

SAR Test Report

Report No.: AGC02115180501FH01

APPLICATION PURPOSE	: Original Equipment
PRODUCT DESIGNATION	: PARROT SKYCONTROLLER 3
BRAND NAME	: PARROT
MODEL NAME	: MPP3
CLIENT	: Parrot Drones
DATE OF ISSUE	: July 10,2018
STANDARD(S)	IEEE Std. 1528:2013 : FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005;
REPORT VERSION	: V1.1

Attestation of Global Compliance(Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.ago.gott.com.

Report No.: AGC02115180501FH01 Page 2 of 80

Report Revise Record

Report Version	port Version Revise Time Issued Date Valid Version		Notes	
V1.0	L. Summary	July 03,2018	Invalid	Initial Release
CV1.1	1 st	July 10,2018	Valid	Add the impedance and return loss of the Dipole on page 20

The results show on this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Test Report Certification				
Applicant Name	Parrot Drones			
Applicant Address	174 quai de Jemmapes 75010 Paris, France			
Manufacturer Name	Dashine Electronics Co.			
Manufacturer Address	No.53, Guangtian Road, Yanchuan community, Yanluo street, Bao'an District ShenZhen, China			
Product Designation	PARROT SKYCONTROLLER 3			
Brand Name	PARROT			
Model Name	MPP3			
EUT Voltage	DC 3.6V by Battery			
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005			
Test Date	June 22,2018 to June 27,2018			
Report Template	AGCRT-US-5G/SAR (2018-01-01)			

Note: The results of testing in this report apply to the product/system which was tested only.

Thea Huang

Tested By

鑫 宇 环 检 测 Attestation of Global Compliance

Thea Huang (Huang Qianqian)

June 27,2018

de li

Checked By

Angela Li(Li Jiao)

July 10,2018

west a

Authorized By

Forrest Lei(Lei Yonggang) Authorized Officer July 10,2018

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC02115180501FH01 Page 4 of 80

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	
2. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	7
 3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE	
4. SAR MEASUREMENT PROCEDURE	
 4.1. SPECIFIC ABSORPTION RATE (SAR) 4.2. SAR MEASUREMENT PROCEDURE 4.3. RF EXPOSURE CONDITIONS. 	12 14
5. TISSUE SIMULATING LIQUID	16
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID 5.2. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS 5.3. TISSUE CALIBRATION RESULT	16 17
6. SAR SYSTEM CHECK PROCEDURE	18
6.1. SAR System Check Procedures 6.2. SAR System Check 6.3 Impedance and return loss of the Dipole	19
7. EUT TEST POSITION	30
7.1. BODY WORN POSITION	
8. SAR EXPOSURE LIMITS	
9. TEST FACILITY	
10. TEST EQUIPMENT LIST	
11. MEASUREMENT UNCERTAINTY	
12. CONDUCTED POWER MEASUREMENT	
13. TEST RESULTS	
13.1. SAR TEST RESULTS SUMMARY	
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	51
APPENDIX C. TEST SETUP PHOTOGRAPHS	
APPENDIX D. CALIBRATION DATA	80

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 16°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Frequency Band	Antenna 0 Body (with 0mm separation)	Antenna 1 Body (with 0mm separation)	SAR Test Result
WIFI 2.4GHz	1.290	0.827	C Allestation C
WIFI 5.2GHz	° 🐔 1.136 🛛 🔬 🍒	0.701	
WIFI 5.8GHz	0.869	0.915	Pass
Simultaneous Reported SAR	2.	117	
SAR Test Limit (W/Kg)	4	4.0 The second	Austanon

Highest Reported 1g-Body SAR

Frequency Band	Antenna 0 Body (with 10mm	Antenna 1 Body (with 10mm	SAR Test Result
	separation)	separation)	
WIFI 2.4GHz	0.934	0.490	
WIFI 5.2GHz	0.614	0.418	-10
WIFI 5.8GHz	0.665	0.619	Pass
Simultaneous Reported SAR	1.4	24	
SAR Test Limit (W/Kg)	© 🐔 🕺 👘 🖉 🌗 1.	6	

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

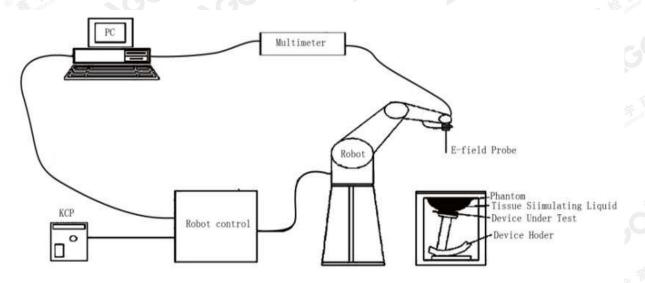
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- · KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 941225 D07 UMPC Mini Tablet v01r02

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.ago.gott.com.

2. GENERAL INFORMATION

2.1. EUT Description

General Information			
Product Designation	PARROT SKYCONTROLLER 3		
Test Model	MPP3		
Hardware Version	HW02		
Software Version	1.0.1		
Device Category	Portable		
RF Exposure Environment	Uncontrolled		
Antenna Type	Internal		
2.4GHz WIFI	A TA BANK THE TANK		
WIFI Specification	□802.11a ⊠802.11b ⊠802.11g ⊠802.11n(20) □802.11n(40)		
Operation Frequency	2412~2462MHz		
EIRP	11b:21.3dBm,11g:23.5dBm,11n(20):23.9dBm		
Antenna Gain	Antenna0:2.55dBi; Antenna1:2.41dBi;		
5GHz WIFI			
WIFI Specification	⊠802.11a ⊠802.11n20 _802.11ac20 _802.11n40 _802.11ac40 □802.11ac80		
Operation Frequency	5.180-5240GHz, 5475-5.825GHz		
Type of modulation	BPSK, QPSK, 16QAM, 64QAM, 128QAM, 256QAM,OFDM		
EIRP	UNII-1: 802.11a20:22.9dBm; 802.11n(20):23.1dBm; UNII-3: 802.11a20:26.2dBm; 802.11n(20):26.0 dBm		
Antenna Gain	Antenna0: 5.15GHz:3.26dBi; 5.75GHz:3.74dBi; Antenna1: 5.15GHz:3.14dBi; 5.75GHz:2.80 dBi;		
Li-ion Battery	State of the second sec		
Brand Name	PARROT		
Model Name	MCBAT00014		
Manufacturer Name	Desay Battery Co.,Ltd		
Manufacturer Address	No.6, ZhongKai, High-Tech Industry DevelopmentZone, HuiZhou, Guangdong China.		
Capacitance	2500mAh		
Rated Voltage/ Charging Voltage	DC3.6V/ DC4.2V		


Note: 1. The sample used for testing is end product.

The results shown the sample(s) are retained for 30 days only. The document is issued by AGC, this document is cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE1528 etc.)Under ISO17025.The calibration data are in Appendix D.

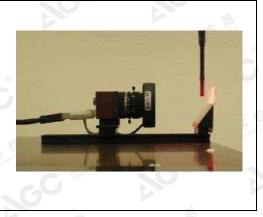
Isotropic E-Field Probe Specification

Model	SSE2	
Manufacture	MVG	
Identification No.	SN 08/16 EPGO282	Allesialio
Frequency	0.7GHz-6GHz Linearity:±0.06dB(700MHz-6GHz)	GU
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.06dB	
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm	
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.	ALL THE

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France).For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used. The XL robot series have many features that are important for

- our application:
- □ High precision (repeatability 0.02 mm)
- □ High reliability (industrial design)
- □ Jerk-free straight movements
- □ Low ELF interference (the closed metallic
- construction shields against motor control fields)
- □ 6-axis controller


The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC02115180501FH01 Page 9 of 80

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with	
2mm shell thickness (except the ear region where shell	
thickness increases to 6mm). It has three measurement	
areas:	
□ Left head □ Right head	A second s
□ Flat phantom	
	*

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

ELLI39 Phantom

The Flat phantom is a fiberglass shell phantom with 2mm+/- 0.2 mm shell thickness. It has only one measurement area for Flat phantom

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

SAR = c

Where

SAR E σ ρ is the specific absorption rate in watts per kilogram;

- is the r.m.s. value of the electric field strength in the tissue in volts per meter;
 - is the conductivity of the tissue in siemens per metre;
- is the density of the tissue in kilograms per cubic metre;
- is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{T}{t}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

The results spow of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cent.com.

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

\leq 3 GHz	> 3 GHz
$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
30°±1°	$20^{\circ} \pm 1^{\circ}$
≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
	$5 \pm 1 \text{ mm}$ $30^{\circ} \pm 1^{\circ}$ $\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$ When the x or y dimension o measurement plane orientation the measurement resolution mathematic the mathematic the mathematic the mathematic the mathemat

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

	Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}},\Delta y_{\text{Zoom}}$			$\leq 2 \text{ GHz}$: $\leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$
		uniform	grid: ∆z _{Zoom} (n)	$\leq 5 \text{ mm}$	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	Maximum zoom scan spatial resolution, normal to phantom surface graded grid	tial resolution, 1 ^s mal to phantom to	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		grid	∆z _{Zoom} (n>1): between subsequent points	≤1.5·∆z	Zoom(n-1)
	Minimum zoom scan volume	x, y, z		\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm
	Note: δ is the penetration depth of a plane-wave at normal			l incidence to the tissue mediu	m: see draft standard IEEE

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Note: 6 is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of

when zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gatt.com.

Report No.: AGC02115180501FH01 Page 14 of 80

4.3. RF Exposure Conditions

Test Configuration and setting:

The device is a wireless remote control which support 2.4GHz & 5G Wifi;and has two antennas(antenna0 is on the Left ,antenna1 is on the Right).

EUT Top Edge Edge 1

For SAR testing, the EUT is configured with the WLAN continuous TX tool through software.

Antenna Location:

Antenna0 ◀· − EUT Left Edge Edge 4

Antenna1
 EUT Right Edge Edge 2

EUT Bottom Edge Edge 3

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gatt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 15 of 80

For antenna0(on the left):

Test Configurations	Antenna to edges/surface	SAR required	Note
Body	B E Tono	Global	
Back	<25mm	Yes	
Front	<25mm	Yes	- di ti di ti
Edge 1 (Top)	1mm	Yes	and the transformer of the transformer
Edge 2 (Right)	58mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D07
Edge 3 (Bottom)	146mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D07
Edge 4 (Left)	18mm	Yes	

For antenna1 (on the right):

Test Configurations	Antenna to edges/surface	SAR required	Note
Body			The state of the s
Back	<25mm	Yes	the man of the second of the s
Front	<25mm	Yes	
Edge 1 (Top)	1mm 🔍 🍏 👘	Yes	
Edge 2 (Right)	18mm	Yes	
Edge 3 (Bottom)	146mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D07
Edge 4 (Left)	58mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D07

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

	Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2- Propanediol	Triton X-100	Diethylen glycol monohex ylether
	2450 Body	70	· 7 1	0.0	9	0.0	20	0.0
Ē	5000 Body	80	0.0	0.0	10	0.0	10	0.0

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	he	ad		body	
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)	
300	45.3	0.87	45.3	0.87	
450	43.5	0.87	43.5	0.87	
835	41.5	0.90	41.5	0.90	
900	41.5	0.97	41.5	0.97	
1450	40.5	1.20	40.5	1.20	
1800 – 2000	40.0	1.40	40.0	1.40	
2450	39.2	1.80	39.2	1.80	
3000	38.5	2.40	38.5	2.40	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5600	35.5	5.07	48.5	5.77	
5800	35.3	5.27	48.2	6.00	

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cent.com.

5.3. Tissue Calibration Result

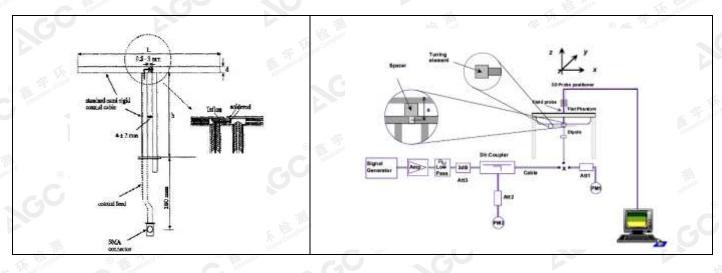
The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Dielectric Para	ameters (±5%)	Tissue	
	Fr. (MHz)	εr 52.7(50.065-55.335)	δ[s/m] 1.95(1.8525-2.0475)	Temp [°C]	Test time
Body	2412	54.16	1.88	1	12 3
	2437	53.60	1.90	21.7	June
	2450	53.02	1.93		22,2018
	2462	52.49	1.95		

		Tissue Stimulant Me	asurement for 5200MHz		
	Er	Dielectric Para	ameters (±5%)	Tissue	
abai Compliance	Fr. (MHz)	εr 49.0(46.55-51.450)	δ[s/m] 5.30(5.035 -5.565)	Temp [°C]	Test time
Body	5180	49.52	5.16	The Compliant	F Clobal Cont
	5200	48.85	5.18	21.3	June 26,2018
No.	5240	48.19	5.20		20,2010

		Tissue Stimulant Mea	surement for 5800MHz		
		Dielectric Para	meters (±5%)	Tissue	A C Alles
	Fr (MHz)	εr 48.2 (45.79-50.610)	δ[s/m] 6.00 (5.70-6.30)	Temp [°C]	Test time
Body	5745	49.26	5.92	100	The the moliance
Ge	5785	48.69	5.96	04 F ⁰	June
	5800	48.03	5.96	21.5	27,2018
	5825	47.43	6.00		

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.


6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

6.2. SAR System Check 6.2.1. Dipoles

in and		oli teste	
Frequency	L (mm)	h (mm)	d (mm)
2450MHz	51.5	30.4	3.6

	Frequency	L (mm)	W (mm)	L _f (mm)	W _f (mm)
1	5000MHz	40.39	20.19	81.03	61.98

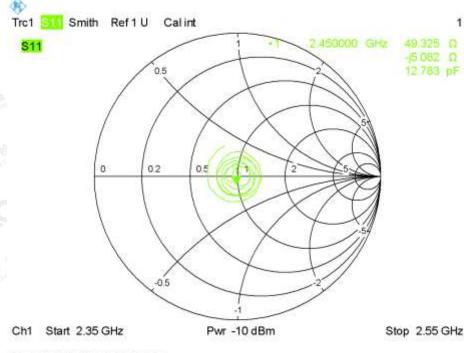
6.2.2. System Check Result

System Performance Check at 2450MHz &5000-6000MHz for Body									
Validation Kit:SN29/15 DIP 2G450-393 &SN 15/15 WGA 36									
	Target Value(W/Kg)		Reference Result (± 10%)		3 01	Normalized to 1W(W/Kg)		Test time	
[MHz]	1g	10g	1g	10g	1g 🖸	10g	[°C]		
2450	49.92	23.16	44.928-54.912	20.844-25.476	54.44	21.25	21.7	June 22,2018	
5200	158.49	56.44	142.641-174.339	50.796-62.084	152.73	51.93	21.3	June 26,2018	
5800	176.30	61.30	158.67-193.93	55.17-67.43	166.05	56.04	21.5	June 27,2018	
				- 100			6 2 4	GIUT	

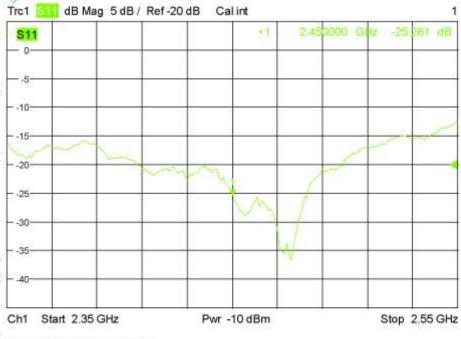
Note:

(1) We use a CW signal for system check, and then all SAR values are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attrp://www.agc.gatt.com.


```
Attestation of Global Compliance
```

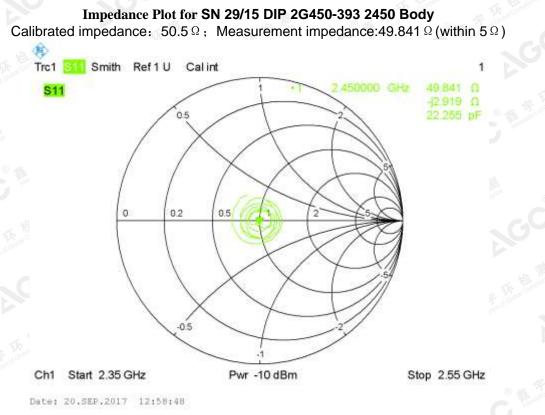

6.3 Impedance and return loss of the Dipole


Impedance Plot for SN 29/15 DIP 2G450-393 2450 Head

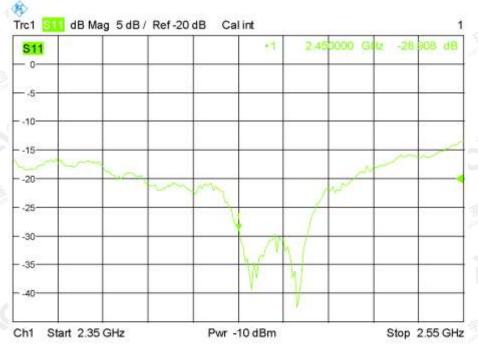
Calibrated impedance: 47.5Ω ; Measurement impedance: 49.325Ω (within 5Ω)

Date: 20.SEP.2017 12:57:51

Calibrated return loss: -24.55dB; Measurement return loss: -25.281dB(within 20%)



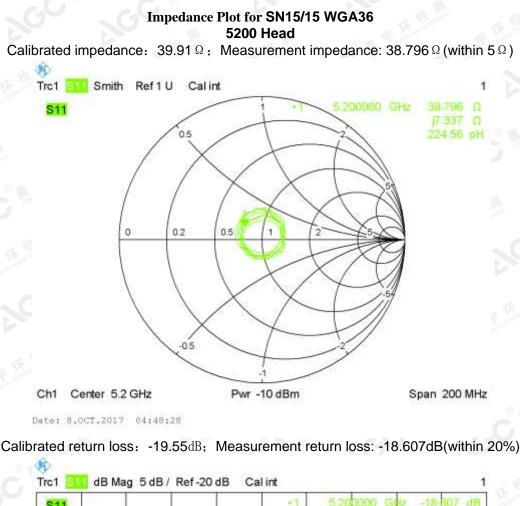
Date: 20.SEP.2017 12:57:33

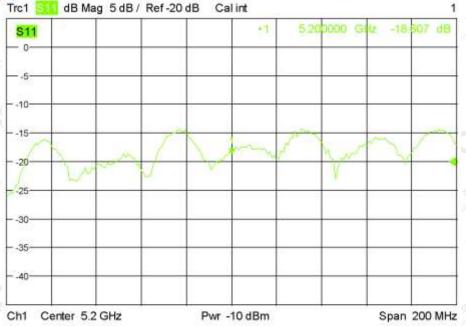

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

Report No.: AGC02115180501FH01 Page 21 of 80

Calibrated return loss: -27.41dB; Measurement return loss: -28.908dB(within 20%)

Date: 20.SEP.2017 12:58:35


The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gatt.com.

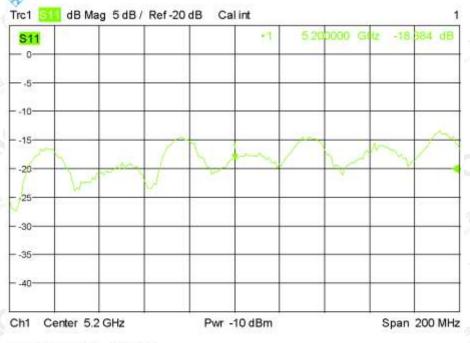

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Report No.: AGC02115180501FH01 Page 22 of 80

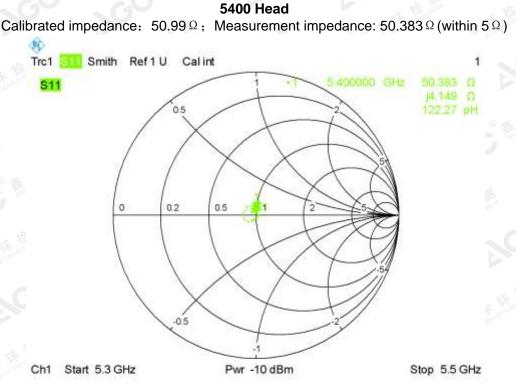


Date: 8.0CT.2017 04:47:18


The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC02115180501FH01 Page 23 of 80

Date: 8,0CT.2017 04:48:17

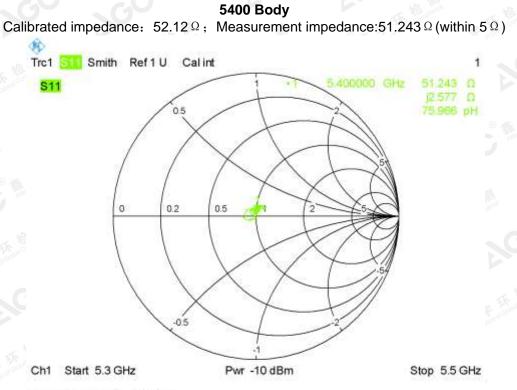

Calibrated return loss: -19.21dB; Measurement return loss: -18.384dB(within 20%)

Date: 8.0CT.2017 04:47:32

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cent.com.

Report No.: AGC02115180501FH01 Page 24 of 80

Date: 8,0CT.2017 04:49:25

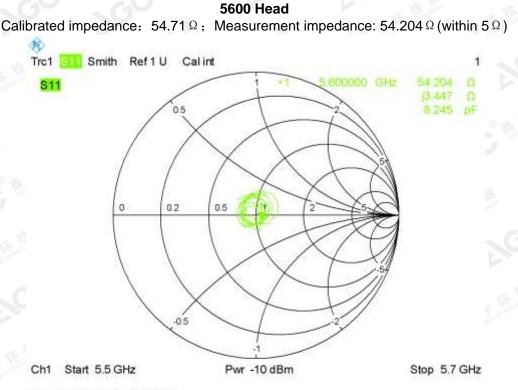

Calibrated return loss: -32.10dB; Measurement return loss: -31.059dB(within 20%)

Date: 8.0CT.2017 04:54:08

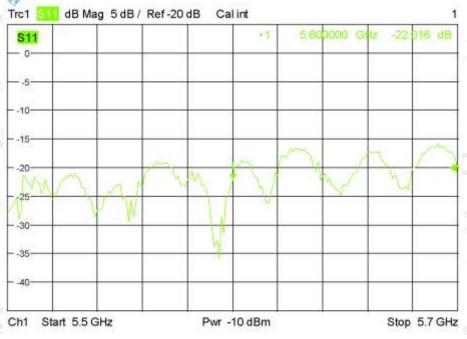

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC02115180501FH01 Page 25 of 80

Date: 8,0CT.2017 04:49:37

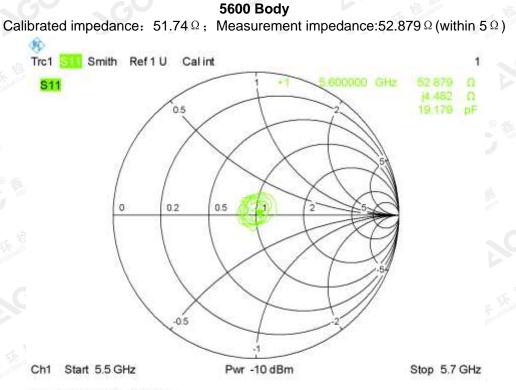

Calibrated return loss: -32.75dB; Measurement return loss: -32.678dB(within 20%)

Date: 8.0CT.2017 04:54:20

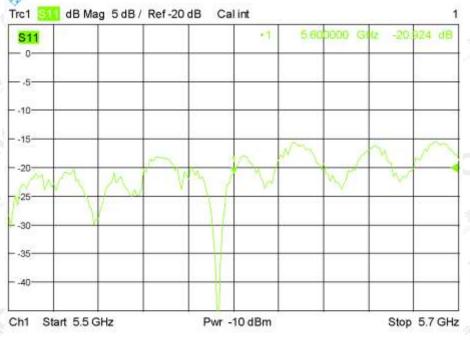

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cent.com.

Report No.: AGC02115180501FH01 Page 26 of 80

Date: 8,0CT.2017 04:56:08

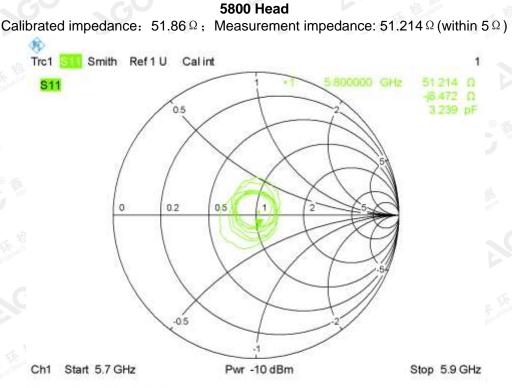

Calibrated return loss: -21.89dB; Measurement return loss: -22.016dB(within 20%)

Date: 8.0CT.2017 04:55:12


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC02115180501FH01 Page 27 of 80

Date: 8,0CT.2017 04:56:25


Calibrated return loss: -20.58dB; Measurement return loss: -20.924dB(within 20%)

Date: 8.0CT.2017 04:55:16

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

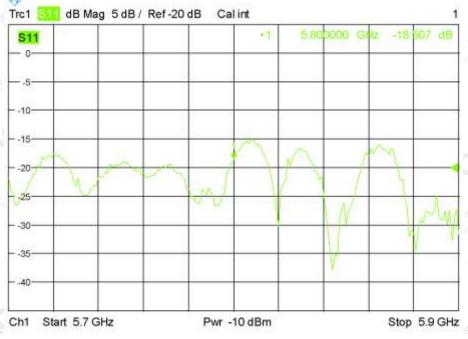
Report No.: AGC02115180501FH01 Page 28 of 80

Date: 8,0CT.2017 04:57:27


Calibrated return loss: -20.11dB; Measurement return loss: -19.481dB(within 20%)

Trc1 S11 dB Mag 5 dB / Ref -20 dB Cal int -1 81 d8 S11 0 -10 -15 -20 -25 -30 -35 -40 Ch1 Start 5.7 GHz Pwr -10 dBm Stop 5.9 GHz

Date: 8.0CT.2017 04:58:26


The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cent.com.

Report No.: AGC02115180501FH01 Page 29 of 80

Date: 8,0CT.2017 04:57:39

Calibrated return loss: -18.94dB; Measurement return loss: -18.507dB(within 20%)

Date: 8.0CT.2017 04:58:40

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.geit.com.

Report No.: AGC02115180501FH01 Page 30 of 80

7. EUT TEST POSITION

This EUT was tested in Edge1, Edge2 and Edge4.

7.1. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 0mm for 10-g-extremity SAR and 10mm for 1g-Body SAR.

Per FCC Response:

Please follow the following guidance:

1. Please conduct 1-g SAR and 10-g SAR per KDB 941225 D07 UMPC Mini Tablet v01r02 as follows:

a. 1-g (body, 1.6 W/kg limit) SAR at a 10mm test separation distance from phantom on all surfaces and side edges with a transmitting antenna located at \leq 25 mm from that surface or edge.

b. 10-g (extremity, 4 W/kg limit) SAR at a zero test separation distance from phantom on all surfaces and side edges with a transmitting antenna located at \leq 25 mm from that surface or edge

2. In addition, please consider simultaneous transmission operations per KDB 447498 D01 General RF Exposure Guidance v06 $\,$

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)		
Spatial Peak SAR (1 g cube tissue for brain or body)	1.60		
Spatial Average SAR (Whole body)	0.08		
Spatial Peak SAR (Limbs)	4.0		

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC02115180501FH01 Page 32 of 80

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results show on this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date
SAR Probe	MVG	SN 08/16 EPGO282	Aug. 08,2017	Aug. 07,2018
Phantom	SATIMO	SN_2316_ELLI39	N/A	N/A
Liquid	SATIMO	The second Company	Validated. No cal required.	Validated. No cal required.
Multimeter	Keithley 2000	1188656	Mar. 01,2018	Feb. 28,2019
Dipole	SATIMO SID2450	SN29/15 DIP 2G450-393	Jul. 05,2016	Jul. 04,2019
Wave guide	SWG5500	SN 15/15 WGA 36	Jul. 05,2016	Jul. 04,2019
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019
Directional Couple	Werlatone/ C5571-10	SN99463	Jun. 12,2018	Jun. 11,2019
Directional Couple	Werlatone/ C6026-10	SN99482	Jun. 12,2018	Jun. 11,2019
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019
Power Viewer	R&S	V2.3.1.0	N/A	N/A

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;

2. System validation with specific dipole is within 10% of calibrated value;

3. Return-loss is within 20% of calibrated measurement;

4. Impedance is within 5Ω of calibrated measurement.

The results shown if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agconter.com.

11. MEASUREMENT UNCERTAINTY

Measu	urement u	ncertainty fo	or Dipole a	averaged c	over 1 gram	/ 10 gram.			
а	b	C	d	e f(d,k)	f	g	h c×f/e	i cxg/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System			10:		-111-	1		The	Complice
Probe calibration	E.2.1	5.831	N	1 5	· 1	15h Condia	5.83	5.83	8
Axial Isotropy	E.2.2	0.695	R 🛛 🍝	√3	√0.5	√0.5	0.28	0.28	8
Hemispherical Isotropy	E.2.2	1.045	R	$\sqrt{3}$	√0.5	√0.5	0.43	0.43	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	00
Linearity	E.2.4	0.685	R	√3	155 Manpus	1 🧃	0.40	0.40	8
System detection limits	E.2.4	1.0 🔬	R	√3	1	1	0.58	0.58	00
Modulation response	E2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	8
Response Time	E.2.7	0	R	√3	1	51 compliance	0	0	8
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1 3	0.81	0.81	8
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	8
Test sample Related			大志	- Mance	TT IS	npliance	B The France	obal CC	
Test sample positioning	E.4.2	2.6	N	1 ® 🧃	1	1	2.6	2.6	00
Device holder uncertainty	E.4.1	3	Ν	1	1	1	3	3	00
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	8
SAR scaling	E.6.5	5	R	√3 ∜	Liance 1	The compl	2.89 💿	2.89	8
Phantom and tissue parameters		Compliance		F of Global Co	© 5	ration of Globa	- C	Mas	6
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3		1	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	x
Liquid conductivity measurement	E.3.3	4	N N	1.	0.78	0.71	3.12	2.84	Μ
Liquid permittivity measurement	E.3.3	5	N		0.23	0.26	1.15	1.30	Μ
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	x
Combined Standard Uncertainty	1	Compliance	RSS	bal Complian	C Attest	ALCO OF	9.79	9.59	6
Expanded Uncertainty (95% Confidence interval)	The station of G	Non E	K=2			S	19.58	19.18	

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC02115180501FH01 Page 35 of 80

400 089 2118

E-mail: agc@agc-cert.com

2	b	с	d	е	f		h	i	k
a Uncertainty Component	Sec.	Tol	Prob.	f(d,k) Div.	Ci (1g)	g Ci (10g)	cxf/e 1g Ui	c×g/e 10g Ui	vi
Measurement System		(± %)	Dist.				(±%)	(±%)	Lopliance
Probe calibration drift	E.2.1.3	0.5	N	1 🚲	1 1	The paint	0.50	0.50	8
Axial Isotropy	E.2.2	0.695	R	√3	0	0	0.00	0.00	00
Hemispherical Isotropy	E.2.2	1.045	R	$\sqrt{3}$	0	0	0.00	0.00	8
Boundary effect	E.2.2	1.040	R	$\sqrt{3}$	0	0	0.00	0.00	8
	E.2.4				0	2		0.7	13 10
Linearity	inr:	0.685	R	<u>√</u> 3	22 COM	0	0.00	0.00	00
System detection limits	E.2.4	1.0	R	√3	0	0	0.00	0.00	00
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	1	0	0	0.00	0.00	00
Response Time	E.2.7	0	R	√3	0	0	0.00	0.00	8
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	8
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	8
Probe positioner mechanical colority	E.6.2	1.4	R	√3	1 1	1	0.81	0.81	×.
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1 1	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	ø
System check source (dipole)			- 	- Fills	下版	npliance	F. C	ubal Comt.	The Star
Deviation of experimental dipoles	E.6.4	2	N	⁰ 1 _©	For a Tobal	1	2	2	00
Input power and SAR drift measurement	8,6.6.4	5	R	$\sqrt{3}$	1	1	2.89	2.89	8
Dipole axis to liquid distance	8,E.6.6	2	R	√3	1	1	1.15	1.15	00
Phantom and tissue parameters		lin		25	14	ある	an ^{ce} ©	Franci Global	
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1 ₈	Halon of C	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	69	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	4	Ν	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	Ν	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√ 3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS			The Tel plant	5.564	5.205	
Expanded Uncertainty (95% Confidence interval)	- Sto	Compliance	K=2	Coal Compliance	C Atteste	tion of Give	11.128	10.410	6

鑫宇环检测 Attestation of Global Compliance

The results shown if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by A GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.

Fax: +86-755 2600 8484

Add: 2/F. , Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Tel: +86-755 2908 1955

GC S

System	validation	uncertainty		e averageo	a over 1 gra	ım / 10 gran	1		1
а	b	c Tol	d Prob.	f(d,k)	f	g	h c×f/e 1g Ui	c×g/e	k
Uncertainty Component	Sec.	(±%)	Dist.	Div.	Ci (1g)	Ci (10g)	(±%)	(±%)	vi
Measurement System		ZG [*]	tre.						447
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	8
Axial Isotropy	E.2.2	0.695	R	$\sqrt{3}$	No arrea 1	E TA 1 Compile	0.40	0.40	8
Hemispherical Isotropy	E.2.2	1.045	R	√3	0	0	0.00	0.00	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	6 1	1	0.58	0.58	8
Linearity	E.2.4	0.685	R	$\sqrt{3}$	1	1	0.40	0.40	8
System detection limits	E.2.4	1.0	R	√3	The 1	1	0.58	0.58	8
Modulation response	E2.5	3.0 🧄	R	$\sqrt{3}$	0	0	0.00	0.00	8
Readout Electronics	E.2.6	0.021	N	9	1	1	0.021	0.021	8
Response Time	E.2.7	0.0	R	$\sqrt{3}$	0	0	0.00	0.00	8
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	10	1.73	1.73	8
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	Compliance 1	6 1 Front	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	10	1	1.33	1.33	8
System check source (dipole)	0			lin.			1	授 poliance	
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	onplance 1	T. Star	helence 1	5.00	5.00	00
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	Restation of C	1.	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	8
Phantom and tissue parameters					110-		μl.	AF .	Complia
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	Lophance 1	F That Compl	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	Mestalion of C	69	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5.0	Ν	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty	SO'		RSS			The starse	9.718	9.517	(
Expanded Uncertainty (95% Confidence interval)		HE AND	K=2	12 manance	® 5	Fin of Global Contra	19.437	19.035	r,C

鑫 宇 环 检 测 Attestation of Global Compliance

The results shown if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by A GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

12. CONDUCTED POWER MEASUREMENT

2.4GHZ WIFI		WELL TOP	C A Contraction	Contraction of the station of
Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	EIRP (dBm)
ional Contra	pro Auer	01	2412	21.3
802.11b	9	06	2437	20.9
GU		11	2462	20.7
	1117-	01	2412	23.5
802.11g	6	06	2437	22.9
Station of Glove B		11	2462	22.6
		01	2412	23.9
802.11n (20)	6.5	06 🔬	2437	23.7
A NOT		1,1 Compliance	2462	23.4

5GHz WIFI

Band	Mode	Channel	Frequency (MHz)	EIRP (dBm)
4		36	5180	22.9
	802.11a20	40	5200	22.4
	Compliant Compliant	48	5240	22.3
UNII-1		36	5180	23.1
	802.11n (20)	40	5200	22.8
		48	5240	22.9
Inc	1	149	5745	26.2
	802.11a	157	5785	26.1
	The Final Cloba	165	5825	25.3
UNII-3	Auest	149	5745	26.0
	802.11n (20)	157	5785	25.8
		165	5825	25.3

The results shown the sample(s) are retained for 30 days only. The document is issued by AGC, this document is cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 38 of 80

13. TEST RESULTS

13.1. SAR Test Results Summary 13.1.1. Test position and configuration

- 1. The EUT is a wireless remote control;
- 2. Per FCC Response: We used the test procedures in KDB 941225 D07 and test all surfaces and side edges with a transmitting antenna located at ≤ 25 mm from that surface or edge.
- 3. Test procedure:
 - (1). Using a Flat phantom flied with body tissue simulating liquid for test;
 - (2). Using a separation distance of 0mm for 10-g-Extremity SAR and 10mm for 1g-Body SAR test;
- 4. For SAR testing, the device was controlled by software to test at reference fixed frequency points.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥ 0.8 W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥ 1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- Per KDB 248227 D01 v02r02 Chapter 5.2.2, when SAR measurement is required for 2.4GHz 802.11g/n OFDM configurations, the measurement and test reducing procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.
 - (1) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - (2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is≤1.2 W/Kg,
- 4. Per KDB 248227 D01 v02r02 Chapter 5.3.4, SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.
 - (1) When SAR test exclusion provisions of KDB Publication 447498 D01 are applicable and SAR

measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.

GC[●]鑫宇环检测 Attestation of Global Compliance

- (2) When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- (3) When the specified maximum output power is same for both UNII 1 and UNII 2A,begin SAR measuremengs in UNII 2A with the channel with the highest measured output power. If the report SAR for UNII 2A is <1.2W/Kg,SAR is nor required for UNII 1;otherwise treat the remaining bands separately and test them independently for SAR.
- (4) When the specified maximum output power different between UNII 1 and UNII 2A,begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤1.2W/Kg,testing for the band with the lower specicied output power is not required;otherwise test is remaining separately for SAR;
- 5. Per KDB 941225 D07 v01r02, UMPC mini-tablet devices must be tested for 1-g SAR on all surfaces and side edges with a transmitting antenna located at ≤ 25 mm from that surface or edge. Depending on the device form factor, antenna locations, operating configurations and exposure conditions, a test separation distance up to 10 mm may be considered for some devices; for example, certain game controllers and dual display smart phones. Under such circumstances, 10-g extremity SAR must also be measured at zero test separation for all measured 1-g (10 mm) SAR configurations to address hand exposure.
- 6. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows: Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]

13.1.3. SAR Test Results Summary

			J			SIN of	(L)F	The month	
SAR MEASUREM	ENT								
Depth of Liquid (cm	า):>15			Rela	tive Humidity	/ (%): 53.3			
Product: PARROT	SKYCONTRO	ULLER 3							
Test model:MPP3									
Test Mode: 2.4GHz	z 802.11b								
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	10(g)-Ex tremity SAR (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
Antenna 0	Attestation of Ga	S		3	N			lin	-
Edge 1 (Top)	DTS	01	2412	-0.03	1.261	21.4	21.3	⁶⁰ 1.290 ⊙	4.0
Edge 4 (Left)	DTS	01	2412	0.02	0.110	21.4	21.3	0.113	4.0
Antenna 1	pal Collin	TA Company	C A Jim of Got	alt	Attest	GU	les.		
Edge 1 (Top)	DTS	01	2412	0.10	0.808	21.4	21.3	0.827	4.0
Edge 2 (Right)	DTS	01	2412	-0.06	0.048	21.4	21.3	0.049	4.0
Note:			-Min	15.	uance .	S Glove	C Ste	inon of	

Note:

• The separation distance of 0mm for 10-g extremity SAR.

· Plots are only shown for the bold markered worst case SAR results

SAR MEASUREME	NT								
Depth of Liquid (cm)):>15			Rela	tive Humidit	y (%): 53.3			
Product: PARROT S	SKYCONTRC	OLLER 3							
Test model:MPP3									
Test Mode: 2.4GHz	802.11b								
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
Antenna 0	C AN	station of C	GU	N.C.					AT B
Edge 1 (Top)	DTS	1	2412	-0.01	0.786	21.4	21.3	0.804	1.6
Edge 1 (Top)	DTS	6	2437	0.25	0.781	21.4	20.9	0.876	1.6
Edge 1 (Top)	DTS	11 🦂	2462	-0.10	0.795	21.4	20.7	0 .934	1.6
Edge 4 (Left)	DTS	C 1 ^{strestarr}	2412	0.06	0.090	21.4	21.3	0.092	1.6
Antenna 1	20	7				Ha The	大百	-W23 noliance	Fron of GI
Edge 1 (Top)	DTS	1 🐋	2412	-0.05	0.479	21.4	21.3	0.490	1.6
Edge 2 (Right)	DTS	The Dompliant	2412	0.11	0.048	21.4	21.3	0.049	1.6

Note:

• The separation distance of 10mm for 1-g-SAR.

· Plots are only shown for the bold markered worst case SAR results.

Actestation of Global Compliance

Report No.: AGC02115180501FH01 Page 41 of 80

SAR MEASUREM	IENT							
Depth of Liquid (c	:m):>15			Relative Hun	nidity (%): 53.8	8		
Product: PARRO	T SKYCONTRO	OLLER 3						
Test model:MPP3	}							
Test Mode: 5.2GH	Hz 802.11n20							
Position	Ch.	Fr. (MHz)	Power Drift (<±5%)	10(g)-Extre mity SAR (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Antenna0	F Thomas Compl	c.C	Attestu	Attestant	C M	N.		
Edge 1 (Top)	36	5180	-0.31	1.060	23.4	23.1	1.136	4.0
Edge 4 (Left)	36	5180	0.01	0.138	23.4	23.1	0.148	4.0
Antenna1	K Hanghance	T He marce	The Com	iance C The ca	ion of Globa	C Attestation of C	S	
Edge 1 (Top)	36	5180	0.17	0.654	23.4	23.1	0.701	4.0
Edge 2 (Right)	36	5180	0.10	0.120	23.4	23.1	0.129	4.0

Note:

• The separation distance of 0mm for 10-g extremity SAR.

Plots are only shown for the bold markered worst case SAR results

SAR MEASUREMENT

n):>15			Relative Hur	midity (%): 53.8	3		
SKYCONTR	OLLER 3						
2 802.11n20							
Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Compliance	F Gobal Compu	Attestation	a C	tteste	G	N	
36	5180	0.07	0.573	23.4	23.1	0.614	1.6
36	5180	0.12	0.189	23.4	23.1	0.203	1.6
1	ance ch	板 mplance	F Global Con	C The internet	of Global Co.	-C	- 6
36	5180	0.23	0.390	23.4	23.1	0.418	1.6
36	5180	0.08	0.128	23.4	23.1	0.137	1.6
	SKYCONTR : 802.11n20 Ch. 36 36 36	SKYCONTROLLER 3 SKYCONTROLLER 3 802.11n20 Ch. Fr. (MHz) 36 5180 36 5180 36 5180	SKYCONTROLLER 3 SKYCONTROLLER 3 : 802.11n20 Ch. Fr. (MHz) Power Drift (<±5%) 36 5180 0.07 36 5180 0.12 36 5180 0.23	SKYCONTROLLER 3 SKYCONTROLLER 3 802.11n20 Ch. Fr. (MHz) Power Drift (<±5%) SAR (1g) (W/kg) 36 5180 0.07 0.573 36 5180 0.12 0.189 36 5180 0.23 0.390	SKYCONTROLLER 3 SKYCONTROLLER 3 802.11n20 Ch. Fr. (MHz) Power Drift (<±5%) SAR (1g) (W/kg) Max. Tune-up Power (dBm) 36 5180 0.07 0.573 23.4 36 5180 0.12 0.189 23.4 36 5180 0.23 0.390 23.4	SKYCONTROLLER 3 SKYCONTROLLER 3 Solution Fr. (MHz) Power Drift (<±5%) SAR (1g) (W/kg) Max. Tune-up Power (dBm) Meas. output Power (dBm) 36 5180 0.07 0.573 23.4 23.1 36 5180 0.12 0.189 23.4 23.1 36 5180 0.23 0.390 23.4 23.1	SKYCONTROLLER 3 SKYCONTROLLER 3 802.11n20 Ch. Fr. (MHz) Power Drift (<±5%) SAR (1g) (W/kg) Max. Tune-up Power (dBm) Meas. output Power (dBm) Scaled SAR (W/Kg) 36 5180 0.07 0.573 23.4 23.1 0.614 36 5180 0.12 0.189 23.4 23.1 0.203 36 5180 0.23 0.390 23.4 23.1 0.418

Note:

• The separation distance of 10mm for 1-g-SAR.

· Plots are only shown for the bold markered worst case SAR results.

Actestation of Global Compliance

Report No.: AGC02115180501FH01 Page 42 of 80

SAR MEASUREM	IENT							
Depth of Liquid (cr	m):>15			Relative Hun	nidity (%): 52.2	2		
Product: PARROT	SKYCONTR	OLLER 3						
Test model:MPP3								
Test Mode: 5.8GH	z 802.11a							
Position	Ch.	Fr. (MHz)	Power Drift (<±5%)	10(g)-Extre mity SAR (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Antenna0	F Goba Comp	- C	Attesta	Attestatu	-C	N.		
Edge 1 (Top)	149	5745	0.06	0.849	26.3	26.2	0.869	4.0
Edge 4 (Left)	149	5745	-0.18	0.284	26.3	26.2	0.291	4.0
Antenna1	语 The	T HE MAN	The Com	Nonce C The co	ion of Globa	C Attestation of C	10	
Edge 1 (Top)	149	5745	-0.10	0.894	26.3	26.2	0.915	4.0
Edge 2 (Right)	149	5745	0.09	0.202	26.3	26.2	0.207	4.0
Mater					1		10	()

Note:

• The separation distance of 0mm for 10-g extremity SAR.

Plots are only shown for the bold markered worst case SAR results

SAR MEASUREMENT

m):>15			Relative Hu	midity (%): 52.2	2		
SKYCONTR	OLLER 3						
z 802.11a							
Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
a Compliance	F Global Comp	Attestation	C	Iteste	G	N	
149	5745	0.22	0.650	26.3	26.2	0.665	1.6
149	5745	-0.15	0.183	26.3	26.2	0.187	1.6
杨	ALL STORES	语 The Parts	F Cooba Con	C The For	of Global Co	-C	- 6
149	5745	0.13	0.605	26.3	26.2	0.619	1.6
149	5745	0.05	0.135	26.3	26.2	0.138	1.6
	n):>15 SKYCONTR z 802.11a Ch. 149 149 149	n):>15 SKYCONTROLLER 3 z 802.11a Ch. Fr. (MHz) 149 5745 149 5745 149 5745	m):>15 • SKYCONTROLLER 3 Iz 802.11a Ch. Fr. Power Drift (<±5%) 149 5745 0.22 149 5745 -0.15 -0.15	m):>15 Relative Hui SKYCONTROLLER 3 Iz 802.11a Ch. Fr. Power Drift (<±5%) 149 5745 0.22 0.650 149 5745 -0.15 0.183 149 5745 0.13 0.605	m):>15 Relative Humidity (%): 52.2 SKYCONTROLLER 3 SKYCONTROLLER 3 z 802.11a Power Drift (<±5%) SAR (1g) (W/kg) Max. Tune-up Power (dBm) 149 5745 0.22 0.650 26.3 149 5745 0.13 0.605 26.3	m):>15 Relative Humidity (%): 52.2 SKYCONTROLLER 3 z 802.11a Ch. Fr. (MHz) Power Drift (<±5%) SAR (1g) (W/kg) Max. Tune-up Power (dBm) Meas. output Power (dBm) 149 5745 0.22 0.650 26.3 26.2 149 5745 0.13 0.605 26.3 26.2	SKYCONTROLLER 3 iz 802.11a Fr. (MHz) Power Drift (<±5%) SAR (1g) (W/kg) Max. Tune-up Power (dBm) Meas. output Power (dBm) Scaled SAR (W/Kg) 149 5745 0.22 0.650 26.3 26.2 0.665 149 5745 -0.15 0.183 26.3 26.2 0.187 149 5745 0.13 0.605 26.3 26.2 0.619

Note:

• The separation distance of 10mm for 1-g-SAR.

Plots are only shown for the bold markered worst case SAR results.

Simultaneous Multi-band Transmission Evaluation: Application Simultaneous Transmission information:

	Body-worn
2.4GHz (Antenna1)	Yes
5.2GHz (Antenna1)	Yes
5.8GHz (Antenna1)	Yes

NOTE:

1. Simultaneous with every transmitter must be the same test position.

2. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:

For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 3. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

4. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Report No.: AGC02115180501FH01 Page 44 of 80

Band Test			Σ1-g SAR	SPLSR	
Position	WIFI Antenna0	WIFI Antenna1	(vv/r\g)	(Yes/No)	
tremity SAR	Autostation				
Edge 1 (Top)	1.290	0.827	2.117	No	
Edge 1 (Top)	1.136	0.701	1.837	No	
Edge 1 (Top)	0.869	0.915	1.784	No	
Compliance	Allestation" C	Thesaulon of	iestau O		
Edge 1 (Top)	0.934	0.490	1.424	No	
Edge 1 (Top)	0.614	0.418	1.032	No	
Edge 1 (Top)	0.665	0.619	1.284	No	
	Positiontremity SAREdge 1 (Top)Edge 1 (Top)Edge 1 (Top)Edge 1 (Top)Edge 1 (Top)Edge 1 (Top)Edge 1 (Top)	Test PositionScenWIFI Antenna0tremity SAREdge 1 (Top)1.290Edge 1 (Top)1.136Edge 1 (Top)0.869CEdge 1 (Top)0.934Edge 1 (Top)0.614	Position Scenario WIFI Antenna0 WIFI Antenna1 tremity SAR Edge 1 (Top) 1.290 0.827 Edge 1 (Top) 1.136 0.701 Edge 1 (Top) 0.869 0.915 Edge 1 (Top) 0.934 0.490 Edge 1 (Top) 0.614 0.418	Test Position Scenario Σ1-g SAR (W/Kg) WIFI Antenna0 WIFI Antenna1 (W/Kg) tremity SAR 1.290 0.827 2.117 Edge 1 (Top) 1.136 0.701 1.837 Edge 1 (Top) 0.869 0.915 1.784 Edge 1 (Top) 0.934 0.490 1.424 Edge 1 (Top) 0.614 0.418 1.032	

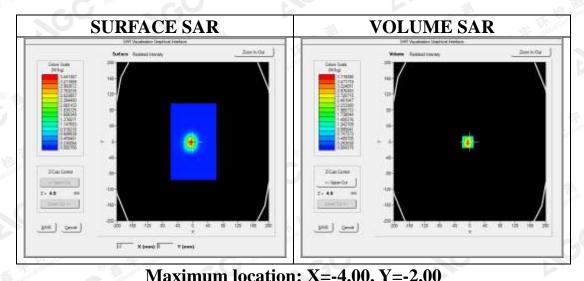
Sum of the SAR for Antenna0&Antenna1:

Report No.: AGC02115180501FH01 Page 45 of 80

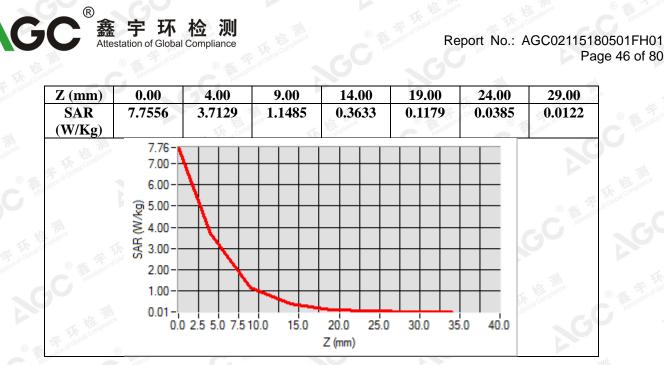
APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab

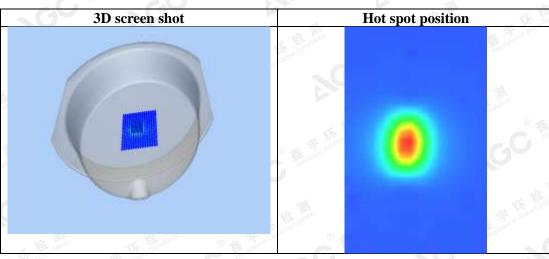
Date: June 22,2018


System Check Body 2450 MHz DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.58 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; σ =1.93 mho/m; ϵ r =53.02; ρ = 1000 kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C):22.1, Liquid temperature (°C): 21.7


SATIMO Configuration

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35

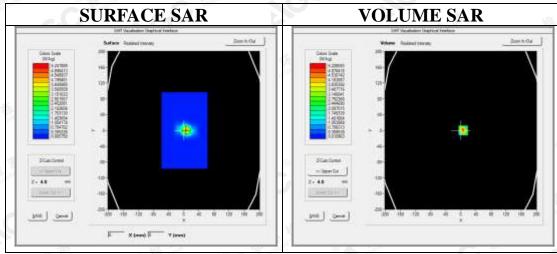

Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

	: 7.66 W/kg
SAR 10g (W/Kg)	1.341025
SAR 1g (W/Kg)	3.435243

Report No.: AGC02115180501FH01

Date: June 26,2018

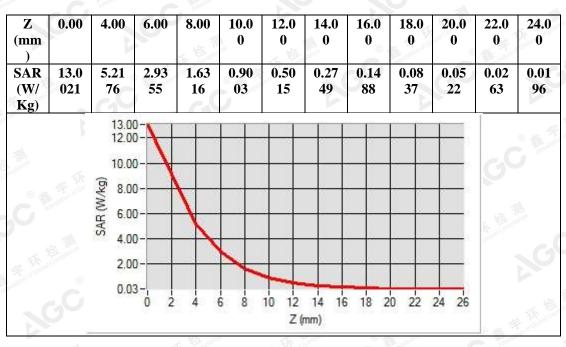
Test Laboratory: AGC Lab System Check Body 5200 MHz DUT: Dipole 5000MHz Type: SWG5500

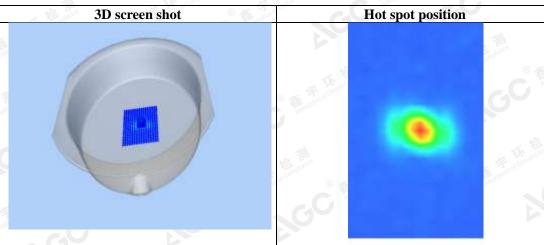

Communication System: CW; Communication System Band: D5000 (5000.0 MHz); Duty Cycle: 1:1; Conv.F=2.41 Frequency: 5200 MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.18 \text{ mho/m}$; $\epsilon r = 48.85$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section; Input Power=15dBm

Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.3

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35


Configuration/System Check 5200 MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 5200 MHz Body/Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm



Maximum location: X=4.00, Y=0.00 SAR Peak: 13.00 W/kg

1.642109
4.829775

Report No.: AGC02115180501FH01 Page 48 of 80

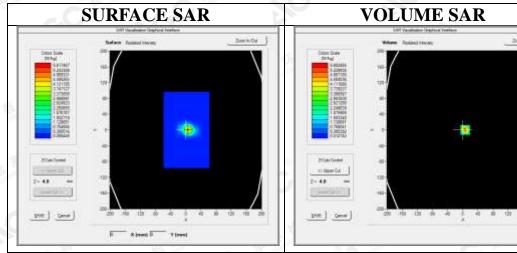
The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

GC®

鑫 宇 环 检 测 Attestation of Global Compliance

Date: June 27,2018

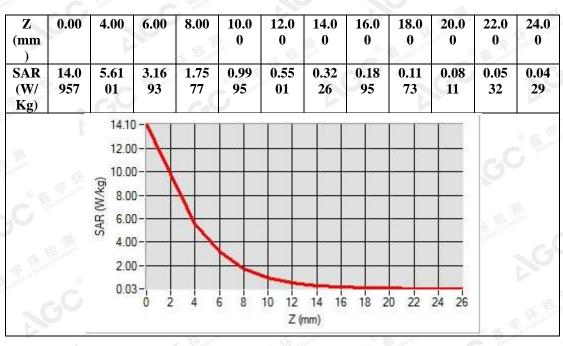
Test Laboratory: AGC Lab System Check Body 5800 MHz DUT: Dipole 5000MHz Type: SWG5500

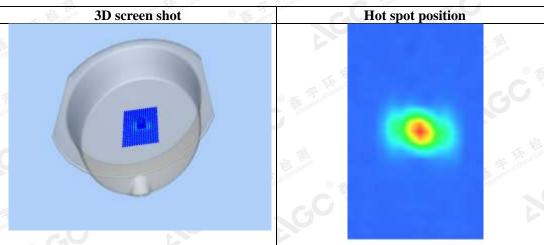

Communication System: CW; Communication System Band: D5000 (5000.0 MHz); Duty Cycle: 1:1; Conv.F=2.53 Frequency: 5800 MHz; Medium parameters used: f = 5800 MHz; σ =5.96mho/m; ϵ r =48.03; ρ = 1000 kg/m³; Phantom section: Flat Section; Input Power=15dBm

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.5

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35


Configuration/System Check 5800 MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 5800 MHz Body/Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm



Maximum location: X=5.00, Y=1.00 SAR Peak: 14.05 W/kg

SAR 10g (W/Kg)	1.772153
SAR 1g (W/Kg)	5.250849

Report No.: AGC02115180501FH01 Page 50 of 80

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

GC®

鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 51 of 80

APPENDIX B. SAR MEASUREMENT DATA

2.4GHz 802.11b for Antenna0-10-g extremity SAR: **Test Laboratory: AGC Lab** 802.11b Mid- Edge1 **DUT: PARROT SKYCONTROLLER 3;** Type: MPP3

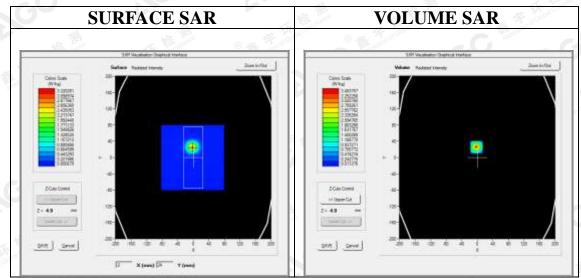
Date: June 22,2018

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90 \text{ mho/m}$; $\epsilon r = 53.60$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

Ambient temperature (°C):22.1, Liquid temperature (°C): 21.7

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom


GC

Attestation of Global Compliance

Measurement SW: OpenSAR V4 02 35

Configuration/802.11b Mid- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11b Mid- Edge1 /Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	ELU
Device Position	Edge1
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0
Silo.	

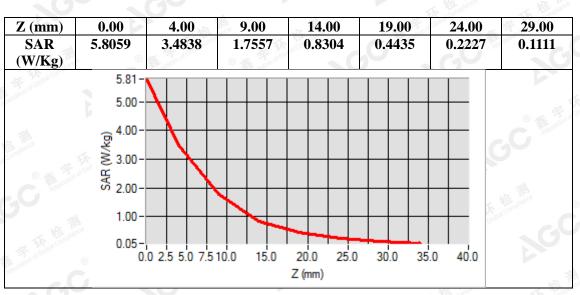
Maximum location: X=-2.00, Y=25.00 SAR Peak: 5.82 W/kg

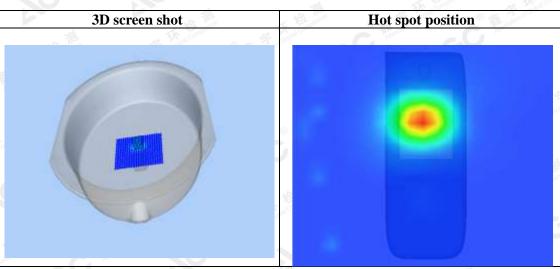
SAR 10g (W/Kg)	1.261099
SAR 1g (W/Kg)	3.045288

The results show on this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 👯 C, this document to reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Fax: +86-755 2600 8484

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China


Tel: +86-755 2908 1955


E-mail: agc@agc-cert.com

400 089 2118

Report No.: AGC02115180501FH01 Page 52 of 80

Report No.: AGC02115180501FH01 Page 53 of 80

Fage 55 01 60

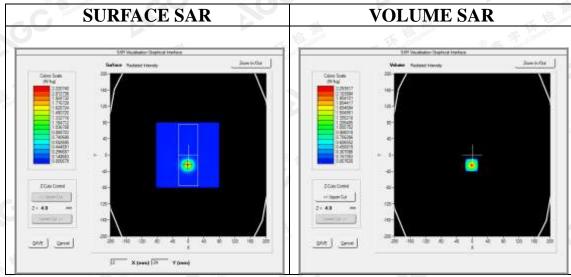
2.4GHz 802.11b for Antenna1-10-g extremity SAR: Test Laboratory: AGC Lab 802.11b Mid- Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

Date: June 22,2018

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; σ = 1.90mho/m; ϵ r =53.60; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature (°C):22.1, Liquid temperature (°C): 21.7

SATIMO Configuration:


- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom

Attestation of Global Compliance

Measurement SW: OpenSAR V4_02_35

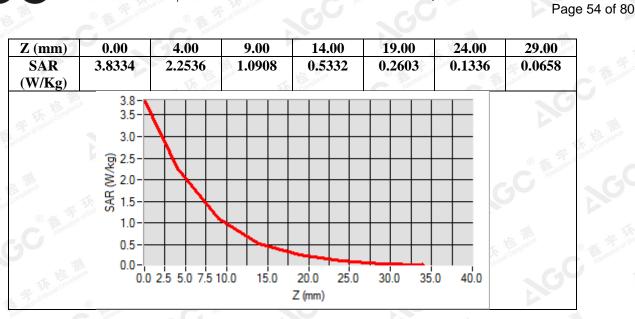
Configuration/802.11b Mid- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11b Mid- Edge1 /Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	ELLI
Device Position	Edge1
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0
Channels	Middle

Maximum location: X=-2.00, Y=-24.00 SAR Peak: 3.82 W/kg

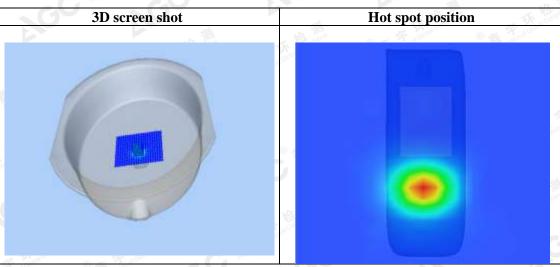
SAR 10g (W/Kg)	0.807968
SAR 1g (W/Kg)	1.975357

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.


Fax: +86-755 2600 8484

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

E-mail: agc@agc-cert.com


400 089 2118

Tel: +86-755 2908 1955

Report No.: AGC02115180501FH01

GC[®]鑫宇环检测 Attestation of Global Compliance

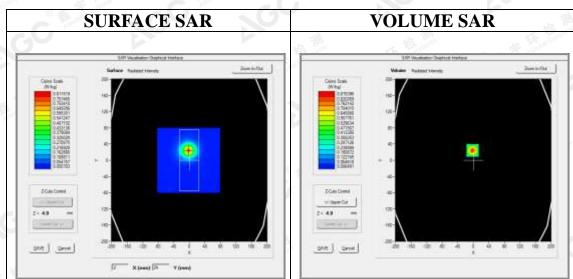
Report No.: AGC02115180501FH01 Page 55 of 80

r age 55 th th

2.4GHz 802.11b for Antenna0 1-g SAR: Test Laboratory: AGC Lab 802.11b High- Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

Date: June 22,2018

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; σ = 1.95mho/m; ϵ r =52.49; ρ = 1000 kg/m³; Phantom section: Flat Section

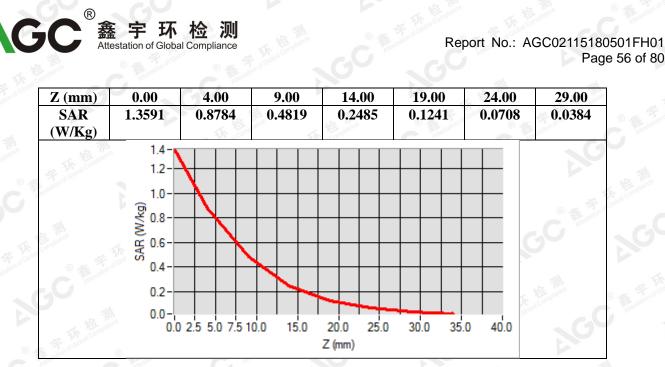

Ambient temperature (°C):22.1, Liquid temperature (°C): 21.7

SATIMO Configuration:

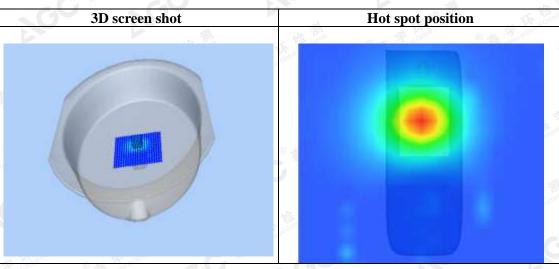
- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/802.11b High- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/802.11b High- Edge1 /Zoom Scan:** Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	ELLI C
Device Position	Edge1
Band	2450MHz
Channels	High A
Signal	Crest factor: 1.0



Maximum location: X=-2.00, Y=24.00 SAR Peak: 1.38 W/kg


SAR 10g (W/Kg)	0.385869
SAR 1g (W/Kg)	0.794553

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

Attestation of Global Compliance

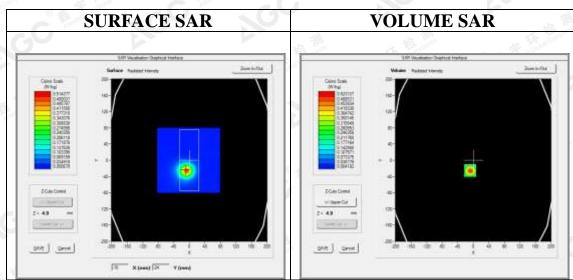
Report No.: AGC02115180501FH01

Report No.: AGC02115180501FH01 Page 57 of 80

2.4GHz 802.11b for Antenna1 1-g SAR: Test Laboratory: AGC Lab 802.11b Mid- Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

Date: June 22,2018

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; σ = 1.90mho/m; ϵ r =53.60; ρ = 1000 kg/m³; Phantom section: Flat Section

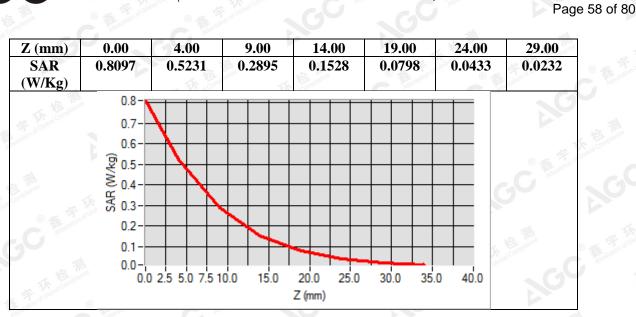

Ambient temperature (°C):22.1, Liquid temperature (°C): 21.7

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35

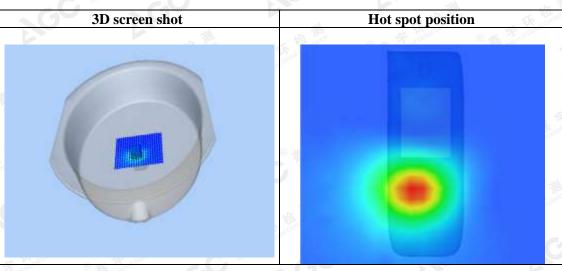
Configuration/802.11b Mid- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11b Mid- Edge1 /Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	
Device Position	Edge1
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0



Maximum location: X=-8.00, Y=-25.00 SAR Peak: 0.85 W/kg

SAR 10g (W/Kg)	0.233708
SAR 1g (W/Kg)	0.478801


The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

Attestation of Global Compliance

Report No.: AGC02115180501FH01

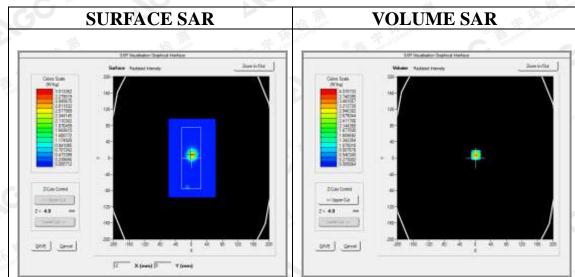
GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 59 of 80

5.2GHz 802.11n20 for Antenna 0- 10-g extremity SAR: **Test Laboratory: AGC Lab** 802.11n20 Low-Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

Date: June 26,2018

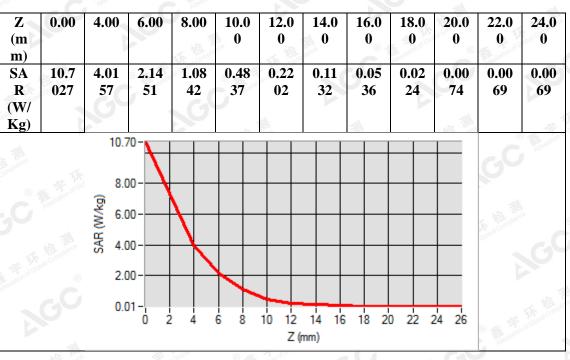
Communication System: Wi-Fi; Communication System Band: 802.11n20; Duty Cycle: 1:1; Conv.F=2.41; Frequency: 5180MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.16 \text{ mho/m}$; $\epsilon r = 49.52$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

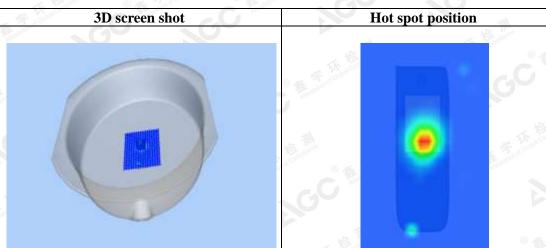

Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.3

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/802.11n20 Low- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11n20 Low- Edge1 /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	ELU
Device Position	Edge1
Band	5200MHz
Channels	Low
Signal	Crest factor: 1.0


Maximum location: X=1.00, Y=7.00 SAR Peak: 10.44 W/kg

SAR 10g (W/Kg)	1.060198
SAR 1g (W/Kg)	3.694562

Report No.: AGC02115180501FH01 Page 60 of 80

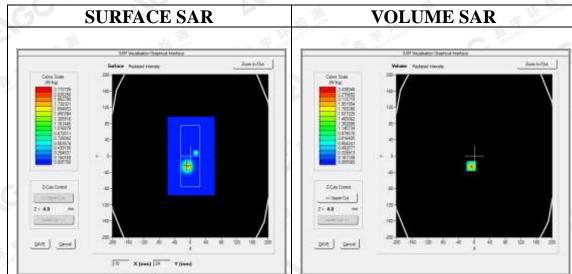
GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 61 of 80

5.2GHz 802.11n20 for Antenna 1-10-g extremity SAR: **Test Laboratory: AGC Lab** 802.11n20 Low-Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

Date: June 26,2018

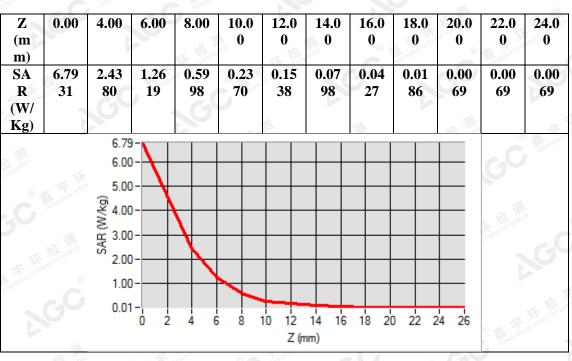
Communication System: Wi-Fi; Communication System Band: 802.11n20; Duty Cycle: 1:1; Conv.F=2.41; Frequency: 5180MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.16 \text{ mho/m}$; $\epsilon r = 49.52$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

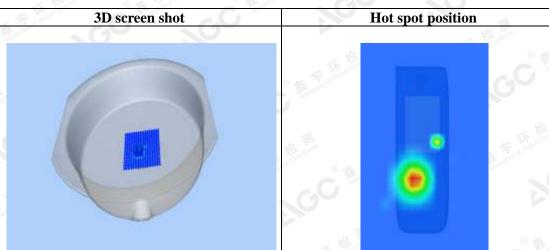

Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.3

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/802.11n20 Low- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11n20 Low- Edge1 /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	ELLI
Device Position	Edge1
Band	5200MHz
Channels	Low
Signal	Crest factor: 1.0


Maximum location: X=-8.00, Y=-25.00 SAR Peak: 6.71 W/kg

SAR 10g (W/Kg)	0.654115
SAR 1g (W/Kg)	2.266486

Report No.: AGC02115180501FH01 Page 62 of 80

GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 63 of 80

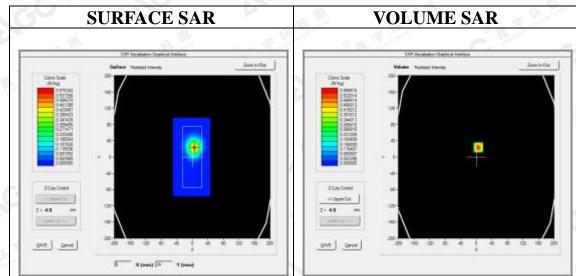
5.2GHz 802.11n20 for Antenna 0-1-g SAR: Test Laboratory: AGC Lab 802.11n20 Low-Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

Date: June 26,2018

Communication System: Wi-Fi; Communication System Band: 802.11n20; Duty Cycle: 1:1; Conv.F=2.41; Frequency: 5180MHz; Medium parameters used: f = 5200 MHz; σ = 5.16mho/m; ϵ r =49.52; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.3

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom


GC

Attestation of Global Compliance

Measurement SW: OpenSAR V4_02_35

Configuration/802.11n20 Low- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11n20 Low- Edge1 /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

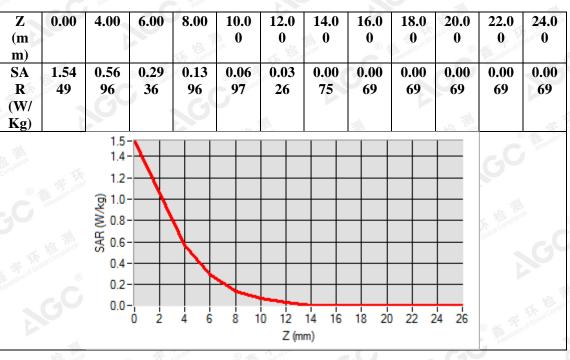
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	ELLI
Device Position	Edge1
Band	5200MHz
Channels	Low
Signal	Crest factor: 1.0

Maximum location: X=5.00, Y=24.00 SAR Peak: 1.53 W/kg

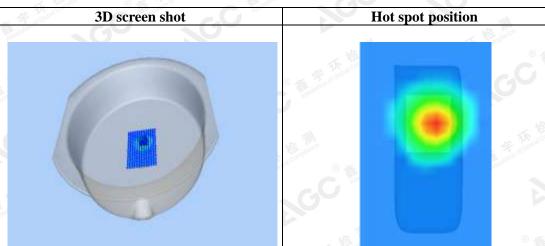
SAR 10g (W/Kg)	0.212177
SAR 1g (W/Kg)	0.573034

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Fax: +86-755 2600 8484


Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Tel: +86-755 2908 1955


E-mail: agc@agc-cert.com

400 089 2118

Report No.: AGC02115180501FH01 Page 64 of 80

GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 65 of 80

5.2GHz 802.11n20 for Antenna 1-1-g SAR: Test Laboratory: AGC Lab 802.11n20 Low-Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

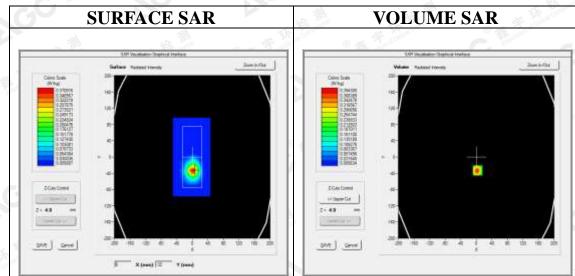
Date: June 26,2018

Communication System: Wi-Fi; Communication System Band: 802.11n20; Duty Cycle: 1:1; Conv.F=2.41; Frequency: 5180MHz; Medium parameters used: f = 5200 MHz; σ = 5.16mho/m; ϵ r =49.52; ρ = 1000 kg/m³ Phantom section: Flat Section

Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.3

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom


GC

Attestation of Global Compliance

Measurement SW: OpenSAR V4_02_35

Configuration/802.11n20Low- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11n20Low- Edge1 /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

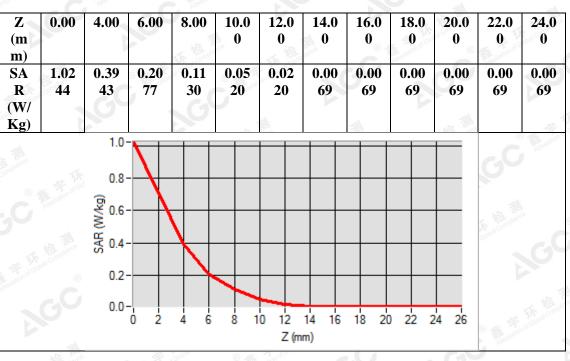
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	ELLI ELLI
Device Position	Edge1
Band	5200MHz
Channels	Low
Signal	Crest factor: 1.0

Maximum location: X=3.00, Y=-33.00 SAR Peak: 1.01 W/kg

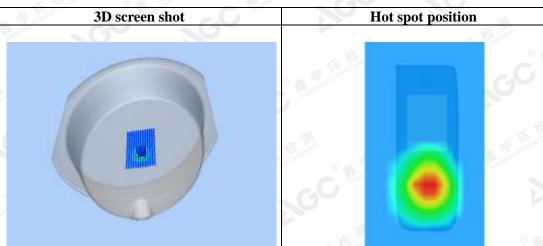
SAR 10g (W/Kg)	0.148736
SAR 1g (W/Kg)	0.389907

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Fax: +86-755 2600 8484


Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Tel: +86-755 2908 1955


E-mail: agc@agc-cert.com

() 400 089 2118

Report No.: AGC02115180501FH01 Page 66 of 80

GC[®]鑫宇环检测 Attestation of Global Compliance

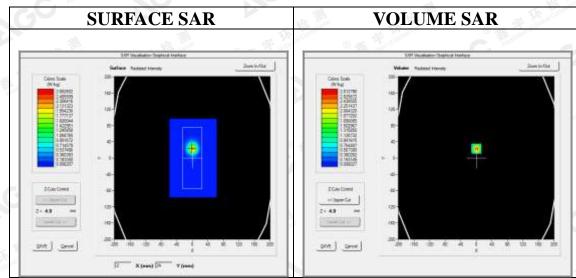
Report No.: AGC02115180501FH01 Page 67 of 80

r age or or or

5.8GHz 802.11a for Antenna 0-10-g extremity SAR: Test Laboratory: AGC Lab 802.11a Low-Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

Date: June 27,2018

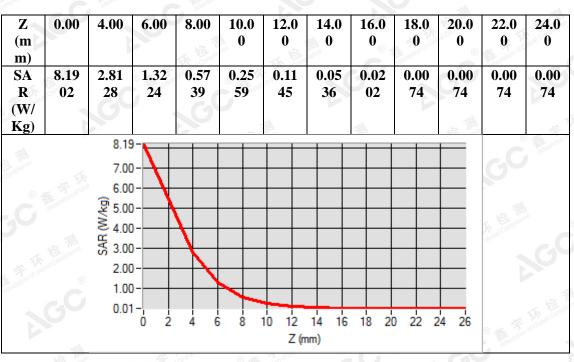
Communication System: Wi-Fi; Communication System Band: 802.11a; Duty Cycle: 1:1; Conv.F=2.53; Frequency: 5745MHz; Medium parameters used: f = 5800 MHz; σ = 5.92mho/m; ϵ r =49.26; ρ = 1000 kg/m³; Phantom section: Flat Section

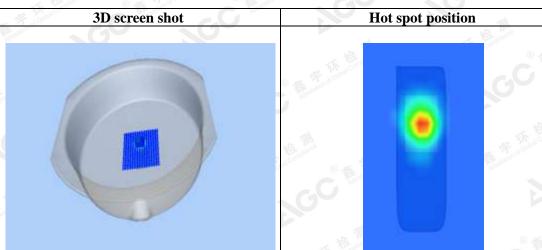

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.5

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/ 802.11a Low- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/ 802.11a Low- Edge1 /Zoom Scan:** Measurement grid: dx=4mm,dy=4mm, dz=2mm


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	ELLI ELLI
Device Position	Edge1
Band	5800MHz
Channels	Low
Signal	Crest factor: 1.0


Maximum location: X=0.00, Y=23.00 SAR Peak: 7.99 W/kg

SAR 10g (W/Kg)	0.848837
SAR 1g (W/Kg)	2.767307

Report No.: AGC02115180501FH01 Page 68 of 80

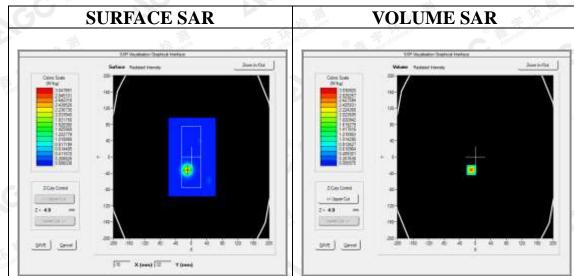
GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 69 of 80

5.8GHz 802.11a forAntenna 1 10-g extremity SAR: Test Laboratory: AGC Lab 802.11a Low-Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

Date: June 27,2018

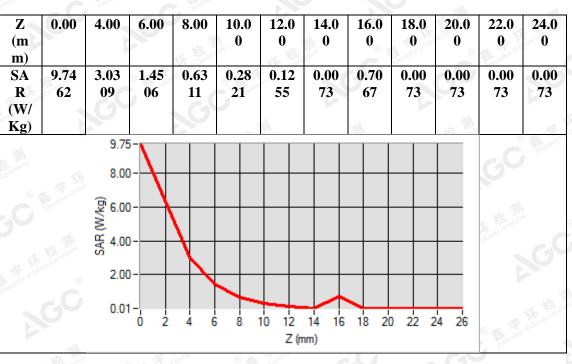
Communication System: Wi-Fi; Communication System Band: 802.11a; Duty Cycle: 1:1; Conv.F=2.53; Frequency: 5745MHz; Medium parameters used: f = 5800 MHz; σ = 5.92mho/m; ϵ r =49.26; ρ = 1000 kg/m³ ; Phantom section: Flat Section

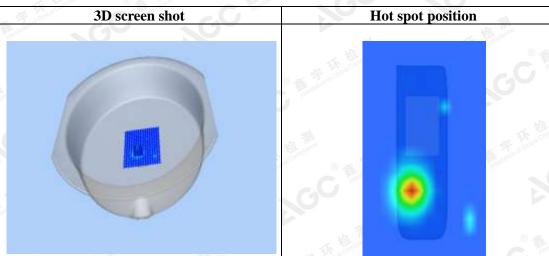

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.5

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/ 802.11a Low- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/ 802.11a Low- Edge1 /Zoom Scan:** Measurement grid: dx=4mm,dy=4mm, dz=2mm


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	ELLI
Device Position	Edge1
Band	5800MHz
Channels	Low
Signal	Crest factor: 1.0


Maximum location: X=-10.00, Y=-32.00 SAR Peak: 9.37 W/kg

SAR 10g (W/Kg)	0.893681
SAR 1g (W/Kg)	2.997083

Report No.: AGC02115180501FH01 Page 70 of 80

GC[®]鑫宇环检测 Attestation of Global Compliance

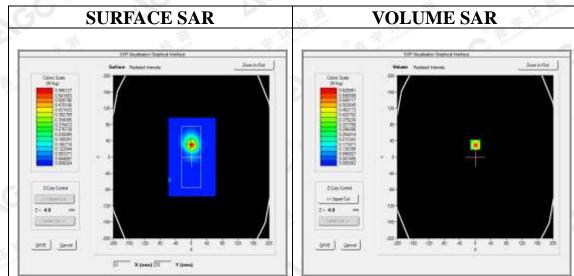
Report No.: AGC02115180501FH01 Page 71 of 80

U

5.8GHz 802.11a forAntenna 0- 1-g SAR: Test Laboratory: AGC Lab 802.11a Low-Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

Date: June 27,2018

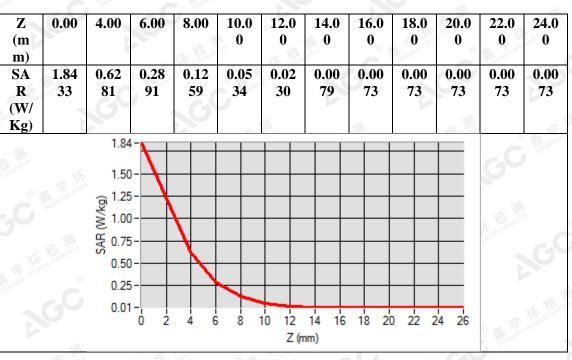
Communication System: Wi-Fi; Communication System Band: 802.11a; Duty Cycle: 1:1; Conv.F=2.53; Frequency: 5745MHz; Medium parameters used: f = 5800 MHz; σ = 5.92mho/m; ϵ r =49.26; ρ = 1000 kg/m³; Phantom section: Flat Section

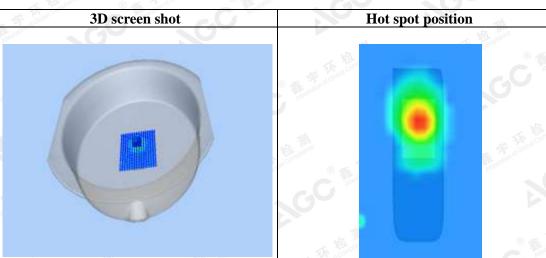

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.5

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/ 802.11a Low- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/ 802.11a Low- Edge1 /Zoom Scan:** Measurement grid: dx=4mm,dy=4mm, dz=2mm


Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	ELLI
Device Position	Edge1
Band	5800MHz
Channels	Low
Signal	Crest factor: 1.0


Maximum location: X=0.00, Y=30.00 SAR Peak: 1.80 W/kg

SAR 10g (W/Kg)	0.235170
SAR 1g (W/Kg)	0.650278

Report No.: AGC02115180501FH01 Page 72 of 80

GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 73 of 80

5.8GHz 802.11a for Antenna 1-1-g SAR: Test Laboratory: AGC Lab 802.11a Low-Edge1 DUT: PARROT SKYCONTROLLER 3; Type: MPP3

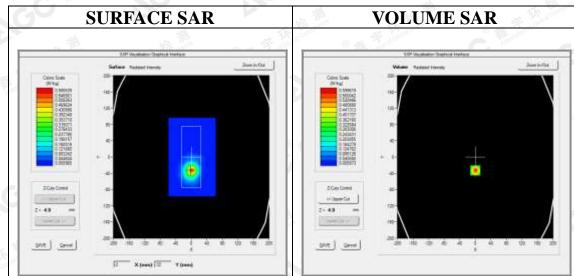
Date: June 27,2018

Communication System: Wi-Fi; Communication System Band: 802.11a; Duty Cycle: 1:1; Conv.F=2.53; Frequency: 5745MHz; Medium parameters used: f = 5800 MHz; σ = 5.92mho/m; ϵ r =49.26; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature (℃): 22.1, Liquid temperature (℃): 21.5

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom


GC

Attestation of Global Compliance

Measurement SW: OpenSAR V4_02_35

Configuration/ 802.11a Low- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/ 802.11a Low- Edge1 /Zoom Scan:** Measurement grid: dx=4mm,dy=4mm, dz=2mm

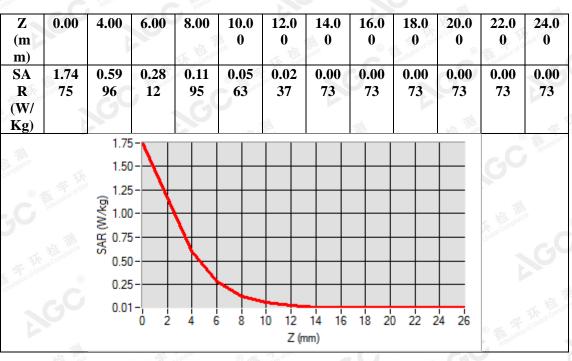
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	ELLI
Device Position	Edge1
Band	5800MHz
Channels	Low
Signal	Crest factor: 1.0

Maximum location: X=0.00, Y=-33.00 SAR Peak: 1.70 W/kg

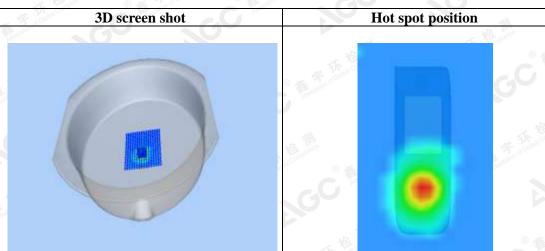
SAR 10g (W/Kg)	0.218714
SAR 1g (W/Kg)	0.604602

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Fax: +86-755 2600 8484


Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Tel: +86-755 2908 1955


E-mail: agc@agc-cert.com

() 400 089 2118

Report No.: AGC02115180501FH01 Page 74 of 80

GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 75 of 80

APPENDIX C. TEST SETUP PHOTOGRAPHS

Edge1(Top) 0mm

Edge2(Right) 0mm

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.ett.com.

Attestation of Global Compliance

Report No.: AGC02115180501FH01 Page 76 of 80

Edge4(Left) 0mm

Report No.: AGC02115180501FH01 Page 77 of 80

Edge1(Top) 10mm

Edge2(Right) 10mm

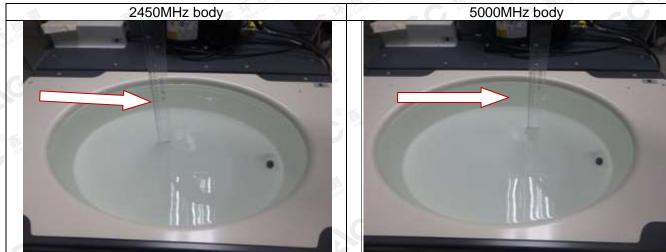
The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cent.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Report No.: AGC02115180501FH01 Page 78 of 80

Edge4(Left) 10mm



Report No.: AGC02115180501FH01 Page 79 of 80

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note : The position used in the measurement were according to IEEE Std. 1528:2013

Report No.: AGC02115180501FH01 Page 80 of 80

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

