TX	2010	U-NII Band II-C	
			U-NII Band III	
			U-NII Band I	46
Mode 1		4014	U-NII Band II-A	54
Mode 2	4TX	40M	U-NII Band II-C	
			U-NII Band III	
			U-NII Band I	42
Mode 1		0014	U-NII Band II-A	58
Mode 2	4TX	80M	U-NII Band II-C	
			U-NII Band III	
			U-NII Band I & II-A	50
Mode 1 Mode 2	4TX	160M	U-NII Band II-C	
WOUE 2			U-NII Band III	
			U-NII Band I	
Mode 1		20M	U-NII Band II-A	
Mode 2	2TX	20101	U-NII Band II-C	120
			U-NII Band III	157
			U-NII Band I	
Mode 1		1014	U-NII Band II-A	
Mode 2	2TX	40M	U-NII Band II-C	118
			U-NII Band III	159
			U-NII Band I	
Mode 1		0014	U-NII Band II-A	
Mode 2	2TX	80M	U-NII Band II-C	122
			U-NII Band III	155
	4TX		U-NII Band I	
Mode 1		40014	U-NII Band II-A	
Mode 2		160M	U-NII Band II-C	114
			U-NII Band III	

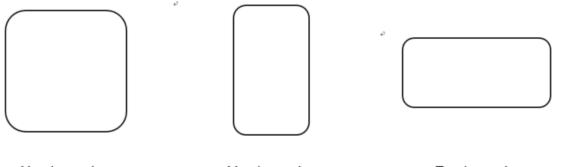
3.2. EUT Test Step

E&E

The EUT is operated in the engineering mode to fix the TX frequency for the purposes of measurement. According to its specifications, the EUT must comply with the requirements of Section 15.247 & 15.407 under the FCC Rules Part 15 Subpart C & E.

1.	Setup the EUT shown on "Configuration of Test System Details".
2.	Turn on the power of all equipment.
3.	Turn on TX function.
4.	EUT run test program.


Meas	Measurement Software					
No.	. Description Software Version					
1	Radiated Emission	EZ EMC	1.1.4.4			


3.3. Configuration of Test System Details

E&E

	Devices Description							
	Product	Manufacturer	Model Number	Serial Number	Power Cord			
(1)) Notebook acer N19C1		N19C1					
(2)	(2) RJ45							

X axis mode.

Y axis mode.

Z axis mode.

By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Y axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

3.4. Test Instruments

🛟 eurofins

For Radiated Emissions Test Period: Dec. 14 ~ Dec. 17, 2022

Testing Engineer: Louis Shen

Radiation test sites		Fully Anechoic Room					
Use	Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period	
\boxtimes	Spectrum Analyzer	Agilent	E4446A	MY46180578	Sep. 28, 2022	1 year	
	Spectrum Analyzer (20 Hz~26.5 GHz)	Agilent	N9020A	US47520902	Sep. 01, 2022	1 year	
	Preamplifier (30 MHz~1 GHz)	EMCI	EMC330N	980303	Aug. 23, 2022	1 year	
	Preamplifier (1 GHZ~26.5 GHz)	EMCI	EMC012645SE	980266	Oct. 19, 2022	1 year	
	Preamplifier (1 GHZ~26.5 GHz)	EMCI	EMC012645SE	980289	Jan. 13, 2022	1 year	
	Preamplifier (26.5 GHz~40 GHz)	EMCI	EMC2654045	980028	Sep. 02, 2022	1 year	
	Trilog Broadband Antenna (30 MHz~1 GHz)	Schwarzbeck Mess-Elektronik	VULB9168	01146	Jul. 22, 2022	1 year	
	Bilog Antenna (30 MHz~1.3 GHz)	ETS	3142C	00086484	Nov. 11, 2022	1 year	
	Double Ridged Horn Antenna (1 GHZ~18 GHz)	ETS	3117	00152321	Sep. 19, 2022	1 year	
\boxtimes	Double Ridged Guide Antenna (1 GHZ~18 GHz)	ETS	3115	00070475	May 18, 2022	1 year	
	Broadband Horn Antenna (18 GHZ~40 GHz)	Schwarzbeck Mess-Elektronik	9170	9170-320	Aug. 25, 2022	1 year	
	Horn Antenna (18 GHZ~40 GHz)	ETS	3116	00086467	Dec. 05, 2022	1 year	
\boxtimes	RF Cable	EMCI	EMC102-KM-KM -8000	001	Feb. 17, 2022	1 year	
	Bluetooth Tester	R&S	СВТ	100350	Mar. 17, 2021	2 years	
	Wireless Connectivity Tester	R&S	CMW270	102208	Jun. 01, 2022	1 year	
	Power Supply	KEITHLEY	2303	4045290	Jan. 19, 2022	1 year	
\square	Software	EZ EMC	1.1.4.4	N/A	N.C.R.		

Note: N.C.R. = No Calibration Request.

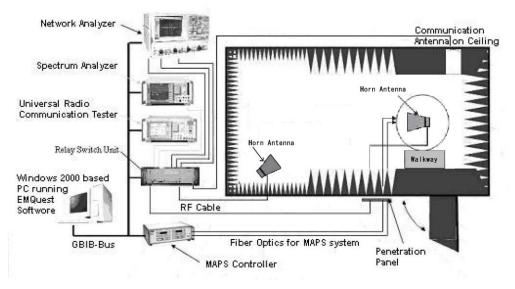
3.5. Test Site Environment

E&E

Items	Required (IEC 60068-1)	Actual		
Temperature (°C)	15-35	20-30		
Humidity (%RH)	25-75	45-75		

3.6. Measurement Environment

Chamber Type	Measuring Distance	Measure the height of the antenna	Turntable Diameter	
Rectangular Fully Anechoic Chamber	3 m	1.5 m	1.6 m	


4 Measurement Method

4.1. Maximum Output Power & Beamforming Gain Measurement

For Radiation Method

Test Setup

🛟 eurofins

Test Procedure

E&E

DTS Divices:

The test is performed in accordance with ANSI C63.10:2013 section 11.9.2.2.2 & 11.9.2.2.4, Section 2.3 of KDB 412172 D01 Determining ERP and EIRP v01r01, Guidelines for Compliance Testing of Digital Transmission System (DTS) Devices.

- 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a antenna tower.
- 3. The height of antenna is fixed 1.5 meter, Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. Beamforming Gain (dB) = Beamforming On EIRP (dBm) Beamforming Off EIRP (dBm)

U-NII Divices:

The test is performed in accordance with ANSI C63.10:2013 section 12.3.2.2 & 12.3.2.4, Section 2.3 of KDB 412172 D01 Determining ERP and EIRP v01r01, Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices.

Accordance with ANSI C63.10:2013 section 12.1.2 use radiated compliance measurements.

- 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a antenna tower.
- 3. The height of antenna is fixed 1.5 meter, Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. Beamforming Gain (dB) = Beamforming On EIRP (dBm) Beamforming Off EIRP (dBm)

5 Test Results

5.1 Maximum Output Power & Beamforming Gain Measurement

E&E

Band	EIRP_Bea	amforming	Arrary Gain Antenna Gain	Antenna Gain	Directional	Auto	Llink	Angle
	ON	OFF	(BF GAIN)	(SISO)	Gain_BF on	Axis	High	Angle
2.4G WLAN_2X2_20M_2437	0.68	-1.43	2.11	3.5	5.61	V	150	275
2.4G WLAN_2X2_40M_2437	0.25	-2.34	2.59	3.5	6.09	V	150	275
5G WLAN_4X4_20M_Low Band_5200	-5.46	-6.74	1.28	4	5.28	н	150	100
5G WLAN_4X4_20M_Low Band_5280	-4.63	-7.82	3.19	3.8	6.99	н	150	40
5G WLAN_4X4_40M_Low Band_5230	-4.52	-7.76	3.24	4	7.24	н	150	50
5G WLAN_4X4_40M_Low Band_5270	-4.89	-8.59	3.7	3.8	7.5	н	150	45
5G WLAN_4X4_80M_Low Band_5210	-4.76	-7.55	2.79	4	6.79	н	150	50
5G WLAN_4X4_80M_Low Band_5290	-4.11	-8.4	4.29	3.8	8.09	н	150	40
5G WLAN_4X4_160M_Low Band_5250	-5.04	-7.79	2.75	4	6.75	н	150	48
5G WLAN_2X2_20M_High Band_5600	-3.75	-6.07	2.32	5.9	8.22	н	150	170
5G WLAN_2X2_20M_High Band_5785	-5.57	-8.57	3	5.9	8.9	н	150	160
5G WLAN_2X2_40M_High Band_5590	-3.06	-6.02	2.96	5.9	8.86	н	150	167
5G WLAN_2X2_40M_High Band_5795	-4.98	-7.9	2.92	5.9	8.82	н	150	145
5G WLAN_2X2_80M_High Band_5610	-3.93	-6.91	2.98	5.9	8.88	н	150	170
5G WLAN_2X2_80M_High Band_5775	-5.18	-7.76	2.58	5.9	8.48	н	150	158
5G WLAN_2X2_160M_High Band_5570	-2.23	-5.13	2.9	5.9	8.8	н	150	170

Notes:

1. EIRP_BF on - EIRP_BF off = Arrary Gain (BF GAIN).

2. Directional Gain_BF on = Antenna Gain (SISO) + Array Gain.

3. The result for EIRP_BF on and EIRP_BF off, please refer to Appendix B.

--- END----