

FCC CO-LOCATION RADIO TEST REPORT

FCC ID	: 2AG7G-G1A
Equipment	: Plume Adaptive WiFi with LTE
Brand Name	: Plume Design Inc
Model Name	: G1A with LTE
Applicant	: Plume Design Inc 325 Lytton Ave., Palo Alto, CA 94301
Manufacturer	: Plume Design Inc 325 Lytton Ave., Palo Alto, CA 94301
Standard	: FCC Part 15 Subpart E §15.407

The product was received on Mar. 23, 2021 and testing was started from Aug. 11, 2021 and completed on Aug. 12, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Win

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	.3
Su	nmary	of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Modification of EUT	.5
	1.3	Testing Location	.6
	1.4	Applicable Standards	.6
2	Test (Configuration of Equipment Under Test	.7
	2.1	Carrier Frequency and Channel	.7
	2.2	Test Mode	.7
	2.3	Connection Diagram of Test System	.8
	2.4	Support Unit used in test configuration and system	.8
	2.5	EUT Operation Test Setup	.8
3	Test I	Result	.9
	3.1	Unwanted Emissions Measurement	.9
	3.2	Antenna Requirements	13
4	List o	f Measuring Equipment	14
5	Unce	rtainty of Evaluation	15
Ap	oendix	A. Radiated Spurious Emission	
An	pendix	B. Radiated Spurious Emission Plots	
Ap	pendix	c. Duty Cycle Plots	

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR111911-05E	01	Initial issue of report	Aug. 16, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.407(b)	Unwanted Emissions	Pass	Under limit 1.09 dB at 2375.450 MHz
3.2	15.203 15.407(a)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Keven Cheng Report Producer: Ruby Zou

1 General Description

1.1 Product Feature of Equipment Under Test

WCDMA/LTE, Bluetooth - LE, Wi-Fi 2.4GHz 802.11b/g/n/ac/ax, and Wi-Fi 5GHz 802.11a/n/ac/ax.

Product Specification subjective to this standard			
	WWAN: PIFA Antenna		
	WLAN		
	<2400 MHz ~ 2483.5 MHz>		
	<ant. 1="">: IFA Antenna</ant.>		
	<ant. 2="">: IFA Antenna</ant.>		
	<5180 MHz ~ 5320 MHz>		
Antonno Tuno	<ant. 1="">: IFA Antenna</ant.>		
Antenna Type	<ant. 2="">: IFA Antenna</ant.>		
	<ant. 3="">: IFA Antenna</ant.>		
	<ant. 4="">: IFA Antenna</ant.>		
	<5500 MHz ~ 5825 MHz>		
	<ant. 1="">: IFA Antenna</ant.>		
	<ant. 2="">: IFA Antenna</ant.>		
	Bluetooth - LE: IFA Antenna		

Antenna information			
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	Bluetooth-LE: 2.4 WLAN: Ant. 1: 3.5 Ant. 2: 2.7	
5150 MHz ~ 5250 MHz	Ant. 1: 4.0 Ant. 2: 2.5 Ant. 3: 3.8 Ant. 4: 3.0		
WWAN Antenna information			

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

2.4

Peak Gain (dBi)

1.2 Modification of EUT

LTE Band 41

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No. 03CH07-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- + FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). The measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X Plane as worst plane.

2.1 Carrier Frequency and Channel

2400-2483.5 MHz Bluetooth – LE			
Channel Freq. (MHz)			
39	2480		

2400-248 802.11a	33.5 MHz x HE20	5150-5250 MHz 802.11a		
Channel Freq. (MHz)		Channel	Freq. (MHz)	
01 2412		36	5180	

Remark: During the Radiated Spurious Emission test, the EUT turn on the WWAN functions simultaneously.

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

<Co-Location>

Modulation	Data Rate
Bluetooth-LE + WLAN 2.4GHz 802.11ax HE20 for MIMO <ant. 1+2=""></ant.>	1Mbps + MCS0 + 6Mbps +
+ WLAN 5GHz 802.11a for MIMO <ant. 1+2+3+4=""> + LTE Band 41</ant.>	QPSK

2.3 Connection Diagram of Test System

<Co-Location Tx Mode>

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m

2.5 EUT Operation Test Setup

The RF test items, utility "accessMTool V3.1.0.2" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

<Limit of Unwanted Emissions>

(1) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table:

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 – 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts)}$$

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

(2) KDB789033 D02 v02r01 G)2)c)

(i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.

(ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

(3) For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of −27 dBm/MHz.

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27 (RMS)	68.3
- 7 (Peak)	88.3

According 987594 D02 U-NII 6GHz EMC Measurement v01 section G:

Unwanted emissions outside of restricted bands are measured with a RMS detector.

In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit

3.1.1 Measuring Instruments

See list of measuring equipment of this test report.

3.1.2 Test Procedures

 The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.

(1) Procedure for Unwanted Emissions Measurements Below 1000MHz

- RBW = 120 kHz
- VBW = 300 kHz
- Detector = Peak
- Trace mode = max hold

(2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz

- RBW = 1 MHz
- VBW ≥ 3 MHz
- Detector = Peak
- Sweep time = auto
- Trace mode = max hold
- (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.1.3 Test Setup

For radiated emissions below 30MHz

Spectrum Analyzer / Receiver

RX Antenna

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated test above 1GHz

3.1.4 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.1.5 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.1.6 Duty Cycle

Please refer to Appendix C.

3.1.7 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic) Please refer to Appendix A and B.

3.2 Antenna Requirements

3.2.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power and the peak power spectral density shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.2.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	35419 & 03	30MHz~1GHz	Apr. 28, 2021	Aug. 11, 2021~ Aug. 12, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 01, 2020	Aug. 11, 2021~ Aug. 12, 2021	Nov. 30, 2021	Radiation (03CH07-HY)
Hygrometer	Testo	DTM-303A	TP157075	N/A	Mar. 01, 2021	Aug. 11, 2021~ Aug. 12, 2021	Feb. 28, 2022	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Aug. 11, 2021~ Aug. 12, 2021	Jan. 03, 2022	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-001 01800-30-10 P	1590075	1GHz~18GHz	Apr. 22, 2021	Aug. 11, 2021~ Aug. 12, 2021	Apr. 21, 2022	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 18, 2021	Aug. 11, 2021~ Aug. 12, 2021	May 17, 2022	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Oct. 31, 2020	Aug. 11, 2021~ Aug. 12, 2021	Oct. 30, 2021	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Jul. 23, 2021	Aug. 11, 2021~ Aug. 12, 2021	Jul. 22, 2022	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Jul. 22, 2021	Aug. 11, 2021~ Aug. 12, 2021	Jul. 21, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682-4	30MHz to 18GHz	Feb. 24, 2021	Aug. 11, 2021~ Aug. 12, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971-4	9kHz to 18GHz	Feb. 24, 2021	Aug. 11, 2021~ Aug. 12, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655-4	9kHz to 18GHz	Feb. 24, 2021	Aug. 11, 2021~ Aug. 12, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2,80 1606/2	18GHz~40GHz	Feb. 24, 2021	Aug. 11, 2021~ Aug. 12, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 18, 2020	Aug. 11, 2021~ Aug. 12, 2021	Sep. 17, 2021	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	Apr. 28, 2021	Aug. 11, 2021~ Aug. 12, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Aug. 11, 2021~ Aug. 12, 2021	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500 E	N/A	Boresight mast 1M~4M	Apr. 28, 2021	Aug. 11, 2021~ Aug. 12, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Aug. 11, 2021~ Aug. 12, 2021	N/A	Radiation (03CH07-HY)
Attenuator	HONOVA	5910 SMA-50-005- 19-NE	ATT-36	N/A	Oct. 31, 2020	Aug. 11, 2021~ Aug. 12, 2021	Oct. 30, 2021	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	N/A	N/A	N/A	Aug. 11, 2021~ Aug. 12, 2021	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB249 5	N/A	Mar. 09, 2021	Aug. 11, 2021~ Aug. 12, 2021	Mar. 08, 2022	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA91702 51	18GHz~40GHz	Dec. 02, 2020	Aug. 11, 2021~ Aug. 12, 2021	Dec. 01, 2021	Radiation (03CH07-HY)

: 14 of 15 : Aug. 16, 2021

: 01

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4 0 dB
of 95% (U = 2Uc(y))	4.9 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6 1 dP
of 95% (U = 2Uc(y))	0.1 06

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4 7 dB
of 95% (U = 2Uc(y))	4.7 UB

Appendix A. Radiated Spurious Emission

Test Engineer :	Jacco Wang, Stan Heigh	Temperature :	22.5~25.8°C
rest Engineer .	Jesse Wang, Stan Histen	Relative Humidity :	54.3~59.6%

WLAN 2.4GHz 802.11ax HE20 CH01 Tx + WLAN 5GHz 802.11a CH36 Tx +

BLE(1M) CH39 Tx + WWAN LTE B41 CH40620 Link

2.4GHz 2400~2483.5MHz

BLE Peak Pol. Note Frequency Over Limit Antenna Preamp Table Level Read Path Ant 1 Limit Line Level Factor Factor Pos Pos Loss Avg. (MHz) (dBµV/m) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) (deg) (P/A) (H/V) 2376.13 60.7 -13.3 74 46.18 31.87 18.06 35.41 100 175 Ρ н 2375.45 52.91 -1.09 31.87 18.05 35.41 100 175 Н 54 38.4 А * 2480 32.47 18.23 35.45 100 175 Ρ 108.22 --92.97 Н * 107.74 2480 --92.49 32.47 18.23 35.45 100 175 А н 2483.732 59.26 -14.74 74 44.01 32.47 18.23 35.45 100 175 Ρ н BLE 32.47 18.23 2483.536 52.38 -1.62 54 37.13 35.45 100 175 А Н CH 39 2376.13 59.96 -14.04 74 45.44 31.87 18.06 35.41 371 154 Ρ ٧ 2480MHz 2375.96 52.48 -1.52 37.96 31.87 35.41 371 154 V 54 18.06 А * 2480 108.94 93.69 32.47 18.23 35.45 371 154 Р V --* 2480 108.45 -93.2 32.47 18.23 35.45 371 154 V -А 2483.634 59.89 -14.11 74 44.64 32.47 18.23 35.45 371 154 Ρ V V 2483.536 52.23 -1.77 54 36.98 32.47 18.23 35.45 371 154 А No other spurious found. 1. Remark All results are PASS against Peak and Average limit line. 2.

BLE (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2388.71	62.16	-11.84	74	47.56	31.9	18.11	35.41	128	70	Ρ	Н
		2375.96	51	-3	54	36.48	31.87	18.06	35.41	128	70	А	Н
	*	2412	115.17	-	-	100.43	32	18.16	35.42	128	70	Ρ	Н
	*	2412	106.21	-	-	91.47	32	18.16	35.42	128	70	А	Н
802.11ax		2484.614	56.62	-17.38	74	41.37	32.47	18.23	35.45	128	70	Ρ	Н
HE20 Full		2483.536	47.95	-6.05	54	32.7	32.47	18.23	35.45	128	70	А	Н
CH 01		2389.05	60.9	-13.1	74	46.3	31.9	18.11	35.41	394	114	Ρ	V
2412MHz		2375.96	51.61	-2.39	54	37.09	31.87	18.06	35.41	394	114	А	V
	*	2412	112.96	-	-	98.22	32	18.16	35.42	394	114	Ρ	V
	*	2412	105.41	-	-	90.67	32	18.16	35.42	394	114	А	V
		2484.124	55.75	-18.25	74	40.5	32.47	18.23	35.45	394	114	Ρ	V
		2484.124	46.65	-7.35	54	31.4	32.47	18.23	35.45	394	114	А	V
Remark	1. No 2. All	o other spurious results are PA	s found. SS against F	eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz WIFI 802.11ax HE20 Full (Band Edge @ 3m)

		_		-					_				_
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2+3+4		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5143.52	56.28	-17.72	74	45.58	34.2	11.79	35.29	100	109	Р	Н
		5149.76	51.09	-2.91	54	40.38	34.2	11.79	35.28	100	109	А	Н
	*	5180	116.98	-	-	106.15	34.27	11.83	35.27	100	109	Р	Н
	*	5180	109.65	-	-	98.82	34.27	11.83	35.27	100	109	А	Н
802 11 6													Н
002.11a													Н
5180MHz		5147.68	61.46	-12.54	74	50.75	34.2	11.79	35.28	103	136	Р	V
010011112		5149.5	52.73	-1.27	54	42.02	34.2	11.79	35.28	103	136	Α	V
	*	5180	117.57	-	-	106.74	34.27	11.83	35.27	103	136	Р	V
	*	5180	110.77	-	-	99.94	34.27	11.83	35.27	103	136	А	V
													V
													V
Remark	1. Nc 2. All	o other spurious results are PA	s found. .SS against F	Peak and	Average limi	it line.							

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WLAN 2.4GHz 802.11ax HE20 CH01 Tx+ WLAN 5GHz 802.11a CH36 Tx +

BLE(1M) CH39 Tx + WWAN LTE B41 CH40620 Link

WIFI	Note	Frequency	l evel	Over	Limit	Read	Antenna	Path	Preamn	Ant	Table	Peak	Pol
Ant	Note	Пеционоу	LGVUI	Limit	Line		Factor	Loss	Factor	Pos	Pos	Ava	1 01.
1+2		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4824	53.76	-20.24	74	41.9	34.05	13.11	35.3	100	0	P	H
		4824	43.02	-10.98	54	31.16	34.05	13.11	35.3	100	0	A	Н
ĺ		4960	52.03	-21.97	74	39.72	34.2	13.44	35.33	100	0	Р	Н
		4960	43.2	-10.8	54	30.89	34.2	13.44	35.33	100	0	Α	Н
		7440	41.55	-32.45	74	48.69	35.6	15.3	58.04	100	0	Р	Н
		10360	44.3	-23.9	68.2	47.67	37.57	18.37	59.31	100	0	Р	Н
		15540	47.09	-26.91	74	40.89	40.27	23.16	57.23	100	0	Р	Н
Co-location		4824	52.61	-21.39	74	40.75	34.05	13.11	35.3	100	0	Р	V
		4824	42.97	-11.03	54	31.11	34.05	13.11	35.3	100	0	А	V
		4960	52.26	-21.74	74	39.95	34.2	13.44	35.33	100	0	Р	V
		4960	43.29	-10.71	54	30.98	34.2	13.44	35.33	100	0	А	V
		7440	41.36	-32.64	74	48.5	35.6	15.3	58.04	100	0	Р	V
		10360	44.25	-23.95	68.2	47.62	37.57	18.37	59.31	100	0	Р	V
		15540	54.35	-19.65	74	48.15	40.27	23.16	57.23	193	53	Р	V
		15540	43.1	-10.9	54	36.9	40.27	23.16	57.23	193	53	А	V
Remark	1. No 2. Al	o other spurious I results are PA	s found. \SS against F	² eak anc	l Average lirr	nit line.							

(Harmonic @ 3m)

Emission below 1GHz

					00-1008		,						
Co-location	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
1+2+3+4				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
-		30	28.89	-11.11	40	33.41	24.57	0.9	30.03	-	-	Р	Н
-		91.29	30.32	-13.18	43.5	43.73	14.79	1.61	29.99	-	-	Р	Н
-		167.16	35.06	-8.44	43.5	46.82	15.85	2.16	29.98	100	0	Ρ	н
_		745.9	34.3	-11.7	46	31.99	27.54	4.24	29.69	-	-	Р	н
-		913.2	32.66	-13.34	46	27.62	28.79	4.72	28.86	-	-	Р	н
-		957.3	33.99	-12.01	46	26.73	30.67	4.9	28.68	-	-	Р	н
													н
													н
													н
													н
													н
Co-location													н
LF		30	33.49	-6.51	40	38.01	24.57	0.9	30.03	100	0	Р	V
		91.02	31.94	-11.56	43.5	45.41	14.73	1.61	29.99	-	-	Ρ	V
		165.27	31.26	-12.24	43.5	42.94	15.94	2.15	29.98	-	-	Ρ	V
		856.5	31.67	-14.33	46	27.18	28.82	4.62	29.21	-	-	Р	V
		904.1	32.38	-13.62	46	27.57	28.62	4.68	28.89	-	-	Ρ	V
		948.9	33.92	-12.08	46	27.17	30.23	4.87	28.72	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
Remark	1. No 2. All	o other spurious	s found. SS against li	mit line.									

Co-location (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	P	н
CH 00 2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix B. Radiated Spurious Emission Plots

Toot Engineer	Jesse Wang, Stan Hsieh	Temperature :	22.5~25.8°C
rest Engineer :		Relative Humidity :	54.3~59.6%

Note symbol

-L	Low channel location
-R	High channel location

WLAN 2.4GHz 802.11ax HE20 CH01 Tx + WLAN 5GHz 802.11a CH36 Tx +

BLE(1M) CH39 Tx + WWAN LTE B41 CH40620 Link

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
ANT	BLE CH39 2480MHz - R					
1	Horizontal	Fundamental				
Peak	The second seco	Left blank				
Avg.	<pre>image interface in the second se</pre>	Left blank				

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
ANT	BLE CH39 2480MHz - R					
1	Vertical	Fundamental				
Peak	<pre>image definition</pre>	Left blank				
Avg.	<pre>set calls if the set of the</pre>	Left blank				

2.4GHz 2400~2483.5MHz

WIFI 802.11ax HE20 Full (Band Edge @ 3m)

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI 2.4G 802.11ax HE20 CH01 Tx+ WIFI 5G 802.11a CH36 Tx+

BLE(1M) CH39 Tx+ WWAN LTE B41 CH40620 Link

Co-location (Harmonic @ 3m)

Emission below 1GHz

Co-location (LF)

Appendix C. Duty Cycle Plots

Ant	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	
1	Bluetooth-LE	64.42	402	2.49	3kHz	
1+2	5GHz 802.11ax HE20	82.25	1390	0.72	1kHz	
1+2+3+4	5GHz 802.11a	94.85	2064	0.48	1kHz	

<Ant.1>

MIMO <Ant.1+2>

MIMO <Ant.1+2+3+4>

