

FCC RF Test Report

APPLICANT	:	Plume Design Inc
EQUIPMENT	:	Plume Pod
BRAND NAME	:	Plume Design Inc
MODEL NAME	:	A1A
MARKETING NAME	:	Plume Adaptive WiFi
FCC ID	:	2AG7G-A1A
STANDARD	:	FCC Part 15 Subpart E §15.407
CLASSIFICATION	:	(NII) Unlicensed National Information Infrastructure

The product was received on Sep. 19, 2016 and testing was completed on Nov. 12, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : 2AG7G-A1A

Page Number : 1 of 35 Report Issued Date : Nov. 14, 2016 Report Version : Rev. 02 Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location Applicable Standards	5 6 6 7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1 2.2 2.3 2.4 2.5 2.6	Carrier Frequency and Channel Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example	9 10 11 12 12
3	TEST	RESULT	13
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	6dB and 26dB and 99% Occupied Bandwidth Measurement	16 17 20 25 31 32 33
4	LIST	OF MEASURING EQUIPMENT	34
5	UNCE	ERTAINTY OF EVALUATION	35
AP	PEND	X A. CONDUCTED TEST RESULTS	
AP	PEND	X B. RADIATED SPURIOUS EMISSION	
AP	PEND	X C. RADIATED SPURIOUS EMISSION PLOTS	
• •	PEND	X D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR6O0801-01E	Rev. 01	Initial issue of report	Nov. 04, 2016
FR6O0801-01E	Rev. 02	Adding RJ-45 Cable mode	Nov. 14, 2016

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.403(i)	6dB, 26dB and 99% Occupied Bandwidth	> 500kHz	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	\leq 30 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	\leq 30 dBm/500kHz	Pass	-
3.4	15.407(b)	Unwanted Emissions	15.407(b)(4)(i) &15.209(a)	Pass	Under limit 0.74 dB at 45.120 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 0.60 dB at 0.534 MHz
3.6	15.407(g)	Frequency Stability	Within Operation Band	Pass	-
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.8	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Plume Design Inc

200 California Ave, STE200, Palo Alto, CA 94306, USA

1.2 Manufacturer

Plume Design Inc

200 California Ave, STE200, Palo Alto, CA 94306, USA

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Plume Pod		
Brand Name	Plume Design Inc		
Model Name	A1A		
Marketing Name	Plume Adaptive WiFi		
FCC ID	2AG7G-A1A		
	WLAN 11a/b/g/n HT20/HT40		
EUT supports Radios application	WLAN 11ac VHT80		
	Bluetooth BR/EDR/LE		
HW Version	DVT		
EUT Stage	Production Unit		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Channel Frequency Range	5745 MHz ~ 5825 MHz				
	<5745 MHz ~ 582	<5745 MHz ~ 5825 MHz>			
	MIMO <ant. +="" 1="" 2<="" td=""><td>></td><td></td></ant.>	>			
Maximum Output Power	802.11a : 22.04 dE	3m / 0.1600 W			
	802.11n HT20 : 22	2.07 dBm / 0.1611 V	V		
	802.11n HT40 : 22	2.20 dBm / 0.1660 \	N		
	802.11ac VHT80: 2	21.42 dBm / 0.1387	7 W		
	802.11a : 24.30 M	Hz			
00% Occupied Bandwidth	802.11n HT20 : 26.00 MHz				
99% Occupied Bandwidth	802.11n HT40 : 47.10 MHz				
	802.11ac VHT80 : 77.28 MHz				
	802.11a/n : OFDM	802.11a/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)			
Type of Modulation	802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QAM /				
	256QAM)				
Antonno Turo / Coin	<ant. 1=""> : Dipole Antenna with gain 3.90 dBi</ant.>				
Antenna Type / Gain	<ant. 2=""> : Dipole Antenna with gain 3.20 dBi</ant.>				
		-			
		Ant. 1	Ant. 2		
Antenna Function Description	802.11 n/ac	V	V		
	MIMO	v	v		

Note: MIMO Ant. 1+2 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 2.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
Test Sile Location	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Test Site No.	Sporton	Site No.	
	TH05-HY CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
Tel Olis Lessilier	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,		
	Taoyuan City, Taiwan (R.O.C.)		
Test Site Location	TEL: +886-3-327-0868		
	FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
	03CH12-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5725-5850 MHz Band 4 (U-NII-3)	151*	5755	159*	5795
	153	5765	161	5805
	155 [#]	5775	165	5825

Note:

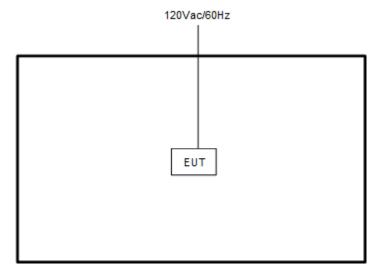
- 1. The above Frequency and Channel in "*" were 802.11n HT40.
- 2. The above Frequency and Channel in "[#]" were 802.11ac VHT80.

2.2 Test Mode

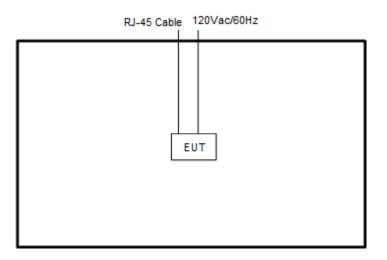
Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates as below table.

MIMO Antenna

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS8
802.11n HT40	MCS8
802.11ac VHT80	MCS0

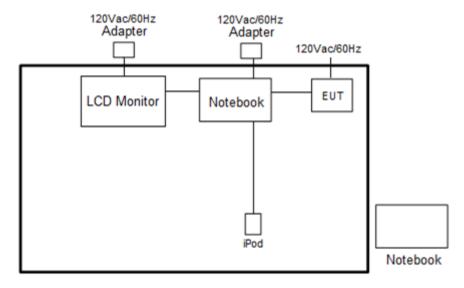

AC Conducted Emission Mode 1 : LAN Link + WLAN (5GHz) Link + Bluetooth Link

Ch. #		Band IV:5725-5850 MHz				
		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80	
L	Low	149	149	151	-	
М	Middle	157	157	-	155	
Н	High	165	165	159	-	



2.3 Connection Diagram of Test System

<WLAN Tx Mode>



<WLAN RJ-45 Cable Mode>

<AC Conducted Emission Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	DELL		FCC DoC/ Contains FCC ID: QDS-BRCM1051	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
2.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
4.	LCD Monitor	DELL	U2410	FCC DoC	Shielded, 1.6 m	Unshielded, 1.8 m
5.	RJ-45 Cable	INVAX DATA CABLE	IVX011	N/A	Unshielded, 1.0m	N/A

2.5 EUT Operation Test Setup

For WLAN function, programmed RF utility, "Putty" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

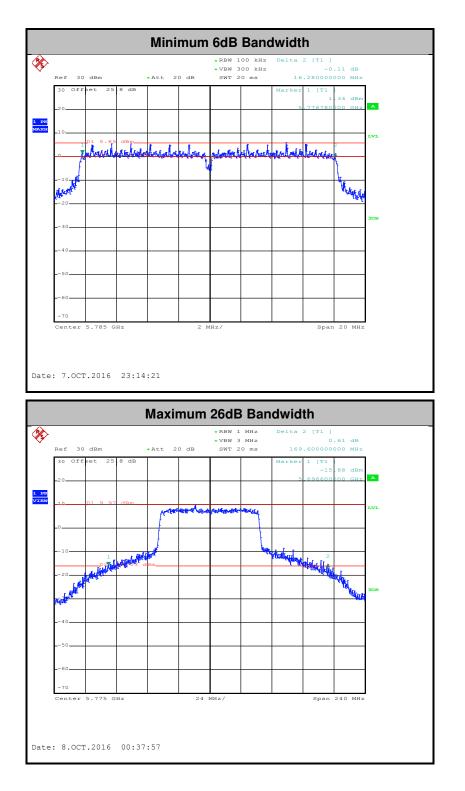
3.1.2 Measuring Instruments

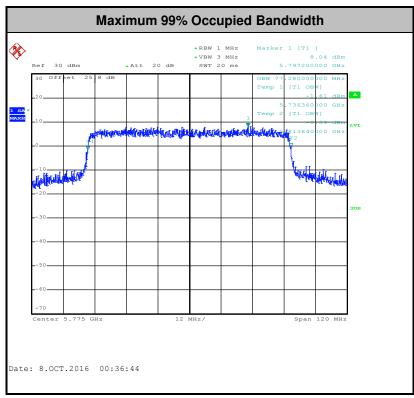
The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03. Section C) Emission bandwidth for the band 5.725-5.85GHz
- 2. Set RBW = 100kHz.
- 3. Set the VBW \ge 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup


Spectrum Analyzer



3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Maximum Conducted Output Power Measurement

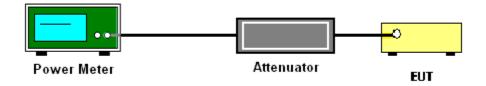
3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

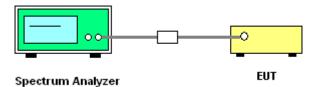
3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

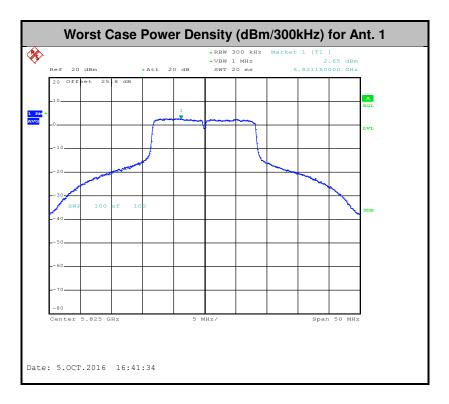
- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 300 kHz.
- Set VBW ≥ 1 MHz.
- Number of points in sweep \geq 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(500kHz/RBW) to the test result.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

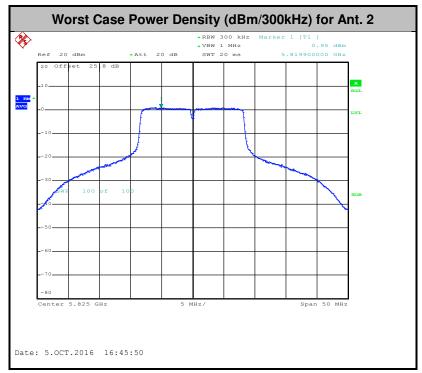


- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (c): Measure and add 10 $log(N_{ANT})$ dB.

With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity 10 $log(N_{ANT})$ dB is added to each spectrum value before comparing to the emission limit. The addition of 10 $log(N_{ANT})$ dB serves to apportion the emission limit among the N_{ANT} outputs so that each output is permitted to contribute no more than $1/N_{ANT}$ th of the PSD limit.


3.3.4 Test Setup



3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

3.4.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5.725-5.85 GHz band:

15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

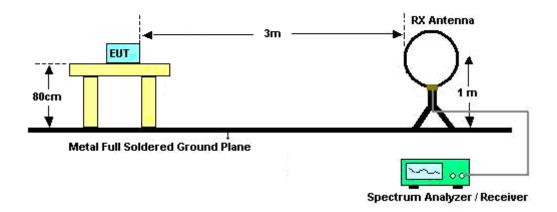
 $E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts)}$

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

(3) KDB 789033 D02 General UNII Test Procedures New Rules v01r03 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in 15.407(b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit.

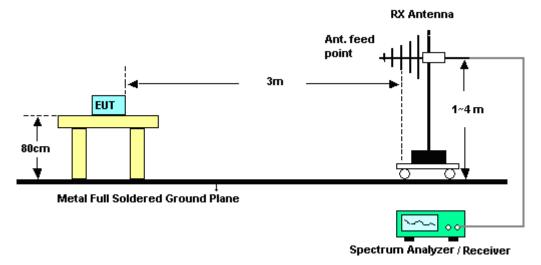
3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

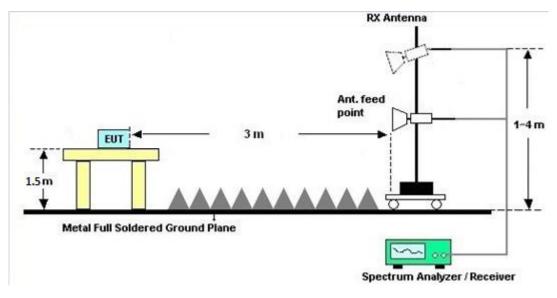

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03. Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


3.4.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.5 AC Conducted Emission Measurement

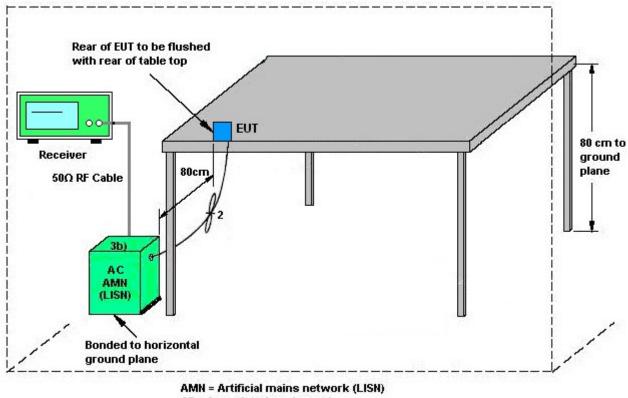
3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of option (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

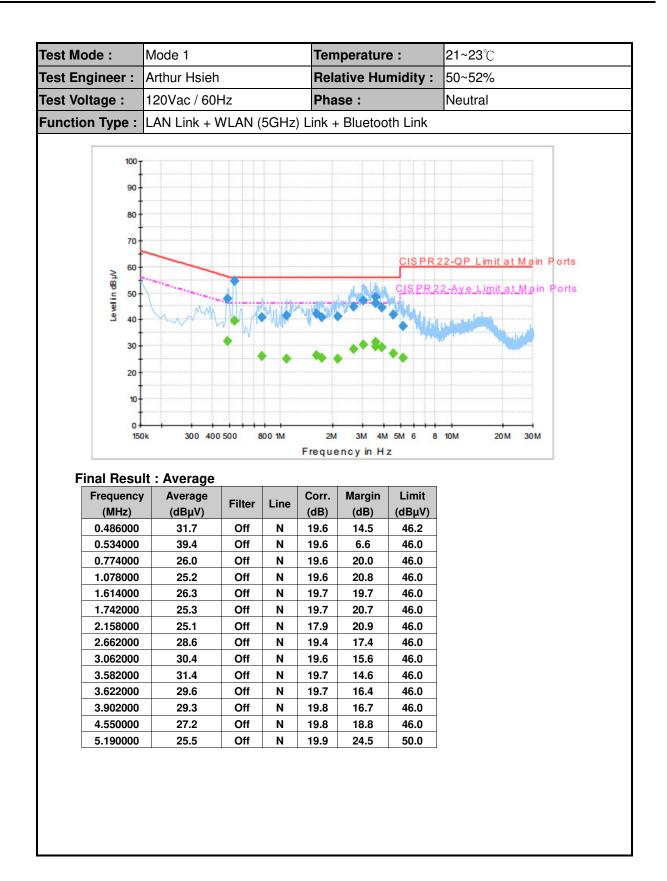
3.5.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.5.4 Test Setup

- AE = Associated equipment
- EUT = Equipment under test
- ISN = Impedance stabilization network

3.5.5 Test Result of AC Conducted Emission

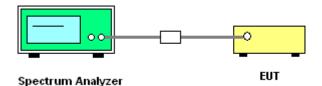


		Mode 1			Tem	Temperature :		21~23 ℃
est Engineer	·: A	Arthur Hsieh			Rela	Relative Humidity :		50~52%
est Voltage :					Pha	se :		Neutral
unction Type		AN Link + V	VI AN (5GHz) Link +	- Bluetoo	th Link	
	-		, (0 GII 12)	,	Blactor		
	100 T							
	90							
	80							
	70			· [
	-	-	mponnomopou				CIEDD	22- <u>QP Limitat Ma</u> in Ports
ξ	60							
B c	50		M.			1.04	CISPR 2	2-Ave Limit at Main Ports
Levelin dBµV		h. MM		Windle	MR KW		The -	1
	40	w it	N N	W			• 140	
	30							
	20							
	T							
	10							
	10							
	+	300 400	500 8	100 1M	2M			10M 20M 30M
	<u>م</u> ل	300 400	500 8	100 1M		3M 4M ∋ncyin H		10M 20M 30M
Final Re	0 150k	300 400		100 1M				10M 20M 30M
	0 150k		ak			ency in H		10M 20M 30M
Final Re Freque (MH:	esult	: Quasi-Pea		Line	Freque		z	10M 20M 30M
Freque	esult ency z)	: Quasi-Pea QuasiPeak	ak		Freque	ency in H	z Limit	10M 20M 30M
Freque (MH: 0.4860 0.5340	esult ency z) 000	: Quasi-Pea QuasiPeak (dBµV) 47.7 54.6	ak Filter Off Off	Line N N	Freque Corr. (dB) 19.6 19.6	Margin (dB) 8.5 1.4	z Limit (dBµV) 56.2 56.0	10M 20M 30M
Freque (MH: 0.4860 0.5340 0.7740	esult ency z) 000 000	: Quasi-Pea QuasiPeak (dBµV) 47.7 54.6 40.8	ak Filter Off Off	Line N N N	Freque Corr. (dB) 19.6 19.6	Margin (dB) 8.5 1.4 15.2	z Limit (dBµV) 56.2 56.0 56.0	10M 20M 30M
Freque (MH: 0.4860 0.5340 0.7740 1.0780	esult 2) 000 000 000 000	: Quasi-Pea QuasiPeak (dBµV) 47.7 54.6 40.8 41.3	ak Filter Off Off Off	Line N N N N	Freque Corr. (dB) 19.6 19.6 19.6	Margin (dB) 8.5 1.4 15.2 14.7	Limit (dBµV) 56.2 56.0 56.0 56.0	10M 20M 30M
Freque (MH: 0.4860 0.5340 0.7740 1.0780 1.6140	esult isok 2) 000 000 000 000 000	: Quasi-Pea QuasiPeak (dBμV) 47.7 54.6 40.8 41.3 42.0	ak Filter Off Off Off Off	Line N N N N N	Freque (dB) 19.6 19.6 19.6 19.6 19.7	Margin (dB) 8.5 1.4 15.2 14.7 14.0	Limit (dBµV) 56.2 56.0 56.0 56.0 56.0	10M 20M 30M
Freque (MH: 0.4860 0.5340 0.7740 1.0780 1.6140 1.7420	esult ency z) 000 000 000 000 000 000	: Quasi-Peak QuasiPeak (dBμV) 47.7 54.6 40.8 41.3 42.0 40.6	ak Filter Off Off Off Off Off	Line N N N N N N	Freque (dB) 19.6 19.6 19.6 19.7 19.7	Margin (dB) 8.5 1.4 15.2 14.7 14.0 15.4	Limit (dBµV) 56.2 56.0 56.0 56.0 56.0 56.0	10M 20M 30M
Freque (MH: 0.4860 0.5340 0.7740 1.0780 1.6140	esult incy z) 000 000 000 000 000 000 000 000	: Quasi-Pea QuasiPeak (dBμV) 47.7 54.6 40.8 41.3 42.0	ak Filter Off Off Off Off	Line N N N N N	Freque (dB) 19.6 19.6 19.6 19.7 19.7 19.7	Margin (dB) 8.5 1.4 15.2 14.7 14.0 15.4 14.8	Limit (dBµV) 56.2 56.0 56.0 56.0 56.0	10M 20M 30M
Freque (MH: 0.4860 0.5340 0.7740 1.0780 1.6140 1.7420 2.1580	esult ency z) 000 000 000 000 000 000 000 000 000	: Quasi-Peak (dBμV) 47.7 54.6 40.8 41.3 42.0 40.6 41.2	AK Filter Off Off Off Off Off Off	Line N N N N N N N	Freque (dB) 19.6 19.6 19.6 19.7 19.7	Margin (dB) 8.5 1.4 15.2 14.7 14.0 15.4	z Limit (dBµV) 56.2 56.0 56.0 56.0 56.0 56.0 56.0 56.0	10M 20M 30M
Freque (MH: 0.4860 0.5340 0.7740 1.0780 1.6140 1.7420 2.1580 2.6620	esult ency z) 000 000 000 000 000 000 000 000 000	: Quasi-Peak (dBµV) 47.7 54.6 40.8 41.3 42.0 40.6 41.2 44.9	AK Filter Off Off Off Off Off Off Off Off	Line N N N N N N N N	Freque Corr. (dB) 19.6 19.6 19.6 19.7 19.7 19.7 17.9 19.4	Margin (dB) 8.5 1.4 15.2 14.7 14.0 15.4 14.8 11.1	z Limit (dBµV) 56.2 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0	
Freque (MH: 0.4860 0.5340 1.0780 1.6140 1.7420 2.1580 2.6620 3.0620	esult ency z) 000 000 000 000 000 000 000 000 000	: Quasi-Pea QuasiPeak (dBμV) 47.7 54.6 40.8 41.3 42.0 40.6 41.2 44.9 47.3	ak Filter Off Off Off Off Off Off Off Off	Line N N N N N N N N N N	Freque Corr. (dB) 19.6 19.6 19.6 19.7 19.7 19.7 19.7 19.4 19.6	Margin (dB) 8.5 1.4 15.2 14.7 14.0 15.4 14.8 11.1 8.7	Limit (dBµV) 56.2 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0	
Freque (MH: 0.4860 0.5340 0.7740 1.0780 1.6140 1.7420 2.1580 2.6620 3.0620 3.5820 3.6220 3.9020	esult ency z) 000 000 000 000 000 000 000 000 000	: Quasi-Peak (dBμV) 47.7 54.6 40.8 41.3 42.0 40.6 41.2 44.9 47.3 48.4 46.0 44.5	ak Filter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N N N N N N N	Freque (dB) 19.6 19.6 19.6 19.7 19.7 19.7 19.7 19.4 19.6 19.7 19.7 19.7 19.8	Margin (dB) 8.5 1.4 15.2 14.7 14.0 15.4 14.8 11.1 8.7 7.6 10.0 11.5	Limit (dBµV) 56.2 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0	
Freque (MH: 0.4860 0.5340 0.7740 1.0780 1.6140 1.7420 2.1580 2.6620 3.0620 3.5820 3.6220	esult ency z) 000 000 000 000 000 000 000 000 000	: Quasi-Peak (dBμV) 47.7 54.6 40.8 41.3 42.0 40.6 41.2 44.9 47.3 48.4 46.0	ak Filter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N N N N N N N N	Freque (dB) 19.6 19.6 19.6 19.7 19.7 19.7 17.9 19.4 19.6 19.7 19.7	Margin (dB) 8.5 1.4 15.2 14.7 14.0 15.4 14.8 11.1 8.7 7.6 10.0	Limit (dBµV) 56.2 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0	

3.6 Frequency Stability Measurement

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.


3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Please refer to Appendix A.

3.7 Automatically Discontinue Transmission

3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3.8 Antenna Requirements

3.8.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2), if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.8.3 Antenna Gain

FCC KDB 662911 D01 Multiple Transmitter Output v02r01
For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F)2)f)i).
For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.
The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,
The directional gain "DG" is calculated as following table.

	Chain	Chain	DG	DG	Power	PSD
	Port 0	Port 1	for	for	Limit	Limit
	Ant 1	Ant 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band IV	3.90	3.20	4.32	6.79	0.00	0.79

Power limit reduction = Composite gain - 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain – 6dBi, (min = 0)

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	1132003	300MHz~40GHz	Aug. 04, 2016	Oct. 04, 2016 ~ Oct. 11, 2016	Aug. 03, 2017	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1126017	300MHz~40GHz	Aug. 04, 2016	Oct. 04, 2016 ~ Oct. 11, 2016	Aug. 03, 2017	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV 30	100895	9kHz~30GHz	Apr. 27, 2016	Oct. 04, 2016 ~ Oct. 11, 2016	Apr. 26, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 23, 2015	Oct. 04, 2016 ~ Oct. 11, 2016	Nov. 22, 2016	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SU-241	92003713	-30℃ ~95℃	Jun. 06, 2016	Oct. 04, 2016 ~ Oct. 11, 2016	Jun. 05, 2017	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Oct. 18, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Oct. 18, 2016	Aug. 29, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Oct. 18, 2016	Dec. 01, 2016	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 14, 2015	Oct. 18, 2016	Dec. 13, 2016	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Sep. 26, 2016 ~ Nov. 12, 2016	Sep. 01, 2017	Radiation (03CH12-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Nov. 20, 2015	Sep. 26, 2016 ~ Nov. 12, 2016	Nov. 19, 2016	Radiation (03CH12-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Mar. 21, 2016	Sep. 26, 2016 ~ Nov. 12, 2016	Mar. 20, 2017	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D	37059	30MHz~1GHz	Dec. 29, 2015	Sep. 26, 2016 ~ Nov. 12, 2016	Dec. 28, 2016	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 21, 2015	Sep. 26, 2016 ~ Nov. 12, 2016	Dec. 20, 2016	Radiation (03CH12-HY)
Preamplifier	MITEQ	TTA0204	1872107	2GHz~40GHz	Feb. 15, 2016	Sep. 26, 2016 ~ Nov. 12, 2016	Feb. 14, 2017	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1328	1GHz ~ 18GHz	Nov. 02, 2015	Sep. 26, 2016 ~ Oct. 02, 2016	Nov. 01, 2016	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1328	1GHz ~ 18GHz	Mar. 31, 2016	Nov. 11, 2016 ~ Nov. 12, 2016	Mar. 30, 2017	Radiation (03CH12-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1815698	1GHz~18GHz	Dec. 14, 2015	Sep. 26, 2016 ~ Nov. 12, 2016	Dec. 13, 2016	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY53270148	1GHz~26.5GHz	Jan. 30, 2016	Sep. 26, 2016 ~ Nov. 12, 2016	Jan. 29, 2017	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Sep. 26, 2016 ~ Nov. 12, 2016	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Sep. 26, 2016 ~ Nov. 12, 2016	N/A	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz- 40GHz	Nov. 02, 2015	Sep. 26, 2016 ~ Oct. 02, 2016	Nov. 01, 2016	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz- 40GHz	Apr. 15, 2016	Nov. 11, 2016 ~ Nov. 12, 2016	Apr. 14, 2017	Radiation (03CH12-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.70
of 95% (U = 2Uc(y))	2:70

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.10
of 95% (U = 2Uc(y))	5.10

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4 70
of 95% (U = 2Uc(y))	4.70

Appendix A. Conducted Test Results