

FCC TEST REPORT for Shenzhen Skylark Audio Industry Co., Ltd.

Levitating Speaker Model No.: F1, F18, F28, F68, F88, F98

Prepared for : Shenzhen Skylark Audio Industry Co., Ltd.

Address : 3rd Floor, Liyuan Building, No.177 Longcheng Avenue,

Longgang District, Shenzhen City, Guangdong Province, China

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road,

Nanshan District, Shenzhen, Guangdong, China

Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number : R011511565I

Date of Test : Nov. 11~ Dec. 29, 2015

Date of Report : Dec. 30, 2015

TABLE OF CONTENTS

Description

Page

Test Report

1. GENERAL INFORMATION	4
1.1. Description of Device (EUT)	4
1.2. Auxiliary Equipment Used during Test	5
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	
2. TEST PROCEDURE	6
3. Conducted Emission Test	
3.1. Block Diagram of Test Setup	
3.2. Power Line Conducted Emission Measurement Limits (15.207)	
3.3. Configuration of EUT on Measurement	
3.4. Operating Condition of EUT	
3.5. Test Procedure	
3.6. Test equipment	
3.7. Power Line Conducted Emission Measurement Results	8
4. RADIATION INTERFERENCE	
4.1. Requirements (15.249, 15.209):	13
4.2. Test Procedure	
4.3 Test Equipment	14
4.4. Test Results.	12
5. BANDEDGE	18
5.1. Requirements (15.249):	18
5.2. Test Procedure	
5.3. Test Configuration:	
5.4. Test Results	19
6. OCCUPIED BANDWIDTH	
6.1. Requirements :	
6.2. Test SET-UP	
6.3 Test Equipment	22
6.4. Test Results	
7. ANTENNA APPLICATION	26
7.1. Antenna requirement	
7.2. Result.	
8. PHOTOGRAPH	
8.1 Photo of Conducted Emission Test	
8.2 Photo of Radiation Emission Test.	

TEST REPORT

Applicant : Shenzhen Skylark Audio Industry Co., Ltd.Manufacturer : Shenzhen Skylark Audio Industry Co., Ltd.

EUT : Levitating Speaker

Model No. : F1, F18, F28, F68, F88, F98

Serial No. : N.A. Trade Mark : N.A.

Rating : DC 12V Via AC/DC Adapter

(Input: AC 100-240V, 50/60Hz, 1.2A

Output: DC 12V, 2500mA)

Measurement Procedure Used:

Date of Test:

FCC Part15 Subpart C 2015, Paragraph 15.207, 15.249 & 15.209

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without

Nov. 11~ Dec. 29, 2015

written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Prepared by :	keloo zhang
	(Tested Engineer / Kebo Zhang)
Reviewer :	Amy Ding
_	(Project Manager / Amy Ding)
Approved & Authorized Signer :	Ton Jaen
	(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Levitating Speaker

Model Number : F1, F18, F28, F68, F88, F98

(Note: All samples are the same except the model number and

colour, so we prepare "F1" for test only.)

Test Power Supply: AC 120V, 60Hz for adapter/

AC 240V, 60Hz for adapter/

Adapter : Model: MYX-1202500

Input: AC 100-240V, 50/60Hz, 1.2A

Output: DC 12V, 2500mA

Frequency : 2438MHz

No. of Channels : 1

Specification

Antenna

: PCB Antenna: 0 dBi

Applicant : Shenzhen Skylark Audio Industry Co., Ltd.

Address : 3rd Floor, Liyuan Building, No.177 Longcheng Avenue, Longgang

District, Shenzhen City, Guangdong Province, China

Manufacturer : Shenzhen Skylark Audio Industry Co., Ltd.

Address : 3rd Floor, Liyuan Building, No.177 Longcheng Avenue, Longgang

District, Shenzhen City, Guangdong Province, China

Factory : Shenzhen Skylark Audio Industry Co., Ltd.

Address : 3rd Floor, Liyuan Building, No.177 Longcheng Avenue, Longgang

District, Shenzhen City, Guangdong Province, China

Date of receipt : Nov. 11, 2015

Date of Test : Nov. 11~ Dec. 29, 2015

1.2. Auxiliary Equipment Used during Test

Levitating Ball : F1

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 10, 2013.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A-1, February 22, 2013.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.1 dB (Horizontal)

Ur = 4.3 dB (Vertical)

Conduction Uncertainty : Uc = 3.4dB

2. Test Procedure

GENERAL: This report shall NOT be reproduced except in full without the written approval of Shenzhen Anbotek Compliance Laboratory Limited. The EUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.10-2013 using a spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the EUT was 74.3oF with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

ANSI STANDARD C63.10-2013 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

3. Conducted Emission Test

3.1. Block Diagram of Test Setup

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits dB(µV)						
MHz	Quasi-peak Level	Average Level					
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*					
0.50 ~ 5.00	56	46					
5.00 ~ 30.00	60	50					

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (On) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

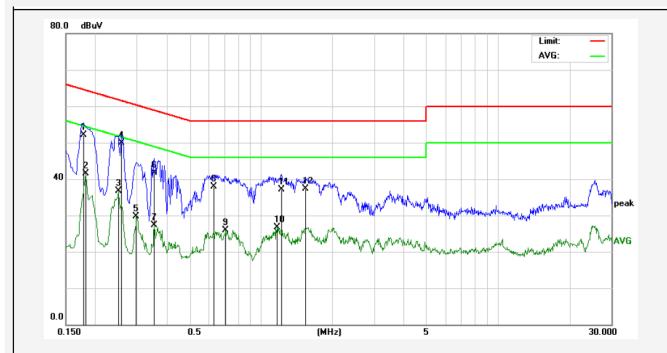
3.6. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line	Rohde & Schwarz	ENV216	100055	Apr. 17, 2015	1 Year
	V-network	Ronde & Senwarz	LIVV210	100033		1 1 Cai
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Apr. 17, 2015	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Apr. 17, 2015	1 Year

3.7. Power Line Conducted Emission Measurement Results **PASS**.

The frequency range from 150KHz to 30 MHz is investigated.

Please refer the following pages.



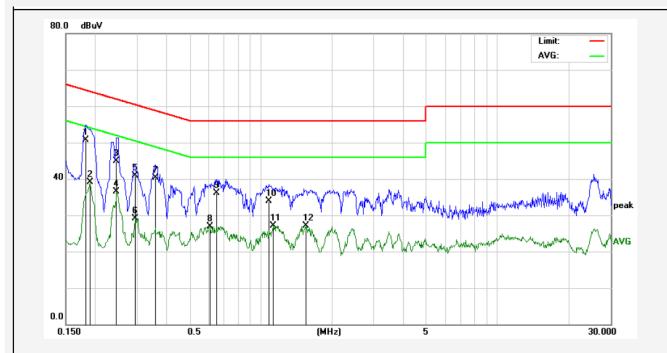
Test Site: 1# Shielded Room

Operating Condition: On

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBu√	Over Limit (dB)	Detector	Remark
1	0.1779	32.14	20.00	52.14	64.58	-12.44	QP	
2	0.1819	21.58	20.00	41.58	54.39	-12.81	AVG	
3	0.2500	16.75	20.00	36.75	51.75	-15.00	AVG	
4	0.2580	30.00	20.00	50.00	61.49	-11.49	QP	
5	0.2977	9.73	20.00	29.73	50.30	-20.57	AVG	
6	0.3537	21.74	20.00	41.74	58.87	-17.13	QP	
7	0.3537	7.28	20.00	27.28	48.87	-21.59	AVG	
8	0.6302	18.00	20.00	38.00	56.00	-18.00	QP	
9	0.7098	5.97	20.00	25.97	46.00	-20.03	AVG	
10	1.1698	6.73	20.00	26.73	46.00	-19.27	AVG	
11	1.2178	17.01	20.00	37.01	56.00	-18.99	QP	
12	1.5420	17.21	20.00	37.21	56.00	-18.79	QP	



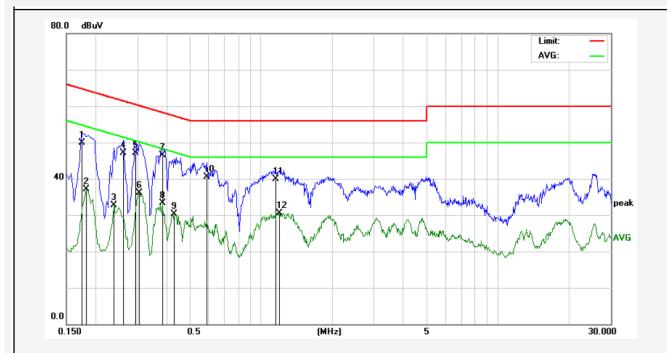
Test Site: 1# Shielded Room

Operating Condition: On

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBu∀	Over Limit (dB)	Detector	Remark
1	0.1819	30.69	20.00	50.69	64.39	-13.70	QP	
2	0.1900	19.17	20.00	39.17	54.03	-14.86	AVG	
3	0.2459	24.96	20.00	44.96	61.89	-16.93	QP	
4	0.2459	16.48	20.00	36.48	51.89	-15.41	AVG	
5	0.2938	20.96	20.00	40.96	60.41	-19.45	QP	
6	0.2938	9.18	20.00	29.18	50.41	-21.23	AVG	
7	0.3578	20.21	20.00	40.21	58.78	-18.57	QP	
8	0.6108	6.99	20.00	26.99	46.00	-19.01	AVG	
9	0.6540	16.14	20.00	36.14	56.00	-19.86	QP	
10	1.0820	14.00	20.00	34.00	56.00	-22.00	QP	
11	1.1298	7.13	20.00	27.13	46.00	-18.87	AVG	
12	1.5460	7.17	20.00	27.17	46.00	-18.83	AVG	



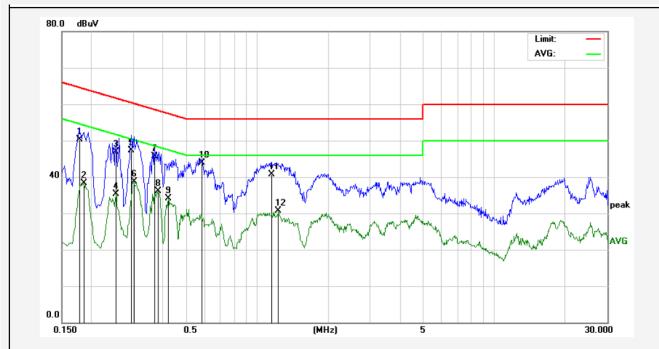
Test Site: 1# Shielded Room

Operating Condition: On

Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBu∀	Over Limit (dB)	Detector	Remark
1	0.1737	30.00	20.00	50.00	64.78	-14.78	QP	
2	0.1819	17.04	20.00	37.04	54.39	-17.35	AVG	
3	0.2379	12.69	20.00	32.69	52.17	-19.48	AVG	
4	0.2620	27.03	20.00	47.03	61.36	-14.33	QP	
5	0.2938	27.12	20.00	47.12	60.41	-13.29	QP	
6	0.3059	16.04	20.00	36.04	50.08	-14.04	AVG	
7	0.3820	26.54	20.00	46.54	58.23	-11.69	QP	
8	0.3820	13.30	20.00	33.30	48.23	-14.93	AVG	
9	0.4299	10.32	20.00	30.32	47.25	-16.93	AVG	
10	0.5898	20.58	20.00	40.58	56.00	-15.42	QP	
11	1.1578	20.00	20.00	40.00	56.00	-16.00	QP	
12	1.1898	10.59	20.00	30.59	46.00	-15.41	AVG	



Test Site: 1# Shielded Room

Operating Condition: On

Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
1	0.1779	30.21	20.00	50.21	64.58	-14.37	QP	
2	0.1859	18.32	20.00	38.32	54.21	-15.89	AVG	
3	0.2540	27.00	20.00	47.00	61.62	-14.62	QP	
4	0.2540	15.32	20.00	35.32	51.62	-16.30	AVG	
5	0.2938	27.21	20.00	47.21	60.41	-13.20	QP	
6	0.3019	18.74	20.00	38.74	50.19	-11.45	AVG	
7	0.3699	25.69	20.00	45.69	58.50	-12.81	QP	
8	0.3820	16.10	20.00	36.10	48.23	-12.13	AVG	
9	0.4218	14.03	20.00	34.03	47.41	-13.38	AVG	
10	0.5858	23.95	20.00	43.95	56.00	-12.05	QP	
11	1.1578	20.68	20.00	40.68	56.00	-15.32	QP	
12	1.2338	10.66	20.00	30.66	46.00	-15.34	AVG	

4. Radiation Interference

4.1. Requirements (15.249, 15.209):

FIELD STRENGTH	FIELD STRENGTH	S15.209	
of Fundamental:	of Harmonics	30 - 88 MHz	40 dBuV/m
@3M			
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
94 dBµV/m @3m	54 dBμV/m @3m	ABOVE 960 MHz	54dBuV/m

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation.

4.2. Test Procedure

For below 1GHz, the EUT is placed on a turn table which is 0.8 meter high above the ground. For above 1GHz, the EUT is placed on a turn table which is 1.5 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation. The test results are listed in Section 4.3.

4.3 Test Equipment

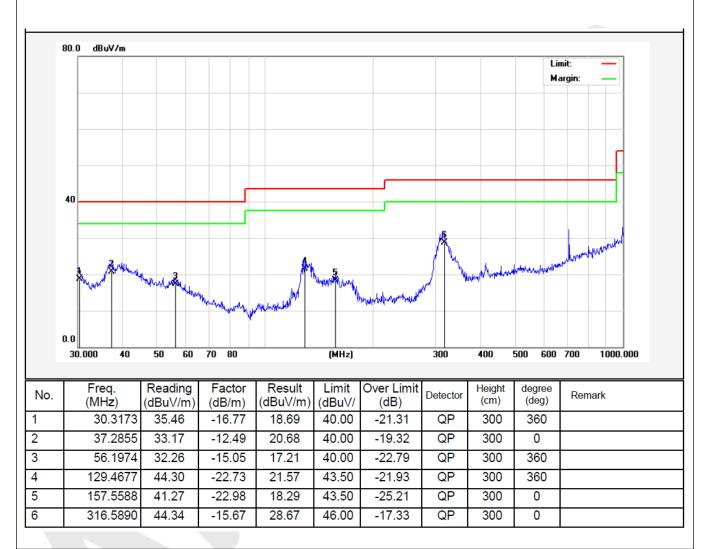
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 17, 2015	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 17, 2015	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2015	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2015	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2015	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2015	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006 W	15I00041SN0 46	Jun 30, 2015	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2015	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2015	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2015	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2015	1 Year
13	TEMP&HUMI PROGRAMMAB LE CHAMBER	Bell Group	BE-THK-1 50M8	SE-0137	Mar 16, 2015	1 Year

4.4. Test Results

PASS.

Please refer the following pages. Only the worst case (x orientation).

Below 1GHz:

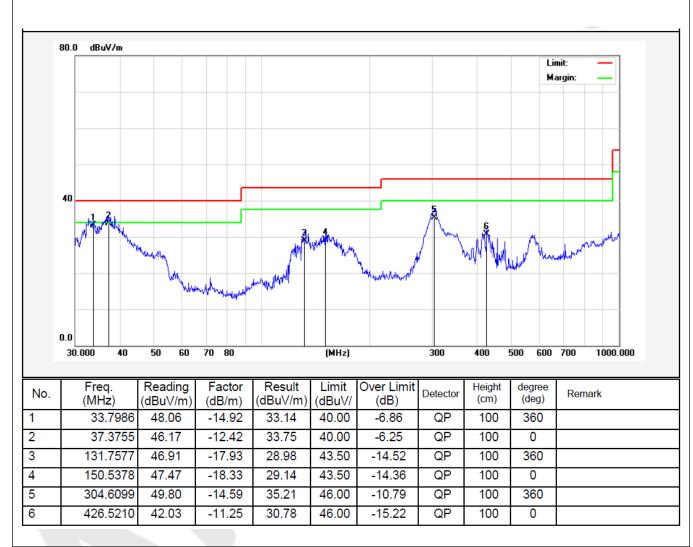

Job No.: 011511565I Polarziation: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/52%RH

Mode: On Distance: 3m

Note: 30-1000MHz


Job No.: 011511565I Polarziation: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/52%RH

Mode: On Distance: 3m

Note: 30-1000MHz

Above 1 GHz:

Horizonta CH 2438								
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	dB	
2438.000	2.19	31.22	34.60	87.15	85.96	114.0	-28.04	Peak
2438.000	2.19	31.22	34.60	80.42	79.23	94.0	-14.77	AV
4876.220	2.57	35.00	34.58	44.53	47.52	74.0	-26.48	Peak
4876.220	2.57	35.00	34.58	35.06	38.05	54.0	-15.95	AV
7314.590	3.00	36.17	35.14	44.84	48.87	74.0	-25.13	Peak
7314.590	3.00	36.17	35.14	36.95	40.98	54.0	-13.02	AV
9752.000) 	
12190.00							—	
14628.00)	
17066.00								

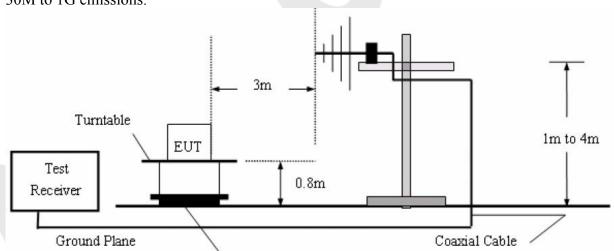
Vertical CH 2438	MHz							
Frequency MHz	Cable Loss dB	Ant Factor dB/m	Preamp Factor dB	Read Level dBµV	Level dBµV/m	Limit dBµV/m	Over Limit dB	Remark
2438.000	2.19	31.22	34.60	88.52	87.33	114.0	-26.67	Peak
2438.000	2.19	31.22	34.60	79.63	78.44	94.0	-15.56	AV
4876.340	2.57	35.00	34.58	43.52	46.51	74.0	-27.49	Peak
4876.340	2.57	35.00	34.58	34.06	37.05	54.0	-16.95	AV
7314.760	3.00	36.17	35.14	45.89	49.92	74.0	-24.08	Peak
7314.760	3.00	36.17	35.14	38.63	42.66	54.0	-11.34	AV
9752.000								
12190.00								
14628.00								
17066.00								

NOTE: "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The results of different modulations are the same.

5. Bandedge

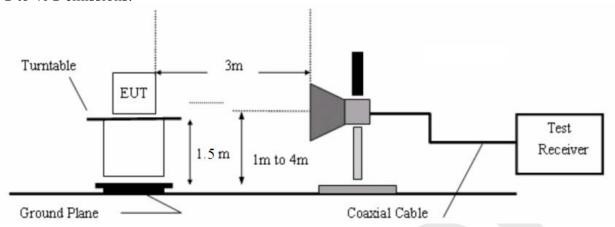
5.1. Requirements (15.249):

The field strength of any emissions appearing outside the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to the general limits of 15.249.


5.2. Test Procedure

The EUT is placed on a turn table which is 1.5 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test. The device is evaluated in xyz orientation.

Test Equipment Same as the equipment listed in 3.3.


5.3. Test Configuration:

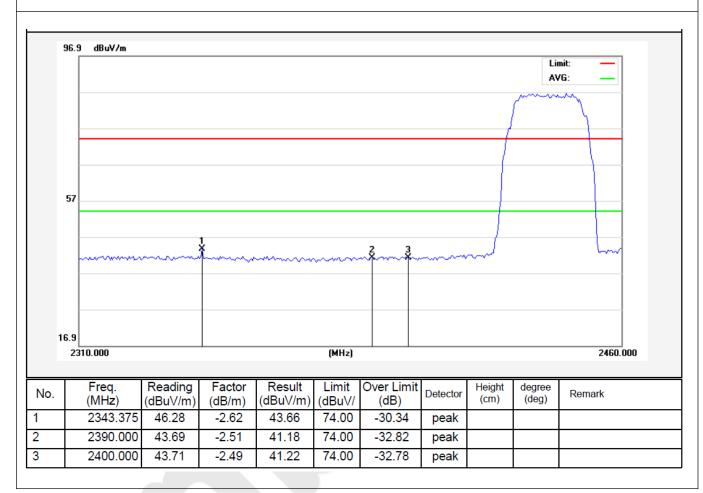
30M to 1G emissions:

1G to 40G emissions:

5.4. Test Results

Pass.

Please refer the following plot. Only the worst case (x orientation).

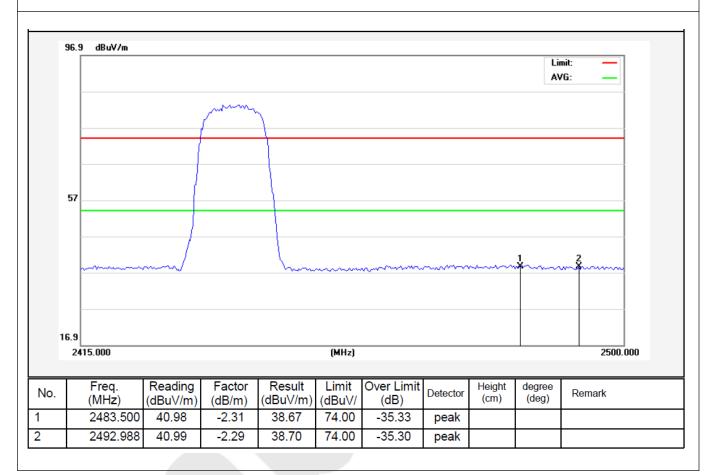


Job No.: 011511565I Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/52%RH

Note: PEAK Distance: 3m

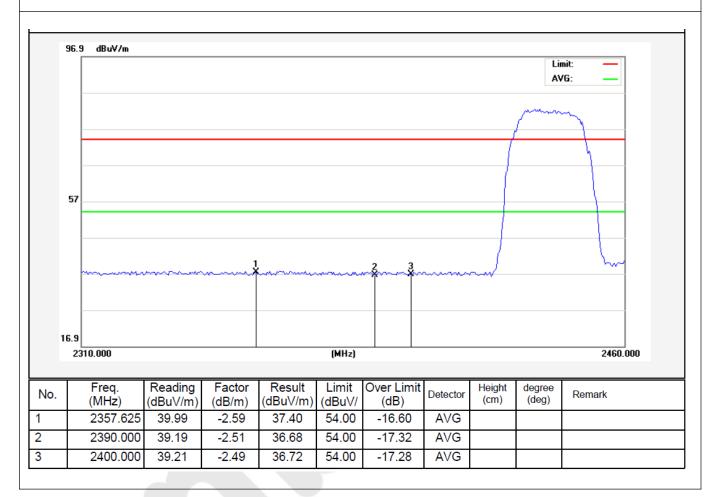


Job No.: 011511565I Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/52%RH

Note: PEAK Distance: 3m

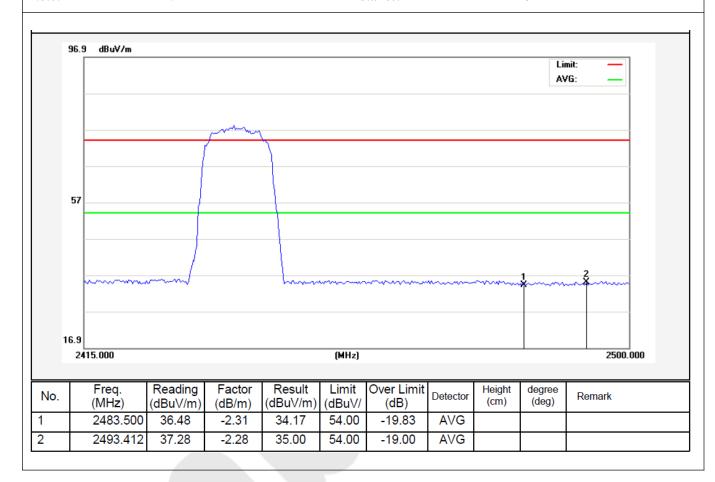


Job No.: 011511565I Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/52%RH

Note: AV Distance: 3m

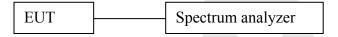


Job No.: 011511565I Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/52%RH

Note: AV Distance: 3m



6. Occupied Bandwidth

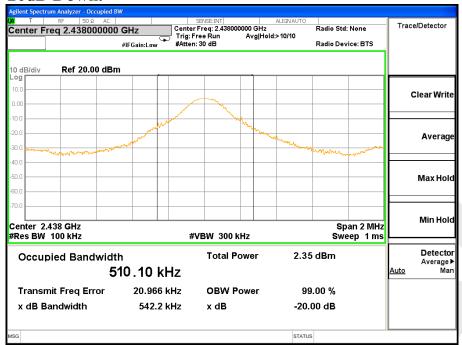
6.1. Requirements:

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

6.2. Test SET-UP

6.3 Test Equipment

Same as the equipment listed in 4.3.


6.4. Test Results

Pass.

Please refer the following plot.

20dB Down:

7. ANTENNA APPLICATION

7.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

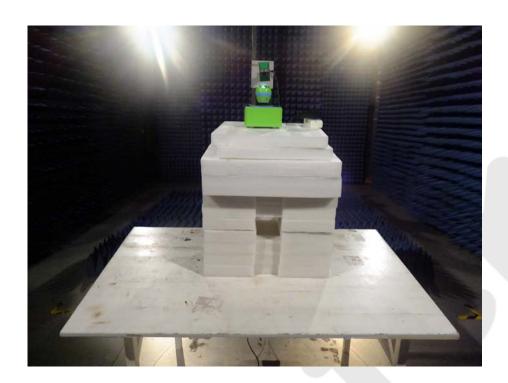
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

7.2. Result

The EUT's antenna used a PCB antenna which is permanently attached, The antenna's gain is 0dBi and

meets the requirement.

8. PHOTOGRAPH


8.1 Photo of Conducted Emission Test

8.2 Photo of Radiation Emission Test

APPENDIX I (External Photos)

Figure 1
The EUT-Overall View

Figure 2
The EUT-Top View

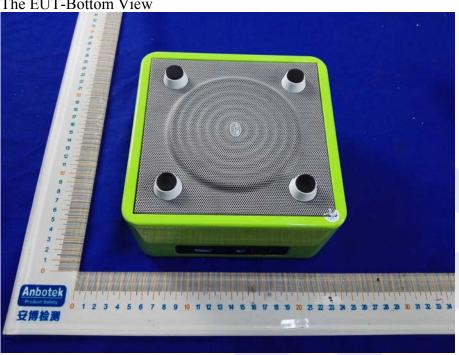


Figure 4

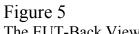
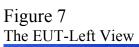



Figure 6
The EUT-Right View

APPENDIX II (Internal Photos)

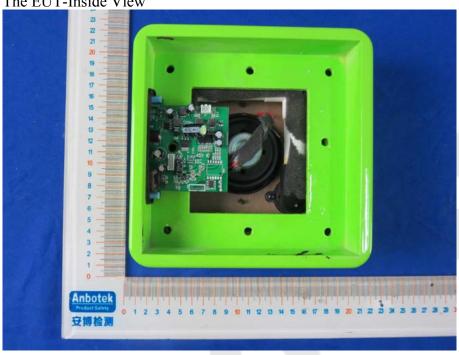
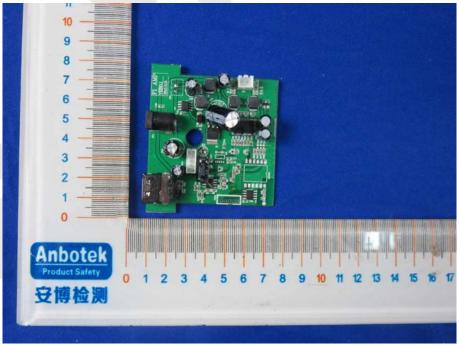



Figure 9
PCB of the EUT-Front View

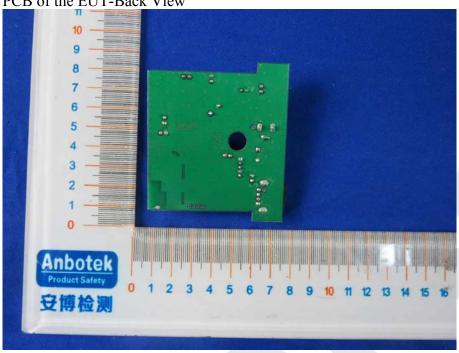


Figure 11
The EUT-Inside View

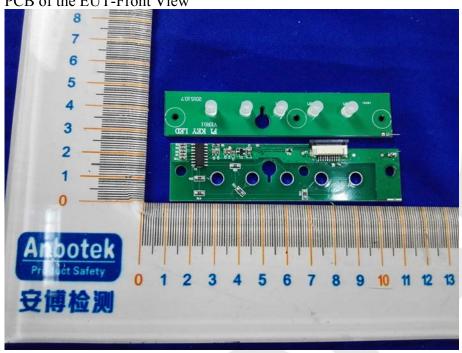


Figure 13 PCB of the EUT-Back View

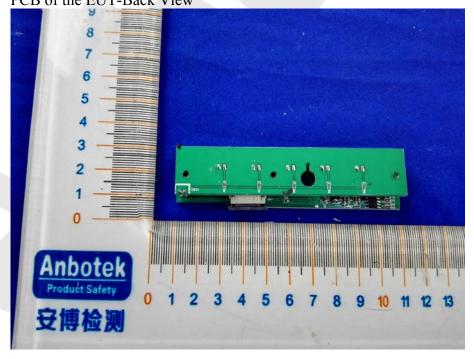


Figure 15 PCB of the EUT-Front View

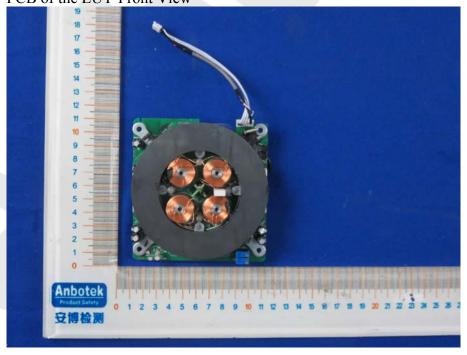


Figure 17 PCB of the EUT-Back View

