

FCC PART 15C

TEST REPORT

For

Lumi Legend Corporation

22/F., Building 1, Lisi Plaza, Huifeng East Road, Ningbo, China 315100

FCC ID: 2AG62HPS04

Report Type:		Product Name	:	
Original Report		RING-SHAPED RGB GAMING		
		ILADI HONE 5	TAND	
Report Number:	RKSA230215001-	00B		
Report Date:	2024-01-26			
Reviewed By:	Max Min/ Project Supervisor			
Approved By:	_Kyle Xu/ RF Super	rvisor	Kyle. Xu	
Prepared By:	Bay Area Complia No.248 Chenghu F Tel: +86-512-8617 Fax: +86-512-8893 www.baclcorp.com	nce Laboratories Co Road, Kunshan, Jiang 5000 34268 <u>n.cn</u>	rp. (Kunshan) gsu Province, China	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Kunshan). This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, or any agency of the U.S.Government.

TABLE OF CONTENTS

REPORT REVISION HISTORY	
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) OBJECTIVE	
Test Methodology Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	
EUT EXERCISE SOFTWARE	
External I/O Cable	<u>6</u>
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC §1.1310 & §2.1091-MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
TEST SYSTEM SETUP	
TEST DATA	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	14
APPLICABLE STANDARD	14
TEST SYSTEM SETUP	
EMI TEST RECEIVER SETUP Test Procedure	
Test Results Summary	
TEST DATA	
FCC §15.209 & §15.205 - SPURIOUS EMISSIONS	
APPLICABLE STANDARD Test System Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST DATA	
§15.215(c) - 20dB EMISSION BANDWIDTH TESTING	
REQUIREMENT	
TEST PROCEDURE Test Data	
EU I I IIVI VURAF IIS	
TEST SETUP PHOTOGRAPHS	

FCC Part 15C

Page 2 of 32

Report No.: RKSA230215001-00B

REPORT REVISION HISTORY

Number of Revisions Report No.		Version Issue Date		Description
0	RKSA230215001-00B	R1V1	2024-01-26	Initial Release

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant:	Lumi Legend Corporation
Tested Model:	HPS04-2
Product Name:	RING-SHAPED RGB GAMING HEADPHONE STAND
Rated Input Voltage:	Type-C input: 5V===0.5A Wireless charger input: 5V===3A, 9V===2A, 12V===1.5A
RF Function:	WPT
Operating Band/Frequency:	116 kHz
Antenna Type:	Coil Antenna

Note: Pre-Scan all voltage, DC 12V was the worst, DC 12V was used to test all items.

All measurement and test data in this report was gathered from production sample serial number: RKSA230215001-1 (Assigned by the BACL. The EUT supplied by the applicant was received on 2023-02-15)

Objective

This report is prepared for *Lumi Legend Corporation* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207 and 15.209 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

Measurement Uncertainty

Item		Uncertainty	
AC Power Lines Conducted Emissions		3.19 dB	
Radiated emission	9 kHz~150 kHz	3.8 dB	
	150 kHz~30 MHz	3.4 dB	
	30MHz~1GHz	6.11dB	
Temperature		1.0°C	
]	Humidity	6%	

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu Province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by NVLAP (Lab code: 600338-0) and the lab has been recognized as the FCC accredited lab under the KDB 974614 D01, the FCC Designation No.: CN5055.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user)

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

No Exercise Software was used.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Unknown	Adapter	Unknown Unknown	
Unknown	Load 1	Unknown Unknown	
Unknown	Load 2	Unknown Unknown	
Unknown	Earphone	Unknown Unknown	
Lenovo	Notebook	ZQ-2020009050LIT 00329000000003	

External I/O Cable

Cable Description	Length (m)	From Port	То
Power Cable 1	1.5	AC Source	Adapter
USB Cable 1	1.0	Adapter	EUT
USB Cable 2	0.5	Notebook	EUT
USB Cable 3	0.3	EUT	Load
Audio Cable 1	1.2	EUT	Earphone

Report No.: RKSA230215001-00B

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310& §2.1091	Maximum Permissible Exposure(MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209	Spurious Emissions	Compliant
§15.215(c)	20dB Emission Bandwidth Testing	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test (Chamber 1#)						
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2023-05-23	2024-05-22	
Sunol Sciences	Hybrid Antenna	JB3	A090314-1	2023-11-11	2024-11-10	
Sonoma Instrument	Amplifier	310N	171205	2023-05-23	2024-05-22	
Narda	6dB Attenuator	773-6	10690812-2-1	2023-11-11	2024-11-10	
ETS-LINDGREN	Loop Antenna	6512	108100	2023-11-09	2024-11-08	
MICRO-COAX	Coaxial Cable	Cable-8	008	2023-05-23	2024-05-22	
MICRO-COAX	Coaxial Cable	Cable-9	009	2023-05-23	2024-05-22	
MICRO-COAX	Coaxial Cable	Cable-10	010	2023-05-23	2024-05-22	
Rohde & Schwarz	Test Software	EMC32	100361	N/A	N/A	
	Cone	ducted Emission T	`est			
Rohde & Schwarz	EMI Test Receiver	ESR3	101746	2023-05-23	2024-05-22	
Rohde & Schwarz	LISN	ENV216	101115	2023-05-23	2024-05-22	
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	0357.8810.54	2023-05-23	2024-05-22	
Audix	Test Software	e3	V9	N/A	N/A	
MICRO-COAX	Coaxial Cable	Cable-15	015	2023-05-23	2024-05-22	
		MPE				
NARDA	Isotropic Field Probe	EA5091	16868	2023-05-22	2024-05-21	
NARDA	Broadband field Meter	NBM-550	B-1130	2023-05-22	2024-05-21	
ETS-LINDGREN	Isotropic Field Probe	HI-6005	200234	2023-11-08	2024-11-07	

Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091–MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to the item 5.2 of KDB 680106 D01 Wireless Power Transfer v04; Inductive wireless power transfer applications that meet all of the following repuirements are excluded from submitting an RF evaluation.

- (1) The power transfer frequency is below 1 MHz.
- (2) The output power from each transmitting element (e.g., coil) is less than or equal to 15 watts.
- (3) A client device providing the maximum permitted load is placed in physical contact with the transmitter (i.e., the surfaces of the transmitter and client device enclosures need to be in physical contact)
- (4) Only § 2.1091-Mobile exposure conditions apply (i.e., this provision does not cover § 2.1093-Portable exposure conditions).
- (5) The E-field and H-field strengths, at and beyond 20 cm surrounding the device surface, are demonstrated to be less than 50% of the applicable MPE limit, per KDB 447498, Table 1. These measurements shall be taken along the principal axes of the device, with one axis oriented along the direction of the estimated maximum field strength, and for three points per axis or until a 1/d (inverse distance from the emitter structure) field strength decay is observed. Symmetry considerations may be used for test reduction purposes. The device shall be operated in documented worst-case compliance scenarios (i.e., the ones that lead to the maximum field components), and while all the radiating structures (e.g., coils or antennas) that by design can simultaneously transmit are energized at their nominal maximum power.
- (6) For systems with more than one radiating structure, the conditions specified in (5) must be met when the system is fully loaded (i.e., clients absorbing maximum power available), and with all the radiating structures operating at maximum power at the same time, as per design conditions. If the design allows one or more radiating structures to be powered at a higher level while other radiating structures are not powered, then those cases must be tested as well. For instance, a device may use three RF coils powered at 5 W, or one coil powered at 15 W: in this case, both scenarios shall be tested.

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)	
	(A) Limits for	Occupational/Controlle	ed Exposure		
0.3-3.0	614	1.63	*100	6	
3.0-30	1842/f	4.89/f	*900/f ²	6	
30-300	61.4	0.163	1.0	6	
300-1,500			f/300	6	
1,500-100,000			5	6	
	(B) Limits for Gene	eral Population/Uncont	rolled Exposure		
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	*(180/f ²)	30	
30-300	27.5	0.073	0.2	30	
300-1500			f/1500	30	
1500-100,000			1.0	30	

Limits for Maximum Permissible Exposure (MPE)

f = frequency in MHz; * = Plane-wave equivalent power density;

Test System Setup

Result

a) The power transfer frequency is below 1 MHz Yes, the device operates in the frequency 116 kHz.

b) The output power from each transmitting element (e.g., coil) is less than or equal to 15 watts. Yes, the maximum output power of the primary coil is 15W.

c) A client device providing the maximum permitted load is placed in physical contact with the transmitter (i.e., the surfaces of the transmitter and client device enclosures need to be in physical contact). Yes, client device is placed directly in contact with the transmitter.

d) Only § 2.1091-Mobile exposure conditions apply (i.e., this provision does not cover § 2.1093-Portable exposure conditions).

Yes, this is a mobile device.

e) The E-field and H-field strengths, at and beyond 20 cm surrounding the device surface, are demonstrated to be less than 50% of the applicable MPE limit, per KDB 447498, Table 1. These measurements shall be taken along the principal axes of the device, with one axis oriented along the direction of the estimated maximum field strength, and for three points per axis or until a 1/d (inverse distance from the emitter structure) field strength decay is observed. Symmetry considerations may be used for test reduction purposes. The device shall be operated in documented worst-case compliance scenarios (i.e., the ones that lead to the maximum field components), and while all the radiating structures (e.g., coils or antennas) that by design can simultaneously transmit are energized at their nominal maximum power. Yes, please refer to test data

f) For systems with more than one radiating structure, the conditions specified in (5) must be met when the system is fully loaded (i.e., clients absorbing maximum power available), and with all the radiating structures operating at maximum power at the same time, as per design conditions. If the design allows one or more radiating structures to be powered at a higher level while other radiating structures are not powered, then those cases must be tested as well. For instance, a device may use three RF coils powered at 5 W, or one coil powered at 15 W: in this case, both scenarios shall be tested.

Yes, systems with only one radiating structure

Test Data

Environmental Conditions & Test Information

Temperature:	22.3 °C
Relative Humidity:	31 %
ATM Pressure:	102.5 kPa
Test Date:	2024-01-17
Test Engineer:	Aaron Sun

H-Filed Strength

Frequency Range (kHz)	Position A (A/m)	Position B (A/m)	Position C (A/m)	Position D (A/m)	Position E (A/m)	Limit Test (A/m)	50%Limit (A/m)
116	0.087	0.049	0.068	0.064	0.234	1.63	0.815

E-Filed Strength

Frequency Range (kHz)	Position A (V/m)	Position B (V/m)	Position C (V/m)	Position D (V/m)	Position E (V/m)	Limit Test (V/m)	50%Limit (V/m)
116	1.910	1.101	1.562	1.432	2.136	614	307

Note:

1: According with KDB 680106 D01 Wireless Power Transfer v04, Emissions between 100 kHz to 300 kHz should be assessed versus the limits at 300 kHz in Table 1 of Section 1.1310: 614V/m and 1.63 A/m.

2: The distance is 20cm.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Antenna Connector Construction

The EUT has a Coil antenna arrangement which permanently attached to EUT, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

Test System Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	VBW
150 kHz - 30 MHz	9 kHz	30 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

If the maximum peak value of the emissions is below the average limit, the QP value and average value measurement will not need to be performed and only record the maximum peak measured value to meet the requirements.

FCC Part 15C

Level & Over Limit Calculation

The Level is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation from the Meter Reading. The basic equation is as follows:

 $\begin{array}{l} \mbox{Factor } (dB) = LISN \ VDF \ (dB) + Cable \ Loss \ (dB) + Transient \ Limiter \ Attenuation \ (dB) \\ \ Level \ (dB\mu V) = Read \ level \ (dB\mu V) + Factor \ (dB) \end{array}$

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7 dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

Over Limit (dB) = Level (dB μ V) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions & Test Information

Temperature:	15.3 °C
Relative Humidity:	40 %
ATM Pressure:	102.2 kPa
Test Date:	2024-01-18
Test Engineer:	Aaron Sun

EUT operation mode: charging and communication

FCC Part 15C

Report No.: RKSA230215001-00B

AC 120V/60 Hz, Line

	DETTICAN
Model :	HPS04-2
Phase :	L
Voltage :	120V/60HZ
Mode :	Transmitting
Test Equipment :	ENV216,ESR
Temperature :	15.3°C
Humidity :	40%
Atmospheric pressure:	102.2kPa
Test Engineer :	Aaron Sun

Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dBuV	dBuV	dB	
0.153	29.89	19.89	49.78	65.83	-16.05	Peak
0.402	23.01	20.07	43.08	57.80	-14.72	Peak
2.085	17.32	20.21	37.53	56.00	-18.47	Peak
6.027	12.31	20.28	32.59	60.00	-27.41	Peak
23.972	23.17	19.92	43.09	60.00	-16.91	Peak
26.751	24.26	19.97	44.23	60.00	-15.77	Peak
	Freq MHz 0.153 0.402 2.085 6.027 23.972 26.751	Read Freq Level MHz dBuV 0.153 29.89 0.402 23.01 2.085 17.32 6.027 12.31 23.972 23.17 26.751 24.26	Read Freq Level Factor MHz dBuV dB 0.153 29.89 19.89 0.402 23.01 20.07 2.085 17.32 20.21 6.027 12.31 20.28 23.972 23.17 19.92 26.751 24.26 19.97	Read Freq Level Factor Level MHz dBuV dB dBuV 0.153 29.89 19.89 49.78 0.402 23.01 20.07 43.08 2.085 17.32 20.21 37.53 6.027 12.31 20.28 32.59 23.972 23.17 19.92 43.09 26.751 24.26 19.97 44.23	Read Limit Freq Level Factor Level Line MHz dBuV dB dBuV dBuV 0.153 29.89 19.89 49.78 65.83 0.402 23.01 20.07 43.08 57.80 2.085 17.32 20.21 37.53 56.00 6.027 12.31 20.28 32.59 60.00 23.972 23.17 19.92 43.09 60.00 26.751 24.26 19.97 44.23 60.00	Read Limit Over Freq Level Factor Level Line Limit MHz dBuV dB dBuV dBuV dB 0.153 29.89 19.89 49.78 65.83 -16.05 0.402 23.01 20.07 43.08 57.80 -14.72 2.085 17.32 20.21 37.53 56.00 -18.47 6.027 12.31 20.28 32.59 60.00 -27.41 23.972 23.17 19.92 43.09 60.00 -16.91 26.751 24.26 19.97 44.23 60.00 -15.77

Report No.: RKSA230215001-00B

AC 120V/60 Hz, Neutral

	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.152	27.54	19.89	47.43	65.88	-18.45	Peak
2	0.404	20.40	20.07	40.47	57.76	-17.29	Peak
3	2.127	12.44	20.21	32.65	56.00	-23.35	Peak
4	3.483	9.20	20.26	29.46	56.00	-26.54	Peak
5	6.495	8.07	20.26	28.33	60.00	-31.67	Peak
6	14.134	15.30	19.83	35.13	60.00	-24.87	Peak

FCC Part 15C

Page 17 of 32

FCC §15.209 & §15.205 - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.209; §15.205;

Test System Setup

9 kHz~30MHz

30 MHz-1GHz

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.205 limits.

EMI Test Receiver Setup

The system was investigated from 9 kHz to 1GHz.

During the radiated emission test, the EMI test receiver setup was set with the following configurations:

Frequency Range	RBW	VBW	Measurement
9 kHz – 150 kHz	200 Hz	1 kHz	PK /AV
150 kHz – 30 MHz	9 kHz	30 kHz	PK /AV
30 MHz – 1000 MHz	100 kHz	300 kHz	РК

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

If the measured peak level of the emissions that the measuring receiver reading level plus corrected factor is at least 10 dB below the QP emission limit, there's no need to record the measured QP level of the emissions in the report.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

 $\begin{array}{l} Corrected \ Amplitude \ (dB\mu V/m) = Meter \ Reading \ (dB\mu V) + Antenna \ Factor \ (dB/m) + Cable \ Loss \ (dB) - Amplifier \ Gain \ (dB) \end{array}$

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205 and 15.209.

Test Data

Environmental Conditions & Test Information

Frequency Range:	9 kHz - 30 MHz	30 MHz - 1 GHz	
Temperature:	16.8 °C	19.1 °C	
Relative Humidity:	41 %	43 %	
ATM Pressure:	102.5 kPa	102.2 kPa	
Test Date:	2024-01-18	2024-01-18	
Test Engineer:	Joe Zhang	Peter Wang	

9 kHz-30 MHz:

For Ground-parallel

Tester:Joe Zhang

Project No.RKSA230215001

Date: 18.JAN.2024 19:40:59

Frequency (MHz) Correct Amplitu (dBµV// @3m	Corrected Amplitude	Detector	Corrected	FCC Part 15.209			
	(dBµV/m) @3m	PK/QP/Ave.	Factor (dB/m)	Limit (dBµV/m) 300m	Limit (dBµV/m) @3m	Margin (dB)	
0.015486	72.78	РК	56.71	43.81	123.81	51.03	
0.02028	80.31	РК	46.73	41.46	121.46	41.15	
0.034662	78.53	РК	50.56	36.81	116.81	38.28	
0.116442	85.16	РК	33.65	26.28	106.28	21.12	

150kHz-30MHz (PK)

Project No.RKSA230215001 Tester:Joe Zhang Date: 18.JAN.2024 19:37:00

Frequency	Corrected Amplitude	Detector Corrected FCC Part 1			CC Part 15.209	
(MHz)	(dBµV/m) @3m	PK/QP/Ave.	(dB/m)	Limit (dBµV/m) 30m	Limit (dBµV/m) @3m	Margin (dB)
0.20970	58.09	РК	28.58	41.17	81.17	23.08
0.32910	64.58	РК	24.90	37.56	77.56	12.98
0.56790	55.42	РК	19.41	32.52	72.52	17.1
0.80670	49.44	РК	16.84	29.47	69.47	20.03

For Parallel

Project No.RKSA230215001 Tester:Joe Zhang Date: 18.JAN.2024 19:26:26

Frequency	Frequency (MHz) (dBµV/m) @3m Detector	Detector	Corrected	FCC Part 15.209			
(MHz)		PK/QP/Ave.	Factor (dB/m)	Limit (dBµV/m) 300m	Limit (dBµV/m) @3m	Margin (dB)	
0.015486	72.49	PK	50.72	43.81	123.81	51.32	
0.02028	79.71	PK	47.99	41.46	121.46	41.75	
0.03438	77.34	РК	43.73	36.88	116.88	39.54	
0.116442	84.44	PK	33.65	26.28	106.28	21.84	

150kHz-30MHz (PK)

Project No.RKSA230215001 Date: 18.JAN.2024 19:32:48 Tester:Joe Zhang

Frequency	Corrected Amplitude Detector Factor		F	CC Part 15.209		
(MHz)	(dBµV/m) @3m	PK/QP/Ave.	(dB/m)	Limit (dBµV/m) 30m	Limit (dBµV/m) @3m	Margin (dB)
0.15000	55.61	PK	31.74	44.08	84.08	28.47
0.26940	52.22	PK	26.67	39.00	79.00	26.78
0.44850	46.32	PK	21.68	34.57	74.57	28.25
0.86640	43.30	РК	16.36	28.85	68.85	25.55

For Perpendicular

9kHz-150kHz (PK)

Project No.RKSA230215001 Tester:Joe Zhang Date: 18.JAN.2024 19:44:58

Corrected FCC Part 15.209 Amplitude Corrected Frequency Detector Factor Limit Limit (MHz) PK/QP/Ave. $(dB\mu V/m)$ Margin (dB/m) $(dB\mu V/m)$ (dBµV/m) @3m (dB)300m @3m 0.015486 71.91 РК 50.72 123.81 51.90 43.81 47.99 0.02028 80.24 PK 41.46 121.46 41.22 0.034662 78.18 РК 43.40 36.81 116.81 38.63 90.55 PK 0.116442 33.65 26.28 106.28 15.73

150kHz-30MHz (PK)

Project No.RKSA230215001 Tester:Joe Zhang Date: 18.JAN.2024 19:04:28

Frequency	Corrected Amplitude	Detector	Corrected Factor (dB/m)	FCC Part 15.209			
(MHz)	(dBµV/m) @3m	PK/QP/Ave.		Limit (dBµV/m) 30m	Limit (dBµV/m) @3m	Margin (dB)	
0.20970	61.03	РК	28.58	41.17	81.17	20.14	
0.32910	70.70	РК	24.90	37.26	77.26	6.56	
0.56790	60.34	РК	19.41	32.52	72.52	12.18	
0.80670	54.90	РК	16.84	29.47	69.47	14.57	

30MHz-1GHz

Common Information

Project No:
EUT Model:
Test Mode:
Standard:
Test Equipment:
Temperature:
Humidity:
Barometric Pressure:
Test Engineer:
Test Date:

RKSA230215001 HPS04-2 Transmitting FCC Part 15.205 & FCC Part 15.209 ESCI、JB3、310N 19.1°C 43% 102.2kPa Joe Zhang 2024/1/18

Critical Freqs

Frequency (MHz)	Corrected Amplitude MaxPeak (dBµ V/m)	Limit (dBµ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.970000	31.08	40.00	8.92	100.0	V	175.0	-5.1
57.645000	28.70	40.00	11.30	100.0	V	73.0	-17.3
109.418750	29.00	43.50	14.50	100.0	V	251.0	-13.1
303.176250	32.49	46.00	13.51	100.0	Η	346.0	-11.0
359.315000	29.07	46.00	16.93	100.0	Η	18.0	-9.6
876.082500	35.46	46.00	10.54	200.0	Н	258.0	0.7

§15.215(c) - 20dB EMISSION BANDWIDTH TESTING

Requirement

Per 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

Test Data

Environmental Conditions & Test Information

Temperature:	16.8 °C
Relative Humidity:	41 %
ATM Pressure:	102.5 kPa
Test Date:	2024-01-25
Test Engineer:	Joe Zhang

Test Mode: Transmitting

Test Result: Compliant

Report No.: RKSA230215001-00B

Frequency	20 dB Bandwidth
(kHz)	(kHz)
116	0.38

20 dB Emission Bandwidth

Project No.RKSA230215001 Date: 25.JAN.2024 15:43:27 Tester:Joe Zhang

EUT PHOTOGRAPHS

Please refer to the attachment EXHIBIT A_EUT EXTERNAL PHOTOGRAPHS and EXHIBIT B_EUT INTERNAL PHOTOGRAPHS.

FCC Part 15C

TEST SETUP PHOTOGRAPHS

Please refer to the attachment EXHIBIT C_TEST SETUP PHOTOGRAPHS.

FCC Part 15C

Declarations

1. Bay Area Compliance Laboratories Corp. (Kunshan) is not responsible for authenticity of any test data provided by the applicant. Test data from the applicant that may affect test results are marked with an asterisk " \star ". The model number, product name, address, trademark, etc. from the applicant are not considered as test data.

2. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested.

3. Unless required by the rule provided by the applicant or product regulations, then decision rule in this report did not consider the uncertainty.

4. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor k=2 with the 95.45% confidence interval.

5. This report cannot be reproduced except in full, without prior written approval of Bay Area Compliance Laboratories Corp. (Kunshan).

6. This report is valid only with a valid digital signature. The digital signature may be available only under the adobe software above version 7.0.

******* END OF REPORT *******