

InterLab FCC Measurement/Technical Report on

Multi-spectral camera SEQUOIA

FCC ID 2AG6ISICILIA IC: 21053-SICILIA

Test Report Reference: MDE_PARRO_1522_FCCa_REV1

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1. Applied Standar	ds and Test Summary	3
1. Applied Standards		3
2. FCC-IC Correlation	Table	4
3. Measurement Sum	mary / Signatures	4
2. Administrative	Data	10
1. Testing Laboratory		10
2. Project Data		10
3. Applicant Data		10
4. Manufacturer Data		10
3. Test object Data	1	11
1. General EUT Descri	ption	11
2. EUT Main compone	nts	11
3. Ancillary Equipmen	t	12
4. Auxiliary Equipmen	t	13
5. EUT Setups		13
6. Operating Modes		14
7. Product labelling		14
4. Test Results		15
1. Conducted Emission	ns at AC Mains	15
2. Occupied Bandwidt	h (6 dB)	17
3. Occupied Bandwidt	h (99%)	20
4. Peak Power Output		23
5. Spurious RF Condu	cted Emissions	27
6. Spurious Radiated		30
7. Band Edge Conduct		37
8. Band Edge Radiate	d	41
9. Power Density		44
5. Test Equipment		47
6. Photo Report		49
7. Setup Drawings		50
8. Measurement U	ncertainties	51

1.Applied Standards and Test Summary

1. Applied Standards

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r04, 2016-01-07". ANSI C63.10-2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

2. FCC-IC Correlation Table

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz) equipment from FCC and IC

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 1: 5.2 (1)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 1: 5.4 (4)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 1: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 1: 5.2 (2)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	-	-

3. Measurement Summary / Signatures

Operating mode A03 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (2) § 15.247 (a) (2) § 15.247 Qcupied Bandwidth (6 dB) Final Result Op-Mode Setup FCC IC Operating Frequency, Radio Technology Mo2 Passed Passed mid, WLAN g A02 Passed Passed Passed high, WLAN g A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed work WLAN g A02 Passed Passed Passed low, WLAN b A02 Passed Passed Passed low, WLAN n 20 MHz A02 Passed Passed high, WLAN n 20 MHz A02 Passed Passed high, WLAN n 20 MHz A02 Passed Passed Occupied Bandwidth (99%) The measurement was performed according to ANSI C63.10 Final Result	§15.247			
OP-Mode Operating modeSetupFCCICWorst case (WLAN b, channel 6; GPS active)A03PassedPassed47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247§ 15.247 (a) (2)StatusSetupFCCICOccupied Bandwidth (6 dB) The measurement was performed according to ANSI C63.10Final ResultOperating Frequency, Radio Technology mid, WLAN gA02PassedPassedMid, WLAN gA02PassedPassedPassedMid, WLAN bA02PassedPassedPassedhigh, WLAN gA02PassedPassedPassedMid, WLAN bA02PassedPassedPassedNg, WLAN gA02PassedPassedPassedIow, WLAN n 20 MHzA02PassedPassedPassedIow, WLAN gA02PassedPassedPassedIow, WLAN gA02PassedPassedPassedIow, WLAN gA02PassedPassedPassedIow, WLAN n 20 MHzA02PassedPassedPassedIow, WLAN n 20 MHzA02PassedPassedPassedIow, WLAN n 20 MHzA02N/A-ICOperating Frequency, Radio TechnologyIow, WLAN n 20 MHzA02N/A-Iow, WLAN n 20 MHzA02N/A-ICICOperating Frequency, Radio TechnologyIow, WLAN n 20 MHzA02N/A-Iow, WLAN n 20 MHzA02N/AIC<		3.10	Final Re	esult
Operating mode A03 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (2) § 15.247 (a) (2) St5.247 Occupied Bandwidth (6 dB) Final Result Derement was performed according to ANSI C63.10 Final Result OP-Mode Operating Frequency, Radio Technology Setup FCC IC Operating Frequency, Radio Technology A02 Passed Passed mid, WLAN g A02 Passed Passed Passed high, WLAN g A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN g A02 Passed Passed Passed work WLAN n 20 MHz A02 Passed Passed Passed low, WLAN b A02 Passed Passed Passed low, WLAN n 20 MHz A02 Passed Passed occupied Bandwidth (99%) The measurement was performed according to ANSI C63.10 Final Result OP-Mode Operating Frequency, Radio Technology Setup FCC IC Operating Frequency, Radio Technology N/A -				
worst case (WLAN b, channel 6; GPS active) A03 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 § 15.247 (a) (2) Final Result ODecupied Bandwidth (6 dB) The measurement was performed according to ANSI C63.10 Final Result IC ODP-Mode Operating Frequency, Radio Technology A02 Passed Passed mid, WLAN g A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN p A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN p A02 Passed Passed Passed low, WLAN n 20 MHz A02 Passed Passed low, WLAN n 20 MHz A02 Passed Passed high, WLAN n 20 MHz A02 Passed Passed high, WLAN n 20 MHz A02 Passed Passed OCcupied Bandwidth (99%) The measurement was performed according to ANSI C63.10 Final Result Operating Frequency, Radio Technology Setup FCC IC Operating Frequency, Radio Tech	OP-Mode	Setup	FCC	IC
§15.247 Final Result Occupied Bandwidth (6 dB) Final Result OP-Mode Setup FCC IC Operating Frequency, Radio Technology A02 Passed Passed mid, WLAN g A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN g A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN g A02 Passed Passed Passed now, WLAN n 20 MHz A02 Passed Passed Passed low, WLAN g A02 Passed Passed Passed high, WLAN n 20 MHz A02 Passed Passed low, WLAN g A02 Passed Passed high, WLAN n 20 MHz A02 Passed Passed low, WLAN n 20 MHz A02 Passed Passed Operating Frequency, Radio Technology Setup FCC IC		A03	Passed	Passed
The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Operating Frequency, Radio Technology A02 Passed Passed mid, WLAN g A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN b A02 Passed Passed Passed high, WLAN g A02 Passed Passed Passed mid, WLAN n 20 MHz A02 Passed Passed Passed low, WLAN n 20 MHz A02 Passed Passed Passed low, WLAN n 20 MHz A02 Passed Passed Passed low, WLAN n 20 MHz A02 N/A - OP-Mode Setup	47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247	' (a) (2)	
OP-Mode Operating Frequency, Radio TechnologySetupFCCICmid, WLAN gA02PassedPassedmid, WLAN bA02PassedPassedhigh, WLAN bA02PassedPassedhigh, WLAN gA02PassedPassedmid, WLAN ngA02PassedPassedhigh, WLAN gA02PassedPassedhigh, WLAN n 20 MHzA02PassedPassedlow, WLAN bA02PassedPassedlow, WLAN n 20 MHzA02PassedPassedlow, WLAN n 20 MHzA02N/A-mid, WLAN n 20 MHzA02N/A-low, WLAN n 20 MHzA02N/A-mid, WLAN n 20 MHzA02N/A-mid, WLAN n 20 MHzA02N/A-low, WLAN ngA				
Operating Frequency, Radio Technology A02 Passed Passed mid, WLAN g A02 Passed Passed high, WLAN b A02 Passed Passed high, WLAN g A02 Passed Passed high, WLAN g A02 Passed Passed high, WLAN g A02 Passed Passed mid, WLAN n 20 MHz A02 Passed Passed low, WLAN b A02 Passed Passed low, WLAN n 20 MHz A02 Passed Passed low, WLAN g A02 Passed Passed low, WLAN n 20 MHz A02 Passed Passed low, WLAN n 20 MHz A02 Passed Passed low, WLAN n 20 MHz A02 Passed Passed off-coupled Bandwidth (99%) The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Operating Frequency, Radio Technology A02 N/A - low, WLAN n 20 MHz A02 N/A - mid, WLAN n 20 MHz A02<	The measurement was performed according to ANSI C63	3.10	Final Re	esult
mid, WLAN g A02 Passed Passed Passed ind, WLAN b A02 Passed Passed Passed high, WLAN b A02 Passed Pa	OP-Mode Operating Frequency, Radio Technology	Setup	FCC	IC
high, WLAN b high, WLAN g A02 Passed Passed add Passed Passed A02	mid, WLAN g	A02	Passed	Passec
high, WLAN g A02 Passed Passed Passed ind, WLAN n 20 MHz A02 Passed Pass	mid, WLAN b	A02	Passed	Passed
mid, WLAN n 20 MHz A02 Passed Pasdd Pasdd Passed Passed	high, WLAN b	A02	Passed	Passed
Iow, WLAN b A02 Passed	high, WLAN g	A02	Passed	Passed
Now, WLAN n 20 MHz A02 Passed Pase	mid, WLAN n 20 MHz	A02	Passed	Passed
Iow, WLAN gA02PassedPassedhigh, WLAN n 20 MHzA02PassedPassed	low, WLAN b	A02	Passed	Passed
high, WLAN n 20 MHz A02 Passed Passed - Occupied Bandwidth (99%) The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Operating Frequency, Radio Technology low, WLAN n 20 MHz A02 N/A - mid, WLAN b A02 N/A - mid, WLAN g A02 N/A - low, WLAN b A02 N/A -	low, WLAN n 20 MHz	A02	Passed	Passed
- - Occupied Bandwidth (99%) Final Result The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Operating Frequency, Radio Technology A02 N/A - Iow, WLAN n 20 MHz A02 N/A - mid, WLAN b A02 N/A - mid, WLAN g A02 N/A - low, WLAN b A02 N/A -	low, WLAN g	A02	Passed	Passed
The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Operating Frequency, Radio Technology A02 N/A - Iow, WLAN n 20 MHz A02 N/A - mid, WLAN b A02 N/A - mid, WLAN g A02 N/A - low, WLAN b A02 N/A - mid, WLAN g A02 N/A - low, WLAN b A02 N/A -	high, WLAN n 20 MHz	A02	Passed	Passed
The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Operating Frequency, Radio Technology A02 N/A - Iow, WLAN n 20 MHz A02 N/A - mid, WLAN b A02 N/A - mid, WLAN g A02 N/A - low, WLAN b A02 N/A - mid, WLAN g A02 N/A - low, WLAN b A02 N/A -				
The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Operating Frequency, Radio Technology A02 N/A - Iow, WLAN n 20 MHz A02 N/A - mid, WLAN b A02 N/A - mid, WLAN g A02 N/A - low, WLAN b A02 N/A - mid, WLAN g A02 N/A - low, WLAN b A02 N/A -	-	-		
Operating Frequency, Radio Technology Iow, WLAN n 20 MHz A02 N/A - mid, WLAN b A02 N/A - mid, WLAN g A02 N/A - Iow, WLAN b A02 N/A - Mid, WLAN g A02 N/A - Iow, WLAN b A02 N/A -		3.10	Final Re	esult
Iow, WLAN n 20 MHzA02N/A-mid, WLAN bA02N/A-mid, WLAN gA02N/A-Iow, WLAN bA02N/A-	OP-Mode Operating Frequency, Radio Technology	Setup	FCC	IC
mid, WLAN g A02 N/A - low, WLAN b A02 N/A -	low, WLAN n 20 MHz	A02	N/A	-
low, WLAN b A02 N/A -	mid, WLAN b	A02	N/A	-
	mid, WLAN g	A02	N/A	-
high, WLAN n 20 MHz A02 N/A -	low, WLAN b	A02	N/A	-
	high, WLAN n 20 MHz	A02	N/A	-

high, WLAN gA02N/A-low, WLAN gA02N/A-high, WLAN bA02N/A-
high, WLAN b A02 N/A -
mid, WLAN n 20 MHz A02 N/A -

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Peak Power Output

§ 15.247 (b) (3)

The measurement was performed according to ANSI C63.10		Final Re	Final Result	
OP-Mode Measurement method, Operating Frequency, Radio Technology	Setup	FCC	IC	
conducted, mid, WLAN g	A02	Passed	Passed	
conducted, mid, WLAN b	A02	Passed	Passed	
conducted, low, WLAN b	A02	Passed	Passed	
conducted, mid, WLAN n 20 MHz	A02	Passed	Passed	
conducted, high, WLAN g	A02	Passed	Passed	
conducted, low, WLAN n 20 MHz	A02	Passed	Passed	
conducted, high, WLAN b	A02	Passed	Passed	
conducted, high, WLAN n 20 MHz	A02	Passed	Passed	
conducted, low, WLAN g	A02	Passed	Passed	
§15.247	§ 15.247	′ (d)		
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI (_	′ (d) Final Re	sult	
§15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI (OP-Mode	_		esult IC	
§15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI (OP-Mode Operating Frequency, Radio Technology	C63.10	Final Re		
§15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI (OP-Mode Operating Frequency, Radio Technology mid, WLAN n 20 MHz	C63.10 Setup	Final Re FCC	IC	
§15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI (OP-Mode Operating Frequency, Radio Technology mid, WLAN n 20 MHz low, WLAN n 20 MHz	C63.10 Setup A02	Final Re FCC Passed	IC Passed	
§15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI (OP-Mode <u>Operating Frequency, Radio Technology</u> mid, WLAN n 20 MHz low, WLAN n 20 MHz mid, WLAN b	C63.10 Setup A02 A02	Final Re FCC Passed Passed	IC Passed Passed	
§15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI (C63.10 Setup A02 A02 A02 A02	Final Re FCC Passed Passed Passed	IC Passed Passed Passed	
§15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI (OP-Mode <u>Operating Frequency, Radio Technology</u> mid, WLAN n 20 MHz low, WLAN n 20 MHz mid, WLAN b low, WLAN b	C63.10 Setup A02 A02 A02 A02 A02	Final Re FCC Passed Passed Passed Passed	IC Passed Passed Passed Passed	

A02

high, WLAN g

Passed

Passed

OP-Mode	Setup	FCC	IC
Operating Frequency, Radio Technology			
low, WLAN b	A02	Passed	Passed
high, WLAN b	A02	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Transmitter Spurious Radiated Emissions				
The measurement was performed according to ANSI C63.10		Final Result		
OP-Mode Measurement range, Operating Frequency, Radio Technology	Setup	FCC	IC	
30 MHz - 1 GHz, high, WLAN b	A03	Passed	Passed	
30 MHz - 1 GHz, mid, WLAN b	A03	Passed	Passed	
1 GHz - 26 GHz, low, WLAN b	A03	Passed	Passed	
9 kHz - 30 MHz, mid, WLAN b	A03	Passed	Passed	
1 GHz - 26 GHz, low, WLAN g (measurement performed up to 8 GHz)	A01	Passed	Passed	
1 GHz - 26 GHz, low, WLAN n 20 MHz (measurement performed up to 8 GHz)	A01	Passed	Passed	
30 MHz - 1 GHz, low, WLAN b	A01	Passed	Passed	
1 GHz - 26 GHz, mid, WLAN g (measurement performed up to 8 GHz)	A01	Passed	Passed	
1 GHz - 26 GHz, high, WLAN b	A03	Passed	Passed	
1 GHz - 26 GHz, high, WLAN g (measurement performed up to 8 GHz)	A01	Passed	Passed	
1 GHz - 26 GHz, mid, WLAN b	A01	Passed	Passed	
1 GHz - 26 GHz, high, WLAN n 20 MHz (measurement performed up to 8 GHz)	A01	Passed	Passed	
1 GHz - 26 GHz, mid, WLAN n 20 MHz (measurement performed up to 8 GHz)	A01	Passed	Passed	

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247	'(d)	
Band Edge Compliance Conducted			
The measurement was performed according to ANSI	C63.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Band Edge, Operating Frequency, Radio Technology high, high, WLAN g	A02	Passed	Passed
high, high, WLAN b	A02	Passed	Passed
high, high, WLAN n 20 MHz	A02	Passed	Passed
low, low, WLAN n 20 MHz	A02	Passed	Passed
low, low, WLAN b	A02	Passed	Passed
low, low, WLAN g	A02	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247	′(d)	

3131247			
Band Edge Compliance Radiated			
The measurement was performed according to ANSI	C63.10	Final Re	sult
	- .		
OP-Mode	Setup	FCC	IC
Band Edge, Operating Frequency, Radio Technology			
high, high, WLAN g	A01	Passed	Passed
high, high, WLAN n 20 MHz	A01	Passed	Passed
high, high, WLAN b	A01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247	' (e)	
Power Density			
The measurement was performed according to ANSI	C63.10	Final Re	sult
OP-Mode Operating Frequency, Radio Technology	Setup	FCC	IC
low, WLAN n 20 MHz	A02	Passed	Passed
low, WLAN g	A02	Passed	Passed
mid, WLAN b	A02	Passed	Passed
mid, WLAN n 20 MHz	A02	Passed	Passed
low, WLAN b	A02	Passed	Passed
high, WLAN g	A02	Passed	Passed
mid, WLAN g	A02	Passed	Passed
high, WLAN b	A02	Passed	Passed
high, WLAN n 20 MHz	A02	Passed	Passed

Not applicable Not performed N/A

N/P

Revision History

Report version control			
Version	Release date	Change Description	Version validity
initial	2014-02-03		invalid
REV1	2016-02-15	Revision number of FCC KDB 558074 updated from v03r03 to v03r04 (2016-01-07) Clarification of measurement description for radiated measurements	valid

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

2.Administrative Data

1. **Testing Laboratory**

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01
Responsible for accreditation scope:	DiplIng. Marco Kullik
Report Template Version:	2015-11-30

2. **Project Data**

Responsible for testing and report:	DiplIng. Daniel Gall
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2016-02-15
Testing Period:	2015-11-29 to 2015-12-21

3. **Applicant Data**

Company Name:	PARROT DRONE SAS
Address:	174 Quai de Jemmapes 75010 Paris France
Contact Person:	Mr. Pierre Alain Marchand

Contact Person:

Manufacturer Data 4.

Company Name:	Please see at applicant data

Address:

Contact Person:

3.Test object Data

1. General EUT Description

Kind of Device product description	Multi-spectral Camera with integrated WLAN & GPS Receiver	
Product name	Multi-spectral camera	
Туре	SEQUOIA	
Declared EUT data by	the supplier	
Voltage Type	DC	
Voltage Level	5.0 V	
Tested Modulation Type	DBPSK; OFDM:BPSK; OFDM:64-QAM	
General product description	Sequoia is a multi-spectral sensor with integrated GPS/GNSS and WLAN, specifically for farming. The Sequoia sensor is designed to be suitable for all types of drones. It can be used to get images of agricultural fields in several spectral bands which measure the state of the vegetation: Green (550nm wavelength, 40nm bandwidth), Red (660nm wavelength, 40nm bandwidth), Red Edge (735nm wavelength, 10nm bandwidth) and Near Infrared (790nm wavelength, 40nm bandwidth).	
Specific product description for the EUT	The EUT is a single band WLAN (802.11 2.4 GHz b/g/n device with one antenna connector for WLAN. In IEEE 802.11n mode it supports 20 MHz bandwidth channels (up to MCS7), providing max. 72.2 Mbit/s transfer data rate. The object of this test report is the WLAN transceiver, consequently switched on the IEEE 802.11 b/g/n modes, working in the 2.4 GHz band. In IEEE 802.11n mode, it was tested with 20 MHz channel bandwidth (only SISO).	
The EUT provides the following ports:	 Enclosure Micro-B USB port (power supply & data transfer) Micro-A USB port (connection to the Irradiance module) 	

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

2. EUT Main components

Sample Name	Sample Code Description	
Irradiance Module	DE1018016ba01	GPS Receiver, SD Card slot
Sample Parameter	Value	
Serial No.	PI040379D159000001	
HW Version	DV	
SW Version	0.4.1	
Comment		

Sample Name	Sample Code	Description
WLAN Camera	DE1018016aa01	Radiated Sample
Sample Parameter	Value	
Serial No.	PI040378D159000006	
HW Version	DV	
SW Version	0.4.1	
Comment		

Sample Name	Sample Code	Description
WLAN Camera	DE1018016ab01	Conducted Sample
Sample Parameter	Value	
Serial No.	PI040378D159000012	
HW Version	DV	
SW Version	0.4.1	
Comment		

Sample Name	Sample Code	Description
WLAN Camera	DE1018016ac01	Radiated Sample
Sample Parameter	Value	
Serial No.	PI040378D159000011	
HW Version	DV	
SW Version	0.4.1	
Comment		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3. Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Reason for using
-	-	-

4. Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.

But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Reason for using
Power Bank (DE1018016AKKU1)	Qualcomm, -, -, -	Power supply during conducted tests
Power Bank (DE1018016AKKU2)	Qualcomm, -, -, -	Power supply during conducted tests
TC E250 (AC adapter)	HTC, -, -, 2RSA119F022294	Power supply during radiated tests

5. EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
A01	WLAN Camera [aa01], Irradiance module [ba01], AC Charger [TC E250]	Setup for Radiated Measurements
A02	WLAN Camera [ab01], Power Bank,	Setup for Conducted Measurements
A03	WLAN Camera [ac01], Irradiance module [ba01], AC Charger [TC E250]	Setup for Radiated Measurements

6. Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

1. Test Channels

	Band:					
	900 MHz			2.4 GHz ISM		
	902 - 928 MHz			2400 - 2483.5 MHz		
20 MHz Test Channels:	low	mid	high	low	mid	high
Channel:	-	-	-	1	6	11
Frequency [MHz]	-	-	-	2412	2437	2462

40 MHz Test Channels:	low	mid	high	low	mid	high
Channel:	-	-	-	-	-	-
Frequency [MHz]	-	-	-	-	-	-

2. Test Data Rates

SISO:

WLAN b-Mode; 20 MHz; 1 Mbit/s
WLAN g-Mode; 20 MHz; 6 Mbit/s
WLAN n-Mode; 20 MHz; 7.2 Mbit/s

These data rates are the worst case data rates for each WLAN mode.

7. Product labelling

1. FCC ID label

Please refer to the documentation of the applicant.

2. Location of the label on the EUT

Please refer to the documentation of the applicant.

4.Test Results

1. Conducted Emissions at AC Mains

Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

The test was performed according to: ANSI C63.10

1. Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.10 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak Maxhold & Average
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 5 kHz
- IF–Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

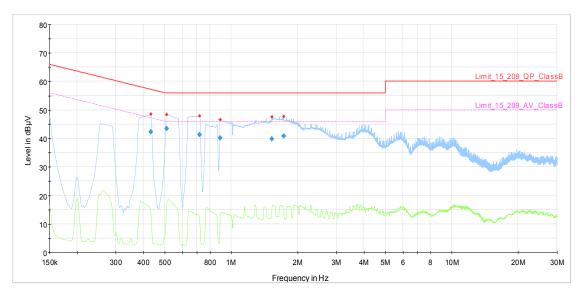
- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

2. Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz)	QP Limit (dBµV)	AV Limit (dBμV)
0.15 - 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50


Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

3. Test Protocol

Temper Air Pres Humidit	sure:	23 °C 1018 hPa 43 %					
Power line	Frequency [MHz]	Measured value QP [dBµV]	Measured value AV [dBµV]	QP Limit [dBµV]	AV Limit [dBµV]	Margin QP [dB]	Margin AV [dB]
Ν	0.5	43.5		56.0	46.0	12.5	
Ν	0.7	41.3		56.0	46.0	14.7	
Ν	0.9	40.2		56.0	46.0	15.8	
L	0.4	42.6		57.2	47.2	14.9	
L	1.5	39.8		56.0	46.0	16.2	
L	1.7	40.9		56.0	46.0	15.1	

Remark: Please see next sub-clause for the measurement plot.

4. Measurement Plot (showing the highest value, "worst case")

5. Test Equipment used

Conducted Emissions

2. Occupied Bandwidth (6 dB)

Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

The test was performed according to: ANSI C63.10

1. Test Description

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz

- Video Bandwidth (VBW): 300 kHz
- Span: 30 / 50 MHz (for 20 / 40 MHz nominal bandwidth)
- Detector: Peak

2. Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

3. Test Protocol

Ambient	temperature:	23 °C
Ambient	compendation .	25 C

Air Pressure:	1008 hPa
Humidity:	36 %

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412.0	10.1	0.5	9.6
	6	2437.0	10.1	0.5	9.6
	11	2462.0	10.1	0.5	9.6

WLAN g-Mode; 20 MHz; 6 Mbit/s

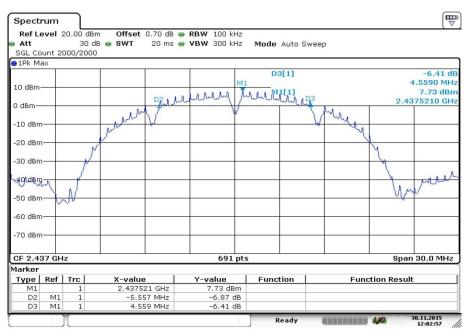
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412.0	15.5	0.5	15.0
	6	2437.0	15.2	0.5	14.7
	11	2462.0	15.5	0.5	15.0

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth	Limit [MHz]	Margin to Limit
2.4 GHz ISM	1	2412.0	[MHz] 15.2	0.5	[MHz] 14.7
	6	2437.0	15.3	0.5	14.8
	11	2462.0	15.2	0.5	14.7

WLAN n-Mode; 20 MHz; 7.2 Mbit/s

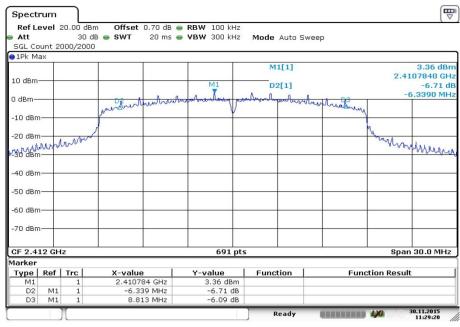
Remark: Please see next sub-clause for the measurement plot.

4. Measurement Plots (showing the lowest value, "worst case")


Spect							[
	evel 3	20.00 dBr					
Att				VBW 300 kHz	Mode Auto Sv	weep	
		000/2000					
∋1Pk Ma	эх						
					M1[1]		6.55 di
10 dBm-	_			M1.			2.4357410 G
				workentary pr	D2[1]		-6.71
0 dBm—			DEmalmantme	moundary an	ananger and a second second	Mundung 3	-6.2950 M
			~ _	Y		y	
-10 dBm			1			- h_	
	- ADA	man	1			yu	monteria
20 886	100 40	www					mount
-30 dBm				-			
-40 dBm	-						
-50 dBm	-						
-60 dBm							
-70 dBm							
CF 2.43	37 GH	z		691 pts		10 A	Span 30.0 MH
1arker							
Type	Ref	Trc	X-value	Y-value	Function	Functi	on Result
M1		1	2.435741 GHz	6.55 dBm			
D2	M1	1	-6.295 MHz	-6.71 dB			
D3	M1	1	8.857 MHz	-6.05 dB			
	1.0	1			Ready	CONTRACTOR 4	30.11.2015

g-mode, channel 6

Date: 30.NOV.2015 12:00:28



b-mode, channel 6

Date: 30.NOV.2015 12:02:57

n-mode, channel 1

Date: 30.NOV.2015 11:29:20

5. Test Equipment used

Radio Laboratory

3. Occupied Bandwidth (99%)

Standard

The test was performed according to: ANSI C63.10

1. Test Description

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 500 kHz
- Video Bandwidth (VBW): 2000 kHz
- Span: 30 / 50 MHz (for 20 / 40 MHz nominal bandwidth)
- Detector: Sample
- Trace: Maxhold

The 99% OBW function of the analyser is used.

2. Test Requirements / Limits

No applicable limit:

3. Test Protocol

Ambient temperature:	23 °C
Air Pressure:	1008 hPa

Humidity: 36 %

WLAN b-Mode; 20 MHz; 1 Mbit/s

		-	
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412.0	14.5
	6	2437.0	14.8
	11	2462.0	14.8

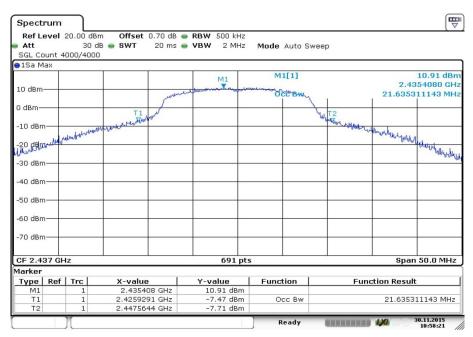
WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412.0	16.9
	6	2437.0	21.6
	11	2462.0	17.0

WLAN n-Mode; 20 MHz; 7.2 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412.0	18.1
	6	2437.0	20.8
	11	2462.0	18.1

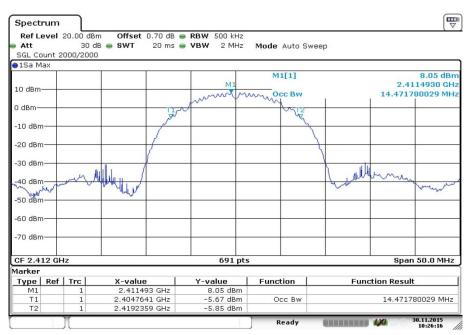
Remark: Please see next sub-clause for the measurement plot.


4. Measurement Plots (showing the lowest value, "worst case")

Spect	rum											
	evel	20.00			RBW 500 k							('
Att) dB 👄 SWT	20 ms	VBW 2 M	Hz	Mode A	uto Si	weep			
SGL C	ount 2	2000/20	000									
●1Sa M	1ax											
						1	M1	[1]				9.05 dBn
					M1						2.41	01910 GH
10 dBm					unwheel	, down	DOM MAN	BW			18,0897	25036 MH
				TIMM	where wheel	T"		munu	J2		1	1
0 dBm-				¥					Y			
				1		1			4			
-10 dBr	n-+-			1º		+			1.1			-
			N. M. Menrich			1			Much	Well		
-20 dBr	n —	1. Likely	Raily and the			-				Wander - Chille	Monthal	
1	MAL	maria	noundlinin			1					" www.ubilry	white .
-30 dB	H-Horney -					-						Milling and Milling
Maria						1						MM
-40 dBr	n					+						
						1						
-50 dBr	n											
						1						
-60 dBr	n											
						1						
-70 dBr	n											
, o ab.												
CF 2.4	12 GF	lz			691	pts					Span	50.0 MHz
Marker												
Туре	Ref	Trc	X-value	e	Y-value		Functi	on		Fund	tion Result	t
M1		1	2.4101	91 GHz	9.05 dB							
T1		1	2.40288	28 GHz	-3.01 dB	3m	Occ	BW			18.0897	25036 MHz
T2		1	2.42097	25 GHz	-1.29 dB	3m						
		1					De	ady	-		DO	30.11.2015
		Л					Re	auy			a de la de l	11:02:51

n-mode, channel 1

Date: 30.NOV.2015 11:02:52


g-mode, channel 6

Date: 30.NOV.2015 10:58:21

b-mode, channel 1

Date: 30.NOV.2015 10:26:16

5. Test Equipment used

Radio Laboratory

4. Peak Power Output

Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

The test was performed according to: ANSI C63.10

1. Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Trace: Maxhold

The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth)

2. Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz and 2400-2483.5 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = $10 \log (\text{Limit (W)}/1\text{mW})$

3. Test Protocol

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412.0	19.8	30.0	10.2
	6	2437.0	19.5	30.0	10.5
	11	2462.0	19.0	30.0	11.0

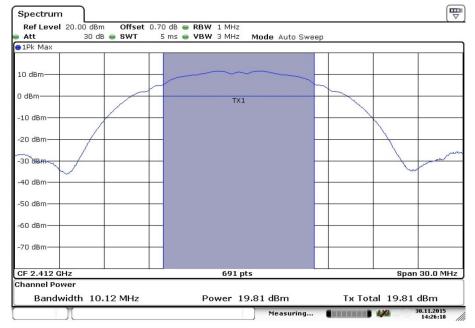
WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412.0	22.8	30.0	7.2
	6	2437.0	24.9	30.0	5.1
	11	2462.0	22.7	30.0	7.3

WLAN n-Mode; 20 MHz; 7.2 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1.0	2412.0	23.1	30.0	6.9
	6.0	2437.0	24.1	30.0	5.9
	11.0	2462.0	22.7	30.0	7.3

Remark: Please see next sub-clause for the measurement plot.



4. Measurement Plot (showing the highest value, "worst case")

Spectrum			(₽
RefLevel 20.00	dBm Offset 30 dB 👄 SWT	0.70 dB RBW 1 MHz 5 ms VBW 3 MHz Mode Auto Sween		
• 1Pk Max	50 UB 🥌 3WI	5 ms 🖶 VBW 3 MHz 🛛 Mode Auto Sweep		
10 dBm				
0 dBm		TX1	and the second s	
-10 dBm				~10
10 dbiii				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
CF 2.437 GHz		691 pts	Span 30.8 MI	Hz
Channel Power				
Bandwidth	15.15 MHz	Power 24.87 dBm	Tx Total 24.87 dBm	_
		Measuring	30.11.2015 14:45:48	

g-mode, channel 6

Date: 30.NOV.2015 14:45:48



b-mode, channel 1

Date: 30.NOV.2015 14:26:18

n-mode, channel 6

Date: 30.NOV.2015 14:42:33

5. Test Equipment used

Radio Laboratory

5. Spurious RF Conducted Emissions

Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

The test was performed according to: ANSI C63.10

1. Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Detector: Peak-Maxhold
- Frequency range: 30 25000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz

- Sweep Time:

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted" (cf. chapter 7.3). This value is used to calculate the 20 dBc limit.

2. Test Requirements / Limits

330 s

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

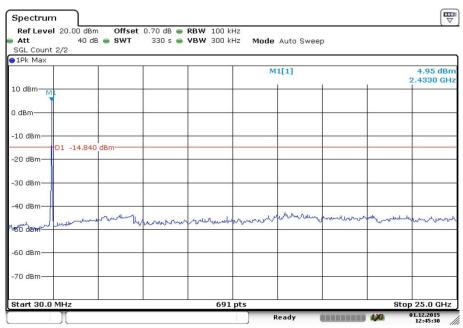
3. Test Protocol

Ambient temperature:	23 °C
Air Pressure:	1008 hPa
Humidity:	36%

WLAND-		MHZ; I MDI	1/3					
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412.0	-	-	PEAK	100.0	7.9	-12.1	
6	2437.0	-	-	PEAK	100.0	6.6	-13.4	
11	2462.0	-	-	PEAK	100.0	7.9	-12.1	

WLAN b-Mode; 20 MHz; 1 Mbit/s

WLAN g-Mode; 20 MHz; 6 Mbit/s

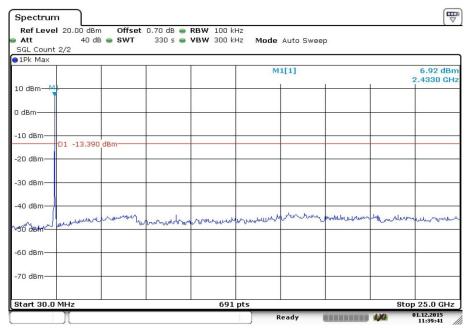

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412.0	-	-	PEAK	100.0	3.2	-16.8	
6	2437.0	-	-	PEAK	100.0	5.9	-14.1	
11	2462.0	-	-	PEAK	100.0	2.2	-17.8	

WLAN n-Mode; 20 MHz; 7.2 Mbit/s

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412.0	-	-	PEAK	100.0	3.5	-16.5	
6	2437.0	-	-	PEAK	100.0	5.2	-14.8	
11	2462.0	-	-	PEAK	100.0	3.7	-16.3	

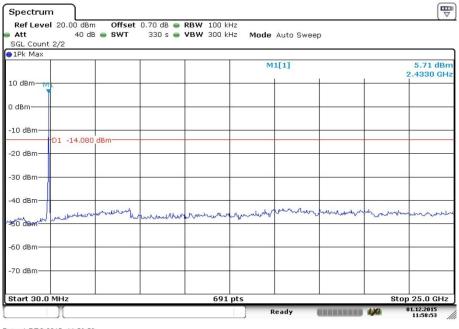
Remark: Please see next sub-clause for the measurement plot.

4. Measurement Plot (showing the highest value, "worst case")



n-mode, channel 6

Date: 1.DEC.2015 12:45:30



b-mode, channel 6

Date: 1.DEC.2015 11:39:42

g-mode, channel 6

Date: 1.DEC.2015 11:58:53

5. Test Equipment used

Radio Laboratory

6. Spurious Radiated Emissions

Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

The test was performed according to: ANSI C63.10

1. Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m² in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

- Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF–Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°

- Height variation range: 1 – 3 m

- Height variation step size: 1.5 m

- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 150 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The highest emission will be recorded and adjusted. In this position, the value of emission is also continuously measured. The antenna height determined be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: ± 45 ° around the determined value
- Height variation range: ± 150 cm around the determined value

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

- EMI receiver settings for step 4:
- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

- The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.
- Due to the fact, that in this frequency range the test is performed in a fully anechoic room, step 2 is omitted.
- All steps were performed with one height (1.5m) of the receiving antenna only.
- The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.
- The turn table step size (azimuth angle) for the preliminary measurement is 45 °.
- The turn table azimuth will slowly vary by ± 22.5°.
- The elevation angle will slowly vary by ± 45°

EMI receiver settings:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the measurement overview for the used frequency range.

2. Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)	
0.009 - 0.49	2400/F(kHz)	300@3	48.5 - 13.8	
0.49 - 1.705	24000/F(kHz)	30@3	33.8 - 23.0	
1.705 - 30	30	30@3	29.5	

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 – 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

3. Test Protocol

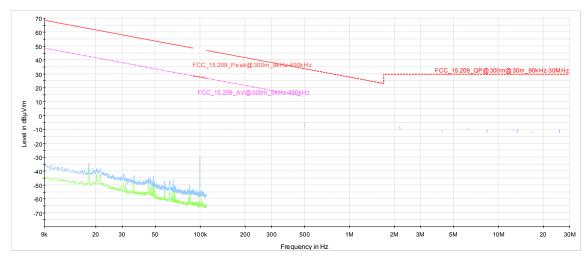
Ambient temperature: 23-24 °C

Air Pressure: 1003-1013 hPa

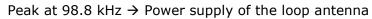
Humidity: 34-35 %

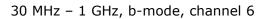
WLAN b-Mode; 20 MHz; 1 Mbit/s			Applied duty cycle correction (AV) [dB]:				0.1	
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	2361.4	61.0	PEAK	1000	74.0	13.0	RB
1	2412	4824.4	57.0	PEAK	1000	74.0	16.3	RB
1	2412	2361.1	52.7	AV	1000	54.0	1.3	RB
1	2412	4824.0	53.9	AV	1000	54.0	0.1	RB
6	2437	2386.4	60.3	PEAK	1000	74.0	13.7	RB
6	2437	2500.0	58.1	PEAK	1000	74.0	16.3	RB
6	2437	4874.1	55.5	PEAK	1000	74.0	16.3	RB
6	2437	2385.8	49.0	AV	1000	54.0	5.0	RB
6	2437	2500.0	46.1	AV	1000	54.0	7.9	RB
6	2437	4874.1	52.8	AV	1000	54.0	1.2	RB
11	2462	2389.4	59.0	PEAK	1000	74.0	15.0	RB
11	2462	2488.0	59.7	PEAK	1000	74.0	14.3	RB
11	2462	4924.1	57.0	PEAK	1000	74.0	17.0	RB
11	2462	2389.9	48.1	AV	1000	54.0	5.9	RB
11	2462	2487.6	50.2	AV	1000	54.0	3.8	RB
11	2462	4924.1	53.9	AV	1000	54.0	0.1	RB

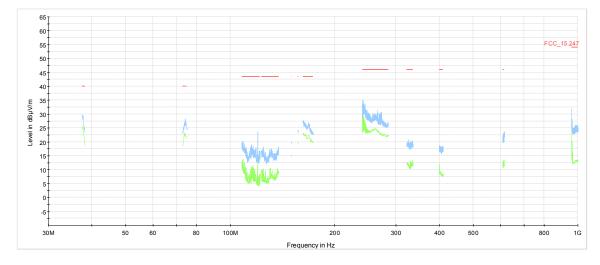
WLAN g-Mode; 20 MHz; 6 Mbit/s			Applied duty cycle correction (AV) [dB]:				0.6	
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	2388.6	67.9	PEAK	1000	74.0	6.1	RB
1	2412	2499.3	54.3	PEAK	1000	74.0	19.7	RB
1	2412	4822.6	55.9	PEAK	1000	74.0	18.1	RB
1	2412	2390.0	45.9	AV	1000	54.0	8.1	RB
1	2412	2499.3	39.0	AV	1000	54.0	15.0	RB
1	2412	4822.4	42.6	AV	1000	54.0	11.4	RB
6	2437	2387.6	64.6	PEAK	1000	74.0	9.4	RB
6	2437	2499.9	61.3	PEAK	1000	74.0	12.7	RB
6	2437	2386.9	50.4	AV	1000	54.0	3.6	RB
6	2437	2499.4	47.2	AV	1000	54.0	6.8	RB
11	2462	2389.5	60.1	PEAK	1000	74.0	13.9	RB
11	2462	2492.2	60.1	PEAK	1000	74.0	13.9	RB
11	2462	2389.4	43.6	AV	1000	54.0	10.4	RB
11	2462	2499.5	42.6	AV	1000	54.0	11.4	RB

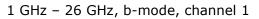

WLAN n-Mode; 20 MHz; 7.2 Mbit/s			Applied duty cycle correction (AV) [dB]:				0.7	
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	2389.9	71.1	PEAK	1000	74.0	2.9	RB
1	2412	2497.8	57.6	PEAK	1000	74.0	16.4	RB
1	2412	4824.7	57.9	PEAK	1000	74.0	16.1	RB
1	2412	2389.9	51.3	AV	1000	54.0	2.7	RB
1	2412	2499.8	40.7	AV	1000	54.0	13.3	RB
1	2412	4822.2	44.4	AV	1000	54.0	9.6	RB
6	2437	2382.6	63.7	PEAK	1000	74.0	10.3	RB
6	2437	2487.9	64.2	PEAK	1000	74.0	9.8	RB
6	2437	2387.3	47.8	AV	1000	54.0	6.2	RB
6	2430	2491.9	47.9	AV	1000	54.0	6.1	RB
11	2462	2389.4	59.7	PEAK	1000	74.0	14.3	RB
11	2462	2499.7	62.1	PEAK	1000	74.0	11.9	RB
11	2462	2389.4	43.1	AV	1000	54.0	10.9	RB
11	2462	2499.6	42.4	AV	1000	54.0	11.6	RB

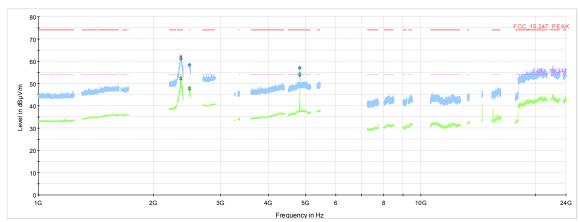
RB – Restricted Band


Remark: Please see next sub-clause for the measurement plot.




4. Measurement Plot (showing the highest value, "worst case")




9 kHz – 30 MHz, b-mode, channel 6

5. Test Equipment used

Radiated Emissions

7. Band Edge Compliance Conducted

Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

The test was performed according to: ANSI C63.10

1. Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement. For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room.

For the lower band edge the EUT is set to transmit as follows: For a WLAN transmitter working in the 2.4 GHz band on lowest channel: CH1 = 2412 MHz / CH3 = 2422 MHz for a channel bandwidth of 20 / 40 MHz. The lower band edge is 2400 MHz for 2.4 GHz band transmitter. For the higher band edge the EUT is set to transmit as follows: For a WLAN transmitter working in the 2.4 GHz band on highest channel: CH11 = 2462 MHz or CH13 = 2472 MHz / CH11= 2462 MHz for a channel bandwidth of 20 / 40 MHz. The higher band edge is 2483.5 MHz for a 2.4 GHz band transmitter. Analyzer settings for conducted measurement: - Detector: Peak

- RBW / VBW = 100 / 300 kHz

2. Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

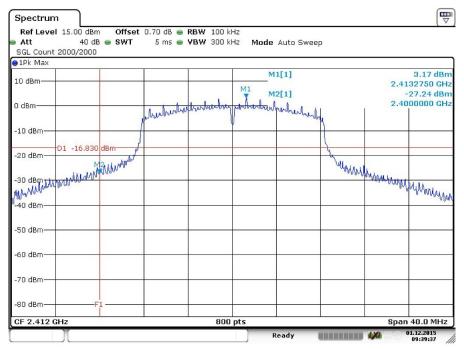
For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

3. Test Protocol

Ambient temperature:	23 °C
Air Pressure:	1008 hPa
Humidity:	36%

WLAN b-N								
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-45.6	PEAK	100	7.9	-12.1	33.5
11	2462	2483.5	-45.3	PEAK	100	8.0	-12.0	33.3

WLAN g-I	Mode; 20 MHz;			-	-			
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-27.2	PEAK	100	3.2	-16.8	10.4
11	2462	2483.5	-39.8	PEAK	100	2.2	-17.8	22.1


WLAN n-N								
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-27.9	PEAK	100	3.5	-16.5	11.3
11	2462	2483.5	-37.7	PEAK	100	3.7	-16.3	21.4

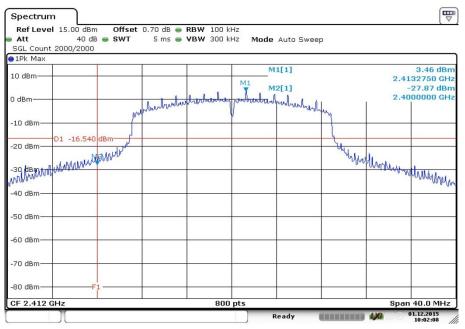
Remark: Please see next sub-clause for the measurement plot.



4. Measurement Plot (showing the highest value, "worst case")

g-mode, channel 1

Date: 1.DEC.2015 09:39:36



b-mode, channel 11

Date: 1.DEC.2015 08:37:34

n-mode, channel 1

Date: 1.DEC.2015 10:02:08

5. Test Equipment used

Radio Laboratory

8. Band Edge Compliance Radiated

Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

The test was performed according to: ANSI C63.10

1. Test Description

Please see chapter 6.1 (Radiated spurious Emissions)

Showing compliance of the higher band edge falls in to restricted bands by a radiated measurement. The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 3 m distance.

EMI receiver settings for radiated measurement:

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

2. Test Requirements / Limits

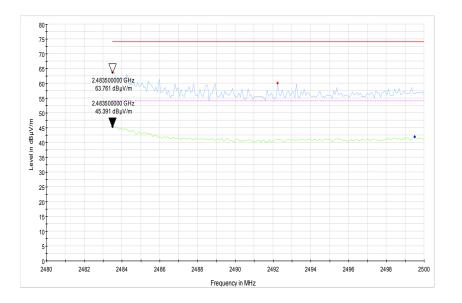
Please see chapter 6.2 (Radiated spurious Emissions)

3. Test Protocol

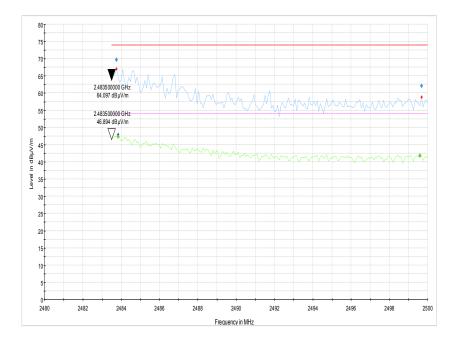
Ambient temperature: 23 – 24 °C Air Pressure: 1003 –1 013 hPa Humidity: 34 – 35 %

WLAN b	-Mode; 20	MHz; 1 MI	pit/s	Applied of	Applied duty cycle correction (AV) [dB]:			
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	52.6	PEAK	1000	74.0	21.4	BE
11	2462	2483.5	41.8	AV	1000	54.0	12.2	BE

WLAN g-Mode; 20 MHz; 6 Mbit/s			Applied of	(AV) [dB]:	0.6			
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	63.8	PEAK	1000	74.0	10.2	BE
11	2462	2483.5	46.0	AV	1000	54.0	8.0	BE

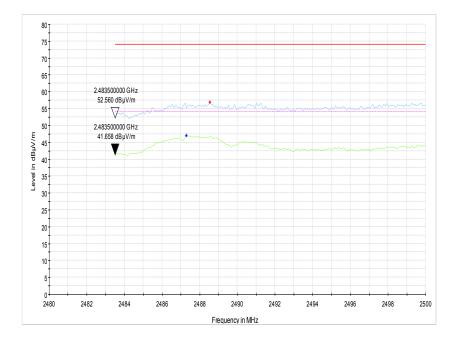

WLAN n-Mode; 20 MHz; 7.2 Mbit/s			Applied of	(AV) [dB]:	0.7			
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	64.1	PEAK	1000	74.0	9.9	BE
11	2462	2483.5	47.6	AV	1000	54.0	6.4	BE

Remark: Please see next sub-clause for the measurement plot.



4. Measurement Plot (showing the highest value, "worst case")

g-mode, channel 11



n-mode, channel 11

b-mode, channel 11

5. Test Equipment used

Radiated Emissions

9. Power Density

Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

The test was performed according to: ANSI C63.10

1. Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold
- Resolution Bandwidth (RBW): 3 kHz
- Video Bandwidth (VBW): 10 kHz
- Sweep Time: Coupled

2. Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The same method of determining the conducted output power shall be used to determine the power spectral density.

3. Test Protocol

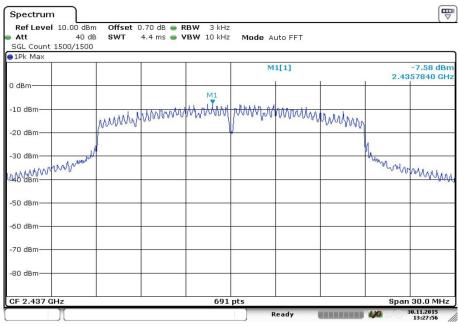
Ambient temperature:	23 °C
Air Pressure:	1008 hPa
Humidity:	36%

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412.0	-4.8	8.0	12.8
	6	2437.0	-5.8	8.0	13.8
	11.0	2462.0	-5.7	8.0	13.7

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412.0	-9.7	8.0	17.7
	6	2437.0	-7.2	8.0	15.2
	11	2462.0	-10.0	8.0	18.0

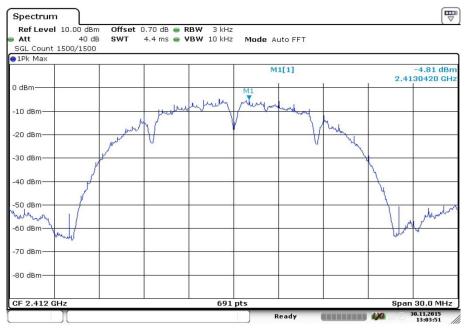


Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412.0	-9.5	8.0	17.5
	6	2437.0	-7.6	8.0	15.6
	11	2462.0	-9.1	8.0	17.1

WLAN n-Mode; 20 MHz; 7.2 Mbit/s

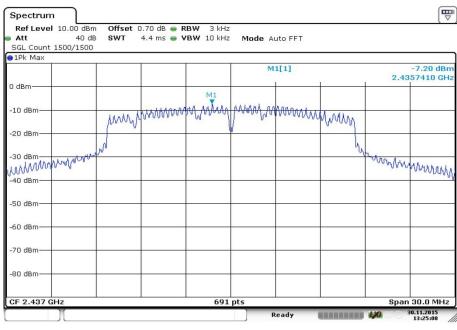
Remark: Please see next sub-clause for the measurement plot.

4. Measurement Plot (showing the highest value, "worst case")



n-mode, channel 6

Date: 30.NOV.2015 13:27:56



b-mode, channel 1

Date: 30.NOV.2015 13:03:51

g-mode, channel 6

Date: 30.NOV.2015 13:25:08

5. Test Equipment used

Radio Laboratory

1

5.Test Equipment

Radiated Emissions

Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Calibration Due
1.1	3160-09	/ Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH		_
1.2	Fully Anechoic Room	8.80 x 4.60 x 4.05 m³ (l x w x h)		P26971-647- 001-PRB	2018-06-28
1.3	FO RS232 Link	Fibre optic link Transceiver (Aux)	Pontis	182-018	-
1.4	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11-13
1.5	Semi Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2017-01-09
1.6	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2016-05-11
1.7	FO RS232 Link	Fibre optic link Satellite (Aux)	Pontis	181-018	
1.8	JS4-18002600-32- 5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785	-
1.9	JS4-00101800-35- 5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037	-
1.10	HL 562	Ultralog new biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-06-30
1.11	Opus10 THI (8152.00)	ThermoHygro Datalogger 12 (Environ)		12482	2017-03-10
1.12	JS4-00102600-42- 5A		Miteq	619368	-
1.13	HFH2-Z2		Rohde & Schwarz GmbH & Co. KG	829324/006	2017-11-27
1.14	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-11-17
1.15	Opus10 TPR (8253.00)			13936	2017-02-27
1.16	SMR 20	Signal Generator	Rohde & Schwarz	846834/008	2017-06-24
1.17	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304	-

2 Radio Laboratory

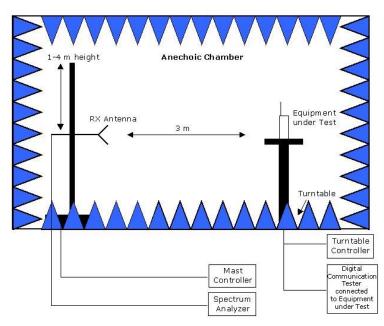
FCC conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Calibration Due
2.1	OSP120	-	Rohde & Schwarz GmbH & Co. KG	101158	2016-08-21
2.2	Opus10 THI (8152.00)	ThermoHygro Datalogger 03 (Environ)	Lufft Mess- und Regeltechnik GmbH	7482	2017-02-27
2.3	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz GmbH & Co. KG	107695	2017-06-06
2.4	VT 4002	Climatic Chamber	Vötsch	585660021500 10	2016-03-11
2.5	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2016-02-10
2.6	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz GmbH & Co. KG	259291	2016-08-23
2.7	Datum, Model: MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2016-06-25

3 **Conducted Emissions**

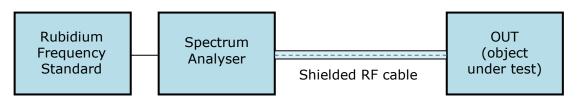
Shielded Room 02

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Calibration Due
3.1	ESH 3-Z5	Two-Line V- Network	Rohde & Schwarz	828304/029	2017-03-31
3.2	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11-13
3.3	EP 1200/B, NA/B1	Amplifier with integrated variable Oscillator	Spitzenberger & Spieß	B6278	2018-07-23
3.4	Opus10 THI (8152.00)	ThermoHygro Datalogger 02 (Environ)	Lufft Mess- und Regeltechnik GmbH	7489	2017-02-27
3.5	ESH 3-Z5	Two-Line V- Network	Rohde & Schwarz	829996/002	2017-03-31
3.6	1-phase 16A	Line impedance simulation system	Spitzenberger & Spieß	B6279	2018-07-22
3.7	Opus10 TPR (8253.00)	ThermoAirpres sure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2017-02-27
3.8	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304	-



6.Photo Report

Please see separate photo report.



7.Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.

Drawing 2: Setup for conducted radio tests.

8. Measurement Uncertainties

Test Case	Parameter	Uncertainty
Conducted Emissions at AC mains	Voltage	± 3.4 dB
Field Strength of spurious radiation / Band Edge Compliance Radiated	Field strength	± 5.5 dB
Occupied Bandwidth (6 dB / 26 dB / 99%) Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Spurious RF Conducted Emissions / Band Edge Compliance Conducted	Power	± 2.2 dB
Power Spectral Density	Power	± 2.2 dB