

FCC PART 15.249 TEST REPORT

For

Hangzhou Meari Technology Co., Ltd.

Room 604-605, Building 1, No.768, Jianghong Road, Changhe street, Binjiang District, Hangzhou, Zhejiang, China

FCC ID: 2AG7C-BELL15S

Report Type: Original Report		Product Type: Wireless Doorbell	
Test Engineer:	Miller Xie	Miller xie	
Report Number:	RSHA2101250	02-00C	
Report Date:	2021-06-11		
Reviewed By:	Oscar Ye EMC Manager	Oscar. Ye	
Test Laboratory:	Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn		

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EUT EXERCISE SOFTWARE	
SUPPORT EQUIPMENT LIST AND DETAILS External I/O Cable	
EXTERNAL I/O CABLE BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC§15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure Factor & Over Limit Calculation	
Test Results Summary	
TEST DATA	
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS & OUT OF BAND EMISSION	20
APPLICABLE STANDARD	
EUT SETUP	
TEST EQUIPMENT SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Test Results Summary Test Data	
FCC §15.215(C) – 20 DB BANDWIDTH TESTING	
APPLICABLE STANDARD	-
TEST PROCEDURE TEST DATA	
IEST DATA	

GENERAL INFORMATION

Product Description	for Equipment under	Test (EUT)
----------------------------	---------------------	------------

Applicant:	Hangzhou Meari Technology Co., Ltd.
Tested Model:	Bell 15S
Series Model:	Bell 15X, Bell 17S, Bell 15T, Bell 17T
Model Difference:	See Declaration letter
Product Type:	Wireless Doorbell
Power Supply:	DC 5 V from adapter, DC 3.6V powered by battery and AC 12V-24V
Field strength of fundamental:	88.74 dBµV/m@3m
RF Function:	SRD
Operating Band/Frequency:	914.92 MHz
Channel Number:	1
Antenna Type:	FPC antenna
Maximum Antenna Gain:	2.0 dBi

Adapter-1 Information:
Model: GTA92-0501000US
Input: AC100-240V~50/60Hz,0.3A
Output: 5.0V, 1.0A,5.0W

Adapter-2 Information: Model: TPA-46B050100UU Input: AC100-240V~50/60Hz,0.2A Output: 5.0V, 1000mA

All measurement and test data in this report was gathered from production sample serial number: RSHA210125002-1. (Assigned by BACL, Kunshan). The EUT was received on 2021-01-25.)

Objective

This type approval report is prepared on behalf of *Hangzhou Meari Technology Co., Ltd.* in accordance with Part 2-Subpart J, and Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209, 15.249 and 15.215 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS Submittal with FCC ID: 2AG7C-BELL15S

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. All radiated and conducted emissions measurement was performed at Bay Area Compliance Lab Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Item		Uncertainty
AC Power Line	es Conducted Emissions	3.19 dB
RF conduct	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	6.11dB
Radiated emission	1GHz~6GHz	4.45dB
Radiated emission	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Occur	bied Bandwidth	0.5kHz
Temperature		1.0°C
Humidity		6%

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

Justification

Channel list:

Channel	Frequency (MHz)	
1	914.92	

EUT Exercise Software

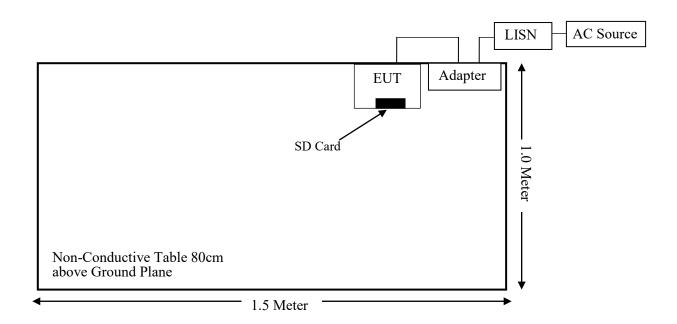
The EUT was tested in the engineering mode.

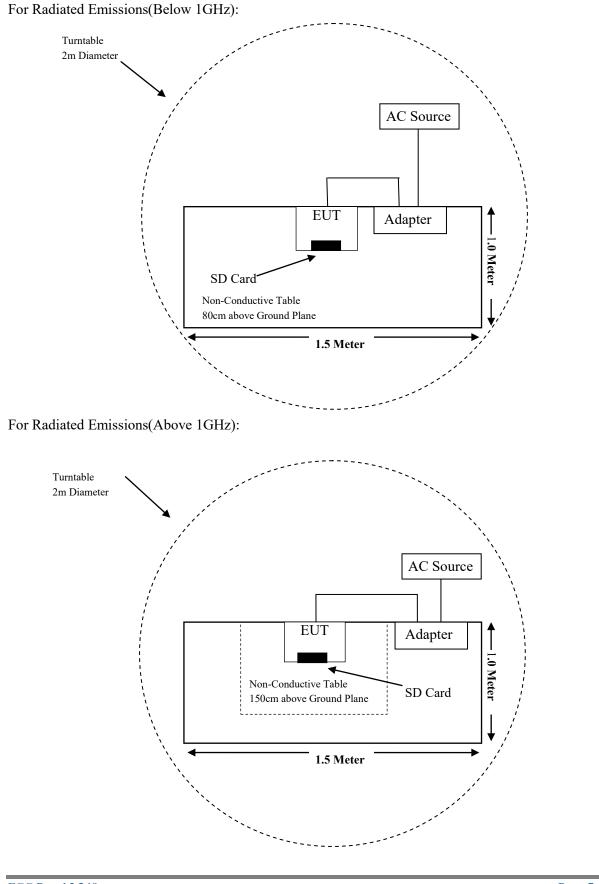
Frequency (MHz)	Power Level Setting	
914.92	default	

Note: The power level setting was declared by the applicant.

Support Equipment List and Details

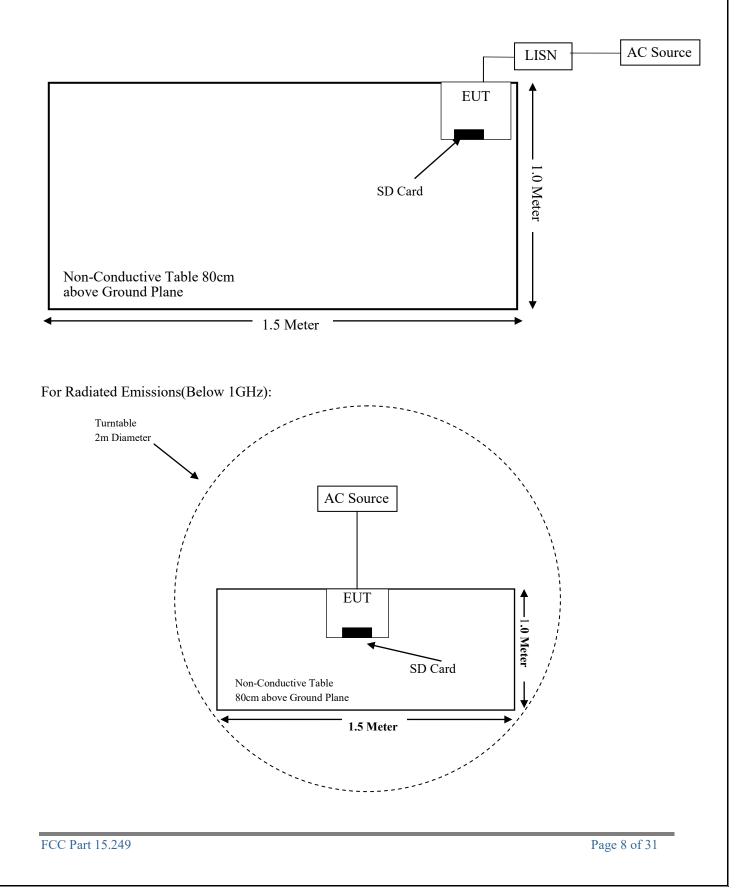
Manufacturer	anufacturer Description Model		Serial Number	
SanDisk	SanDisk SD Card		72810VCP912S	


External I/O Cable


Cable Description	Length(m)	From Port	To Port
Power Cable 1	1.0	EUT	Adapter
Power Cable 2	1.0	Adapter	LISN/AC Source

Block Diagram of Test Setup

For Conducted Emissions:


For Adapter:

FCC Part 15.249

For AC 12V-24V:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
15.205, §15.209, §15.249	Radiated Emissions& Out of Band Emission	Compliant
§15.215 (c)	20 dB Bandwidth	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test (Chamber 1#)					
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2020-11-27	2021-11-26
Sunol Sciences	Hybrid Antenna	JB3	A090314-1	2020-08-05	2023-08-04
Sonoma Instrument	Pre-amplifier	310N	171205	2020-08-14	2021-08-13
Rohde & Schwarz	Auto test Software	EMC32	100361	N/A	N/A
MICRO-COAX	Coaxial Cable	Cable-8	008	2020-08-15	2021-08-14
MICRO-COAX	Coaxial Cable	Cable-9	009	2020-08-15	2021-08-14
MICRO-COAX	Coaxial Cable	Cable-10	010	2020-08-15	2021-08-14
MICRO-TRONICS	Band Reject Filter	BRC50722	G013	2020-08-05	2021-08-04
	Radiated Em	nission Test (Cha	mber 2#)		
Rohde & Schwarz	EMI Receiver	ESU40	100207	2021-03-16	2022-03-15
ETS-LINDGREN	Horn Antenna	3115	9207-3900	2020-07-15	2023-07-14
A.H.Systems, inc	Amplifier	PAM-0118P	512	2020-08-14	2021-08-13
Rohde & Schwarz	Auto test Software	EMC32	100361	N/A	N/A
MICRO-COAX	Coaxial Cable	Cable-6	006	2020-08-15	2021-08-14
MICRO-COAX	Coaxial Cable	Cable-11	011	2020-08-15	2021-08-14
MICRO-COAX	Coaxial Cable	Cable-12	012	2020-08-15	2021-08-14
MICRO-COAX	Coaxial Cable	Cable-13	013	2020-08-15	2021-08-14
	R	F Conducted Test			
Rohde & Schwarz	EMI Test Receiver	ESIB26	100146	2020-12-14	2021-12-13
Narda	Attenuator	10dB	010	2020-08-15	2021-08-14
Hangzhou Meari	RF Cable	Hangzhou Meari C01	N/A	Each Time	N/A
Conducted Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2020-08-05	2021-08-04
Rohde & Schwarz	LISN	ENV216	101115	2020-11-27	2021-11-26
Audix	Test Software	e3	V9	N/A	N/A
Rohde & Schwarz	Pulse limiter	ESH3-Z2	0357.8810.54	2020-08-10	2021-08-09
MICRO-COAX	Coaxial Cable	Cable-15	015	2020-08-15	2021-08-14

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

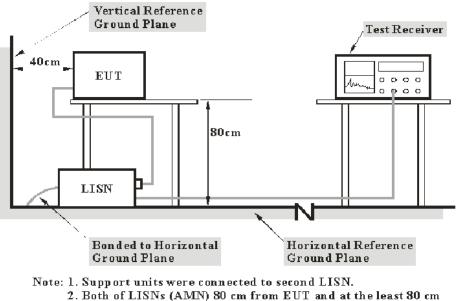
FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Antenna Connector Construction

The EUT has an FPC antenna for SRD which the gain is 2.0 dBi, antenna was permanently attached to the EUT, fulfill the requirement of this section, please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The Factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7 dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

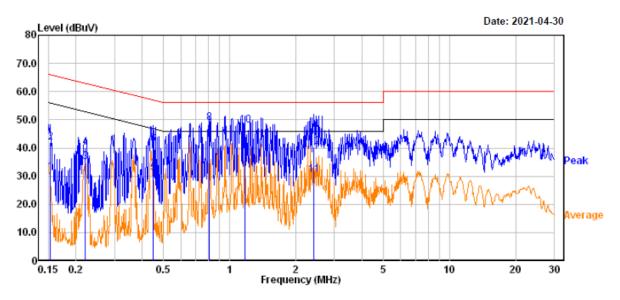
Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

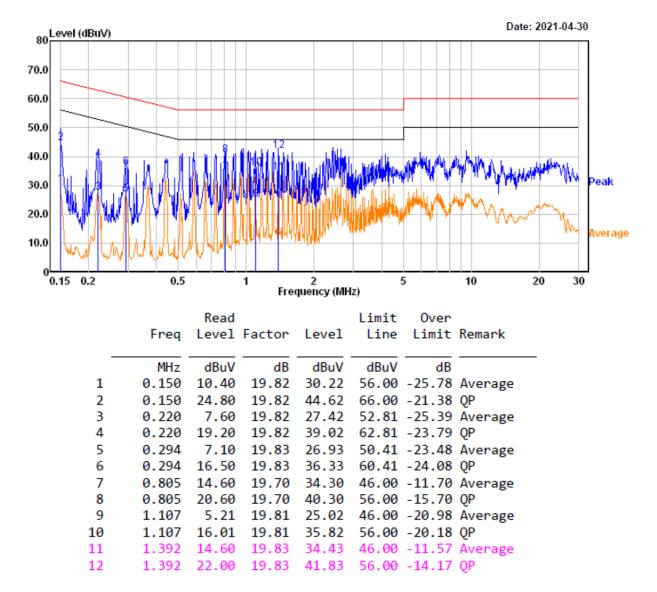
Environmental Conditions

Temperature:	24.2~24.5 °C
Relative Humidity:	50~52 %
ATM Pressure:	101.3~102.3 kPa

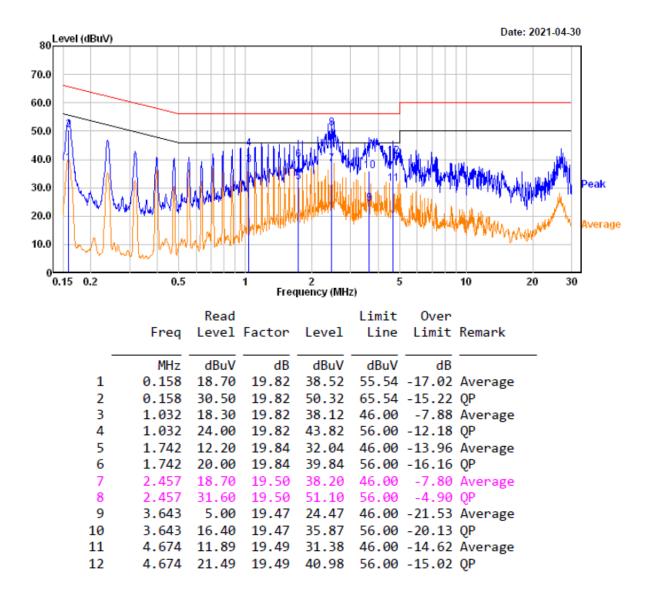

The testing was performed by Miller Xie from 2021-04-30 to 2021-06-11.

Test Result: Compliant.

EUT operation mode: Transmitting


For adapter-1:

AC 120V/60 Hz, Line



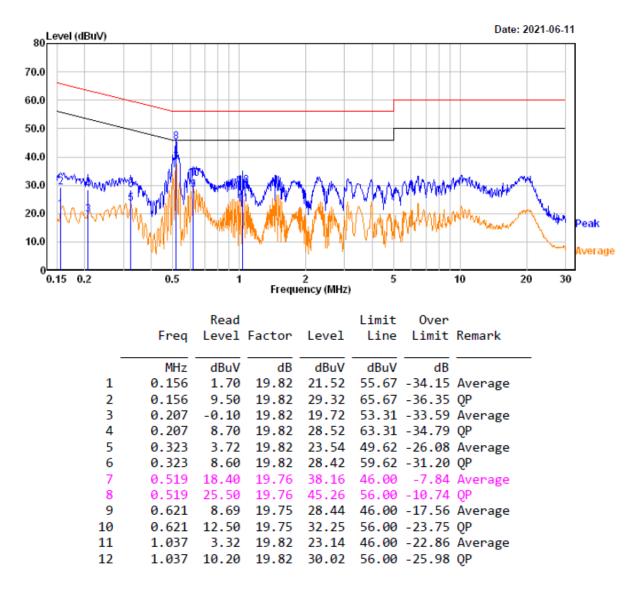
		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.152	11.50	19.82	31.32	55.88	-24.56	Average
2	0.152	22.10	19.82	41.92	65.88	-23.96	QP
3	0.220	15.10	19.82	34.92	52.81	-17.89	Average
4	0.220	20.40	19.82	40.22	62.81	-22.59	QP
5	0.449	11.40	19.75	31.15	46.89	-15.74	Average
6	0.449	21.70	19.75	41.45	56.89	-15.44	QP
7	0.805	23.30	19.70	43.00	46.00	-3.00	Average
8	0.805	29.30	19.70	49.00	56.00	-7.00	QP
9	1.169	19.50	19.81	39.31	46.00	-6.69	Average
10	1.169	28.10	19.81	47.91	56.00	-8.09	QP
11	2.409	10.90	19.53	30.43	46.00	-15.57	Average
12	2.409	21.00	19.53	40.53	56.00	-15.47	QP

AC 120V/60 Hz, Neutral

For adapter-2:

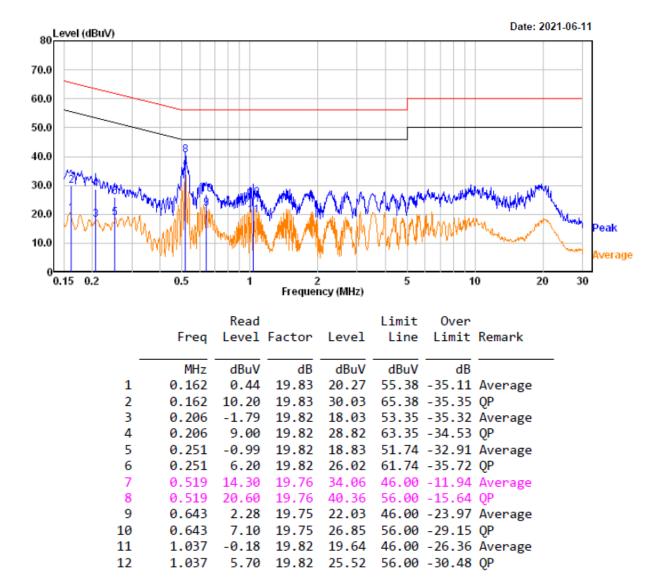
AC 120V/60 Hz, Line

Date: 2021-04-30 80 Level (dBuV) 70.0 60.0 50.0 40.0 Peak 30.0 20.0 Average 10.0 0 2 Frequency (MHz) 0.5 5 10 30 0.15 0.2 1 20 Read Limit 0ver Freq Level Factor Level Line Limit Remark MHz dBuV dBuV dBuV dB dB 1 0.158 15.10 19.82 34.92 55.54 -20.62 Average 28.60 48.42 65.54 -17.12 QP 2 0.158 19.82 3 0.554 19.20 38.95 46.00 -7.05 Average 19.75 4 0.554 22.70 19.75 42.45 56.00 -13.55 QP 5 1.027 20.90 19.82 40.72 46.00 -5.28 Average 6 1.027 24.20 44.02 56.00 -11.98 QP 19.82 7 1.344 20.20 19.83 40.03 46.00 -5.97 Average 8 24.70 44.53 56.00 -11.47 QP 1.344 19.83 9 15.30 19.51 34.81 46.00 -11.19 Average 2.445 10 2.445 26.10 19.51 45.61 56.00 -10.39 QP 11 3.791 11.40 19.47 30.87 46.00 -15.13 Average


3.791 22.60 19.47 42.07 56.00 -13.93 QP

AC 120V/60 Hz, Neutral

12


For AC 24V (worst case):

AC 24V/60 Hz, Line

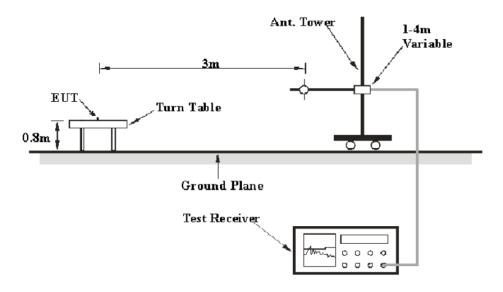
Note: Pre-scan AC 12V and AC24V supply voltages, and AC24V was the worst case.

AC 24V/60 Hz, Neutral

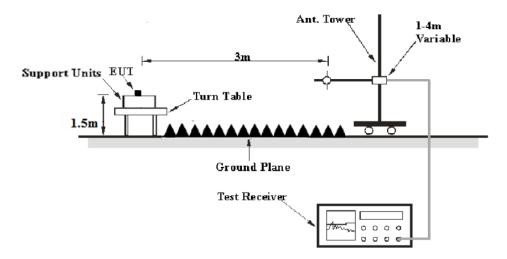
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS & OUT OF BAND EMISSION

Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:


Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24GHz-24.25GHz	250	2500

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.


(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

Test Equipment Setup

The system was investigated from 30 MHz to 10 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
A1 101	1MHz	3 MHz	/	РК
Above 1GHz	1MHz	3 MHz	1MHz	AVG.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude (dB μ V/m) = Meter Reading (dB μ V) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) - Corrected Amplitude (dB μ V/m)

Test Results Summary

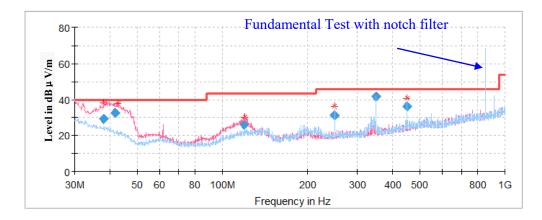
According to the data in the following table, the EUT complied with the FCC Part 15.209 &15.205 & 15.249.

Test Data

Environmental Conditions

Temperature:	20°C
Relative Humidity:	50%
ATM Pressure:	101.3kPa

The testing was performed by Miller Xie on 2021-04-26.


Test Mode: Transmitting

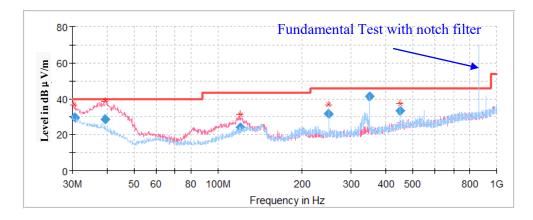
Spurious Emission Test:

For adapter1:

30 MHz - 1 GHz

(Pre-scan in the X,Y and Z axes of orientation, the worst case in Z-axis of orientation was recorded.)

F	Corrected	Rx Antenna		Turnella	Corrected	T :	Manain	
Frequency (MHz)	Amplitude QuasiPeak (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)	
37.925100	29.17	100.0	V	147.0	-9.0	40.00	10.83	
41.669850	32.57	100.0	V	183.0	-11.6	40.00	7.43	
119.274800	26.00	100.0	V	290.0	-11.0	43.50	17.50	
250.005750	31.33	100.0	Н	54.0	-11.9	46.00	14.67	
350.017150	41.58	100.0	Н	314.0	-9.4	46.00	4.42	
450.008200	36.14	100.0	Н	0.0	-6.9	46.00	9.86	


Note:

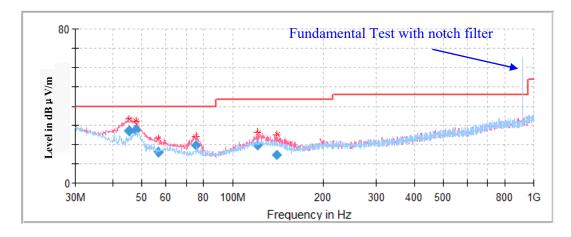
Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V/m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

For adapter2:

30 MHz - 1 GHz

(Pre-scan in the X,Y and Z axes of orientation, the worst case in Z-axis of orientation was recorded.)

F	Corrected	Rx Antenna		Turnetable	Corrected	T	Manala	
Frequency (MHz)	Amplitude QuasiPeak (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)	
30.729077	29.74	100.0	V	292.0	-4.1	40.00	10.26	
39.368900	28.76	100.0	V	156.0	-10.7	40.00	11.24	
120.072450	24.20	100.0	V	287.0	-10.8	43.50	19.30	
250.005750	31.83	100.0	Н	109.0	-11.9	46.00	14.17	
350.021350	41.25	100.0	Н	316.0	-9.4	46.00	4.75	
450.017800	33.40	200.0	V	44.0	-6.9	46.00	12.60	


Note:

Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V/m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V /m)

For AC 24V (worst case):

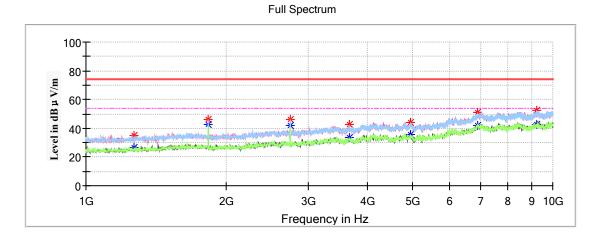
30MHz-1GHz:

(Pre-scan in the X,Y and Z axes of orientation, the worst case in Z-axis of orientation was recorded.)

Frequency	Corrected Amplitude	Ry Antenna		Turntable	Corrected	Limit	Margin
(MHz)	-			Degree	Factor (dB/m)	(dBµV/m)	(dB)
45.276400	27.08	100.0	V	352.0	-14.4	40.00	12.92
47.820450	27.55	100.0	V	163.0	-15.2	40.00	12.45
56.438700	16.22	100.0	V	41.0	-15.7	40.00	23.78
75.347100	19.77	100.0	V	152.0	-17.1	40.00	20.23
121.056850	19.76	100.0	V	163.0	-10.9	43.50	23.74
140.829200	14.73	100.0	V	257.0	-11.8	43.50	28.77

Note: Pre-scan AC 12V and AC24V supply voltages, and AC24V was the worst case.

For adapter2 (worse case):


1 GHz - 10 GHz

(Pre-scan in the X,Y and Z axes of orientation, the worst case Z-axis of orientation was recorded.)

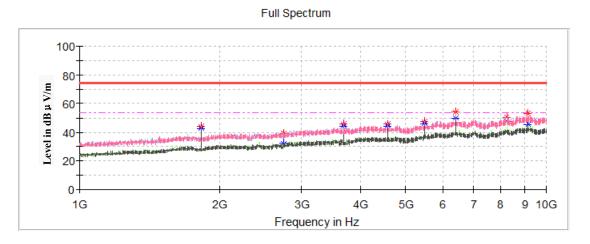
Note:

Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB)Corrected Amplitude $(dB\mu V/m)$ = Corrected Factor (dB/m) + Reading $(dB\mu V)$ Margin (dB) = Limit $(dB\mu V/m)$ – Corrected Amplitude $(dB\mu V/m)$

Frequency: 914.92 MHz

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBµV/m)	Average Height Polar Degree		Degree	Factor (dB/m)	(dBµV/m)	(dB)	
1268.200000		26.69	200.0	Н	207.0	-10.8	54.00	27.31
1268.200000	35.02		200.0	Н	207.0	-10.8	74.00	38.98
1829.840000		42.81	150.0	Н	221.0	-8.3	54.00	11.19
1829.840000	45.91		150.0	Н	221.0	-8.3	74.00	28.09
2744.760000		41.73	150.0	Н	245.0	-4.5	54.00	12.27
2744.760000	46.37		150.0	Н	245.0	-4.5	74.00	27.63
3659.680000		33.82	200.0	V	273.0	-1.1	54.00	20.18
3659.680000	42.76		200.0	V	273.0	-1.1	74.00	31.24
4948.300000		35.43	200.0	Н	335.0	1.1	54.00	18.57
4948.300000	44.01		200.0	Н	335.0	1.1	74.00	29.99
6895.000000		41.75	200.0	V	122.0	8.5	54.00	12.25
6895.000000	51.39		200.0	V	122.0	8.5	74.00	22.61
9249.400000		42.49	150.0	Н	258.0	11.3	54.00	11.51
9249.400000	52.38		150.0	Н	258.0	11.3	74.00	21.62

Note: Pre-scan adapter1 and adapter2, and adapter2 was the worst case.


For AC 24V (worst case):

1 GHz - 10 GHz

(Pre-scan in the X,Y and Z axes of orientation, the worst case Z-axis of orientation was recorded.)

Note:

Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V/m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1829.800000		43.21	150.0	Н	0.0	-5.4	54.00	10.79
1829.800000	45.76		150.0	Н	0.0	-5.4	74.00	28.24
2746.000000		32.43	200.0	V	54.0	-3.0	54.00	21.57
2746.000000	39.12		200.0	V	54.0	-3.0	74.00	34.88
3659.500000		45.63	150.0	V	0.0	-1.0	54.00	8.37
3659.500000	47.32		150.0	V	0.0	-1.0	74.00	26.68
4574.800000	46.96		200.0	Н	40.0	1.1	74.00	27.04
4574.800000		44.43	200.0	Н	40.0	1.1	54.00	9.57
5489.200000	47.64		200.0	Н	0.0	2.6	74.00	26.36
5490.100000		45.67	200.0	Н	0.0	2.6	54.00	8.33
6404.500000	53.63		150.0	V	0.0	5.2	74.00	10.37
6404.500000		49.51	150.0	V	0.0	5.2	54.00	4.49
8235.100000		47.78	150.0	Н	336.0	6.7	54.00	6.22
8235.100000	50.69		150.0	Н	336.0	6.7	74.00	23.31
9150.400000		44.19	200.0	V	297.0	9.4	54.00	9.81
9150.400000	52.85		200.0	V	297.0	9.4	74.00	21.15

Note: Pre-scan AC 12V and AC24V supply voltages, and AC24V was the worst case.

Fundamental Test & Restricted Bands Emissions Test:

(Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded.)

Note:

 Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dBμV/m) = Corrected Factor (dB/m) + Reading (dBμV) Margin (dB) = Limit (dBμV/m) – Corrected Amplitude (dBμV/m)

Frequency Corrected		Detector	Rx Antenna		Turntable	Corrected	Limit	Margin					
(MHz)	(dBµV/m)	(PK/QP/Ave.)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)					
Channel Frequency: 914.92 MHz													
902.00	32.98	QP	150	Н	261	0.1	46	13.02					
902.00	34.71	QP	100	V	224	0.1	46	11.29					
914.92	88.74	QP	200	Н	121	0.4	94	5.26					
914.92	87.11	QP	150	V	195	0.4	94	6.89					
928.00	32.13	QP	200	Н	226	0.8	46	13.87					
928.00	34.59	QP	200	V	277	0.8	46	11.41					

FCC §15.215(c) – 20 dB BANDWIDTH TESTING

Applicable Standard

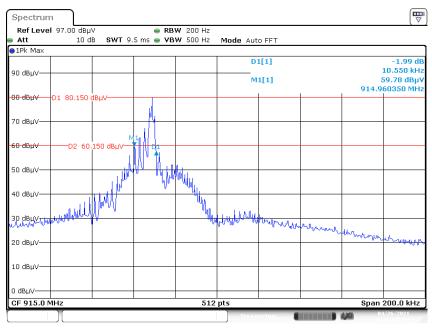
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions


Temperature:	20°C
Relative Humidity:	50%
ATM Pressure:	101.3kPa

The testing was performed by Miller Xie on 2021-04-26.

Test Result: Compliant.

Test Mode: Transmitting

Frequency	20 dB Bandwidth
(MHz)	(kHz)
914.92	10.55

Frequency: 914.92 MHz

Date: 26.APR.2021 13:44:25

Declarations

1: BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk'*'. Customer model name, addresses, names, trademarks etc. are not considered data.

2: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

3: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

4: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

5: This report cannot be reproduced except in full, without prior written approval of the Company.

6: This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

***** END OF REPORT *****