

TEST REPORT

Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result : 4G Intelligent Gateway

rence : X2 : N/A : EED32P80040002 : 2AG6GX2

N/A

- : ZAGOGAZ
- : Mar. 09, 2023
- 47 CFR Part 15 Subpart E
- : PASS

Prepared for: Hongdian Corporation

Tower A, Hongdian Building, 100 Huabao Road, Pinghu, Longgang District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Firazer. Lo Tom Compiled by: Reviewed by: Frazer Li Tom Chen Lavon Ma Date: Mar. 09, 2023 Aaron Ma Check No.: 2407100123 Report Seal

2 Content			
1 COVER PAGE			
2 CONTENT			2
3 VERSION		1	3
4 TEST SUMMARY			
5 GENERAL INFORMATION			
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT			
5.3 TEST CONFIGURATION			
5.4 TEST ENVIRONMENT			
5.5 DESCRIPTION OF SUPPORT UNITS			
5.6 TEST LOCATION			
5.7 DEVIATION FROM STANDARDS 5.8 ABNORMALITIES FROM STANDARD CONDITIONS			
5.8 ABNORMALITIES FROM STANDARD CONDITIONS 5.9 OTHER INFORMATION REQUESTED BY THE CUSTO			
5.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE			
6 EQUIPMENT LIST	,		
7 RADIO TECHNICAL REQUIREMENTS SPECIFIC	ATION		
7.1 Antenna Requirement			
7.1 ANTENNA REQUIREMENT 7.2 AC POWER LINE CONDUCTED EMISSIONS			
7.3 MAXIMUM CONDUCTED OUTPUT POWER			
7.4 6DB EMISSON BANDWIDTH			
7.5 26dB Emission Bandwidth and 99% Occupier	d Bandwidth		
7.6 MAXIMUM POWER SPECTRAL DENSITY			
7.7 FREQUENCY STABILITY			
7.8 RADIATED EMISSION 7.9 RADIATED EMISSION WHICH FALL IN THE RESTRICT			
8 APPENDIX 5G WIFI			
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DE	TAILS		

Page 2 of 88

Page 3 of 88

Versior	n No.	Date		Description	on	
00		Mar. 09, 2023		Original		6
A)	(Still	(SI)		(LA)	

Toot Cummon

Page 4 of 88

4 Test Summary		(2)	
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS	
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
99% Occupied bandwidth		PASS	
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS	
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	
Remark:			

Remark:

This product has two antenna schemes, please see the product photo, and we have tested both. Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 5 of 88

5 General Information 5.1 Client Information

Applicant:	Hongdian Corporation
Address of Applicant:	Tower A, Hongdian Building, 100 Huabao Road, Pinghu, Longgang District, Shenzhen, China
Manufacturer:	Hongdian Corporation
Address of Manufacturer:	Tower A, Hongdian Building, 100 Huabao Road, Pinghu, Longgang District, Shenzhen, China
Factory :	Hongdian Corporation
Address of Factory :	Tower A, Hongdian Building, 100 Huabao Road, Pinghu, Longgang District, Shenzhen, China

5.2 General Description of EUT

Product Name:	4G Intelligent Gatewa	у		
Model No.:	X2		6	(C)
Trade mark:	N/A			
Product Type:	Mobile Porta	able 🛛 🛛 Fix L	ocation	
Type of Modulation:		HT40): OFDM (E	, 16QAM, 64QAM) 3PSK, QPSK, 16QAM, 640 0): OFDM (BPSK, QPSK,	,
Operating Frequency	U-NII-1: 5180-5250M U-NII-3: 5745-5825M			
Antenna Type:	External Antenna		$(c^{(n)})$	(6)
Antenna Gain:	Antenna schemes 1:		2.58dBi, Ant2: 2.58dBi 3.23dBi, Ant2: 3.23dBi	
	Antenna schemes 2:		2.55dBi, Ant2: 2.55dBi -0.42dBi, Ant2: -0.42dBi	
Power Supply:	DC12V,3A	S		
Test voltage:	DC12V			
Sample Received Date:	Jan. 10, 2023			-05
Sample tested Date:	Jan. 10, 2023 to Feb.	03, 2023		
	6		0	CO.

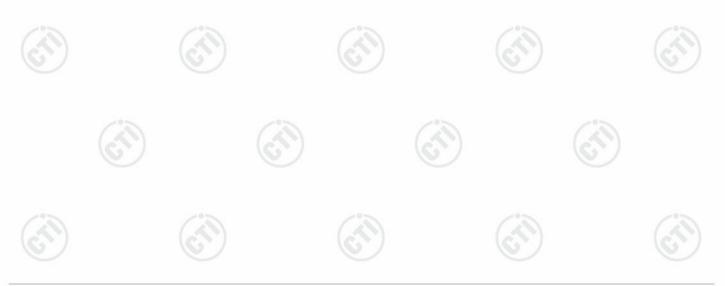
Page 6 of 88

Operation Frequency each of channel

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
36	5180	149	5745
40	5200	153	5765
44	5220	157	5785
48	5240	161	5805
.0	y .	165	5825

802.11n/802.11ac (40MHz) Frequency/Channel Operations:


)	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

802.11ac (80MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

nei Frequency(MHZ)

MCS0

5.3 Test Configuration

EUT Test Software Settings:			
Software:	qdart	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12
EUT Power Grade:	Default	(25)	(2)
Use test software to set the lowe transmitting of the EUT.	est frequency, the middle freque	ency and the highest frequency keep	V
Test Mode:			
We have verified the construction the EUT in transmitting operation Per-scan all kind of data rate in	n, which was shown in this test		it with
was worst case.			
Mode		Data rate	
802.11a		6 Mbps	
802.11n(HT2	20)	MCS0	12
802.11n(HT4	0)	MCS0	62
802.11ac(VHT	20)	MCS0	V
802.11ac(VHT	40)	MCS0	

5.4 Test Environment

802.11ac(VHT80)

Operating Environment:					
Radiated Spurious Emission	s:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		(C)		(O)
Atmospheric Pressure:	1010mbar				
Conducted Emissions:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH	(\mathcal{O})		(\mathcal{C})	
Atmospheric Pressure:	1010mbar	\bigcirc			
RF Conducted:					
Humidity:	50~55 % RH		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12
Atmospheric Pressure:	1010mbar		(\mathcal{A})		(\mathcal{A})
	NT (Normal Temperature)		22~25.0 °C		U
Temperature:	LT (Low Temperature)		-30 °C		
	HT (High Temperature)		75.0 °C	- 0.5	
	NV (Normal Voltage)		DC 12 V		
Working Voltage of the EUT:	LV (Low Voltage)	6	DC 9 V	6	
	HV (High Voltage)		DC 48 V		

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

	Description	Manufacturer	Model No.	Certification	Supplied by
-	AC/DC adapter	Shenzhen Boshenggao Technology CO LTD	BSG-1203000	ccc	Client
	Notebook	Lenovo	ThinkBook 14	FCC	СТІ

5.6 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
4	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3		4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 8 of 88

6 Equipment List

Page 9 of 88

		RF te	st system			
Equipment	Manufacturer	anufacturer Model No. Serial Num		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy) 07-05-2023	
Communication tset set	R&S		107929	07-06-2022		
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023	
Spectrum Analyzer	R&S FSV40		101200	08-01-2022	07-31-2023	
RF control	MWRF-test	MW100-RFCB	MW220620CTI-42	07-06-2022	07-05-2023	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	НМ10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(1)	6	

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-06-2022	05-05-2023
Temperature/ Humidity Indicator	Defu	TH128	1		- 6
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023
Barometer	changchun	DYM3	1188		
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	07-13-2022	07-12-2023
ISN	TESEQ	ISN T800	30297	12-29-2022	12-28-2023

Conducted disturbance Test

(~)	1		(4)	(6	10
	3M Semi-an	echoic Chamber (2)	- Radiated distu	Irbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	ток	SAC-3		05-22-2022	05-21-2025
Receiver	R&S	ESCI7	100938-003	09-28-2022	09-27-2023
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05-22-2022	05-21-2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12-23-2022	12-22-2023
Multi device Controller	maturo	NCD/070/10711112			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 11 of 88

		3M full-anechoi	c champer		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	(\mathcal{O})	(
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-01-2022	02-28-2023
Spectrum Analyzer TRILOG	Keysight	N9030B	MY57140871	03-01-2022	02-28-2023
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-13-2022	04-12-2023
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	02-21-2022	02-20-2023
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		シ
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		(
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	<u>_</u>	
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(- (S
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	\	<u></u>
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		(

Page 12 of 88

7 Radio Technical Requirements Specification

7.1 Antenna Requirement: Standard requirement: 47 CFR Part 15C Section 15.203 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. EUT Antenna: Please see Internal photos The antenna is External antenna. The best case gain of the antenna please refer to the section 5.2.

Page 13 of 88

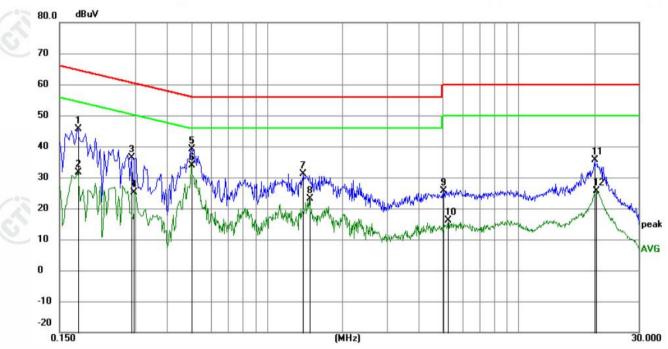
Test Requirement:	47 CFR Part 15C Section 15.2	.07		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			12
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	weep time=auto		6)
Limit:		Limit ((dBuV)	~
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm		50	
Test Setup:				
Test Procedure:	 Shielding Room EUT EUT EUT EUT EUT I) The mains terminal disturb room. 2) The EUT was connected Impedance Stabilization Ne impedance. The power connected to a second LIS plane in the same way a 	to AC power source etwork) which provide cables of all other N 2, which was bond	as conducted in a e through a LIS es a 50Ω/50µH + units of the E led to the ground	N 1 (Lin 5Ω linea UT wer referenc
	 multiple socket outlet strip single LISN provided the ra 3) The tabletop EUT was pla ground reference plane. An placed on the horizontal ground 4) The test was performed wit the EUT shall be 0.4 m to vertical ground reference reference plane. The LISN unit under test and bond mounted on top of the groun the closest points of the L and associated equipment 5) In order to find the maximus and all of the interface cab 	ating of the LISN was ced upon a non-met and for floor-standing a ound reference plane h a vertical ground re- from the vertical ground plane was bonded 1 1 was placed 0.8 m ded to a ground re- ind reference plane. ISN 1 and the EUT. was at least 0.8 m fro um emission, the rela	not exceeded. allic table 0.8m arrangement, the eference plane. To bund reference p to the horizont from the bound eference plane This distance wa All other units c om the LISN 2. tive positions of	above the EUT wa The rear co blane. The cal ground lary of the for LISN s between f the EUT

Report No. : EED32P80040002

Page 14 of 88

		ANSI C63.10): 2013 on co	nducted meas	surement.	(3)	
Test Mode:			ere tested,onl s recorded in		ise lowest ch	annel of 6Mb	ps for
Test Results	8:	Pass					





Page 15 of 88

- Antenna schemes 1:
- Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1768	35.79	9.87	45.66	64.63	-18.97	QP	
2	5	0.1768	21.65	9.87	31.52	54.63	-23.11	AVG	
3		0.2893	26.45	10.05	36.50	60.54	-24.04	QP	
4		0.2971	15.02	10.06	25.08	50.32	-25.24	AVG	
5		0.4994	29.14	9.95	39.09	56.01	-16.92	QP	
6	*	0.4994	23.93	9.95	33.88	46.01	-12.13	AVG	
7		1.3958	21.22	9.81	31.03	56.00	-24.97	QP	
8		1.4718	13.39	<mark>9.81</mark>	23.20	46.00	-22.80	AVG	
9		5.0312	15.83	9.78	25.61	60.00	-34.39	QP	
10		5.2490	6.42	9.78	16.20	50.00	-33.80	AVG	
11		20.0559	25.56	9.97	35.53	60.00	-24.47	QP	
12		20.2696	15.66	9.97	25.63	50.00	-24.37	AVG	

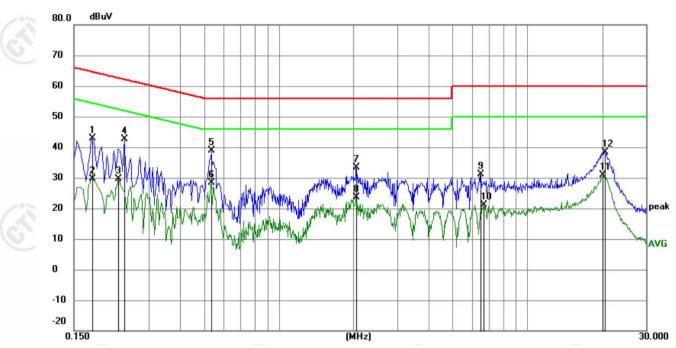

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 88

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	33.58	9.87	43.45	66.00	-22.55	QP	
2		0.1544	17.23	9.87	27.10	55.76	-28.66	AVG	
3		0.1995	30.25	9.87	40.12	63.63	-23.51	QP	
4		0.1995	15.58	9.87	25.45	53.63	-28.18	AVG	
5	*	0.5144	29.32	9.97	39.29	56.00	-16.71	QP	
6		0.5190	17.98	9.97	27.95	46.00	-18.05	AVG	
7		1.9004	11.20	9.79	20.99	46.00	-25.01	AVG	
8		1.9229	19.74	9.79	29.53	56.00	-26.47	QP	
9		6.2295	8.90	9.79	18.69	50.00	-31.31	AVG	
10		6.3735	19.35	9.79	29.14	60.00	-30.86	QP	
11		20.5889	24.13	9.97	34.10	60.00	-25.90	QP	
12		20.5889	16.88	9.97	26.85	50.00	-23.15	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

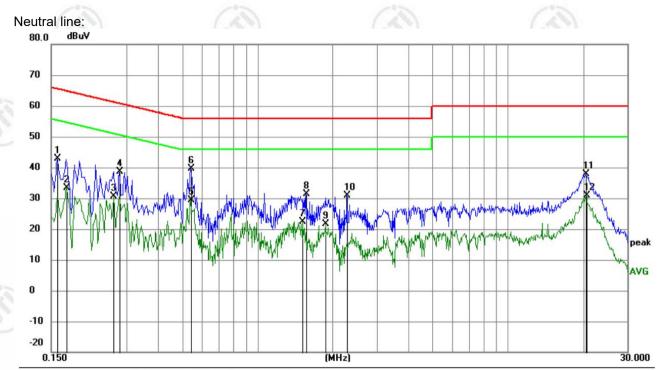
C


Page 17 of 88

Measurement Data

Antenna schemes 2:

Live line:



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1770	32.97	9.87	42.84	64.63	-21.79	QP	
2	0.1770	19.86	9.87	29.73	54.63	-24.90	AVG	
3	0.2265	19.83	9.92	29.75	52.58	- <mark>22.83</mark>	AVG	
4	0.2400	32.60	9.95	42.55	62.10	-19.55	QP	
5 *	0.5370	28.92	9.99	38.91	56.00	-17.09	QP	
6	0.5370	18. <mark>4</mark> 2	9.99	28.41	46.00	-17.59	AVG	
7	2.0445	23.57	9.79	33.36	56.00	-22.64	QP	
8	2.0445	13.94	9.79	23.73	46.00	-22.27	AVG	
9	6.4680	21.45	9.79	31.24	60.00	-28.76	QP	
10	6.6660	11.38	9.79	21.17	50.00	-28.83	AVG	
11	20.1299	20.87	9.97	30.84	50.00	-19.16	AVG	
12	20.4360	28.34	9.97	38.31	60.00	-21.69	QP	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 18 of 88

	MHz	100 11		ment	Limit	Margin		
		dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	33. <mark>0</mark> 0	9.87	42.87	65.52	-22.65	QP	
2	0.1725	23.51	9.87	33.38	54.84	-21.46	AVG	
3	0.2670	20.65	10.00	30.65	51.21	-20.56	AVG	
4	0.2805	28.71	10.03	38.74	60.80	-22.06	QP	
5	0.5414	19.48	10.00	29.48	46.00	- <mark>16.5</mark> 2	AVG	
6 *	0.5415	29.58	10.00	39.58	56.00	-16.42	QP	
7	1.5179	12.66	9.81	22.47	46.00	-23.53	AVG	
8	1.5673	21.66	9.81	31.47	56.00	-24.53	QP	
9	1.8689	11.79	9.80	21.59	46.00	-24.41	AVG	
10	2.2783	21.07	9.79	30.86	56.00	-25.14	QP	
11	20.5935	27.91	9.97	37.88	60.00	-22.12	QP	
12	20.5980	20.89	9.97	30.86	50.00	-19.14	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 19 of 88

7.3 Maximum Conducted Output Power Test Requirement: 47 CFR Part 15C Section 15.407 (a) KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section Test Method: Е Test Setup: **RF** test Control Compute System Power Supply owe out Attenuator Instrument TEMPERATURE CABINE Test Procedure: 1. The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. Limit: Frequency band Limit (MHz) 5150-5250 ≤1W(30dBm) for master device ≤250mW(24dBm) for client device 5250-5350 ≤250mW(24dBm) for client device or 11dBm+10logB* 5470-5725 ≤250mW(24dBm) for client device or 11dBm+10logB* 5725-5850 ≤1W(30dBm) * Where B is the 26dB emission bandwidth in MHz Remark: The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rmsequivalent voltage. Test Mode: Transmitting mode with modulation Test Results: Refer to Appendix 5G WIFI

7.4 6dB Emisson Bandwidth


Test Requirement:	47 CFR Part 15C Section 15.407 (e)	
Test Method:	KDB789033 D02 General UNII Test C	Procedures New Rules v02r01 Section
Test Setup:		
	Control Computer Supply TemPERATURE CABRIET	RF test System Instrument
	Remark: Offset=Cable loss+ attenuat	ion factor.
Test Procedure:	 KDB789033 D02 General UNII Test Section C Set to the maximum power setting continuously. Make the measurement with the sp (RBW) = 100 kHz. Set the Video band make an accurate measurement. The 500 kHz. Measure and record the results in the 	and enable the EUT transmit bectrum analyzer's resolution bandwidth dwidth (VBW) = 300 kHz. In order to 6dB bandwidth must be greater than
Limit:	≥ 500 kHz	(S ^N) (S ^N)
Test Mode:	Transmitting mode with modulation	0
Test Results:	Refer to Appendix 5G WIFI	

7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.407 (a)							
13	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D							
(C)	Test Setup:	Control Control Control Control Control Control							
		Remark: Offset=Cable loss+ attenuation factor.							
	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. Measure and record the results in the test report. 							
100	Limit:	No restriction limits							
(2)	Test Mode:	Transmitting mode with modulation							
6	Test Results:	Refer to Appendix 5G WIFI							

Page 22 of 88

7.6 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C S	ection 15.407 (a)			
197	Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rul	es v02r01 Section F	
<u>છ</u>	Test Setup:	(6	S^)			
		Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test System Instrument		
<u>છે</u>		Remark: Offset=Ca			G.	
	Test Procedure:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweep	RBW = 510 kHz/1 MS. s to continue unti	receiver span to view MHz, VBW \geq 3*RBW the trace stabilizes.	/, Sweep time =	
	Limit:		U		J	
		Frequency band (MHz)	Limit			
2		5150-5250	≤17dBm in 1MH	Iz for master device		
3		c c	≤11dBm in 1MH	Iz for client device	67	
		5250-5350	≤11dBm in 1MH	Iz for client device		
		5470-5725	≤11dBm in 1MF	Iz for client device		
		5725-5850	≤30dBm in 500	kHz	~~>	
		Remark:	a conducted en	ower spectral densit hission by direct conn nstrument to the equi	ection of a	
	Test Mode:	Transmitting mode	with modulation			
0	Test Results:	Refer to Appendix	5G WIFI	~°>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
5)	(ST)	ć	5)	67)	67)	

Page 23 of 88

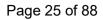
7.7 Frequency Stability

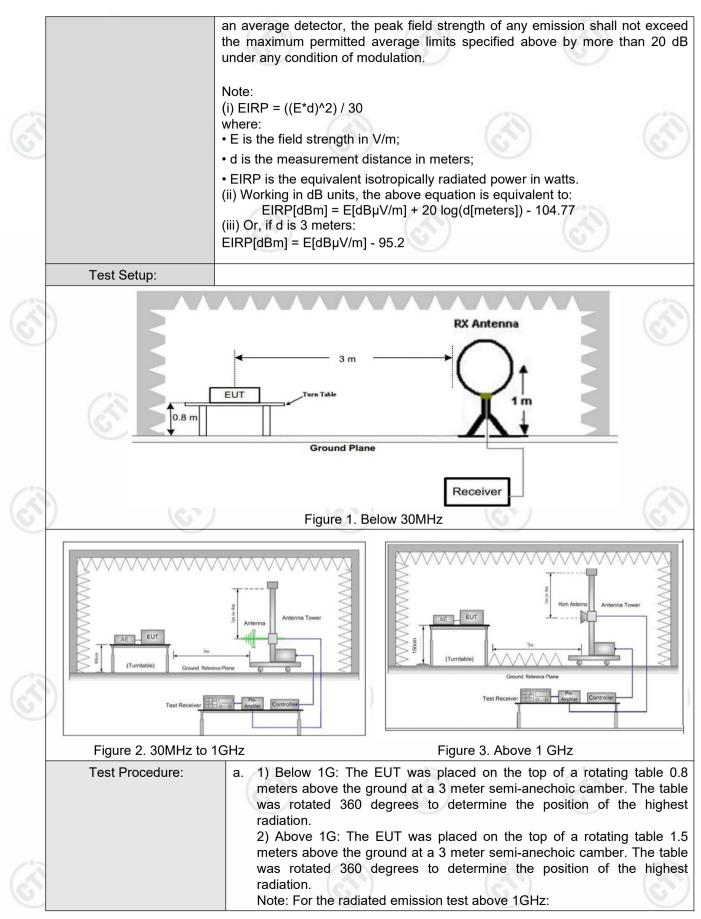
Test Requirement:	47 CFR Part 15C Section 15.407 (g)	
Test Method:	ANSI C63.10: 2013	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12
Test Setup:	(25)	(5)	
	Control Composite Power Supply Teliple Table	RF test System Instrument	
	Remark: Offset=Cable loss+ attenu	ation factor.	C)
Test Procedure:	 by nominal AC/DC voltage. 2. Turn the EUT on and couple its of 3. Turn the EUT off and set the charspecified. d. Allow sufficient time (a) of the chamber to stabilize. 4. Repeat step 2 and 3 with the term temperature. 5. The test chamber was allowed to of 30 minutes. The supply voltage with 115% and the frequency record. 	output to a spectrum mber to the highest pproximately 30 min perature chamber s stabilize at +20 deg vas then adjusted or	analyzer. temperature) for the temperature set to the lowest gree C for a minimum h the EUT from 85% to
Limit:	frequency over a temperature var normal supply voltage, and for a va	iation of 0 degrees ariation in the prima	s to 45 degrees C at ry supply voltage from
Test Mode:	Transmitting mode with modulation	1	
Test Results:	Refer to Appendix 5G WIFI)	6
	Test Method: Test Setup: Test Setup: Test Procedure: Limit: Limit: Test Mode:	Test Method: ANSI C63.10: 2013 Test Setup: Image: Comparison of the set of the se	Test Method: ANSI C63.10: 2013 Test Setup: Image: Comparison of the set of the se

Page 24 of 88

7.8 Radiated Emission

	Test Requirement:	47 CFR Part 15C Sect	tion 1	5.209 and 1	5.407 (b)			
	Test Method:	ANSI C63.10 2013						- 0.1
	Test Site:	Measurement Distanc	e: 3n	n (Semi-Ane	choic Cha	mbe	r)	(A)
9	Receiver Setup:	Frequency		Detector		RBW VBW		Remark
		0.009MHz-0.090MH	Ηz	Peak	10kl	Hz	30kHz	Peak
		0.009MHz-0.090MH	Ηz	Average	10kl	Hz	30kHz	Average
		0.090MHz-0.110MH	Ηz	Quasi-pea	ık 10kl	Hz	30kHz	Quasi-peak
		0.110MHz-0.490MI	Hz Peak		10kl	Hz	30kHz	Peak
		0.110MHz-0.490MI	Ηz	Average	10kl	Hz	30kHz	Average
		0.490MHz -30MH	z	Quasi-pea	ık 10kl	Ηz	30kHz	Quasi-peak
1		30MHz-1GHz	0	Quasi-pea	ık 100 k	кНz	300kHz	Quasi-peak
S I				Peak	1MH	Ηz	3MHz	Peak
		Above 1GHz		Peak	1Mł	Ηz	10kHz	Average
	Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m) F	Remark	Measurement distance (m)
		0.009MHz-0.490MHz	24	00/F(kHz)	-		- 0	300
		0.490MHz-1.705MHz	0.490MHz-1.705MHz 240		-	-		30
		1.705MHz-30MHz		30	-		-	30
		30MHz-88MHz	0	100	40.0	Qu	iasi-peak	3
S)		88MHz-216MHz	7	150	43.5	Qu	iasi-peak	3
		216MHz-960MHz		200	46.0	Qu	iasi-peak	3
		960MHz-1GHz		500	54.0	Qu	iasi-peak	3
		Above 1GHz		500	54.0	A	verage	3
		 *(1) For transmitters outside of the 5.15- dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz I (3) For transmitters outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall above or below the be above or below the be edge increasing linear the band edge, and f linearly to a level of 27 	5.35 berati operation 5.725 be line and end and ly to from 7 dBn	GHz band ng in the 5.2 shall not exc ating in the GHz band ng in the 5.7 nited to a leve edge increas edge, and fi a level of 15 5 MHz abor n/MHz at the	shall no 5-5.35 GF ceed an e. 5.47-5.72 I shall no 25-5.85 G vel of -27 sing linear rom 25 M 5.6 dBm/N ve or belo band edg	t ex Hz ba i.r.p. 25 C ot ex iHz b dBn ly to iHz a /Hz pw th je.	and: All en of -27 dE GHz band: xceed an pand: n/MHz at 7 10 dBm/I above or b at 5 MHz he band e	e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 75 MHz or more MHz at 25 MHz below the band above or below edge increasing
Ś		Remark: The emissi measurements emplo frequency bands 9-9 emission limits in the	oying 0kHz	a CISPR z, 110-490k	quasi-pe Hz and	ak abo∖	detector (/e 1000 l	except for the MHz. Radiated



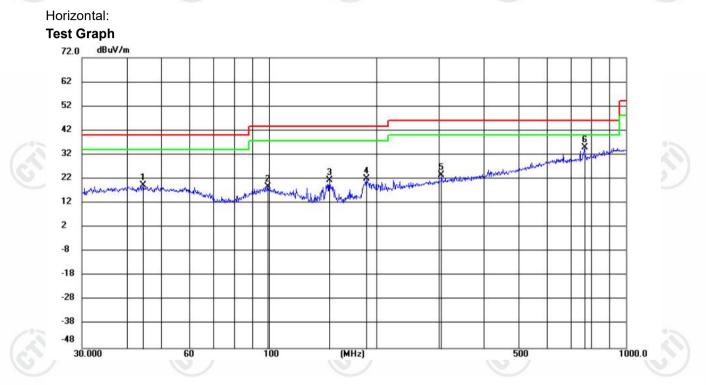


Ì

Report No. : EED32P80040002

Page 26 of 88

	 Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the
	ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel and the highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

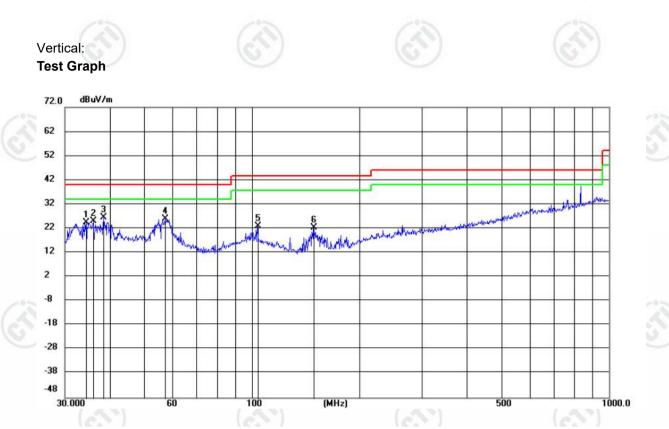
Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

Antenna schemes 1:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		44.5868	5.03	14.41	19.44	40.00	-20.56	QP	200	169	
2		99.5281	4.73	13.99	18.72	43.50	-24.78	QP	100	267	
3		147.9214	11.67	9.88	21.55	43.50	-21.95	QP	200	356	
4		187.7529	10.32	11.64	21.96	43.50	-21.54	QP	100	20	
5		304.6099	6.21	17.35	23.56	46.00	-22.44	QP	200	356	
6	*	766.0571	9.23	25.83	35.06	46.00	-10.94	QP	200	356	

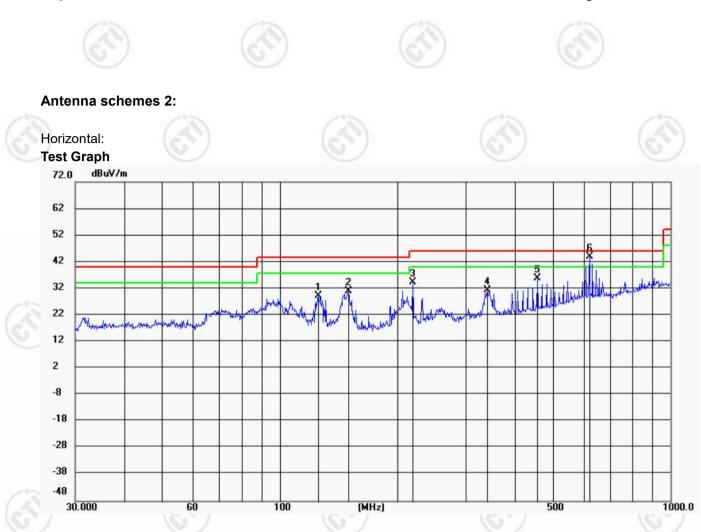
Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:


- 2. Measurement =Reading Level+ Correct Factor .
- 3. Margin =Measurement- Limit .

Page 28 of 88

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	34.3964	10.78	13.53	24.31	40.00	-15.69	QP	100	7	
2	36.0007	11.10	13.82	24.92	40.00	-15.08	QP	100	356	
3 *	38. <mark>4</mark> 809	12.24	14.26	26.50	40.00	-13.50	QP	100	64	
4	57.1914	12.27	13.76	26.03	40.00	-13.97	QP	100	356	
5	103.8055	9.53	13.50	23.03	43.50	<mark>-20.47</mark>	QP	100	356	
6	148.9625	12.42	9.98	22.40	43.50	-21.10	QP	100	280	


Remark:

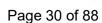
1. The following Quasi-Peak and Average measurements were performed on the EUT:

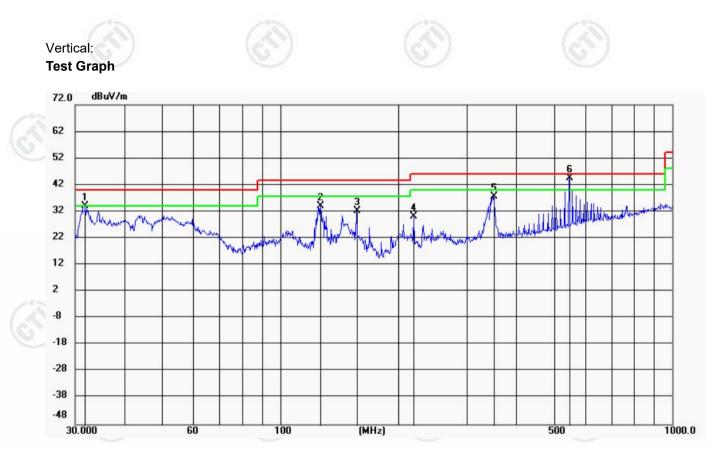
- 2. Measurement =Reading Level+ Correct Factor .
- 3. Margin =Measurement- Limit .

Page 29 of 88

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	125.4457	19.05	10.35	29. <mark>4</mark> 0	43.50	-14.10	peak	200	88	
	150.0108	21.05	10.08	31.13	43.50	-12.37	peak	200	131	
	219.0753	19.94	14.44	3 <mark>4</mark> .38	46.00	-11.62	peak	200	141	
	339.5887	13.38	18.09	31. <mark>4</mark> 7	46.00	- <mark>14</mark> .53	peak	200	356	
	457.5073	15.32	20.63	35.95	46.00	-10.05	peak	200	99	
*	620.7096	19.77	24.18	43.95	46.00	-2.05	peak	100	143	
		MHz 125.4457 150.0108 219.0753 339.5887 457.5073	Mk. Freq. Level MHz dBuV 125.4457 19.05 150.0108 21.05 219.0753 19.94 339.5887 13.38 457.5073 15.32	Mk. Freq. Level Factor MHz dBuV dB 125.4457 19.05 10.35 150.0108 21.05 10.08 219.0753 19.94 14.44 339.5887 13.38 18.09 457.5073 15.32 20.63	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 125.4457 19.05 10.35 29.40 150.0108 21.05 10.08 31.13 219.0753 19.94 14.44 34.38 339.5887 13.38 18.09 31.47 457.5073 15.32 20.63 35.95	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 125.4457 19.05 10.35 29.40 43.50 150.0108 21.05 10.08 31.13 43.50 219.0753 19.94 14.44 34.38 46.00 339.5887 13.38 18.09 31.47 46.00 457.5073 15.32 20.63 35.95 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB 125.4457 19.05 10.35 29.40 43.50 -14.10 150.0108 21.05 10.08 31.13 43.50 -12.37 219.0753 19.94 14.44 34.38 46.00 -11.62 339.5887 13.38 18.09 31.47 46.00 -14.53 457.5073 15.32 20.63 35.95 46.00 -10.05	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 125.4457 19.05 10.35 29.40 43.50 -14.10 peak 150.0108 21.05 10.08 31.13 43.50 -12.37 peak 219.0753 19.94 14.44 34.38 46.00 -11.62 peak 339.5887 13.38 18.09 31.47 46.00 -14.53 peak 457.5073 15.32 20.63 35.95 46.00 -10.05 peak	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dB Detector cm 125.4457 19.05 10.35 29.40 43.50 -14.10 peak 200 150.0108 21.05 10.08 31.13 43.50 -12.37 peak 200 219.0753 19.94 14.44 34.38 46.00 -11.62 peak 200 339.5887 13.38 18.09 31.47 46.00 -14.53 peak 200 457.5073 15.32 20.63 35.95 46.00 -10.05 peak 200	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB Detector cm degree 125.4457 19.05 10.35 29.40 43.50 -14.10 peak 200 88 150.0108 21.05 10.08 31.13 43.50 -12.37 peak 200 131 219.0753 19.94 14.44 34.38 46.00 -11.62 peak 200 1411 339.5887 13.38 18.09 31.47 46.00 -14.53 peak 200 356 457.5073 15.32 20.63 35.95 46.00 -10.05 peak 200 99

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:


2. Measurement =Reading Level+ Correct Factor .

3. Margin =Measurement- Limit .

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.8427	20.87	13.08	33.95	40.00	-6.05	peak	100	205	
2		126.7723	23.79	10.14	33.93	43.50	-9.57	peak	100	41	
3		156.4578	22.24	9.91	32.15	43.50	<mark>-11.35</mark>	peak	100	20	
4		219.0753	15.64	14.44	30.08	46.00	-15.92	peak	100	124	
5		350.4768	19.33	18.33	37.66	46.00	-8.34	peak	200	229	
6	*	545.1826	21.77	22.67	44.44	46.00	-1.56	peak	100	103	

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

- 2. Measurement =Reading Level+ Correct Factor .
- 3. Margin =Measurement- Limit .

Transmitter Emission above 1GHz

Remark: During the test, the Radiates Emission above 1GHz was performed in all modes, only the worst case ant1 and ant2 transmit simultaneously was recorded in the report.

Antenna schemes 1:

MIN	<i>I</i> O							(C)		
Mode	e:	80)2.11 n(HT2	0) Transmitti	ng	Chann	el:	5180MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1346.5347	1.29	39.79	41.08	68.20	27.12	PASS	Horizontal	PK	
2	2157.8658	4.40	38.08	42.48	68.20	25.72	PASS	Horizontal	PK	
3	3950.495	9.17	36.22	45.39	68.20	22.81	PASS	Horizontal	PK	
4	7468.9234	-11.34	54.40	43.06	68.20	25.14	PASS	Horizontal	PK	
5	10410.1955	-6.30	52.12	45.82	68.20	22.38	PASS	Horizontal	PK	
6	16512.9756	0.53	51.49	52.02	68.20	16.18	PASS	Horizontal	PK	
7	1572.6073	2.21	38.41	40.62	68.20	27.58	PASS	Vertical	PK	
8	2430.143	4.61	38.98	43.59	68.20	24.61	PASS	Vertical	PK	
9	4221.6722	10.30	35.17	45.47	68.20	22.73	PASS	Vertical	PK	
10	6906.5453	-11.97	56.03	44.06	68.20	24.14	PASS	Vertical	PK	
11	10269.3135	-6.49	52.87	46.38	68.20	21.82	PASS	Vertical	PK	
12	16609.5805	1.38	51.09	52.47	68.20	15.73	PASS	Vertical	PK	

Mod	e:		802.11 n(HT2	0) Transmitti	ing	Channe	el:	5200MHz	
NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1392.1892	1.42	39.23	40.65	68.20	27.55	PASS	Horizontal	PK
2	2568.7569	5.15	38.34	43.49	68.20	24.71	PASS	Horizontal	PK
3	4436.7437	11.29	35.29	46.58	68.20	21.62	PASS	Horizontal	PK
4	7374.6187	-11.42	54.08	42.66	68.20	25.54	PASS	Horizontal	PK
5	11939.772	-5.20	52.37	47.17	68.20	21.03	PASS	Horizontal	PK
6	17330.6665	3.58	50.32	53.90	68.20	14.30	PASS	Horizontal	PK
7	1462.5963	1.53	39.45	40.98	68.20	27.22	PASS	Vertical	PK
8	2535.2035	5.17	38.90	44.07	68.20	24.13	PASS	Vertical	PK
9	4057.7558	9.53	35.99	45.52	68.20	22.68	PASS	Vertical	PK
10	7418.8959	-11.45	54.05	42.60	68.20	25.60	PASS	Vertical	PK
11	11151.9826	-6.06	51.97	45.91	68.20	22.29	PASS	Vertical	PK
12	16377.2689	0.00	50.68	50.68	68.20	17.52	PASS	Vertical	PK

Page 32 of 88

		1 1		(20)		1.1		1	10	
	Mode	:		802.11 n(HT2	0) Transmitti	ng	Channe	el:	5240MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1279.978	1.08	39.45	40.53	68.20	27.67	PASS	Horizontal	PK
3	2	2453.2453	4.80	37.83	42.63	68.20	25.57	PASS	Horizontal	PK
~	3	3950.495	9.17	36.29	45.46	68.20	22.74	PASS	Horizontal	PK
	4	7513.2007	-11.19	54.11	42.92	68.20	25.28	PASS	Horizontal	PK
	5	12467.6484	-4.19	52.32	48.13	68.20	20.07	PASS	Horizontal	PK
	6	17116.7558	1.86	51.43	53.29	68.20	14.91	PASS	Horizontal	PK
	7	1448.2948	1.51	39.48	40.99	68.20	27.21	PASS	Vertical	PK
	8	2262.3762	4.01	38.80	42.81	68.20	25.39	PASS	Vertical	PK
	9	4221.6722	10.30	35.81	46.11	68.20	22.09	PASS	Vertical	PK
20	10	7554.6027	-10.87	53.06	42.19	68.20	26.01	PASS	Vertical	PK
A	11	11986.9243	-4.91	52.46	47.55	68.20	20.65	PASS	Vertical	PK
Q	12	17659.008	4.25	49.70	53.95	68.20	14.25	PASS	Vertical	PK

	Mode	:		802.11 n(HT4	10) Transmitti	ing	Channe	el:	5190MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1830.033	3.64	38.73	42.37	68.20	25.83	PASS	Horizontal	PK
1	2	2702.4202	5.55	38.26	43.81	68.20	24.39	PASS	Horizontal	PK
1	3	3998.3498	9.43	35.76	45.19	68.20	23.01	PASS	Horizontal	PK
Q	4	7616.1308	-10.64	53.97	43.33	68.20	24.87	PASS	Horizontal	PK
	5	11968.5234	-5.03	52.75	47.72	68.20	20.48	PASS	Horizontal	PK
	6	13885.0943	-1.07	50.97	49.90	68.20	18.30	PASS	Horizontal	PK
	7	1581.4081	2.29	38.54	40.83	68.20	27.37	PASS	Vertical	PK
	8	2301.4301	4.05	39.15	43.20	68.20	25.00	PASS	Vertical	PK
	9	3949.3949	9.17	35.63	44.80	68.20	23.40	PASS	Vertical	PK
	10	6919.771	-11.92	2 57.74	45.82	68.20	22.38	PASS	Vertical	PK
	11	9745.4623	-7.39	53.01	45.62	68.20	22.58	PASS	Vertical	PK
0	12	13674.0587	-1.72	50.60	48.88	68.20	19.32	PASS	Vertical	PK
6		10074.0007	6	00.00	+0.00	00.20	10.02	17.00	Vertiour	G

Page 33 of 88

	Mode	:		802.11 n(HT4	0) Transmitt	ng	Chann	el:	5230MHz		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1	1557.7558	2.08	39.33	41.41	68.20	26.79	PASS	Horizontal	PK	
e l	2	2936.7437	6.39	38.25	44.64	68.20	23.56	PASS	Horizontal	PK	
-	3	3914.7415	8.98	35.92	44.90	68.20	23.30	PASS	Horizontal	PK	
	4	9016.3258	-8.44	52.84	44.40	68.20	23.80	PASS	Horizontal	PK	
	5	12444.6472	-4.12	52.95	48.83	68.20	19.37	PASS	Horizontal	PK	
	6	14429.0715	0.22	49.50	49.72	68.20	18.48	PASS	Horizontal	PK	
	7	1427.9428	1.48	39.46	40.94	68.20	27.26	PASS	Vertical	PK	
	8	2446.0946	4.74	38.43	43.17	68.20	25.03	PASS	Vertical	PK	
	9	3805.2805	8.56	35.72	44.28	68.20	23.92	PASS	Vertical	PK	
20	10	6973.2487	-11.75	54.41	42.66	68.20	25.54	PASS	Vertical	PK	
4	11	11957.0229	-5.09	53.02	47.93	68.20	20.27	PASS	Vertical	PK	
C	12	16450.8725	0.08	52.49	52.57	68.20	15.63	PASS	Vertical	PK	

	Mode	:		802.11 ac(VH	IT80) Transm	nitting	Channel:		5210MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1314.6315	1.19	39.79	40.98	68.20	27.22	PASS	Horizontal	PK
1	2	2176.5677	4.20	38.72	42.92	68.20	25.28	PASS	Horizontal	PK
6	3	3893.8394	8.88	36.25	45.13	68.20	23.07	PASS	Horizontal	PK
V	4	7591.9796	-10.59	53.25	42.66	68.20	25.54	PASS	Horizontal	PK
	5	10740.262	-6.17	52.22	46.05	68.20	22.15	PASS	Horizontal	PK
	6	15958.0729	-0.08	50.90	50.82	68.20	17.38	PASS	Horizontal	PK
	7	1698.0198	3.01	39.54	42.55	68.20	25.65	PASS	Vertical	PK
	8	2583.6084	5.14	38.14	43.28	68.20	24.92	PASS	Vertical	PK
	9	3311.3311	7.41	37.59	45.00	68.20	23.20	PASS	Vertical	PK
	10	6996.2498	-11.68	54.54	42.86	68.20	25.34	PASS	Vertical	PK
	11	11788.5394	-6.15	53.66	47.51	68.20	20.69	PASS	Vertical	PK
1	12	14980.524	-0.95	50.80	49.85	68.20	18.35	PASS	Vertical	PK
G)		6)	6)	(6))		GY)

Page 34 of 88

					1				
Mode) :		802.11 n(HT2	0) Transmitti	ing	Channel:		5745MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1649.615	3.14	38.63	41.77	68.20	26.43	PASS	Horizontal	PK
2	2590.209	5.67	38.12	43.79	68.20	24.41	PASS	Horizontal	PK
3	3801.4301	9.37	36.53	45.90	68.20	22.30	PASS	Horizontal	PK
4	8479.6653	-10.61	52.65	42.04	68.20	26.16	PASS	Horizontal	PK
5	12404.4936	-4.02	51.09	47.07	68.20	21.13	PASS	Horizontal	PK
6	15954.397	-0.06	51.41	51.35	68.20	16.85	PASS	Horizontal	PK
7	1634.2134	3.01	38.87	41.88	68.20	26.32	PASS	Vertical	PK
8	3051.7052	7.40	38.17	45.57	68.20	22.63	PASS	Vertical	PK
9	3856.9857	9.56	39.64	49.20	68.20	19.00	PASS	Vertical	PK
10	8432.1288	-10.64	53.44	42.80	68.20	25.40	PASS	Vertical	PK
11	12499.5666	-4.27	53.19	48.92	68.20	19.28	PASS	Vertical	PK
12	16514.8677	0.54	51.09	51.63	68.20	16.57	PASS	Vertical	PK

	Mode	:		802.11 n(H ⁻	T20) Transmitt	ing	Channel:		5825MHz	
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1666.6667	3.29	38.86	42.15	68.20	26.05	PASS	Horizontal	PK
	2	2737.6238	6.25	39.05	45.30	68.20	22.90	PASS	Horizontal	PK
	3	3963.6964	10.13	36.69	46.82	68.20	21.38	PASS	Horizontal	PK
	4	8797.0865	-9.12	51.62	42.50	68.20	25.70	PASS	Horizontal	PK
	5	12363.8576	-4.56	52.29	47.73	68.20	20.47	PASS	Horizontal	PK
	6	16521.7681	0.61	52.03	52.64	68.20	15.56	PASS	Horizontal	PK
	7	1432.3432	1.85	39.36	41.21	68.20	26.99	PASS	Vertical	PK
	8	2039.0539	5.29	38.19	43.48	68.20	24.72	PASS	Vertical	PK
	9	3883.3883	9.65	39.25	48.90	68.20	19.30	PASS	Vertical	PK
	10	7426.1951	-11.43	3 53.92	42.49	68.20	25.71	PASS	Vertical	PK
	11	11443.7963	-6.04	52.76	46.72	68.20	21.48	PASS	Vertical	PK
	12	15968.9646	-0.12	51.92	51.80	68.20	16.40	PASS	Vertical	PK
	\sim)		6		6	1	(c)			C)

Page 35 of 88

	Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	5755MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1508.2508	1.98	39.11	41.09	68.20	27.11	PASS	Horizontal	PK
é	2	2184.2684	4.57	39.38	43.95	68.20	24.25	PASS	Horizontal	PK
2	3	3287.6788	8.26	38.27	46.53	68.20	21.67	PASS	Horizontal	PK
	4	9770.8181	-7.29	52.33	45.04	68.20	23.16	PASS	Horizontal	PK
	5	13753.1502	-2.11	50.34	48.23	68.20	19.97	PASS	Horizontal	PK
	6	17730.1153	4.64	49.87	54.51	68.20	13.69	PASS	Horizontal	PK
	7	1729.3729	3.63	39.06	42.69	68.20	25.51	PASS	Vertical	PK
	8	2936.7437	7.07	37.50	44.57	68.20	23.63	PASS	Vertical	PK
	9	3836.6337	9.49	38.78	48.27	68.20	19.93	PASS	Vertical	PK
	10	7456.8638	-11.37	54.57	43.20	68.20	25.00	PASS	Vertical	PK
	11	11209.9473	-5.80	51.92	46.12	68.20	22.08	PASS	Vertical	PK
G	12	15945.1963	-0.03	51.17	51.14	68.20	17.06	PASS	Vertical	PK

	Mode	:		802.11 n(HT40) Transmitting				Channel:		5795MHz	
	NO	Freq. [MHz]	Factor [dB]		ding µV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1691.9692	3.52	38	.16	41.68	68.20	26.52	PASS	Horizontal	PK
	2	2679.868	6.04	38	.10	44.14	68.20	24.06	PASS	Horizontal	PK
-	3	4323.4323	11.90	34	.22	46.12	68.20	22.08	PASS	Horizontal	PK
2	4	7412.3942	-11.47	54	.03	42.56	68.20	25.64	PASS	Horizontal	PK
4	5	11910.7274	-5.37	52	.71	47.34	68.20	20.86	PASS	Horizontal	PK
	6	16603.8069	1.36	51	.14	52.50	68.20	15.70	PASS	Horizontal	PK
	7	1688.6689	3.49	38	.28	41.77	68.20	26.43	PASS	Vertical	PK
	8	2723.8724	6.21	38	.06	44.27	68.20	23.93	PASS	Vertical	PK
	9	3863.5864	9.58	39	.40	48.98	68.20	19.22	PASS	Vertical	PK
	10	7505.167	-11.24	54	.34	43.10	68.20	25.10	PASS	Vertical	PK
	11	10269.1846	-6.49	53	.28	46.79	68.20	21.41	PASS	Vertical	PK
	12	14456.2304	-0.18	50	.04	49.86	68.20	18.34	PASS	Vertical	PK
	<u> </u>		1.5				V	1.5		1	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI华测检测

Page 36 of 88

Report No. : EED32P80040002

	Mada			802.11 ac(VHT80) Transmitting			Chann	- I.		
	Mode	:		SUZ. TT ac(VH	180) Transm	nitting	Channe	er:	5775MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1711.7712	3.61	38.27	41.88	68.20	26.32	PASS	Horizontal	PK
2	2	2734.8735	6.25	38.70	44.95	68.20	23.25	PASS	Horizontal	PK
	3	4375.6876	12.20	34.94	47.14	68.20	21.06	PASS	Horizontal	PK
	4	9267.8512	-7.62	51.72	44.10	68.20	24.10	PASS	Horizontal	PK
	5	13885.7924	-1.06	49.56	48.50	68.20	19.70	PASS	Horizontal	PK
	6	17010.9341	2.86	50.57	53.43	68.20	14.77	PASS	Horizontal	PK
	7	1771.1771	3.70	38.95	42.65	68.20	25.55	PASS	Vertical	PK
	8	3027.5028	7.27	38.53	45.80	68.20	22.40	PASS	Vertical	PK
	9	3849.835	9.53	39.12	48.65	68.20	19.55	PASS	Vertical	PK
	10	9152.8435	-8.16	52.30	44.14	68.20	24.06	PASS	Vertical	PK
i)	11	11953.6636	-5.12	53.29	48.17	68.20	20.03	PASS	Vertical	PK
	12	17086.0724	1.75	51.93	53.68	68.20	14.52	PASS	Vertical	PK
-	1			Х	10.0	1		1	10	1.1

2.4G WiFi+5G WiFi:

	Mode	:	1				Channe	el:	1	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1295.6296	1.05	39.60	40.65	74.00	33.35	PASS	Horizontal	PK
0	2	1756.8757	3.14	38.98	42.12	74.00	31.88	PASS	Horizontal	PK
5	3	3850.0567	-19.17	61.04	41.87	74.00	32.13	PASS	Horizontal	PK
2	4	5748.1832	-13.75	59.45	45.70	74.00	28.30	PASS	Horizontal	PK
	5	11471.5648	-6.20	52.68	46.48	74.00	27.52	PASS	Horizontal	PK
	6	17284.9523	3.85	50.05	53.90	74.00	20.10	PASS	Horizontal	PK
Γ	7	1328.4328	1.16	39.02	40.18	74.00	33.82	PASS	Vertical	PK
ſ	8	1871.8872	3.81	38.62	42.43	74.00	31.57	PASS	Vertical	PK
ſ	9	3850.0567	-19.17	63.18	44.01	74.00	29.99	PASS	Vertical	PK
	10	5751.1834	-13.74	58.42	44.68	74.00	29.32	PASS	Vertical	PK
	11	11491.5661	-6.22	53.25	47.03	74.00	26.97	PASS	Vertical	PK
2	12	17235.9491	3.20	47.32	50.52	74.00	23.48	PASS	Vertical	PK
			(62)		16.7	1	16.2]		0.20

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Page 37 of 88

Antenna schemes 2:

MIMO:

- 11	Mode:			802.11 n(HT2	0) Transmitt	ing	Channe	el:	5180MHz	
3	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1426.2926	1.48	40.90	42.38	68.20	25.82	PASS	Horizontal	PK
	2	2545.1045	5.16	38.05	43.21	68.20	24.99	PASS	Horizontal	PK
	3	3808.5809	8.58	35.77	44.35	68.20	23.85	PASS	Horizontal	PK
	4	7540.227	-10.98	3 53.78	42.80	68.20	25.40	PASS	Horizontal	PK
	5	11947.8224	-5.15	53.11	47.96	68.20	20.24	PASS	Horizontal	PK
	6	15918.3959	0.07	50.78	50.85	68.20	17.35	PASS	Horizontal	PK
40	7	1434.5435	1.48	39.52	41.00	68.20	27.20	PASS	Vertical	PK
4	8	2427.9428	4.60	38.35	42.95	68.20	25.25	PASS	Vertical	PK
2	9	3802.5303	8.56	36.66	45.22	68.20	22.98	PASS	Vertical	PK
	10	6906.5453	-11.97	7 55.77	43.80	68.20	24.40	PASS	Vertical	PK
	11	10787.4144	-6.18	51.91	45.73	68.20	22.47	PASS	Vertical	PK
	12	14331.8916	-0.10	50.15	50.05	68.20	18.15	PASS	Vertical	PK

Mode	:	8	02.11 n(HT2	0) Transmitti	ng	Channe	el:	5200MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1570.407	2.19	38.43	40.62	68.20	27.58	PASS	Horizontal	PK
2	2436.7437	4.67	38.68	43.35	68.20	24.85	PASS	Horizontal	PK
3	3806.9307	8.58	36.86	45.44	68.20	22.76	PASS	Horizontal	PK
4	7538.5019	-11.00	53.41	42.41	68.20	25.79	PASS	Horizontal	PK
5	11237.6619	-6.04	52.96	46.92	68.20	21.28	PASS	Horizontal	PK
6	15909.1955	0.10	50.33	50.43	68.20	17.77	PASS	Horizontal	PK
7	1606.1606	2.48	38.93	41.41	68.20	26.79	PASS	Vertical	PK
8	2731.5732	5.65	38.74	44.39	68.20	23.81	PASS	Vertical	PK
9	3806.9307	8.58	36.81	45.39	68.20	22.81	PASS	Vertical	PK
10	8211.2856	-10.89	53.54	42.65	68.20	25.55	PASS	Vertical	PK
11	12495.8248	-4.26	52.38	48.12	68.20	20.08	PASS	Vertical	PK
12	15962.6731	-0.09	51.49	51.40	68.20	16.80	PASS	Vertical	PK

Page 38 of 88

Mode	:	80	02.11 n(HT2	0) Transmitti	ng	Channe	el:	5240MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1623.7624	2.59	38.37	40.96	68.20	27.24	PASS	Horizontal	PK
2	2174.9175	4.21	38.34	42.55	68.20	25.65	PASS	Horizontal	PK
3	3872.3872	8.81	35.65	44.46	68.20	23.74	PASS	Horizontal	PK
4	7580.479	-10.67	53.25	42.58	68.20	25.62	PASS	Horizontal	PK
5	10300.365	-6.25	53.21	46.96	68.20	21.24	PASS	Horizontal	PK
6	15503.8002	0.47	49.38	49.85	68.20	18.35	PASS	Horizontal	PK
7	1624.8625	2.59	38.79	41.38	68.20	26.82	PASS	Vertical	PK
8	2470.297	4.94	38.17	43.11	68.20	25.09	PASS	Vertical	PK
9	3959.846	9.23	36.20	45.43	68.20	22.77	PASS	Vertical	PK
10	7319.416	-11.25	53.99	42.74	68.20	25.46	PASS	Vertical	PK
11	11893.7697	-5.48	52.99	47.51	68.20	20.69	PASS	Vertical	PK
12	14425.0463	0.28	49.70	49.98	68.20	18.22	PASS	Vertical	PK
		07		0	/	0			87

cor β] Reading [dBμV] 0 39.76 9 38.29 46 35.99		Limit [dBµV/m] 68.20	Margin [dB] 26.74	Result PASS	Polarity Horizontal	Remark
9 38.29	-		26.74	PASS	Horizontal	
	43.98	00.00				PK
46 35.99		68.20	24.22	PASS	Horizontal	PK
	47.45	68.20	20.75	PASS	Horizontal	PK
59 53.15	42.56	68.20	25.64	PASS	Horizontal	PK
6 49.71	48.35	68.20	19.85	PASS	Horizontal	PK
4 50.92	53.26	68.20	14.94	PASS	Horizontal	PK
0 39.48	40.98	68.20	27.22	PASS	Vertical	PK
3 38.58	44.01	68.20	24.19	PASS	Vertical	PK
1 35.98	45.19	68.20	23.01	PASS	Vertical	PK
92 57.68	45.76	68.20	22.44	PASS	Vertical	PK
.7 52.24	45.97	68.20	22.23	PASS	Vertical	PK
4 49.96	50.40	68.20	17.80	PASS	Vertical	PK
3 3 5 4 2 2	36 49.71 34 50.92 50 39.48 43 38.58 21 35.98 .92 57.68 27 52.24	36 49.71 48.35 34 50.92 53.26 50 39.48 40.98 43 38.58 44.01 21 35.98 45.19 .92 57.68 45.76 27 52.24 45.97	36 49.71 48.35 68.20 34 50.92 53.26 68.20 50 39.48 40.98 68.20 43 38.58 44.01 68.20 21 35.98 45.19 68.20 .92 57.68 45.76 68.20 27 52.24 45.97 68.20	36 49.71 48.35 68.20 19.85 34 50.92 53.26 68.20 14.94 50 39.48 40.98 68.20 27.22 43 38.58 44.01 68.20 24.19 21 35.98 45.19 68.20 23.01 .92 57.68 45.76 68.20 22.44 27 52.24 45.97 68.20 22.23	36 49.71 48.35 68.20 19.85 PASS 34 50.92 53.26 68.20 14.94 PASS 50 39.48 40.98 68.20 27.22 PASS 43 38.58 44.01 68.20 24.19 PASS 21 35.98 45.19 68.20 23.01 PASS .92 57.68 45.76 68.20 22.44 PASS 27 52.24 45.97 68.20 22.23 PASS	36 49.71 48.35 68.20 19.85 PASS Horizontal 34 50.92 53.26 68.20 14.94 PASS Horizontal 50 39.48 40.98 68.20 27.22 PASS Vertical 43 38.58 44.01 68.20 23.01 PASS Vertical 21 35.98 45.19 68.20 23.01 PASS Vertical .92 57.68 45.76 68.20 22.23 PASS Vertical 27 52.24 45.97 68.20 22.23 PASS Vertical

Page 39 of 88

-				(20)		11		1	10	
	Mode	:		802.11 n(HT4	0) Transmitt	ing	Channe	el:	5230MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1635.3135	2.65	38.53	41.18	68.20	27.02	PASS	Horizontal	PK
2	2	2688.1188	5.50	38.40	43.90	68.20	24.30	PASS	Horizontal	PK
-	3	3837.7338	8.68	35.92	44.60	68.20	23.60	PASS	Horizontal	PK
	4	7439.597	-11.4	I 54.07	42.66	68.20	25.54	PASS	Horizontal	PK
	5	11813.2657	-6.10	53.46	47.36	68.20	20.84	PASS	Horizontal	PK
	6	17098.9299	1.56	51.56	53.12	68.20	15.08	PASS	Horizontal	PK
	7	1661.7162	2.80	38.73	41.53	68.20	26.67	PASS	Vertical	PK
	8	2706.8207	5.57	38.30	43.87	68.20	24.33	PASS	Vertical	PK
	9	4410.341	11.24	35.29	46.53	68.20	21.67	PASS	Vertical	PK
10	10	9008.2754	-8.42	52.38	43.96	68.20	24.24	PASS	Vertical	PK
4	11	11901.8201	-5.43	53.63	48.20	68.20	20.00	PASS	Vertical	PK
3	12	14991.4496	-0.95	50.54	49.59	68.20	18.61	PASS	Vertical	PK

	Mode:			802.11 n(HT2	0) Transmitti	ng	Channel:		5745MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1322.3322	1.68	39.97	41.65	68.20	26.55	PASS	Horizontal	PK
	2	2146.3146	5.04	39.21	44.25	68.20	23.95	PASS	Horizontal	PK
2	3	4348.1848	12.04	34.40	46.44	68.20	21.76	PASS	Horizontal	PK
6	4	8620.7414	-10.42	52.65	42.23	68.20	25.97	PASS	Horizontal	PK
-	5	12445.8964	-4.13	52.30	48.17	68.20	20.03	PASS	Horizontal	PK
	6	16966.4644	2.89	50.40	53.29	68.20	14.91	PASS	Horizontal	PK
	7	1337.7338	1.71	40.16	41.87	68.20	26.33	PASS	Vertical	PK
	8	2108.3608	5.52	38.76	44.28	68.20	23.92	PASS	Vertical	PK
	9	3830.033	9.47	37.77	47.24	68.20	20.96	PASS	Vertical	PK
	10	8337.8225	-10.88	53.42	42.54	68.20	25.66	PASS	Vertical	PK
	11	11904.5936	-5.42	52.85	47.43	68.20	20.77	PASS	Vertical	PK
40	12	15899.1933	0.12	51.50	51.62	68.20	16.58	PASS	Vertical	PK
4	2							0		

		(\land)					(2)	(
	Mode	:		802.11 n(HT2	0) Transmitti	ing	Chann	el:	5825MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1424.6425	1.84	38.84	40.68	68.20	27.52	PASS	Horizontal	PK
Q	2	2716.1716	6.18	38.83	45.01	68.20	23.19	PASS	Horizontal	PK
	3	3863.0363	9.58	36.90	46.48	68.20	21.72	PASS	Horizontal	PK
	4	8467.3978	-10.61	53.35	42.74	68.20	25.46	PASS	Horizontal	PK
	5	12001.9668	-4.85	51.67	46.82	68.20	21.38	PASS	Horizontal	PK
	6	16283.3189	0.91	50.16	51.07	68.20	17.13	PASS	Horizontal	PK
	7	1537.4037	2.21	40.49	42.70	68.20	25.50	PASS	Vertical	PK
	8	2736.5237	6.25	37.92	44.17	68.20	24.03	PASS	Vertical	PK
	9	3883.3883	9.65	38.20	47.85	68.20	20.35	PASS	Vertical	PK
0	10	8465.0977	-10.61	53.61	43.00	68.20	25.20	PASS	Vertical	PK
ć	11	11962.0975	-5.06	53.09	48.03	68.20	20.17	PASS	Vertical	PK
2	12	17629.6753	3.77	49.44	53.21	68.20	14.99	PASS	Vertical	PK

	Mode	:		802.11 n(HT4	0) Transmitti	ng	Channel:		5755MHz	
	NO	Freq. [MHz]	Factor [dB]	- Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1570.9571	2.48	39.44	41.92	68.20	26.28	PASS	Horizontal	PK
1	2	2689.2189	6.07	38.35	44.42	68.20	23.78	PASS	Horizontal	PK
1	3	4146.3146	10.66	35.27	45.93	68.20	22.27	PASS	Horizontal	PK
2	4	9795.353	-7.19	52.37	45.18	68.20	23.02	PASS	Horizontal	PK
	5	13819.8547	-2.11	50.30	48.19	68.20	20.01	PASS	Horizontal	PK
	6	16609.1739	1.38	50.22	51.60	68.20	16.60	PASS	Horizontal	PK
	7	1545.6546	2.27	39.40	41.67	68.20	26.53	PASS	Vertical	PK
	8	2401.5402	4.87	38.49	43.36	68.20	24.84	PASS	Vertical	PK
	9	3836.6337	9.49	38.26	47.75	68.20	20.45	PASS	Vertical	PK
	10	7542.7362	-10.96	54.24	43.28	68.20	24.92	PASS	Vertical	PK
	11	11131.7421	-6.20	52.97	46.77	68.20	21.43	PASS	Vertical	PK
0	12	15495.8997	0.42	49.56	49.98	68.20	18.22	PASS	Vertical	PK
ć.		,	62	<u>)</u>	6	1	63			C)

Page 41 of 88

					1.1				
Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	5795MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1433.9934	1.85	39.88	41.73	68.20	26.47	PASS	Horizontal	PK
2	2129.813	5.25	38.38	43.63	68.20	24.57	PASS	Horizontal	PK
3	4467.5468	12.23	35.36	47.59	68.20	20.61	PASS	Horizontal	PK
4	8876.0584	-9.23	52.89	43.66	68.20	24.54	PASS	Horizontal	PK
5	11952.8969	-5.12	52.78	47.66	68.20	20.54	PASS	Horizontal	PK
6	16275.6517	0.92	50.01	50.93	68.20	17.27	PASS	Horizontal	PK
7	1579.758	2.55	38.73	41.28	68.20	26.92	PASS	Vertical	PK
8	2569.857	5.62	38.47	44.09	68.20	24.11	PASS	Vertical	PK
9	3863.5864	9.58	38.29	47.87	68.20	20.33	PASS	Vertical	PK
10	7568.8046	-10.77	53.71	42.94	68.20	25.26	PASS	Vertical	PK
11	11954.4303	-5.11	52.82	47.71	68.20	20.49	PASS	Vertical	PK
12	15718.2479	0.47	49.86	50.33	68.20	17.87	PASS	Vertical	PK
	NO 1 2 3 4 5 6 7 8 9 10 11	NO [MHz] 1 1433.9934 2 2129.813 3 4467.5468 4 8876.0584 5 11952.8969 6 16275.6517 7 1579.758 8 2569.857 9 3863.5864 10 7568.8046 11 11954.4303	NO Freq. [MHz] Factor [dB] 1 1433.9934 1.85 2 2129.813 5.25 3 4467.5468 12.23 4 8876.0584 -9.23 5 11952.8969 -5.12 6 16275.6517 0.92 7 1579.758 2.55 8 2569.857 5.62 9 3863.5864 9.58 10 7568.8046 -10.77 11 11954.4303 -5.11	NOFreq. [MHz]Factor [dB]Reading [dBµV]11433.99341.8539.8822129.8135.2538.3834467.546812.2335.3648876.0584-9.2352.89511952.8969-5.1252.78616275.65170.9250.0171579.7582.5538.7382569.8575.6238.4793863.58649.5838.29107568.8046-10.7753.711111954.4303-5.1152.82	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]11433.99341.8539.8841.7322129.8135.2538.3843.6334467.546812.2335.3647.5948876.0584-9.2352.8943.66511952.8969-5.1252.7847.66616275.65170.9250.0150.9371579.7582.5538.7341.2882569.8575.6238.4744.0993863.58649.5838.2947.87107568.8046-10.7753.7142.941111954.4303-5.1152.8247.71	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]11433.99341.8539.8841.7368.2022129.8135.2538.3843.6368.2034467.546812.2335.3647.5968.2048876.0584-9.2352.8943.6668.20511952.8969-5.1252.7847.6668.20616275.65170.9250.0150.9368.2071579.7582.5538.7341.2868.2082569.8575.6238.4744.0968.2093863.58649.5838.2947.8768.20107568.8046-10.7753.7142.9468.201111954.4303-5.1152.8247.7168.20	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dB]11433.99341.8539.8841.7368.2026.4722129.8135.2538.3843.6368.2024.5734467.546812.2335.3647.5968.2020.6148876.0584-9.2352.8943.6668.2024.54511952.8969-5.1252.7847.6668.2020.54616275.65170.9250.0150.9368.2026.9271579.7582.5538.7341.2868.2026.9282569.8575.6238.4744.0968.2024.1193863.58649.5838.2947.8768.2020.33107568.8046-10.7753.7142.9468.2025.261111954.4303-5.1152.8247.7168.2020.49	NO Freq. [MHz] Factor [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Margin [dB] Result 1 1433.9934 1.85 39.88 41.73 68.20 26.47 PASS 2 2129.813 5.25 38.38 43.63 68.20 24.57 PASS 3 4467.5468 12.23 35.36 47.59 68.20 20.61 PASS 4 8876.0584 -9.23 52.89 43.66 68.20 20.54 PASS 5 11952.8969 -5.12 52.78 47.66 68.20 20.54 PASS 6 16275.6517 0.92 50.01 50.93 68.20 17.27 PASS 7 1579.758 2.55 38.73 41.28 68.20 26.92 PASS 8 2569.857 5.62 38.47 44.09 68.20 20.33 PASS 9 3863.5864 9.58 38.29 47.87 68.20 20.33 PASS <td>NO Freq. [MHz] Factor [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Margin [dB] Result Polarity 1 1433.9934 1.85 39.88 41.73 68.20 26.47 PASS Horizontal 2 2129.813 5.25 38.38 43.63 68.20 24.57 PASS Horizontal 3 4467.5468 12.23 35.36 47.59 68.20 20.61 PASS Horizontal 4 8876.0584 -9.23 52.89 43.66 68.20 24.54 PASS Horizontal 5 11952.8969 -5.12 52.78 47.66 68.20 20.54 PASS Horizontal 6 16275.6517 0.92 50.01 50.93 68.20 26.92 PASS Horizontal 7 1579.758 2.55 38.73 41.28 68.20 26.92 PASS Vertical 8 2569.857 5.62 38.47 44.09 68.20 20.33</td>	NO Freq. [MHz] Factor [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Margin [dB] Result Polarity 1 1433.9934 1.85 39.88 41.73 68.20 26.47 PASS Horizontal 2 2129.813 5.25 38.38 43.63 68.20 24.57 PASS Horizontal 3 4467.5468 12.23 35.36 47.59 68.20 20.61 PASS Horizontal 4 8876.0584 -9.23 52.89 43.66 68.20 24.54 PASS Horizontal 5 11952.8969 -5.12 52.78 47.66 68.20 20.54 PASS Horizontal 6 16275.6517 0.92 50.01 50.93 68.20 26.92 PASS Horizontal 7 1579.758 2.55 38.73 41.28 68.20 26.92 PASS Vertical 8 2569.857 5.62 38.47 44.09 68.20 20.33

2.4G WiFi+5G WiFi:

	10 111 100		and all the second					i fi ter	
Mc	de:					Channe	el:		
N	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1401.0401	1.39	39.15	40.54	74.00	33.46	PASS	Horizontal	PK
2	2001.9002	4.55	38.27	42.82	74.00	31.18	PASS	Horizontal	PK
3	3474.0316	-20.07	54.71	34.64	74.00	39.36	PASS	Horizontal	PK
4	4669.1113	-16.62	52.91	36.29	74.00	37.71	PASS	Horizontal	PK
5	7909.3273	-10.98	51.23	40.25	74.00	33.75	PASS	Horizontal	PK
6	12047.6032	-5.54	51.15	45.61	74.00	28.39	PASS	Horizontal	PK
7	1309.631	1.09	39.68	40.77	74.00	33.23	PASS	Vertical	PK
8	2042.1042	4.69	39.09	43.78	74.00	30.22	PASS	Vertical	PK
9	3850.0567	-19.17	59.68	40.51	74.00	33.49	PASS	Vertical	PK
10) 5751.1834	-13.74	58.42	44.68	74.00	29.32	PASS	Vertical	PK
11	9301.4201	-7.95	50.69	42.74	74.00	31.26	PASS	Vertical	PK
12	2 14409.7607	1.08	47.02	48.10	74.00	25.90	PASS	Vertical	PK
			•		/		/		

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Transmitter Emission above 18GHz

Remark: During the test, the Radiates Emission above 18GHz was performed in all modes, only the worst case MIMO of 802.11 n(HT20) Transmitting mode was recorded in the report.

Antenna schemes 1:

5	Mode	:		802.11 n(HT20) Transmitting				Channe	el:	5180MHz	
2	NO	Freq. [MHz]	Facto [dB]		eading dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	19823.4329	-23.55	5 (67.86	44.31	74.00	29.69	PASS	Horizontal	PK
	2	21066.9227	-24.73	6 (66.50	41.77	74.00	32.23	PASS	Horizontal	PK
	3	25405.4962	-19.32	2 (63.25	43.93	74.00	30.07	PASS	Horizontal	PK
	4	29518.7808	-19.58	6 (65.34	45.76	74.00	28.24	PASS	Horizontal	PK
	5	33913.6765	-16.10) (60.71	44.61	74.00	29.39	PASS	Horizontal	PK
1	6	38488.9796	-12.17	, i	57.29	45.12	74.00	28.88	PASS	Horizontal	PK
	7	19631.5853	-23.89) (66.19	42.30	74.00	31.70	PASS	Vertical	PK
2	8	22513.7005	-24.37	' (65.73	41.36	74.00	32.64	PASS	Vertical	PK
	9	25299.012	-19.08	6 (63.23	44.15	74.00	29.85	PASS	Vertical	PK
	10	27917.1167	-20.36	; (64.87	44.51	74.00	29.49	PASS	Vertical	PK
	11	32833.8734	-16.40) (61.91	45.51	74.00	28.49	PASS	Vertical	PK
	12	36470.1788	-14.69		59.40	44.71	74.00	29.29	PASS	Vertical	PK

Antenna schemes 2:

Mode	e:		802.11 n(HT20)) Transmitting		Channel:		5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	19426.5371	-23.94	65.98	42.04	74.00	31.96	PASS	Horizontal	PK
2	21203.3281	-24.63	65.41	40.78	74.00	33.22	PASS	Horizontal	PK
3	24369.6948	-19.98	63.80	43.82	74.00	30.18	PASS	Horizontal	PK
4	29135.0854	-20.24	64.90	44.66	74.00	29.34	PASS	Horizontal	PK
5	31915.9966	-17.54	60.94	43.40	74.00	30.60	PASS	Horizontal	PK
6	35054.2022	-15.24	58.92	43.68	74.00	30.32	PASS	Horizontal	PK
7	19813.7526	-23.58	65.19	41.61	74.00	32.39	PASS	Vertical	PK
8	22347.3739	-24.50	64.74	40.24	74.00	33.76	PASS	Vertical	PK
9	25971.3589	-19.07	63.31	44.24	74.00	29.76	PASS	Vertical	PK
10	30645.2258	-18.58	63.03	44.45	74.00	29.55	PASS	Vertical	PK
11	33814.2326	-16.00	60.59	44.59	74.00	29.41	PASS	Vertical	PK
12	36007.2803	-15.28	57.59	42.31	74.00	31.69	PASS	Vertical	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

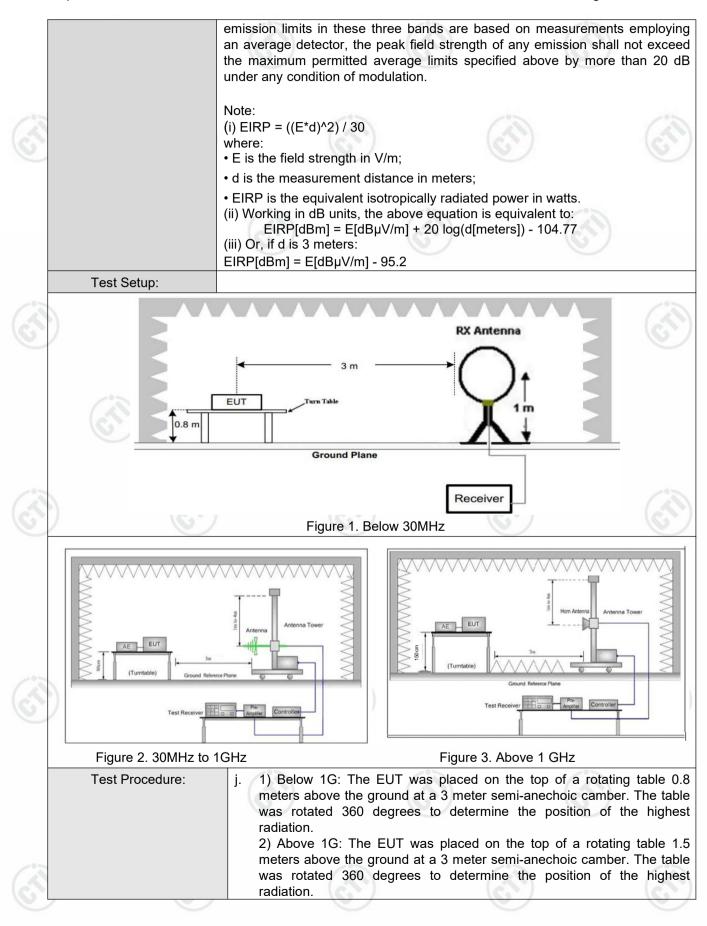
Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Page 43 of 88

7.9 Radiated Emission which fall in the restricted bands

	Test Requirement:	47 CFR Part 15C Sect	tion 15.20)9 and 1	5.407 (b)			
13	Test Method:	ANSI C63.10 2013	2		10	2		1
6	Test Site:	Measurement Distance	e: 3m (Se	emi-Anec	choic Cha	mber)		(G^{n})
\sim	Receiver Setup:	Frequency	-	Detector	RB	N	VBW	Remark
		0.009MHz-0.090MH	Hz	Peak	10kł	Ηz	30kHz	Peak
		0.009MHz-0.090MH	Hz /	Average	10kł	Ηz	30kHz	Average
		0.090MHz-0.110MH	Hz Q	uasi-pea	k 10kł	Ηz	30kHz	Quasi-peak
		0.110MHz-0.490MH	Hz	Peak	10kł	Ηz	30kHz	Peak
		0.110MHz-0.490MH	Hz /	Average	10kł	Ηz	30kHz	Average
10-		0.490MHz -30MH	z Q	uasi-pea	k 10kł	Ηz	30kHz	Quasi-peak
		30MHz-1GHz	Q	uasi-pea	k 100 k	KHz 3	300kHz	Quasi-peak
0		Above 101		Peak	1MH	Ηz	3MHz	Peak
		Above 1GHz		Peak	1MF	Ηz	10kHz	Average
	Limit:	Frequency		lt/meter)	Limit (dBuV/m)	Rei	mark	Measurement distance (m)
		0.009MHz-0.490MHz	2400/	-(kHz)	-		-	300
		0.490MHz-1.705MHz	24000/	F(kHz)	-		-	30
13		1.705MHz-30MHz	3	0	- / 2		-	30
		30MHz-88MHz	10	00	40.0	Quas	si-peak	3
		88MHz-216MHz	15	50	43.5	Quas	si-peak	3
		216MHz-960MHz	20	00	46.0	Quas	si-peak	3
		960MHz-1GHz	50	00	54.0	Quas	si-peak	3
		Above 1GHz	50	00	54.0	Ave	erage	3
(K)		 *(1) For transmitters outside of the 5.15-4 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz k (3) For transmitters op outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall above or below the ba above or below the ba edge increasing linear the band edge, and f linearly to a level of 27 	5.35 GH berating in band sha operating 5.725 GI be limited and edge band edge rly to a le from 5 M	z band in the 5.23 Il not exc in the 5.72 d to a lev e increas e, and fr vel of 15 IHz abov	shall no 5-5.35 GH eed an e. 5.47-5.72 shall no 25-5.85 G vel of -27 ing linear from 25 M 5.6 dBm/M ve or belo	t exce Iz ban i.r.p. o 25 GH ot exce Hz ban dBm/N ly to 1 Hz ab NHz at ow the	eed an d: All em f –27 dB lz band: eed an nd: MHz at 7 0 dBm/N ove or b 5 MHz	e.i.r.p. of -27 hissions outside 3m/MHz. All emissions e.i.r.p. of -27 75 MHz or more MHz at 25 MHz below the band above or below
(Å		Remark: The emissi measurements emplo frequency bands 9-9	ion limits oying a	shown CISPR	in the quasi-pe	above ak de	etector e	except for the

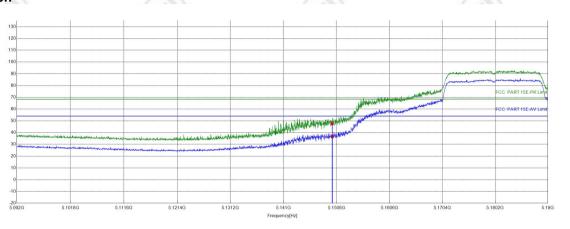


I

Page 44 of 88

Page 45 of 88

6.		the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
		k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
		 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
		 m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. n. The test-receiver system was set to Peak Detect Function and Specified
ં		 Bandwidth with Maximum Hold Mode. o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. p. Test the EUT in the lowest channel, the Highest channel
		 q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. r. Repeat above procedures until all frequencies measured was complete.
	Test Mode:	All modes were tested, only the worst case ant1 and ant2 transmit simultan eously was recorded in the report.
	Test Results:	Pass


Antenna schemes 1:

Test Data:

)	Test_Mode	802.11 n(HT20) Transmitting		Test_Frequency	5180MHz	
	Remark		J			

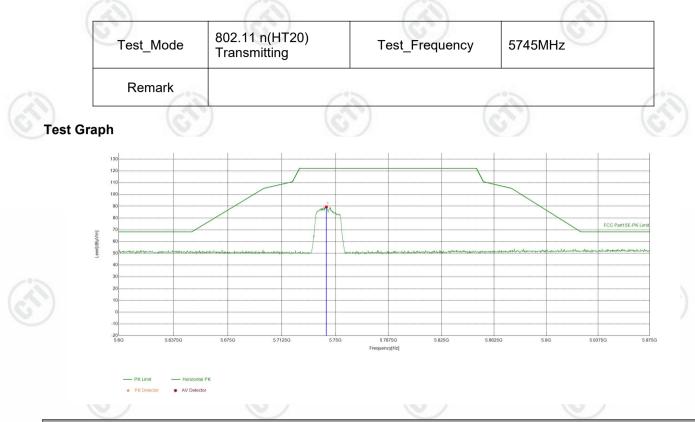
Test Graph

evel[dBµV/m]

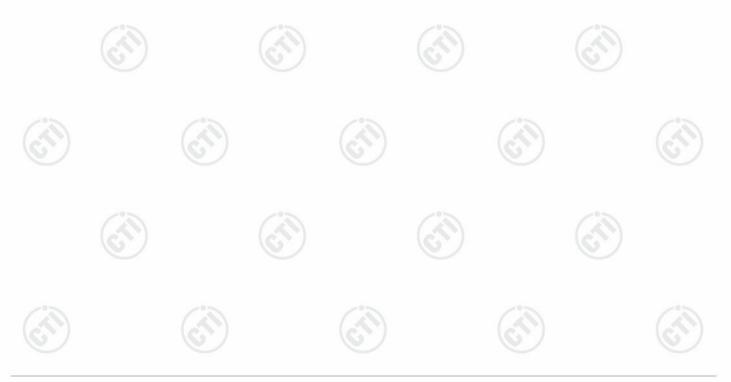
PK Limit — AV Limit — Horizontal PK — Horizontal AV PK Detector AV Detector

Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	-15.08	62.57	47.49	68.44	20.95	PASS	Horizontal	PK
2	5150	-15.08	51.48	36.40	54.00	17.60	PASS	Horizontal	AV
0	5 /	1							

Page 47 of 88



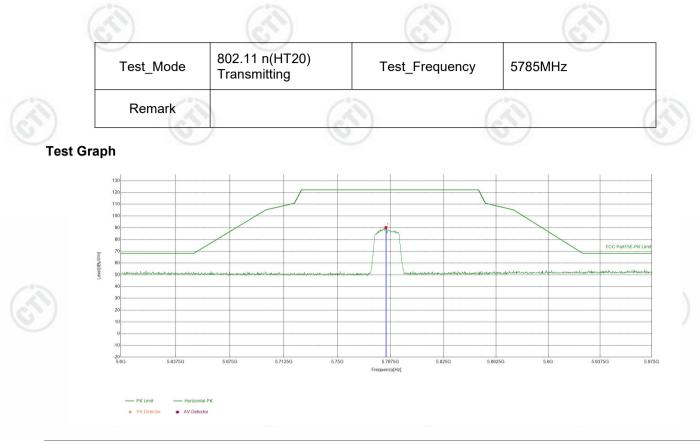
	Suspecte	d List								
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
~	1	5150	-15.08	74.75	59.67	68.44	8.77	PASS	Vertical	PK
	2	5150	-15.08	67.76	52.68	54.00	1.32	PASS	Vertical	AV



Page 48 of 88

	Suspec	ted List								
(3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5743.6968	13.84	75.60	89.44	122.20	32.76	PASS	Horizontal	PK

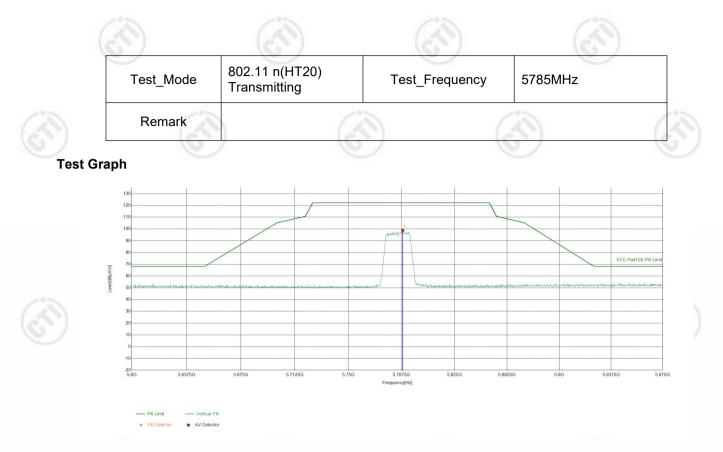
Page 49 of 88



	Suspe	cted List				_				
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5744.2596	13.84	82.25	96.09	122.20	26.11	PASS	Vertical	PK



Page 50 of 88



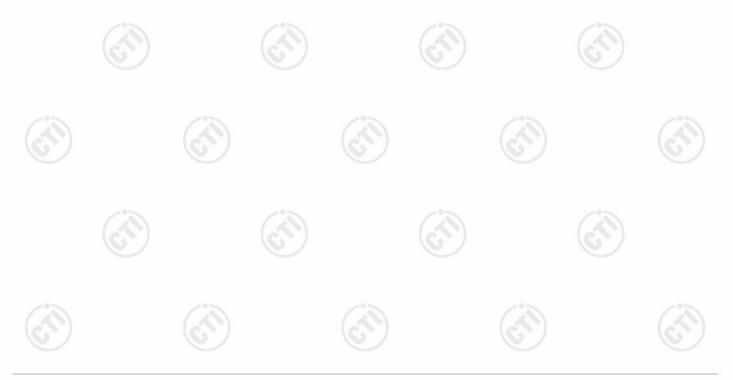
	Suspe	Suspected List											
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	5784.2171	13.91	76.29	90.20	122.20	32.00	PASS	Horizontal	PK			

Page 51 of 88

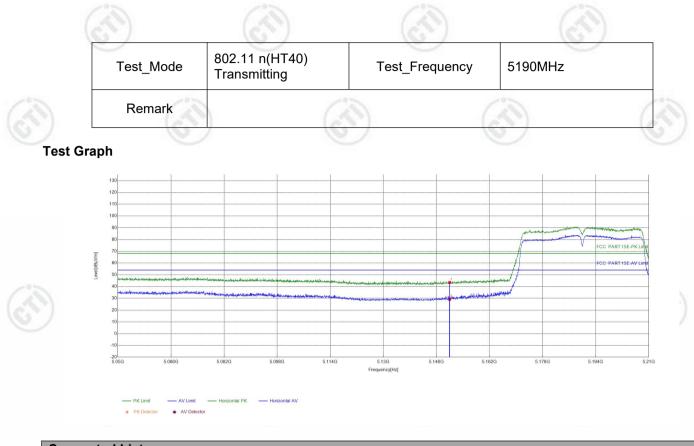
	Suspe	Suspected List											
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	5788.3442	13.92	84.90	98.82	122.20	23.38	PASS	Vertical	PK			

Page 52 of 88

	Suspe	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
C	1	5826.6133	14.04	85.14	99.18	122.20	23.02	PASS	Horizontal	PK			

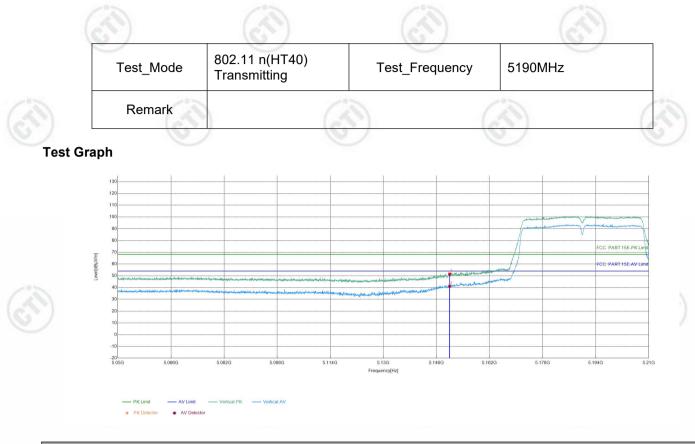


Page 53 of 88



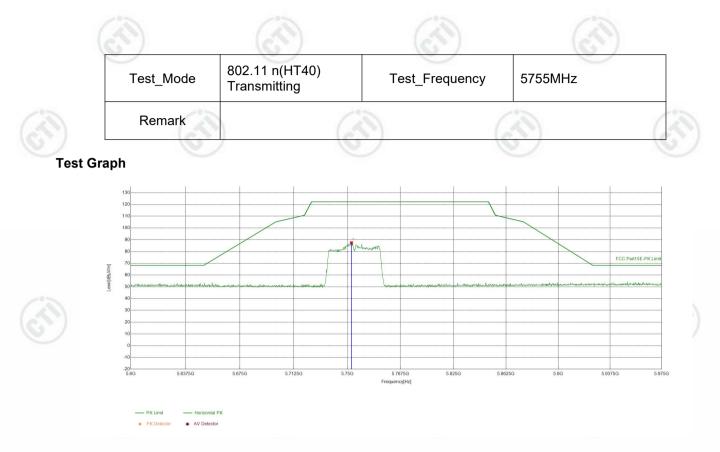
	Suspec	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
C.	1	5828.4892	14.05	83.90	97.95	122.20	24.25	PASS	Vertical	PK			

Page 54 of 88



	Suspecte	d List								
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	5150	12.35	31.16	43.51	68.20	24.69	PASS	Horizontal	PK
	2	5150	12.35	16.80	29.15	54.00	24.85	PASS	Horizontal	AV

Page 55 of 88

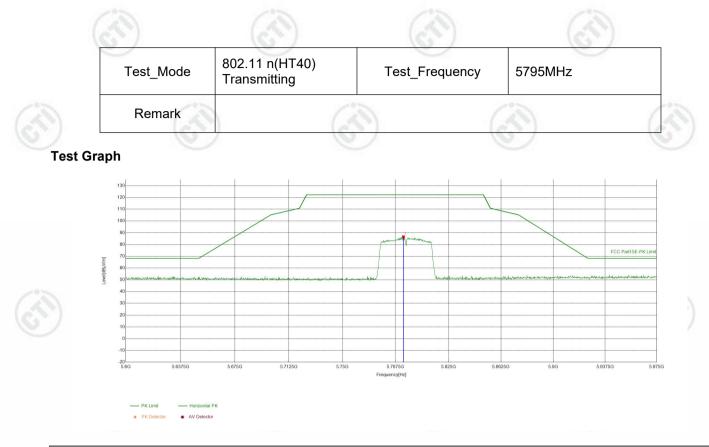


	Suspected List												
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
0	1	5150	12.35	39.23	51.58	68.20	16.62	PASS	Vertical	PK			
	2	5150	12.35	28.81	41.16	54.00	12.84	PASS	Vertical	AV			

Page 56 of 88

[Suspec	Suspected List										
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	5752.8889	13.86	73.61	87.47	122.20	34.73	PASS	Horizontal	PK		

Page 57 of 88



	Suspe	Suspected List											
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	5763.2066	13.88	80.11	93.99	122.20	28.21	PASS	Vertical	PK			

Page 58 of 88

	Suspe	Suspected List										
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	5793.034	13.93	72.61	86.54	122.20	35.66	PASS	Horizontal	PK		

Page 59 of 88

	Suspected List										
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5801.8509	13.94	82.41	96.35	122.20	25.85	PASS	Vertical	PK	

