DATE: 19 March 2019

I.T.L. (PRODUCT TESTING) LTD. FCCIIC Radio Test Report

for
Pointer Relocation

Equipment under test:

Asset Tracking Device

CelloTrack 10Y LTE C1 NA

PIN: GC9773000

M. Zohar

Approved by: \qquad
D. Shidlowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Pointer Telocation

 Asset Tracking Device CelloTrack 10Y LTE C1 NA
FCC ID: 2AG69CTLL IC: 9975A-CTLL

This report concerns:	Original Grant: Class II change: X Class I change:
Equipment type:	FCC - Digital Transmission System IC - Low Power Device (2400-2483.5MHz)
Limits used:	47CFR Part 22, 24, 27

Measurement procedure used is ANSI C63.10 2013

Substitution Method used as in ANSI/TIA-603-D: 2010.

Application for Certification	Applicant for this device:
prepared by:	(different from "prepared by")
R. Pinchuck	Igor Rogov
ITL (Product Testing) Ltd.	Pointer Telocation
1 Bat Sheva St.	14 Hamelacha, PO Box 11473
Lod 7120101	Rosh Haain
Israel	Israel
E-mail rpinchuck@itlglobal.org	Tel: +972 73 2622320
	E-mail: Igorr@pointer.com

TABLE OF CONTENTS

1. GENERAL INFORMATION 4
1.1 Administrative Information 4
1.2 List of Accreditations 5
1.3 Product Description 6
1.4 Test Methodology 6
1.5 Test Facility 6
1.6 Measurement Uncertainty6
2. SYSTEM TEST CONFIGURATION 7
2.1 Justification 7
2.2 EUT Exercise Software 7
2.3 Special Accessories 7
2.4 Equipment Modifications 7
2.5 Configuration of Tested System 7
3. TEST SET-UP PHOTOS -9
4. INTERMODULATION RADIATED -10
4.1 Test Procedure 10
4.2 Test Limit 10
4.3 Test Results 10
4.4 Test Instrumentation Used; Radiated Measurements Intermodulation 12
5. ANTENNA INFORMATION/GAIN -13
6. RF EXPOSUREISAFETY -14
7. APPENDIX A - CORRECTION FACTORS 15
7.1 Correction factor for RF CABLE for Semi Anechoic Chamber 15
7.2 Correction factors for biconical antenna - ITL \# 1356 16
7.3 Correction factors for log periodic antenna - ITL \# 1349 17
7.4 Correction factors for Double -Ridged Waveguide Horn ANTENNA 18

1. General Information

1.1 Administrative Information

Manufacturer:

Manufacturer's Address:

Manufacturer's Representative: Igor Rogov

Equipment Under Test (E.U.T): Asset Tracking Device

PMN:
CelloTrack 10Y LTE C1 NA

Equipment Serial No.:
2310289

HVIN:
3000

Date of Receipt of E.U.T:
February 03, 2019

Start of Test:
February 05, 2019
End of Test:
February 06, 2019
Test Laboratory Location:
I.T.L (Product Testing) Ltd.

1 Batsheva St,
Lod,
Israel 7116002

Test Specifications:

FCC Part 22, 24, 27

ISRAEL TESTING LABORATORIES
Global Certifications You Can Trust

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by/registered with the following bodies:

1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation Number is IL1005.
3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
4. Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025A-1, IC 4025A-2.
I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

The CelloTrack 10Y is an asset tracking device with up to 10 years of operational lifetime, using a non-rechargeable battery, including wireless sensor connectivity (with the MultiSenses). The CelloTrack 10Y is ideal for long term remote applications, requiring minimum or no maintenance at all. Suitable for application with extreme operating temperatures in which charging and performance are challenging.

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10 2013 and ANSI/TIA-603-D: 2010. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

Both conducted and radiated emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

1.6 Measurement Uncertainty

Conducted Emission

Conducted Emission (CISPR 11, EN 55011,CISPR 22, EN 55022, ANSI C63.4)
0.15 - 30 MHz :

Expanded Uncertainty (95\% Confidence, $\mathrm{K}=2$):
$\pm 3.44 \mathrm{~dB}$

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4)
for open site:
30-1000MHz:
Expanded Uncertainty (95\% Confidence, $\mathrm{K}=2$):
$\pm 4.96 \mathrm{~dB}$

1 GHz to 6 GHz
Expanded Uncertainty (95\% Confidence, K=2):
$\pm 5.19 \mathrm{~dB}$
$>6 \mathrm{GHz}$
Expanded Uncertainty (95\% Confidence, $\mathrm{K}=2$):
$\pm 5.51 \mathrm{~dB}$

2. System Test Configuration

2.1 Justification

1. The E.U.T. was originally FCC certified on 07/02/2018 under FCC ID: 2AG69CTLL and IC certified on 7/24/2018 under IC: 9975A-CTLL.
2. The E.U.T contains 2 transceivers: a BLE, as certified above, and a 4G cellular approved module LTE/WCDMA module, manufactured by Gemalto M2M GmbH, model Cinterion ELS61-US, FCC ID: QIPELS61-US, IC: 7830A-ELS61US.
3. The manufacturer wishes to replace the above Gemalto 4 G cellular module with the following LTE/WCDMA 4G module, also manufactured by Gemalto M2M GmbH, model Cinterion ELS61-USA, FCC ID: QIPELS61-USA, IC: 7830A-ELS61USA. See customer's Declaration of Change on following page.
4. A C2PC is requested based on this change. Intermodulation Radiated testing was performed and RF exposure was calculated.
5. The E.U.T. met the requirements of a C2PC.
6. Testing was performed with simultaneous transmission at maximum power and at the following frequencies:
For BLE: 2402.0 MHz
For 4G cellular: 1910.0 MHz
7. Testing was performed in 3 orthogonal orientations to find the "worst case" radiation which was determined to be the X axis.
8. The E.U.T. was evaluated while battery operated (3.6 Vdc).

2.2 EUT Exercise Software

No exercise software was needed in order to achieve compliance.

2.3 Special Accessories

No special accessories were needed in order to achieve compliance.

2.4 Equipment Modifications

No modifications were necessary in order to achieve compliance.

2.5 Configuration of Tested System

Figure 1. Radiated Test Set-Up

C2PC Declaration

Date: March, 32019

1. The E.U.T. was originally FCC certified on 07/02/2018 under FCC ID: 2AG69CTLL and IC certified on 7/24/2018 under IC: 9975A-CTLL.
2. The E.U.T contains 2 transceivers: a BLE, as certified above, and a 4G cellular approved module LTE/WCDMA module, manufactured by Gemalto M2M GmbH, model Cinterion ELS61-US, FCC ID: QIPELS61-US, IC: 7830A-ELS61US.
3. Pointer Telocation has replaced the above Gemalto 4G cellular module with the following LTE/WCDMA module, also manufactured by Gemalto M2M GmbH, model Cinterion ELS61-USA, FCC ID: QIPELS61-USA, IC: 7830A-ELS61USA.

Based on the above change, Pointer Telocation requests a C2PC.
Thank you,

Igor Rogov, VP R\&D,
Pointer Telocation

3. Test Set-Up Photos

Figure 2. Intermodulated Radiated Emission Test

4. Intermodulation Radiated

4.1 Test Procedure

(Temperature $\left(24^{\circ} \mathrm{C}\right) /$ Humidity (49\%RH))
The test method was based on ANSI/TIA-603-D: 2010, Section 2.2.12 Unwanted Emissions: Radiated Spurious.
The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range $1.0 \mathrm{GHz}-18.0 \mathrm{GHz}$ was scanned. The readings were maximized by the turntable azimuth between $0-360^{\circ}$, and the antenna polarization.
The emissions were measured at a distance of 3 meters.

The E.U.T. was replaced by a substitution antenna (dipole $30 \mathrm{MHz}-1 \mathrm{GHz}$, Horn Antenna above 1 GHz) driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).
The signals observed in step (a) were converted to radiated power using:

$$
\mathrm{P}_{\mathrm{d}}(\mathrm{dBm})=\mathrm{P}_{\mathrm{g}}(\mathrm{dBm})-\text { Cable Loss }(\mathrm{dB})+\text { Substitution Antenna Gain (dBd) }
$$

$\mathrm{P}_{\mathrm{d}}=$ Dipole equivalent power (result).
$\mathrm{P}_{\mathrm{g}}=$ Signal generator output level.
A Peak detector was used for this test.
The table on the following page describes only results with the highest radiation.

4.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10^{*} \log (\mathrm{P}) \mathrm{dB}$, yielding -13 dBm .

4.3 Test Results

JUDGEMENT:
Passed

Intermodulation Radiated

Freq.	Pol.	Maximum Peak Level	Signal Generator RF Output	Cable Loss	Antenna Gain	ERP Level	Limit	Margin
	$\mathbf{(\mathbf { V } / \mathbf { H })}$	$\mathbf{(d B \mu V / m)}$	$\mathbf{(d B m)}$	$\mathbf{(d B)}$	$\mathbf{(d B d)}$	$\mathbf{(d B m)}$	$\mathbf{(d B m)}$	$\mathbf{(d B)}$
926.0	V	46.2	-55.4	0.5	5.0	-50.9	-13.0	-37.9
	H	47.0	-53.0	0.5	5.0	-48.5	-13.0	-35.5
1418.0	V	47.7	-51.4	0.5	4.9	-47.0	-13.0	-34.0
	H	48.1	-51.0	0.5	4.9	-46.6	-13.0	-33.6
2894.0	V	56.0	-48.6	1.0	7.9	-41.7	-13.0	-28.7
	H	55.7	-48.5	1.0	7.9	-41.6	-13.0	-28.6
3386.0	V	53.1	-51.6	1.0	7.9	-44.7	-13.0	-31.7
	H	53.3	-51.5	1.0	7.9	-44.6	-13.0	-31.6
3878.0	V	56.8	-48.0	1.0	7.4	-41.6	-13.0	-28.6
	H	57.2	-48.0	1.0	7.4	-41.6	-13.0	-28.6
4370.0	V	56.4	-49.0	1.0	7.4	-42.6	-13.0	-29.6
	H	56.2	-49.0	1.0	7.4	-42.6	-13.0	-29.6

Figure 3 Intermodulation Radiated Results

ISRAEL TESTING LABORATORIES
Global Certifications You Can Trust
4.4 Test Instrumentation Used; Radiated Measurements Intermodulation

Instrument	Manufactur er	Model	Serial Number	Calibration	
				Last Calibration Date	Next Calibration Due
EMI Receiver	HP	85422E	3906A00276	February 19, 2018	February 28, 2019
RF Filter Section	HP	85420E	3705A00248	February 19, 2018	February 28, 2019
EMI Receiver	R\&S	ESCI7	100724	February 19, 2018	February 28, 2019
Spectrum Analyzer	HP	8593EM	3536A00120ADI	February 20, 2018	February 28, 2019
Antenna Biconical	EMCO	3110B	9912-3337	May 31, 2018	May 31, 2019
Antenna Log Periodic	EMCO	3146	9505-4081	May 31, 2018	May 31, 2019
Horn Antenna 1G-18G	ETS	3115	29845	May 31, 2018	May 31, 2021
Signal Generator	WILTRON	6747B	278007	February 20, 2018	February 20. 2019
Signal Generator	HP	8648C	3623A04126	February 19, 2018	February 28, 2019
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR
Antenna Mast	ETS	2070-2	-	NCR	NCR
Turntable	ETS	2087	-	NCR	NCR
Mast \& Table Controller	ETS/EMCO	2090	9608-1456	NCR	NCR

Figure 4 Test Equipment Used

5. Antenna Information/Gain

BLE Chip, 1.72 dBi max
Cellular GSM, 2.15 dBi

6. RF Exposure/Safety

The typical placement of the E.U.T. is on a container. The typical distance between the E.U.T. and the user is at least 20 cm .

Calculation of Maximum Permissible Exposure (MPE)
Based on Section 1.1310 Requirements
(a) FCC limits for $1.5 \mathrm{GHz}-100 \mathrm{GHz}$ is: $1 \frac{\mathrm{~mW}}{\mathrm{~cm}^{2}}$

Using table 1 of Section 1.1310 limit for general population/uncontrolled exposures, the above level is an average over 30 minutes.
(b) The power density produced by the E.U.T. is

$$
S=\frac{P_{t} G_{t}}{4 \pi R^{2}}
$$

P_{t} - Transmitted Peak Power
G_{T} Antenna Gain
R- Distance from Transmitter (using 20cm worst case)

For cellular transmitter:

Conducted power (worst case) $-0.22 \mathrm{~W}+10 \%=242 \mathrm{~mW}$
Antenna gain $2.15 \mathrm{dBi}=1.64059$ numeric
$\mathrm{S}_{1}=242 \times 1.64 / 4 \pi(400)=0.079 \mathrm{mw} / \mathrm{cm}^{2}$

For 2.4GHz transmitter:

Conducted power (worst case) $-6.5 \mathrm{dbm}=4.47 \mathrm{~mW}$
Antenna gain $1.72 \mathrm{dBi}=1.49$ numeric
$\mathrm{S}_{2}=4.47 \times 1.49 / 4 \pi(400)=0.001 \mathrm{mw} / \mathrm{cm}^{2}$

Co-located RF exposure

$\mathrm{S}_{1}+\mathrm{S}_{2}=0.079+0.001=0.08 \mathrm{mw} / \mathrm{cm}^{2}$

All are below the FCC/IC limit

7. APPENDIX A - CORRECTION FACTORS

7.1 Correction factor for RF CABLE for Semi Anechoic Chamber ITL \# 1841

FREQ (MHz)	LOSS (dB)
1000.0	1.5
2000.0	2.1
3000.0	2.7
4000.0	3.1
5000.0	3.5
6000.0	4.1
7000.0	4.6
8000.0	4.9
9000.0	5.7
10000.0	5.7
11000.0	6.1
12000.0	6.1
13000.0	6.2
14000.0	6.7
15000.0	7.4
16000.0	7.5
17000.0	7.9
18000.0	8.1
19000.0	8.8
20000.0	9.1

NOTES:

1. The cable is manufactured by Commscope
2. The cable type is 0623 WBC-400, serial \# G020132 and 10 m long

ISRAEL TESTING LABORATORIES
Global Certifications You Can Trust
7.2 Correction factors forbiconical antenna - ITL \# 1356

Model: EMCO 3110B
Serial No.:9912-3337

Frequency	ITL 1356 AF
$[\mathbf{M H z}]$	$[\mathbf{d B} / \mathbf{m}]$
$\mathbf{3 0}$	13.00
$\mathbf{3 5}$	10.89
$\mathbf{4 0}$	10.59
$\mathbf{4 5}$	10.63
$\mathbf{5 0}$	10.12
$\mathbf{6 0}$	9.26
$\mathbf{7 0}$	7.74
$\mathbf{8 0}$	6.63
$\mathbf{9 0}$	8.23
$\mathbf{1 0 0}$	11.12
$\mathbf{1 2 0}$	13.16
$\mathbf{1 4 0}$	13.07
$\mathbf{1 6 0}$	14.80
$\mathbf{1 8 0}$	16.95
$\mathbf{2 0 0}$	17.17

7.3 Correction factors forlog periodic antenna - ITL \# 1349

Model: EMCO 3146

Serial No.:9505-4081

Frequency	ITL 1349 AF
$[\mathbf{M H z}]$	[dB/m]
200	11.58
250	12.04
300	14.76
400	15.55
500	17.85
600	18.66
700	20.87
800	21.15
900	22.32
1000	24.22

7.4 Correction factors for Horn ANTENNA

Double -Ridged Waveguide
Model: 3115
Serial number:29845
3 meter range; ITL \# 1352

FREQUENCY	AFE	FREQUENCY	AFE
(GHz)	(dB/m)	(GHz)	(dB/m)
0.75	25	9.5	38
1.0	23.5	10.0	38.5
1.5	26.0	10.5	38.5
2.0	29.0	11.0	38.5
2.5	27.5	11.5	38.5
3.0	30.0	12.0	38.0
3.5	31.5	12.5	38.5
4.0	32.5	13.0	40.0
4.5	32.5	13.5	41.0
5.0	33.0	14.0	40.0
5.5	35.0	14.5	39.0
6.0	36.5	15.0	38.0
6.5	36.5	15.5	37.5
7.0	37.5	16.0	37.5
7.5	37.5	16.5	39.0
8.0	37.5	17.0	40.0
8.5	38.0	17.5	42.0
9.0	37.5	18.0	42.5

