TEST REPORT

FCC ID: 2AG68TWS-705

Product: Bluetooth headset

Model No.: TWS-705

Additional Model No.: TWS-705TA , TWS-705TK, TWS-705TS, TWS-705TJ, TWS-705TT, TWS-705TV, TWS-705TM, TWS-705TY, TWS-705TD, TWS-705TE

Trade Mark: N/A

Report No.: TCT160518E041

Issued Date: Jun. 01, 2016

Issued for:

Dongguan Koppo Electronics Co., Ltd. No.2 Road3 Buxinji Industrial Area, Guanjingtou Village, Fenggang Town, Dongguan City, Guangdong Province, China

Issued By:

Shenzhen Tongce Testing Lab. 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1.	Test Certification					
2.	Test Result Summary	<u>(6)</u>		<u>(6)</u>		4
3.	EUT Description					5
4.	Genera Information	<u> </u>				6
	4.1. Test environment and	mode	\sim		\sim	6
	4.2. Description of Support					
5.	Facilities and Accredita	tions				
	5.1. Facilities	\sim				7
	5.2. Location					
	5.3. Measurement Uncertai	nty	<u>(0)</u>		<u>(6</u>)	7
6.	Test Results and Meas					
	6.1. Antenna requirement					8
	6.2. Conducted Emission	<u> </u>				9
	6.3. Conducted Output Pow					
	6.4. Emission Bandwidth					
	6.5. Power Spectral Density					
	6.6. Test Specification					15
	6.7. Conducted Band Edge					
	6.8. Radiated Spurious Emi	ssion Measureme	ent			
A	opendix A: Test Result o	of Conducted T	est			
Ap	opendix B: Photographs	of Test Setup				
Ap	opendix C: Photographs	ofEUT				

TCT通测检测 1. Test Certification

Report No.: TCT160518E041

Product:	Bluetooth headse	et				
Model No.:	TWS-705				G	
Additional Model No.:TWS-705TA, TWS-705TK, TWS-705TS, TWS-705TJ, TWS-705TV, TWS-705TV, TWS-705TY, TWS-705TD, TWS-705TV, TWS-705TV, TWS-705TY, TWS-705TD, TWS-705TD, TWS-705TV, TWS-705TV, TWS-705TY, TWS-705TD, TWS-705TD, TWS-705TV, TWS-705TV, TWS-705TY, TWS-705TD, TWS-705TD, TWS-705TV, TWS-7						
Applicant:	Dongguan Koppo	o Electronics Co.	, Ltd.			
Address:	ngtou Villa , China	ige, Fenggang				
Manufacturer:	Dongguan Koppo	o Electronics Co.	, Ltd.		G	
Address: No.2 Road 3 Buxinji Industrial Area, Guanjingtou Villa Town, Dongguan City, Guangdong Province, China				ige, Fenggang		
Date of Test: May 18 – May 30, 2016						
Applicable Standards:	FCC CFR Title 4 KDB 558074 D0 ²					
<u></u>				<u></u>		

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Neil Wong	Date:	May 31, 2016	S
Reviewed By:	Jon Thom Joe Zhou	Date:	Jun. 01, 2016	
Approved By:	Tomsin	Date:	Jun. 01, 2016	

Page 3 of 36

2. Test Result Summary

Report No.: TCT160518E041

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS
6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	1§5.247(d) §2.1051, §2.1057	PASS
Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
ote: 1. PASS: Test item meets the require	ement.	

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product Name:	Bluetooth headset				
Model :	TWS-705				
Additional Model:	TWS-705TA, TWS-705TK, TWS-705TS, TWS-705TJ, TWS-705TT, TWS-705TV, TWS-705TM, TWS-705TY, TWS-705TD, TWS-705TE				
Trade Mark:	N/A				
Operation Frequency:	2402MHz~2480MHz				
Channel Separation:	2MHz				
Number of Channel:	40				
Modulation Technology:	GFSK				
Antenna Type:	Internal Antenna				
Antenna Gain:	2.0dBi				
Power Supply:	DC3.7V				
Remark:	All models above are identical in interior structure, electrica circuits and components, and just model names are different for the marketing requirement.				

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	~~···		~~···		~~···		<u></u>
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%)

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations.. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
PC	G485			Lenovo

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 572331

CT通测检测 TESTING CENTRE TECHNOLOGY

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• CNAS - Registration No.: CNAS L6165

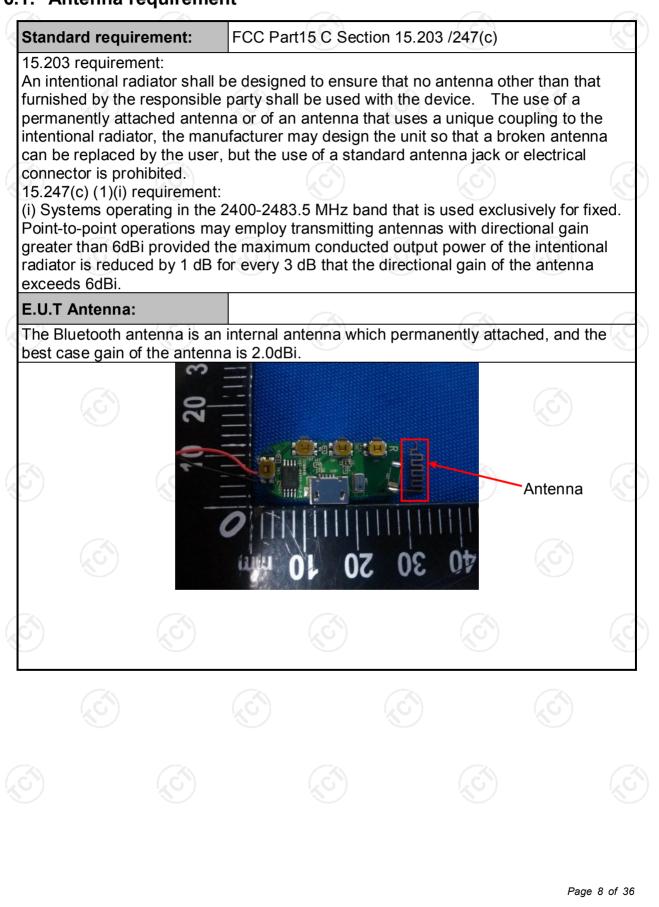
Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China Tel: 86-755-36638142

5.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

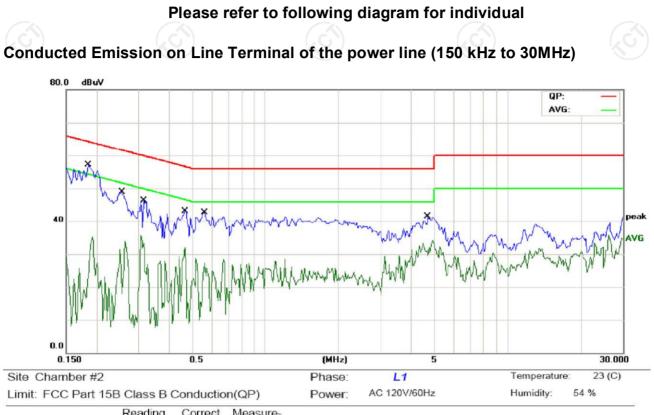
6. Test Results and Measurement Data

6.1. Antenna requirement

6.2. Conducted Emission

6.2.1. Test Specification

		45.007			
Test Requirement:	FCC Part15 C Section	15.207	0		
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	S)	$\langle \mathcal{C} \rangle$		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto		
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Reference	e Plane			
Test Setup: Test Mode:	40cm E.U.T AC powe Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m Charging + Transmittin	etwork	- AC power		
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				

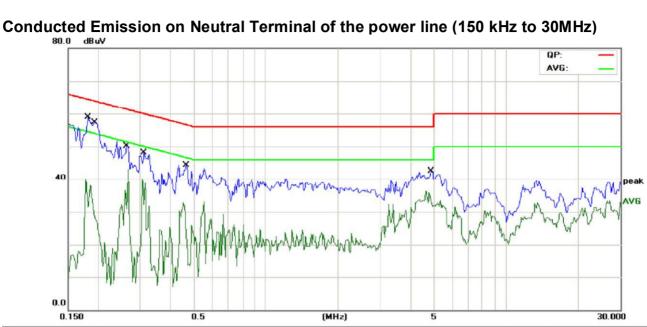

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
EMI Test Receiver	R&S	ESCS30	100139	Sep. 11, 2016					
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 16, 2016					
Coax cable	тст	CE-05	N/A	Sep. 11, 2016					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 36

6.2.3. Test data


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1852	53.75	0.50	54.25	64.24	-9.99	QP	
2		0.1852	37.64	0.50	38.14	54.24	-16.10	AVG	
3		0.2555	43.98	0.51	44.49	61.57	-17.08	QP	
4		0.2555	29.61	0.51	30.12	51.57	-21.45	AVG	
5		0.3141	42.21	0.51	42.72	59.86	-17.14	QP	
6		0.3141	29.22	0.51	29.73	49.86	-20.13	AVG	
7		0.4664	38.53	0.52	39.05	56.58	-17.53	QP	
8		0.4664	23.74	0.52	24.26	46.58	-22.32	AVG	
9		0.5602	37.27	0.54	37.81	56.00	-18.19	QP	
10		0.5602	21.97	0.54	22.51	46.00	-23.49	AVG	
11		4.6797	35.28	0.86	36.14	56.00	-19.86	QP	
12		4.6797	24.18	0.86	25.04	46.00	-20.96	AVG	

Note:

vo	te:		
	Freq. = Emission frequency in MHz		
	Reading level (dBµV) = Receiver reading		
	Corr. Factor (dB) = Antenna factor + Cable loss		
	Measurement (dBμV) = Reading level (dBμV) + Corr. Factor (dB)		
	Limit (dB μ V) = Limit stated in standard		
	Margin (dB) = Measurement (dBμV) – Limits (dBμV)		
	Q.P. =Quasi-Peak		
	AVG =average		
	* is meaning the worst frequency has been tested in the frequency rai	nge 150 kHz to 30MHz.	

Page 11 of 36

Report No.: TCT160518E041

Site Ch	nambe	er #2				Pha	Se:	N	Temperature	e: 23 (C)
Limit: F	CC F	Part 15	B Class B C	Conduction	n(QP)	Pow	ver:	AC 120V/60Hz	Humidity:	54 %
No. M	lk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	r		

HO. DIR.	rioq.	LOVOI	ractor	mont			
	MHz	dBuV	dB	dBuV	dBuV dB	Detector	Comment
1 *	0.1812	54.62	0.52	55.14	64.43 -9.29	QP	
2	0.1812	35.47	0.52	35.99	54.43 -18.44	AVG	
3	0.1930	53.37	0.52	53.89	63.90 -10.01	QP	
4	0.1930	37.97	0.52	38.49	53.90 -15.41	AVG	
5	0.2633	45.62	0.53	46.15	61.32 -15.17	QP	
6	0.2633	28.80	0.53	29.33	51.32 -21.99	AVG	
7	0.3102	43.54	0.53	44.07	59.96 -15.89	QP	
8	0.3102	29.94	0.53	30.47	49.96 -19.49	AVG	
9	0.4664	40.16	0.53	40.69	56.58 -15.89	QP	
10	0.4664	25.04	0.53	25.57	46.58 -21.01	AVG	
11	4.8633	36.61	0.87	37.48	56.00 -18.52	QP	
12	4.8633	26.00	0.87	26.87	46.00 -19.13	AVG	

Note:

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement (dBµV) = Reading level (dBµV) + Corr. Factor (dB)

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

Report No.: TCT160518E041

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3) &Part 2 J Section 2.1046
Test Method:	KDB 558074 D01 DTS Meas Guidance v03r05
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

6.3.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
6	Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
	RF cable	ТСТ	RE-06	N/A	Sep. 12, 2016
	Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) &Part 2 J Section 2.1049
Test Method:	KDB 558074 D01 DTS Meas Guidance v03r05
Limit:	>500kHz
Test Setup:	
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r05. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments

	RI	⁼ Test Room	l .	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	О тст	RE-06	N/A 🚫	Sep. 12, 2016
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.5. Power Spectral Density

6.6. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 DTS Meas Guidance v03r05
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v03r05 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.

6.6.1. Test Instruments

	RI	F Test Room	I	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	🕥 тст	RE-06	N/A	Sep. 12, 2016
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 15 of 36

6.7. Conducted Band Edge and Spurious Emission Measurement

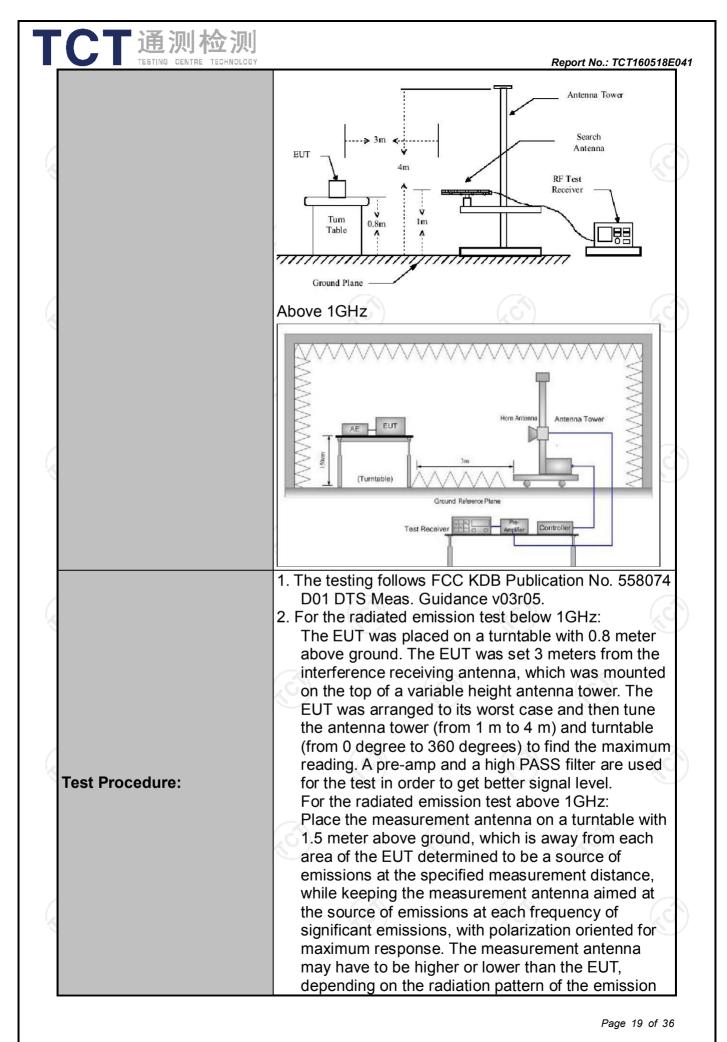
6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 2.1051/2.1057	(d) &Part 2 J Section	ion
Test Method:	KDB 558074 D01 DTS Meas Gui	dance v03r05	
Limit:	In any 100 kHz bandwidth outs frequency band, the emission non-restricted bands shall be atte 30dB relative to the maximum PS RF conducted measurement at which fall in the restricted bands 15.205(a), must also comply with limits specified in Section 15.209(ns which fall in t enuated at least 20 dl SD level in 100 kHz nd radiated emissio , as defined in Section n the radiated emission	the B / by ons
Test Setup:			
	Spectrum Analyzer	EUT	G
Test Mode:	Refer to item 4.1		
Test Procedure:	 The testing follows FCC KDB F D01 DTS Meas. Guidance v03 The RF output of EUT was con analyzer by RF cable and atter was compensated to the result measurement. Set to the maximum power set EUT transmit continuously. Set RBW = 100 kHz, VBW=300 Unwanted Emissions measure bandwidth outside of the author shall be attenuated by at least maximum in-band peak PSD I maximum peak conducted out used. If the transmitter complin power limits based on the use a time interval, the attenuation paragraph shall be 30 dB inster 15.247(d). Measure and record the results The RF fundamental frequency against the limit line in the operation. 	3r05. Innected to the spectru enuator. The path loss lts for each ting and enable the 0 kHz, Peak Detector ed in any 100 kHz orized frequency band t 20 dB relative to the level in 100 kHz wher tput power procedure es with the conducted of RMS averaging ow n required under this ead of 20 dB per s in the test report. y should be excluded	um s r. n e is d ver

6.7.2. Test Instruments

	RI	F Test Room	1	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016
RF cable	тст	RE-06	N/A	Sep. 12, 2016
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Page 17 of 36

6.8. Radiated Spurious Emission Measurement

6.8.1. Test Specification

(microv 2400	Iz 1kHz z 30kHz Hz 300KHz Iz 3MHz Iz 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	Quas Quas z Quas Pe Ave Mea	Remark ii-peak Value ii-peak Value ii-peak Value rage Value	
ak 200H ak 9kH ak 100K 1MH 1MH Field (microv 2400	Iz 1kHz z 30kHz Hz 300KHz Iz 3MHz Iz 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	Quas Quas z Quas Pe Ave Mea	ii-peak Value ii-peak Value ii-peak Value eak Value rage Value	
ak 200H ak 9kH ak 100K 1MH 1MH Field (microv 2400	Iz 1kHz z 30kHz Hz 300KHz Iz 3MHz Iz 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	Quas Quas z Quas Pe Ave Mea	ii-peak Value ii-peak Value ii-peak Value eak Value rage Value	
ak 200H ak 9kH ak 100K 1MH 1MH Field (microv 2400	Iz 1kHz z 30kHz Hz 300KHz Iz 3MHz Iz 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	Quas Quas z Quas Pe Ave Mea	ii-peak Value ii-peak Value ii-peak Value eak Value rage Value	
ak 200H ak 9kH ak 100K 1MH 1MH Field (microv 2400	Iz 1kHz z 30kHz Hz 300KHz Iz 3MHz Iz 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	Quas Quas z Quas Pe Ave Mea	ii-peak Value ii-peak Value ii-peak Value eak Value rage Value	
ak 200H ak 9kH ak 100K 1MH 1MH Field (microv 2400	Iz 1kHz z 30kHz Hz 300KHz Iz 3MHz Iz 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	Quas Quas z Quas Pe Ave Mea	ii-peak Value ii-peak Value ii-peak Value eak Value rage Value	
ak 200H ak 9kH ak 100K 1MH 1MH Field (microv 2400	Iz 1kHz z 30kHz Hz 300KHz Iz 3MHz Iz 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	Quas Quas z Quas Pe Ave Mea	ii-peak Value ii-peak Value ii-peak Value eak Value rage Value	
ak 9kH ak 100K 1MH 1MH Field (microv 2400	Hz 300KH z 3MHz z 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	z Quas z Quas Pe Ave	ii-peak Value ii-peak Value eak Value rage Value	
1MH 1MH Field (microv 2400	z 3MHz z 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	Pe Ave Mea	eak Value rage Value	
1MH Field (microv 2400	z 10Hz Strength volts/meter) D/F(KHz) 0/F(KHz)	Ave	rage Value	
Field (microv 2400	Strength volts/meter) D/F(KHz) 0/F(KHz)	Mea		
(microv 2400	volts/meter) D/F(KHz) 0/F(KHz)			
	0/F(KHz)		Measurement Distance (meters)	
2400			300	
			30	
	30		30	
100 150			3	
200			3	
	500		3	
eld Strengt crovolts/met	h Dista	rement ance ters)	Detector	
500		3	Average	
5000		3	Peak	
ns below	' 30MHz		Computer -	

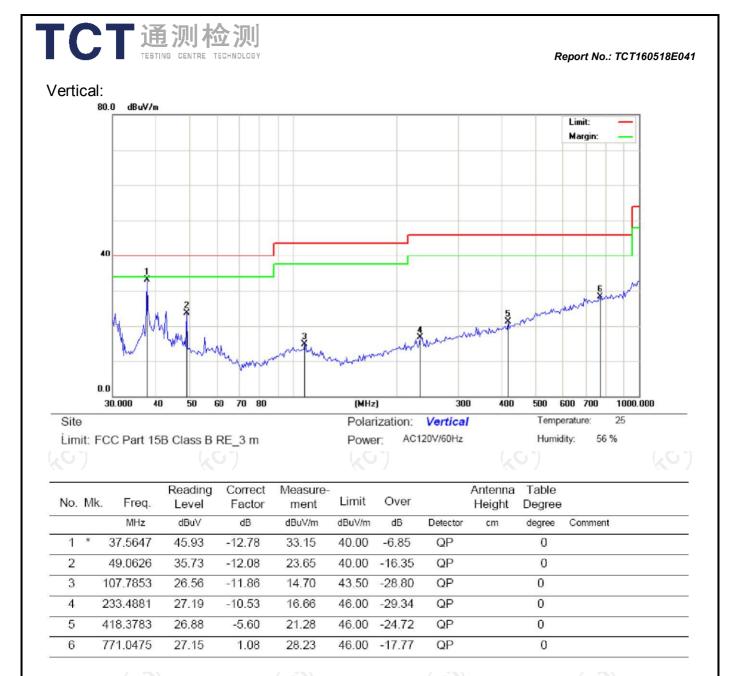
CT 通测检	: 测
	HNDLOGY Report No.: TCT160518EC
	 and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW;
Test mode:	 Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Refer to section 4.1 for details
Test results:	PASS

6.8.2. Test Instruments


TCT 通测检测 TESTING CENTRE TECHNOLOGY

	Radiated Em	ission Test Site	e (966)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 11, 2016	
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Sep. 11, 2016	
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016	
Pre-amplifier	HP	8447D	2727A05017	Sep. 11, 2016	
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 13, 2016	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 13, 2016	
Horn Antenna	Schwarzbeck	BBHA 9170	373	Sep. 13, 2016	
Antenna Mast	CCS	CC-A-4M	N/A	N/A	
Coax cable	ТСТ	RE-low-01	N/A	Sep. 11, 2016	
Coax cable	тст	RE-high-02	N/A	Sep. 11, 2016	
Coax cable	тст	RE-low-03	N/A	Sep. 11, 2016	
Coax cable	О тст	RE-high-04	N/A	Sep. 11, 2016	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Page 21 of 36

6.8.3. Test Data

Page 22 of 36

Report No.: TCT160518E041

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

Page 23 of 36

Above 1GHz

Low channel: 2402 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
2390	Н	54.74		-8.23	46.51		74	54	-7.49	
4804	Н	40.15		6.59	46.74		74	54	-7.26	
7206	Н	37.59		12.87	50.46		74	54	-3.54	
	Н									
(
2390	V	54.32		-8.23	46.09	54	74	54	-7.91	
4804	V	40.32		6.59	46.91		74	54	-7.09	
7206	V	38.00		12.87	50.87		74	54	-3.13	
×	V			(×				(

Middle channel: 2440MHz

CT 通测检测 TESTING CENTRE TECHNOLOGY

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	(CH)	39.76	- <u>+</u> ,ć	7.01	46.77	<u>(</u>	74	54	-7.23
7320	H	37.19		13.21	50.40		74	54	-3.60
	Н								
4880	V	39.10		7.01	46.11		74	54	-7.89
7320	V	36.74		13.21	49.95		74	54	-4.05
	V				-				

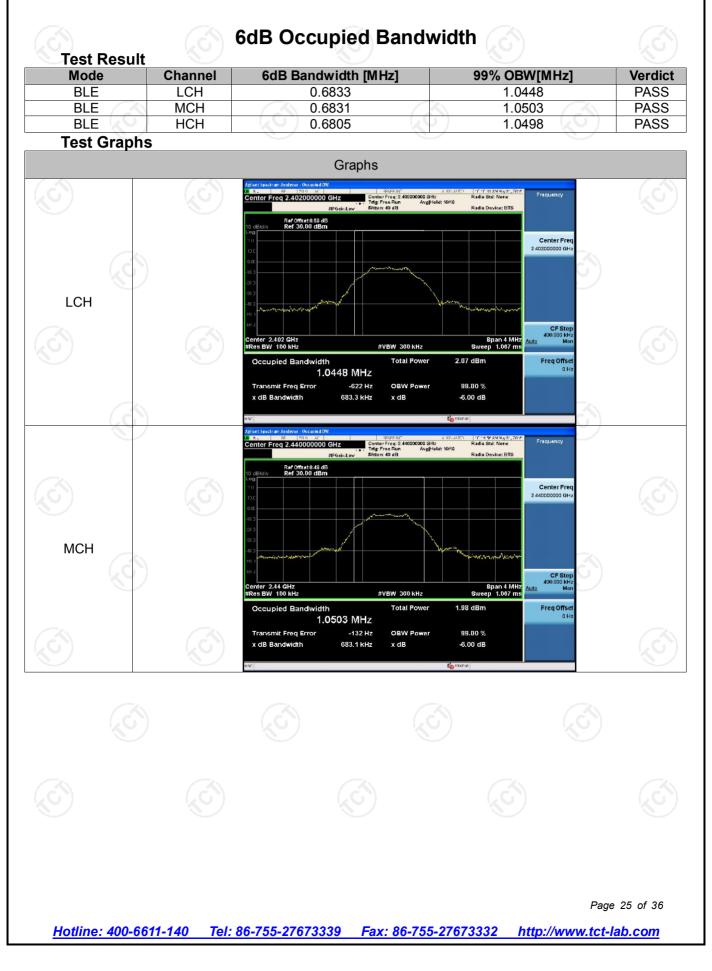
High channel: 2480 MHz

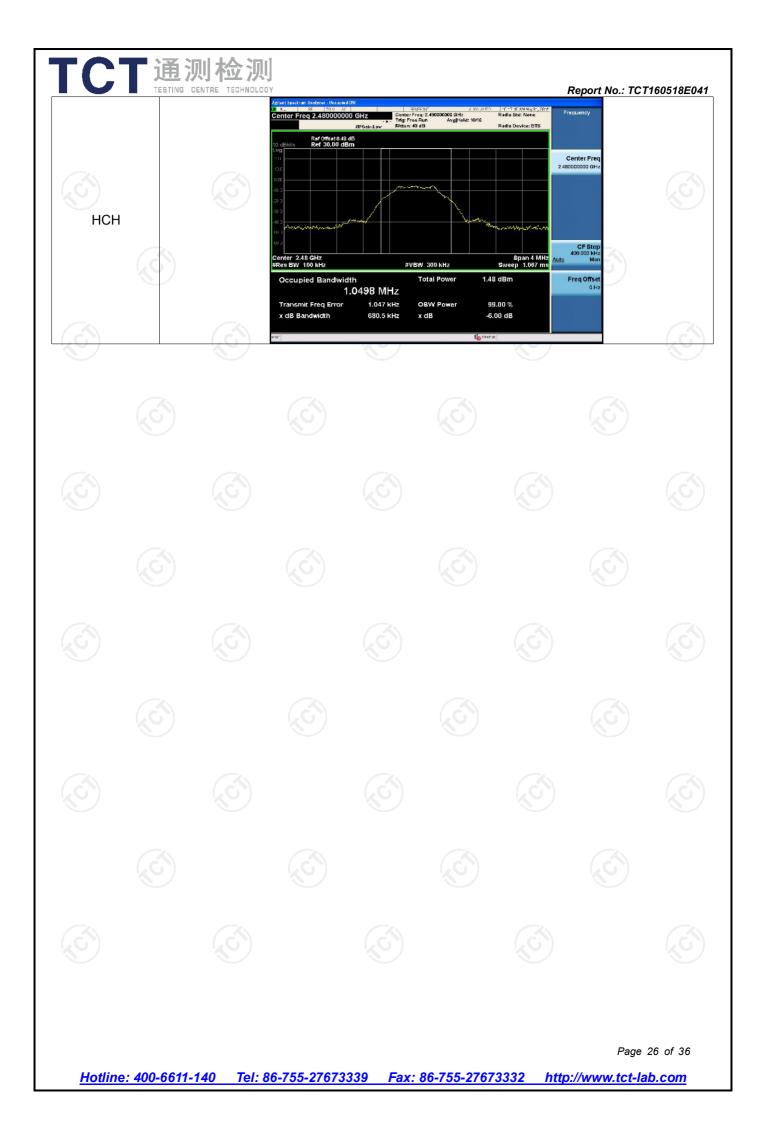
i ngiri onani									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2483.5	Н	53.31		-7.52	45.79		74	54	-8.21
4960	Н	40.52		7.44	47.96		74	54	-6.04
7440	Н	36.73		13.54	50.27		74	54	-3.73
<u> </u>	Н			🚫)		<u> </u>		
2483.5	V	53.30		-7.52	45.78		74	54	-8.22
4960	V	39.81		7.44	47.25	~~~	74	54	-6.75
7440	SV.	36.86	-+.C	13.54	50.40	<u>, G-</u> -	74	54	-3.60
	V					<u> </u>			

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)


3. The emission levels of other frequencies are very lower than the limit and not show in test report.


4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

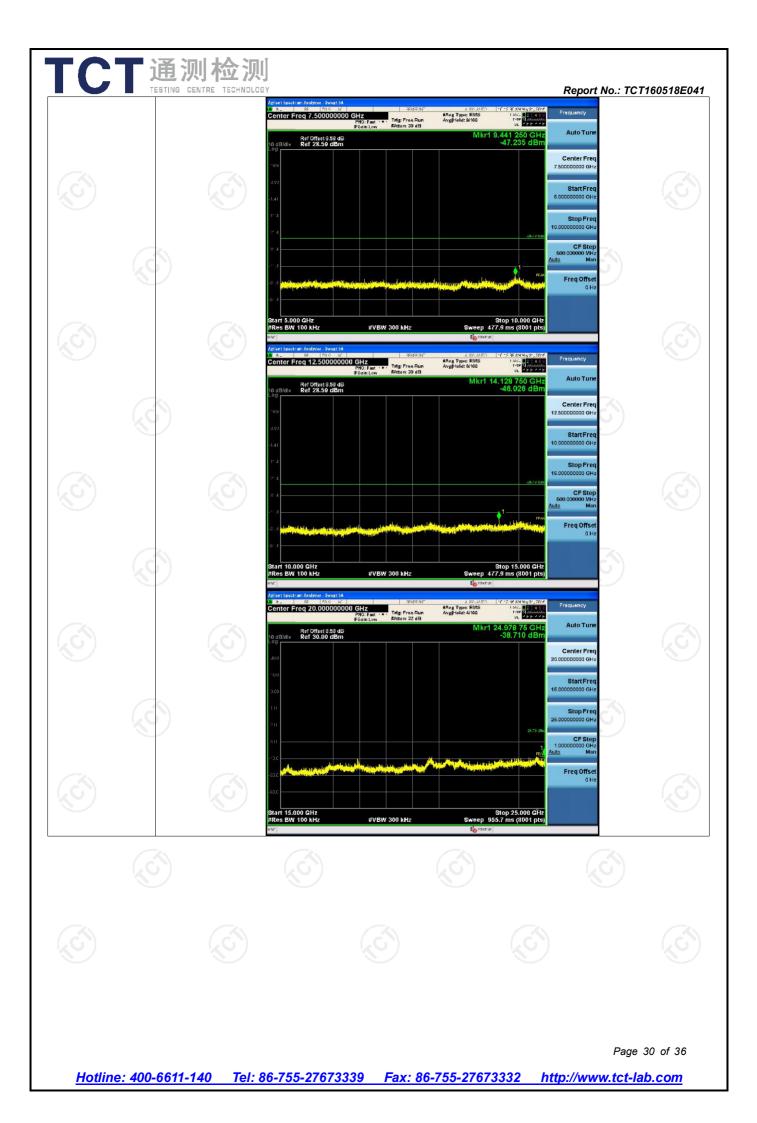
*****END OF REPORT*****

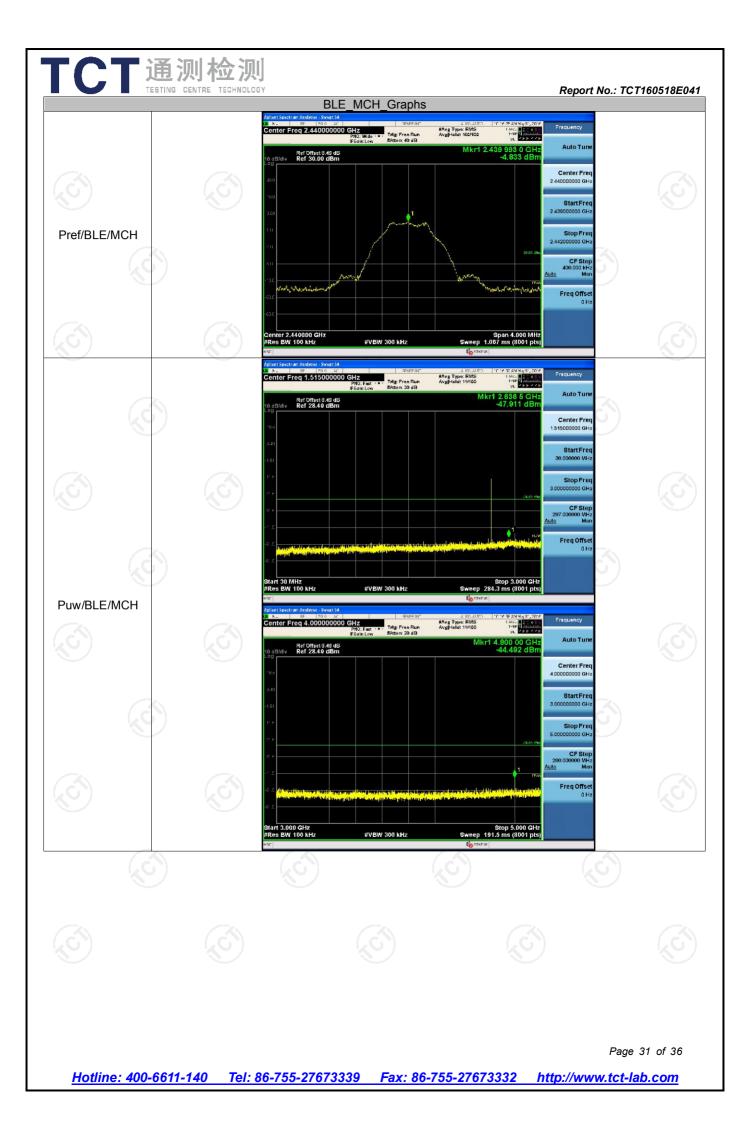
Appendix A: Test Result of Conducted Test

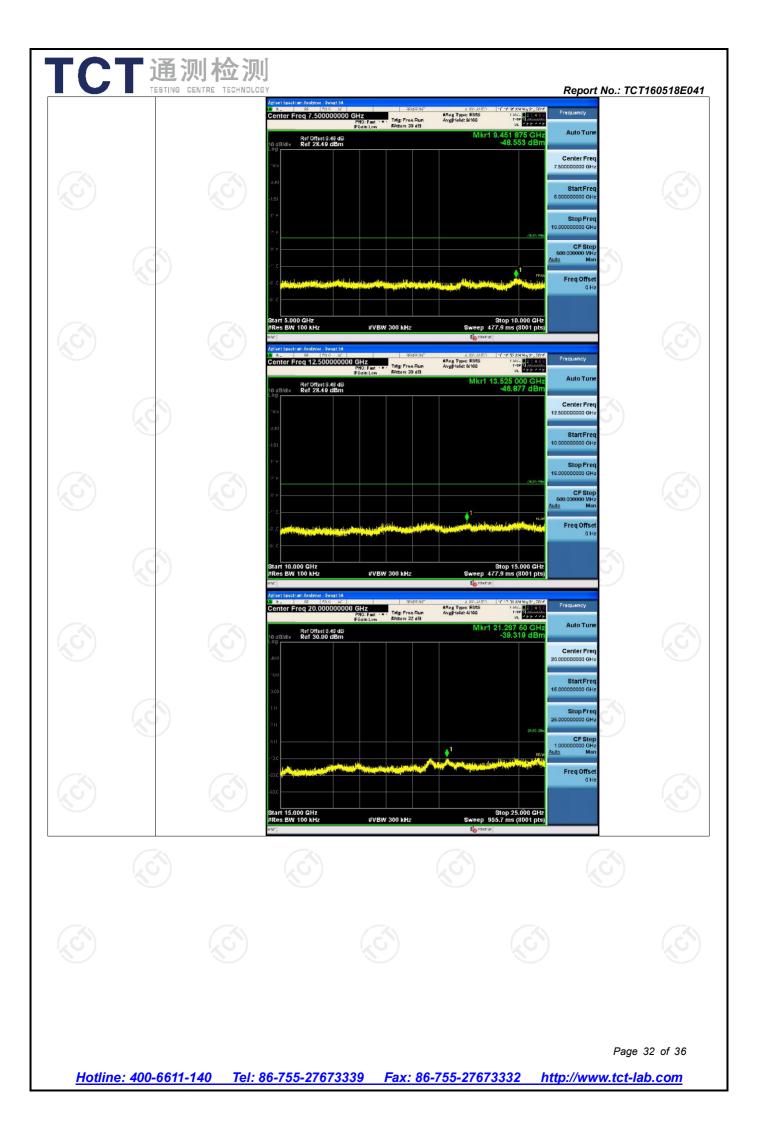
Conducted Peak Output Power

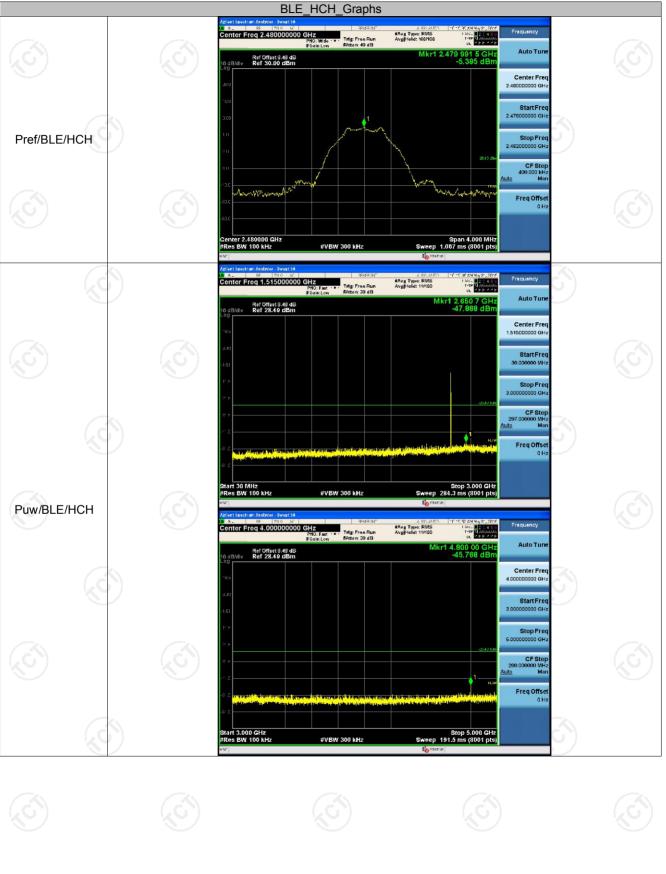
Mode	Channel	Conduct	Peak Power[dBm]	Verdict
BLE	LCH	KU /	-3.351		PASS
BLE	MCH		-3.458		PASS
BLE	HCH		-4.031		PASS
Test Graphs					
		Grapha			
	Aglient Spectrum Analys	Graphs			
	Center Freq 2.4	In a set of the set of	A IGNAUTO TO THE AMMINEST, 2016 Avg Type: RMS TAK, A PARA Avg Hold: 40/100 THE VALUE U AFF AFF	Frequency	
	Ref Df	Fearin:Low Anders and an fact 3.59 dB 0.00 dBm	Mkr1 2.401 878 5 GHz -3.351 dBm	Auto Tune	
.c))	10 dB/dlv Ref 3	o.do dBm	-5.551 dBm	Center Freq	
	A10			2.402000000 GHz	
	×0.0			StartFreq	
	0.0		FE/94	2.400000000 GHz	
LCH	10			Stop Freq 2.404000000 GHz	
	211				
	3(1)			CF Step 400.000 kHz Auto Man	
	- 'ac			Freq Offset	
	-53.0			0 Hz	
(°)					
\sim	Center 2.402000 #Res BW 3.0 MH	GHz z #VBW 8.0 MHz	Span 4.000 MHz #Sweep 100.3 ms (8001 pts)		
	Agilant Sport run Analys	er - Swept SA			
	Center Freq 2.4	En G & STAF-187 40000000 GHZ PN0; Fast •• Trig: Free Run IFGain:Low, #Atten: 40 dB	A ROADED OF 15 24 AM My31, 2016 #Avg Type: RMS LAC. 21 4 5 Avg[Hold: 41/100 TOPP M DC PERMIT	Frequency	
(<u>k</u> O)		rest 3.49 dB 0.00 dBm	Mkr1 2.440 069 0 GHz -3.458 dBm	Auto Tune	
			0.400 4200	Center Freq	
	20.0			2.440000000 GHz	
	τω.			Start Freq 2.438000000 GHz	
.C`)		^1	FE/W	2.40000000 GH2	
MCH				Stop Freq 2.442000000 GHz	
	311			CF Step	
	0.0			400.000 kHz Auto Man	
(A)	-50.C			Freq Offset	
KY)	-63.C			0 Hz	
	Center 2.440000	CHIZ	Spar 4 000 Mile		
	Center 2.440000 #Res BW 3.0 MH	GHZ z #VBW 8.0 MHz	Span 4.000 MHz #Sweep 100.3 ms (8001 pts)		
2		er - Swept SA 50.9 AC SENSE: ME	A ISLAUTO TO TE TEAMMINST COTE		
	Center Freq 2.4	STILD AC SELECTION SELECTI	Avg Type: RMS 1440 1746 454 Avg[Held: 40/100 749 0 0000000000000000000000000000000	Frequency	
	10 dB/div Ref Of	faet 3.49 dB 0.00 dBm	Mkr1 2.479 884 5 GHz -4.031 dBm	Auto Tune	
	Log			Center Freq	
	-0.0			2.480000000 GHz	
(Q)	0.0	1		StartFreq 2.478000000 GHz	
	111		FE/4	Stop Freq	
HCH	2011			2.462000000 GHz	
(A)	311			CF Step 400.000 kHz	
G)				Auto Man	
	-50.6			Freq Offset 0 Hz	
	-60.C			UT12	
	Center 2.480000	GHz	Span 4.000 MHz		
	#Res BW 3.0 MH	z #VBW 8.0 MHz	Span 4.000 MHz #Sweep 100.3 ms (8001 pts)		
I					

Band-edge for RF Conducted Emissions

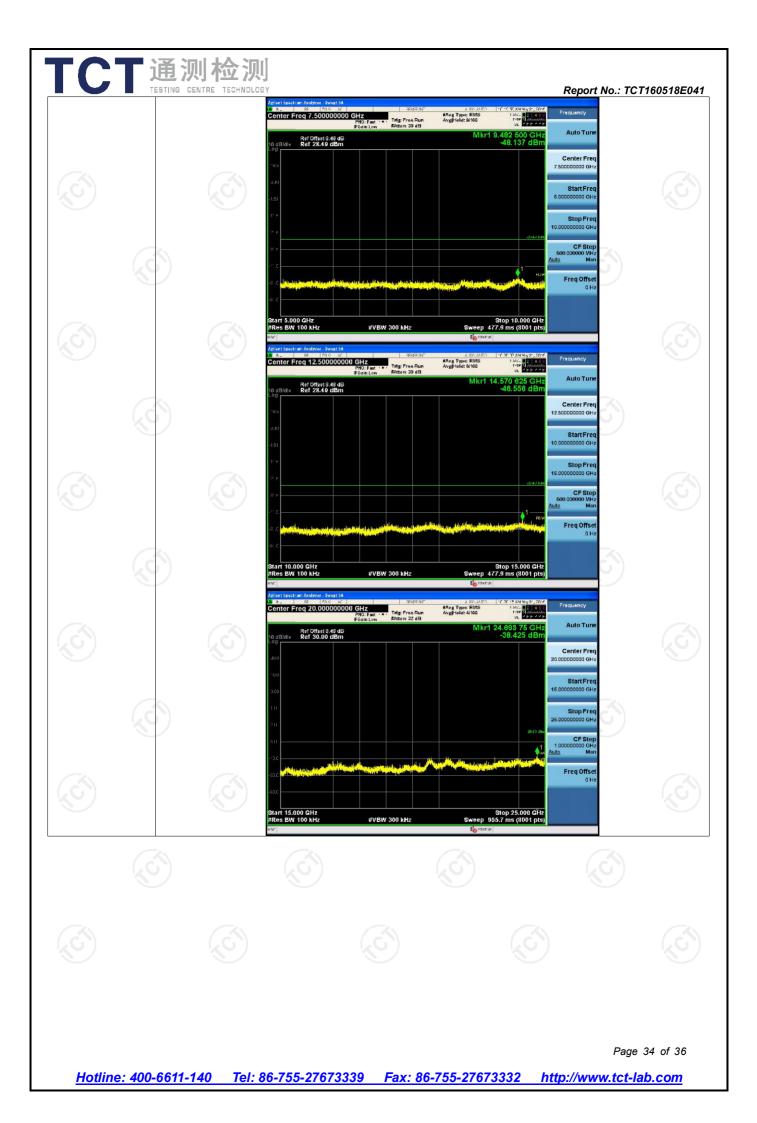

TCT通测检测 TESTING CENTRE TECHNOLOGY


Mode	Channel	Carrier	Power[dBm]	Max.S	Spurious Le [dBm]	vel	Limit [dBm]	Verdict
BLE	LCH	1207	-4.692	1,07	-41.763	1,07	-24.69	PASS
BLE	НСН		-5.305		-41.660		-25.31	PASS
Test C	Graphs							
				Graphs				
	Y		Aplant Spectram Analyzer - Swept SA 20 N - RE TAG AC Center Freq 2.390000000 G	PNO: Fast · • · Trig: Free Ru ESain: Joy #Atten: 40 dl	NT A KNAUTO KAvg Type: RMS un Avg[Hold: 100/100	10.12.80 AMM (931, 2016) 1 ACC 20.2.4 AS 1 MPF MASSAGE 10. 4 PF - 2 F	Frequency	
			Ref Offset 8.69 dB 10 dB/div Ref 30.00 dBm	Poaliticow white to a		79 035 00 GHz -41.763 dBm	Auto Tune	
			23.0			1	Center Freq 2.39000000 GHz	
			0.00 -ICD -CD				Start Freq 2.375000000 GHz	
LCH			-SC D -SC J -SC J	and atter at war provide the second second	agan	mar hum	Stop Freq	
LOIT							2.405000000 GHz	
	KY)		Start 2.37500 GHz #Res BW 100 kHz MBT NOC THE CL X	#VBW 300 kHz	"JNCT ION I FUNCT ON WID"II	Stop 2.40500 GHz 200 ms (8001 pts) "JHCT ON VALUE	CF Step 3.000000 MHz Auto Man	
			1 N 1 F 2.401 988 2 N 1 F 2.400 000 3 N 1 F 2.380 000 4 N 1 F 2.379 035 5	75 GHz -4.692 dBm 00 GHz -46.476 dBm 00 GHz -44.194 dBm 00 GHz -41.763 dBm			Freq Offset 0 Hz	
			6 7 3 9					
			10 11 <<	-11	Do status.	8		
<u> </u>			Agilant Spectrum Analyzer - Swept SA D. h. RF 50.9 SC Center Freq 2 491000000 G	Hz SFMER	NE 2 62 2105	-C -C - 4 04 44 - 27 - 20-4	Frequency	
	a.		Center Freq 2.491000000 G	PNO: Fast · • · Trig: Free Ri PNO: Fast · • · #Atten: 40 dl IFGain:Low	3	92 976 25 GHz	Auto Tune	
			Ref Offset 8.49 dB 10 dB/div Ref 30.00 dBm 200			-41.660 dBm	Center Freq	
			10.0 0.00 -ICD				2.491000000 GHz	
			$\begin{array}{c} ccc \\ cccc \\ ccc \\ cccc$	e	4	-195 alfan	StartFreq 2.476000000 GHz	
НСН			H I	halten nation of the state of particular and shart of the V	neres freed the second	nghar ngantanan gant baata dar Nada	Stop Freq 2.506000000 GHz	
			Start 2.47600 GHz #Res BW 100 kHz	#VBW 300 kHz		Stop 2.50600 GHz 200 ms (8001 pts)	CF Step 3.000000 MHz Auto Man	
			NET NODE THE X 1 N 1 f 2.480/245 2 N 1 f 2.493/600 3 N 1 f 2.500/000		TJHCTION IC TJHLT	TJHCT ON VALUE 🙍	Freq Offset	
			4 N 1 F 2.492976 5 6 7 3	25 GHz -41.660 dBm			0 Hz	
			9 10 11 <	1		8		
			N3C		Do statie:			


RF Conducted Spurious Emissions

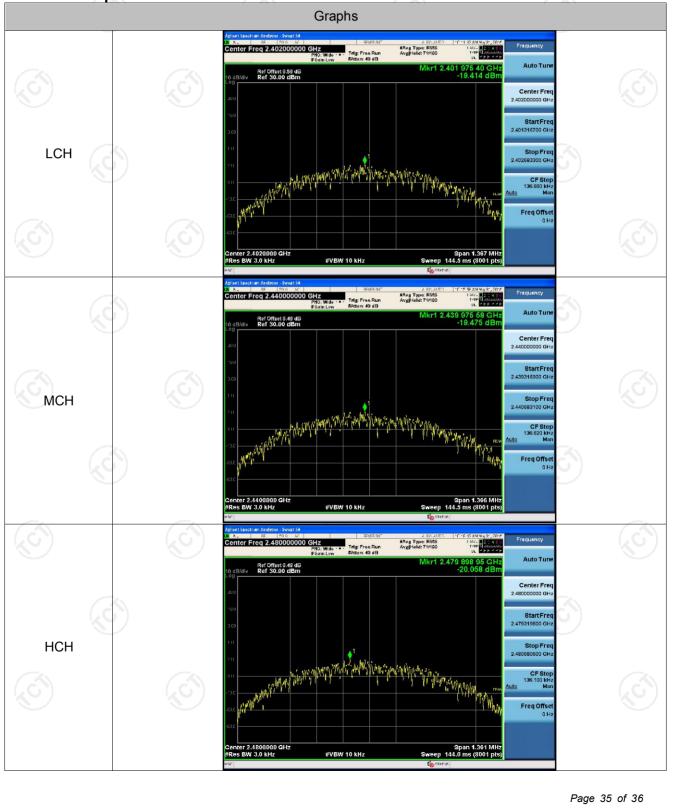

TCT通测检测 TESTING CENTRE TECHNOLOGY

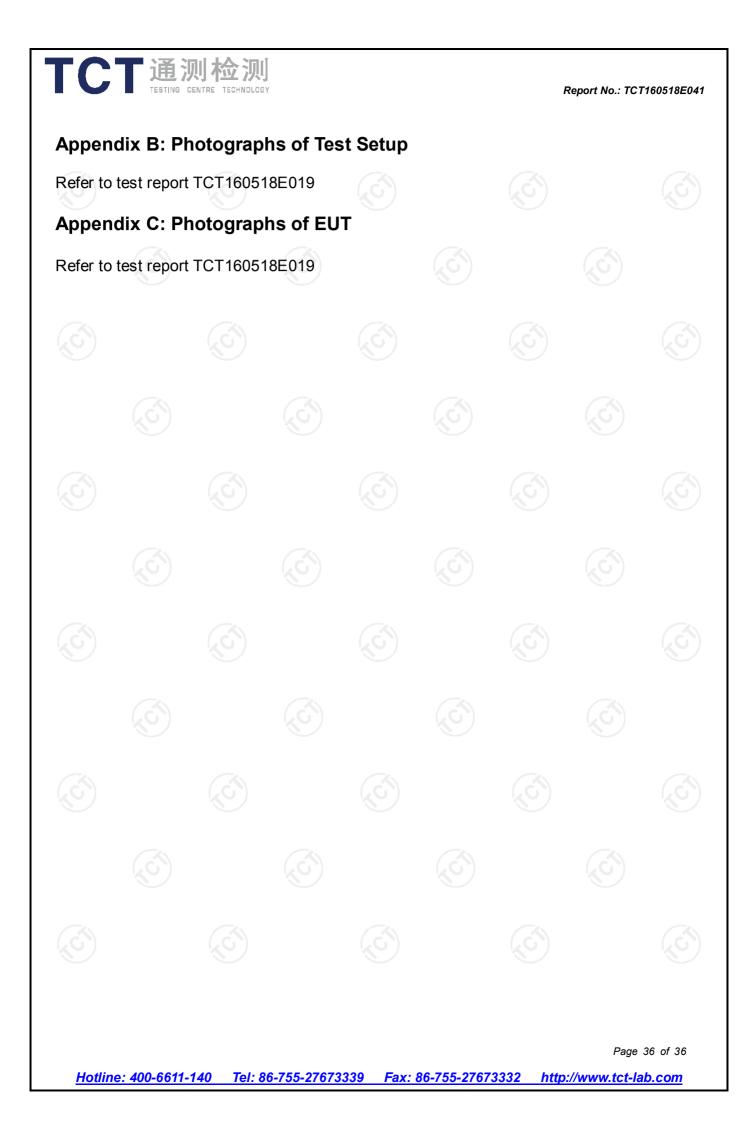
Result T				
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-4.787	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-4.833	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-5.395	<limit< td=""><td>PASS</td></limit<>	PASS
Test Gra	phs			
		BLE_LCH_Graphs		
		AdjentSpectranActiver-SweetSA 2. N. SF SNG 20 SPACE AND	101210AWNig3t,2016 Frequency	
		PND: Wide		
		Ref Offset 3.59 dB Mkr1.	2.401 987 0 GHz Auto Tune -4.787 dBm	
			Center Freq	
			2.40200000 GHz	
			Start Freq 2.40000000 GHz	
Pref/BLE/LCH			Stop Freq 2.404000000 GHz	
	G))		2473 JBC	
		an and James	400.000 kHz <u>Auto</u> Man	
		- DC must regel with the second	Thirst And And Freq Offset	
			0 Hz	
		-620		
		Center 2.402000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep	Span 4.000 MHz 1.067 ms (8001 pts)	
		NSC Bostor		
		Adjentrospectrum Analyzer - Sweet SA Ref Flog SA <	101517.00Mig31,2016 Frequency	
		IFGain:Low #Atten: 30 dB	Erequency TYPE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	
	d`)	Ref Offset 3.59 dB IV 10 dB/div Ref 28.59 dBm	Ikr1 2.646 2 GHz -47.374 dBm	
		1816	Center Freq	
		3.89		
		-1.41	Start Freq 30.000000 MHz	
		11.4	Stop Freq	
		·* 4	3.000000000 GHz	
		3° 4	CF Step 297.00000 MHz	
			Auto Man	
			Freq Offset	
		110 m King to Keng Kalang King pang ang King Kang Kang Kang Kang Kang Kang Kang Ka	0 Hz	
		Start 30 MHz	Stop 3.000 GHz	
		Write #Ves #VBW 300 kHz Sweep Vxc 0 <td>284.3 ms (8001 pts)</td> <td></td>	284.3 ms (8001 pts)	
Puw/BLE/LCH		Aprilant Spectrum Analyzer - Swept SA		
		Mon. BF Fn/G AC Strength Strengt Strengt	TO 12 20 ANM (x21, 2014 TACC 2 2 4 5 5 TYPE MARKAN TO FEEDOLE	
		Ref Offset 3.59 dB 10 dB/dlv Ref 28.59 dBm	44.763 dBm	
		lo dBldiv Ref 28.59 dBm	-44.763 CBIT	
		~¥8.6	4.DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	
		3.59	StartFreq	
	(\mathbf{v})	-1.41	3.00000000 GHz	
		11.4	Stop Freq	
		27 A	5.00000000 GHz	
		Y A	CF Step 200.000000 MHz Auto Map	
			1 <u>FERR</u> Auto Man	
	Key /		Contract of the second s	KV)
		-6°.4		
		Start 3.000 GHz	Stop 5.000 GHz	
		#Res BW 100 kHz #VBW 300 kHz Sweep	191.5 ms (8001 pts)	
	4			



Report No.: TCT160518E041

Page 33 of 36




Power Spectral Density

Result Table	9		
Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-19.414	PASS
BLE	MCH	-19.475	PASS
BLE	HCH	-20.058	PASS

Test Graphs

TCT通测检测 TESTING CENTRE TECHNOLOGY

