# FCC Test Report

# Report No.: AGC07628170101FE08

| FCC ID              | :           | 2AG4NWISE1230                        |
|---------------------|-------------|--------------------------------------|
| APPLICATION PURPOSE | :           | Original Equipment                   |
| PRODUCT DESIGNATION | :           | WiSe 1230 BLE Module                 |
| BRAND NAME          | :           | WiSilica                             |
| MODEL NAME          | :           | WiSe1230                             |
| CLIENT              | :           | WiSilica, Inc.                       |
| DATE OF ISSUE       | :           | Jun.12, 2017                         |
| STANDARD(S)         | :           | FCC Part 15 Subpart C Section 15.247 |
| REPORT VERSION      | :           | V1.0                                 |
| Attestation of (    | <u> 710</u> | bal Compliance (Shenzhen) Co., Ltd   |

# CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.



# **Report Revise Record**

| Report Version | Revise Time | Issued Date  | Valid Version | Notes           |
|----------------|-------------|--------------|---------------|-----------------|
| V1.0           | /           | Jun.12, 2017 | Valid         | Original Report |

# TABLE OF CONTENTS

| 1. VERIFICATION OF COMPLIANCE                       | 6                |
|-----------------------------------------------------|------------------|
| 2.2 RELATED SUBMITTAL(S)/GRANT(S)                   | 6                |
| 2.3TEST METHOD                                      | 6                |
| 2.4 TEST FACILITY                                   | 6                |
| 2.5 SPECIAL ACCESSORIES                             | 6                |
| 2.6 EQUIPMENT MODIFICATIONS                         | 6                |
| 2.7 MEASUREMENT UNCERTAINTY                         | 6                |
| <b>3. SYSTEM TEST CONFIGURATION</b>                 | . <b> 7</b><br>7 |
| 3.2 EQUIPMENT USED IN TESTED SYSTEM                 | 7                |
| 3.3. SUMMARY OF TEST RESULTS                        | 8                |
| <ul> <li>4. DESCRIPTION OF TEST MODES</li></ul>     | 10<br>10<br>11   |
| 7.2. TEST RESULT                                    |                  |
| 8. RADIATED EMISSION                                |                  |
| 8.1 LIMITS                                          |                  |
| 8.2 MEASUREMENT PROCEDURE                           |                  |
| 8.3 TEST SETUP                                      |                  |
| 8.4 TEST RESULT (WORST MODULATION: GFSK)            |                  |
| 9. BAND EDGE EMISSION<br>9.1. MEASUREMENT PROCEDURE |                  |
| 9.2. TEST SET-UP                                    | 27               |
| 9.3. TEST RESULT                                    | 28               |
| 10. 10.1. TEST PROCEDURE                            | -                |
| 10.2. SUMMARY OF TEST RESULTS/PLOTS                 | 32               |
| 11. CONDUCTED OUTPUT POWER                          |                  |
| 11.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)  | 34               |
| 11.3. LIMITS AND MEASUREMENT RESULT                 | 35               |
| 12. CONDUCTED SPURIOUS EMISSION                     | 37               |

#### Report No.: AGC07628170101FE08 Page 4 of 51

| 12.1. MEASUREMENT PROCEDURE                                               |  |
|---------------------------------------------------------------------------|--|
| 12.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)                        |  |
| 12.3. LIMITS AND MEASUREMENT RESULT                                       |  |
| 13. CONDUCTED OUTPUT POWER SPECTRAL DENSITY<br>13.1 MEASUREMENT PROCEDURE |  |
| 13.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)                         |  |
| 13.3 LIMITS AND MEASUREMENT RESULT                                        |  |
| 14. LINE CONDUCTED EMISSION TEST                                          |  |
| 14.2 TEST SETUP                                                           |  |
| 14.3 PRELIMINARY PROCEDURE                                                |  |
| 14.4 FINAL TEST PROCEDURE                                                 |  |
| 14.5 TEST RESULT OF POWER LINE                                            |  |
| APPENDIX A: PHOTOGRAPHS OF TEST SETUP<br>APPENDIX B: PHOTOGRAPHS OF EUT   |  |

| Applicant                | 'iSilica, Inc.                                                                                      |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Address                  | 23282 Mill Creek Dr #340, Laguna Hills, CA 92653, USA                                               |  |  |  |
| Manufacturer             | HISWILL                                                                                             |  |  |  |
| Address                  | Rm.1806,18th Floor,Shekou Building, Shekou Xin Street, Shekou,<br>NanShan District, Shenzhen, China |  |  |  |
| Product Designation      | WiSe 1230 BLE Module                                                                                |  |  |  |
| Brand Name               | WiSilica                                                                                            |  |  |  |
| Test Model               | WiSe1230                                                                                            |  |  |  |
| Date of test             | Jan.13, 2017 to Jan.17, 2017                                                                        |  |  |  |
| Deviation                | None                                                                                                |  |  |  |
| Condition of Test Sample | Normal                                                                                              |  |  |  |
| Report Template          | AGCRT-US-BLE/RF (2013-03-01)                                                                        |  |  |  |
|                          |                                                                                                     |  |  |  |

# **1. VERIFICATION OF COMPLIANCE**

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.247.

Service Loang Tested By Strive Liang(Liang Faqiang) Jan.17, 2017 Forrest Lei(Lei Yonggang) Solya 2hong **Reviewed By** Approved By Solger Zhang(Zhang Hongyi) Jun.12, 2017 Authorized Officer

#### **2.GENERAL INFORMATION** 2.1PRODUCT DESCRIPTION

The EUT is designed as a "WiSe 1230 BLE Module". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

| Operation Frequency                     | 2.402 GHz to 2.480GHz                                |  |  |
|-----------------------------------------|------------------------------------------------------|--|--|
| Bluetooth Version                       | V4.1                                                 |  |  |
| Modulation                              | GFSK for BLE                                         |  |  |
| Number of channels                      | 40 Channel(37 Hopping Channel,3 advertising Channel) |  |  |
| Antenna Designation                     | external antenna with U-FL connector                 |  |  |
| Antenna Gain                            | 1dBi                                                 |  |  |
| Hardware Version                        | 1.0                                                  |  |  |
| Software Version                        | V2.1.41                                              |  |  |
| Power Supply                            | DC 3.3V                                              |  |  |
| Note: 1. The EUT didn't support BR/EDR. |                                                      |  |  |

2. The Module will only use external antenna with U-FL connector, without PCB Antenna.

#### 2.2 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for FCC ID: 2AG4NWISE1230, filing to comply with Section 15.247of the FCC Part 15, Subpart C Rules.

#### 2.3TEST METHOD

All measurements contained in this report were conducted with ANSI C63.10-2013. 2.4 TEST FACILITY

All measurement facilities used to collect the measurement data are located at Dongguan Precise Testing Service Co., Ltd.

Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China,

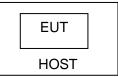
#### **2.5 SPECIAL ACCESSORIES**

Refer to section 3.2.

#### 2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

#### 2.7 MEASUREMENT UNCERTAINTY


Radiation Emission:+/-3.2

Conduction Emission:+/-2.5

# **3. SYSTEM TEST CONFIGURATION**

# 3.1 CONFIGURATION OF TESTED SYSTEM

Configure 1: (Normal hopping)



## Configure 2: (Control continuous TX)

| EUT  | Control box | PC |
|------|-------------|----|
| HOST |             |    |

#### **3.2 EQUIPMENT USED IN TESTED SYSTEM**

| Item | Equipment             | Mfr/Brand | Model/Type No. | Remark |  |
|------|-----------------------|-----------|----------------|--------|--|
| 1    | WiSe 1230 BLE Module  | WiSilica  | WiSe1230       | EUT    |  |
| 2    | PC                    | Sony      | E1412AYCW      | A.E    |  |
| 3    | Control box           | DOFLY     | LY-UXB-TTL     | A.E    |  |
| 4    | PC Adapter            | Sony      | AC-L100        | A.E    |  |
| 5    | Temporary Antenna T10 |           | N/A            | A.E    |  |
| 6    | Host                  | WiSilica  | A12            | A.E    |  |

#### **3.3. SUMMARY OF TEST RESULTS**

| FCC RULES             | DESCRIPTION OF TEST              | RESULT    |
|-----------------------|----------------------------------|-----------|
| §15.203               | Antenna Requirement              | Compliant |
| §15.209<br>§15.247(d) | Radiated Emission                | Compliant |
| §15.247(d)            | Band Edges                       | Compliant |
| §15.247(a) (2)        | 6 dB Bandwidth                   | Compliant |
| §15.247(b)            | Conducted Output Power           | Compliant |
| §15.247(d)            | Conducted Spurious Emission      | Compliant |
| §15.247(e)            | Conducted Power Spectral Density | Compliant |
| §15.207               | Line Conduction Emission         | N/A       |

Note: N/A means it's not applicable to this item.

# 4. DESCRIPTION OF TEST MODES

The EUT has been operated in one modulation: GFSK.

| NO.      | TEST MODE DESCRIPTION |  |  |  |  |
|----------|-----------------------|--|--|--|--|
| 1        | Low channel GFSK      |  |  |  |  |
| 2        | Middle channel GFSK   |  |  |  |  |
| 3        | High channel GFSK     |  |  |  |  |
| 4        | BT Link               |  |  |  |  |
| <u> </u> |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |
|          |                       |  |  |  |  |

# 5. TEST FACILITY

| Site                                                                                                                                                | Dongguan Precise Testing Service Co., Ltd.                                                            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| Location                                                                                                                                            | Building D,Baoding Technology Park,Guangming Road2,Dongcheng District,<br>Dongguan, Guangdong, China, |  |  |
| FCC Registration No. 371540                                                                                                                         |                                                                                                       |  |  |
| Description         The test site is constructed and calibrated to meet the FCC requirements           documents ANSI C63.4:2014         C63.4:2014 |                                                                                                       |  |  |

# 6. TEST EQUIPMENT LIST

| TEST EQUIPMENT LIST                    |                        |              |                  |                     |                    |  |  |
|----------------------------------------|------------------------|--------------|------------------|---------------------|--------------------|--|--|
| Name of Equipment                      | Manufacturer           | Model Number | Serial<br>Number | Last<br>Calibration | Due<br>Calibration |  |  |
| EMI Test Receiver                      | ROHDE &<br>SCHWARZBECK | ESCI         | 101417           | July 4, 2016        | July 3, 2017       |  |  |
| Trilog Broadband<br>Antenna (25M-1GHz) | SCHWARZBECK            | VULB9160     | 9160-3355        | July 4, 2016        | July 3, 2017       |  |  |
| Signal Amplifier                       | SCHWARZBECK            | BBV 9475     | 9745-0013        | July 4, 2016        | July 3, 2017       |  |  |
| RF Cable                               | SCHWARZBECK            | AK9515E      | 96221            | July 4, 2016        | July 3, 2017       |  |  |
| 3m Anechoic Chamber                    | CHENGYU                | 966          | PTS-001          | June 6, 2016        | June 5, 2017       |  |  |
| MULTI-DEVICE<br>Positioning Controller | MAX-FULL               | MF-7802      | MF780208339      | N/A                 | N/A                |  |  |
| Active loop antenna<br>(9K-30MHz)      | SCHWARZBECK            | FMZB1519     | 1519-038         | June 6, 2016        | June 5, 2017       |  |  |
| Spectrum analyzer                      | AGILENT                | E4407B       | MY46185649       | June 6, 2016        | June 5, 2017       |  |  |
| Horn Antenna<br>(1G-18GHz)             | SCHWARZBECK            | BBHA9120D    | 9120D-1246       | July 11, 2016       | July 10, 2017      |  |  |
| Spectrum Analyzer                      | AGILENT                | E4411B       | MY4511453        | July 4, 2016        | July 3, 2017       |  |  |
| Signal Amplifier                       | SCHWARZBECK            | BBV 9718     | 9718-269         | July 4, 2016        | July 3, 2017       |  |  |
| RF Cable                               | SCHWARZBECK            | AK9515H      | 96220            | July 4, 2016        | July 3, 2017       |  |  |
| Horn Ant (18G-40GHz)                   | SCHWARZBECK            | BBHA 9170    | 9170-181         | June 6, 2016        | June 5, 2017       |  |  |
| Artificial Mains Network               | NARDA                  | L2-16B       | 000WX31025       | July 8, 2016        | July 7, 2017       |  |  |
| Artificial Mains Network<br>(AUX)      | NARDA                  | L2-16B       | 000WX31026       | July 8, 2016        | July 7, 2017       |  |  |
| RF Cable                               | SCHWARZBECK            | AK9515E      | 96222            | July 4, 2016        | July 3, 2017       |  |  |
| Shielded Room                          | CHENGYU                | 843          | PTS-002          | June 6, 2016        | June 5, 2017       |  |  |
| Conduction Cable                       | MXT                    | SE1          | S003             | June 6, 2016        | June 5, 2017       |  |  |

# 7. ANTENNA REQUIREMENT

#### 7.1. STANDARD APPLICABLE

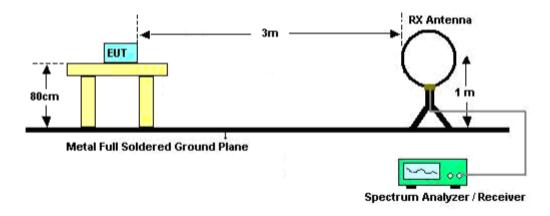
According to FCC 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

#### 7.2. TEST RESULT

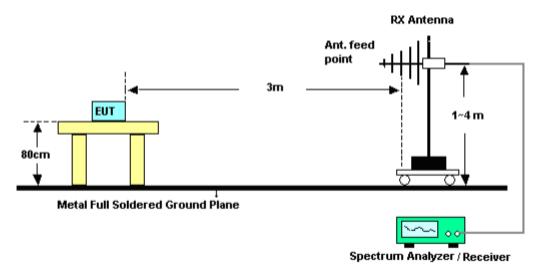
This product has a permanent antenna, fulfill the requirement of this section.

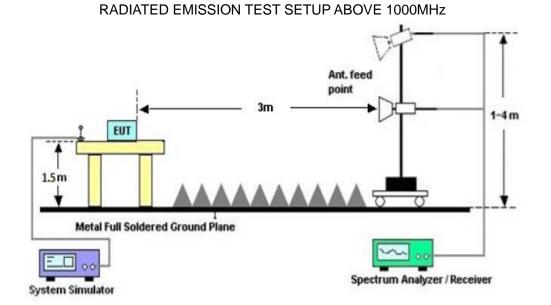
#### 8. RADIATED EMISSION 8.1 LIMITS

| Frequency               | Distance                        | Field Strer                                       | ngths Limit |  |  |
|-------------------------|---------------------------------|---------------------------------------------------|-------------|--|--|
| (MHz)                   | Meters                          | μ V/m                                             | dB(µV)/m    |  |  |
| 0.009 ~ 0.490           | 300                             | 2400/F(kHz)                                       |             |  |  |
| 0.490 ~ 1.705           | 30                              | 24000/F(kHz)                                      |             |  |  |
| 1.705 ~ 30              | 30                              | 30                                                |             |  |  |
| 30 ~ 88                 | 3                               | 100                                               | 40.0        |  |  |
| 88 ~ 216                | 3                               | 150                                               | 43.5        |  |  |
| 216 ~ 960               | 3                               | 200                                               | 46.0        |  |  |
| 960 ~ 1000              | 3                               | 500                                               | 54.0        |  |  |
| Above 1000              | 3                               | Other:74.0 dB(µV)/m (Peak) 54.0 dB(µV)/m (Average |             |  |  |
| Remark: (1) Emission le | evel dBµ V = 20 log Emissio     | n level µ V/m                                     |             |  |  |
| (2) The smalle          | r limit shall apply at the cros | s point between two frequen                       | cy bands.   |  |  |

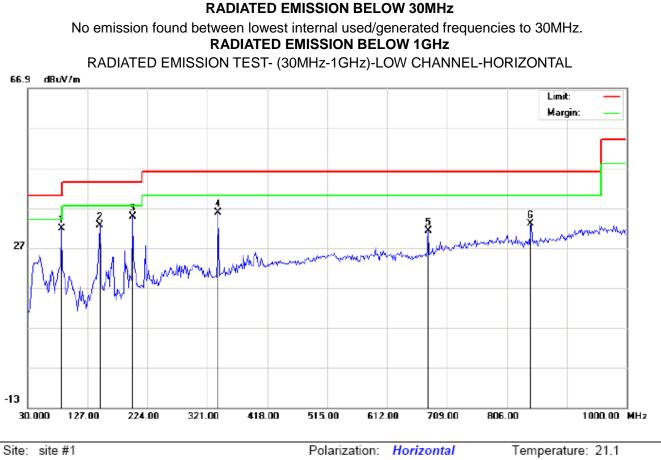

(3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

### 8.2 MEASUREMENT PROCEDURE


- 1. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- 2. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- 3. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak&AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)


#### 8.3 TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 30MHz



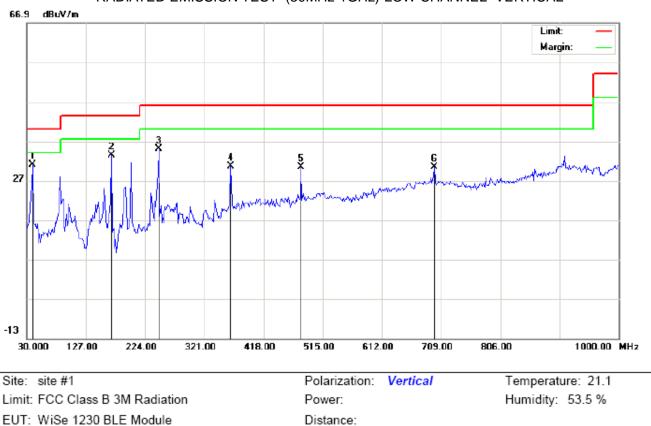

#### RADIATED EMISSION TEST SETUP 30MHz-1000MHz





#### 8.4 TEST RESULT (Worst Modulation: GFSK)




Limit: FCC Class B 3M Radiation EUT: WiSe 1230 BLE Module M/N: WiSe1230 Mode: Low Channel TX Note:

Power:

Humidity: 53.5 %

| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | -  | MHz      | dBu∀    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 84.9666  | 31.31   | 0.50   | 31.81       | 40.00  | -8.19  | peak     |                   |                 |         |
| 2   |    | 146.4000 | 19.05   | 13.64  | 32.69       | 43.50  | -10.81 | peak     |                   |                 |         |
| 3   |    | 199.7500 | 22.76   | 11.99  | 34.75       | 43.50  | -8.75  | peak     |                   |                 |         |
| 4   |    | 338.7832 | 17.73   | 17.99  | 35.72       | 46.00  | -10.28 | peak     |                   |                 |         |
| 5   |    | 678.2833 | 6.66    | 24.61  | 31.27       | 46.00  | -14.73 | peak     |                   |                 |         |
| 6   |    | 844.7999 | 5.70    | 27.31  | 33.01       | 46.00  | -12.99 | peak     |                   |                 |         |

Distance:



RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL

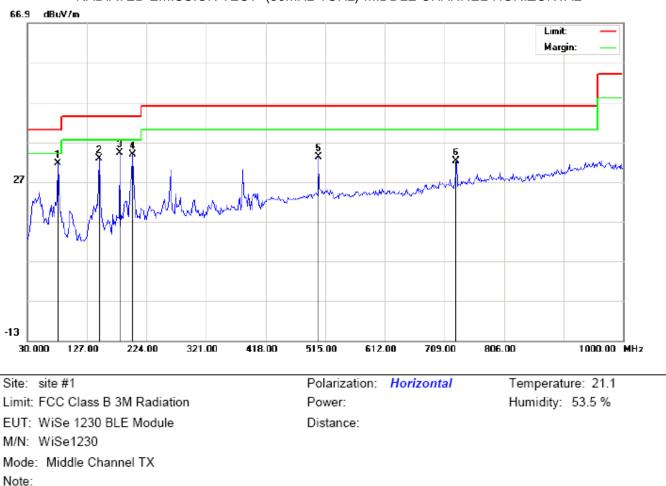
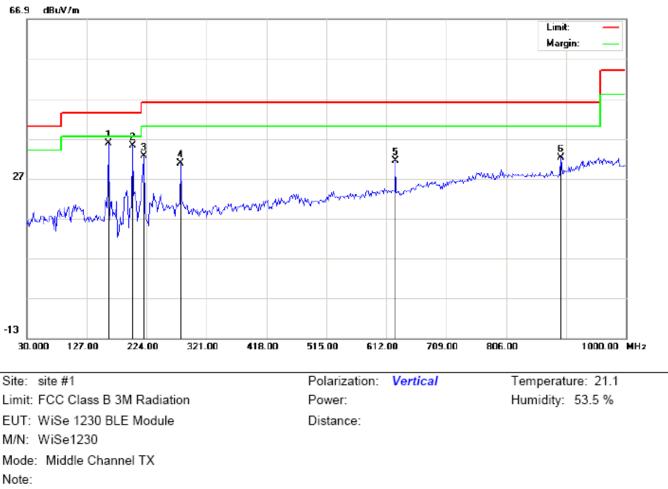

EUT: WiSe 1230 BLE Module M/N: WiSe1230 Mode: Low Channel TX Note:

Table Antenna Over Measurement Limit Freq. Reading Factor Mk Height Degree No. Detector Comment MHz dBu∨ dB/m dBuV/m dBuV/m dB cm degree 1 39.7000 22.45 8.51 30.96 40.00 -9.04 peak 2 169.0331 18.59 14.76 -10.15 33.35 43.50 peak 3 246.6332 21.35 13.57 34.92 46.00 -11.08 peak 4 364.6499 11.86 18.84 30.70 46.00 -15.30 peak 5 479.4332 9.51 20.91 30.42 46.00 -15.58 peak 6 697.6833 5.31 25.13 30.44 46.00 -15.56 peak

#### **RESULT: PASS**


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

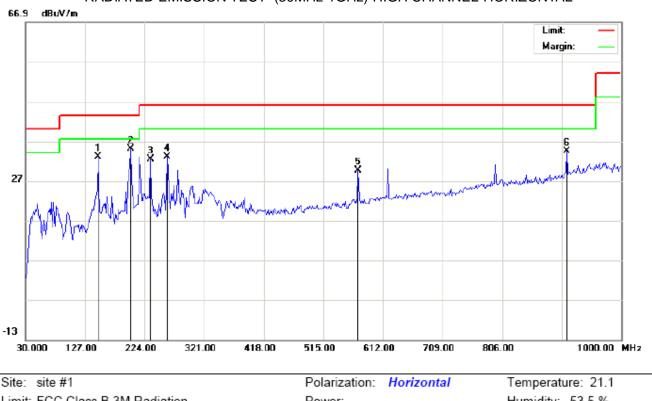
2. The "Factor" value can be calculated automatically by software of measurement system.



RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL-HORIZONTAL

| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | -  | MHz      | dBu∨    | dB/m   | dBu∨/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 80.1166  | 31.03   | 0.50   | 31.53       | 40.00  | -8.47  | peak     |                   |                 |         |
| 2   |    | 146.4000 | 19.17   | 13.64  | 32.81       | 43.50  | -10.69 | peak     |                   |                 |         |
| 3   |    | 180.3499 | 23.18   | 11.09  | 34.27       | 43.50  | -9.23  | peak     |                   |                 |         |
| 4   |    | 201.3667 | 21.97   | 11.86  | 33.83       | 43.50  | -9.67  | peak     |                   |                 |         |
| 5   |    | 503.6832 | 11.95   | 21.23  | 33.18       | 46.00  | -12.82 | peak     |                   |                 |         |
| 6   |    | 728.3999 | 6.23    | 26.01  | 32.24       | 46.00  | -13.76 | peak     |                   |                 |         |




RADIATED EMISSION TEST- (30MHz-1GHz)- MIDDLE CHANNEL -VERTICAL

| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | •  | MHz      | dBu∀    | dB/m   | dBu∀/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 162.5666 | 20.54   | 15.17  | 35.71       | 43.50  | -7.79  | peak     |                   |                 |         |
| 2   |    | 201.3667 | 26.04   | 9.13   | 35.17       | 43.50  | -8.33  | peak     |                   |                 |         |
| 3   |    | 219.1500 | 21.80   | 10.88  | 32.68       | 46.00  | -13.32 | peak     |                   |                 |         |
| 4   |    | 278.9667 | 16.04   | 14.77  | 30.81       | 46.00  | -15.19 | peak     |                   |                 |         |
| 5   |    | 626.5499 | 8.07    | 23.32  | 31.39       | 46.00  | -14.61 | peak     |                   |                 |         |
| 6   |    | 894.9166 | 3.71    | 28.48  | 32.19       | 46.00  | -13.81 | peak     |                   |                 |         |

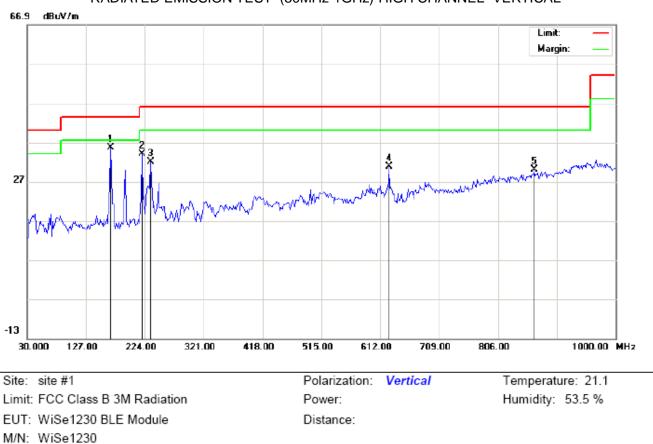
#### **RESULT: PASS**

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.



RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL-HORIZONTAL


Limit: FCC Class B 3M Radiation EUT: WiSe1230 BLE Module M/N: WiSe1230 Mode: High Channel TX Note:

Power:

Humidity: 53.5 %

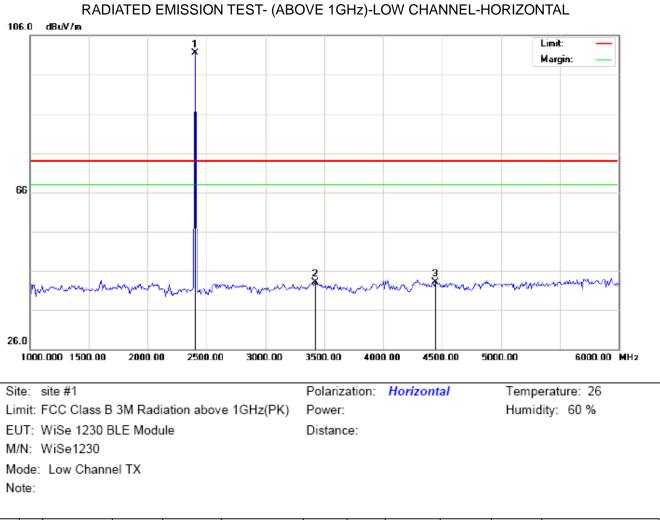
Distance:

Antenna Table Factor Measurement Limit Over Freq. Reading Mk Height Degree No. Detector Comment MHz dBu∨ dB/m dBuV/m dBuV/m dB cm degree 148.0166 19.78 13.25 33.03 43.50 -10.47 1 peak 23.09 43.50 2 201.3667 11.86 34.95 -8.55 peak 3 233.6999 23.79 8.56 32.35 46.00 -13.65 peak 4 261.1831 24.30 8.80 33.10 46.00 -12.90 peak 5 571.5833 6.68 23.02 29.70 46.00 -16.30 peak 6 5.42 28.92 34.34 46.00 -11.66 911.0833 peak



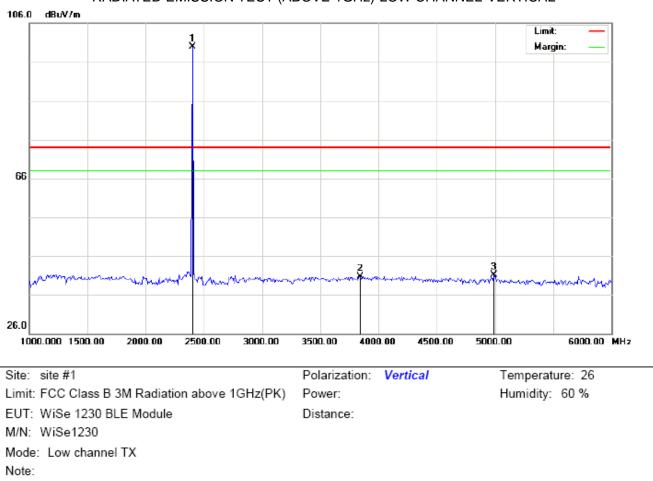
RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL -VERTICAL

| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | •  | MHz      | dBu∨    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 167.4166 | 20.67   | 14.86  | 35.53       | 43.50  | -7.97  | peak     |                   |                 |         |
| 2   |    | 219.1500 | 23.19   | 10.88  | 34.07       | 46.00  | -11.93 | peak     |                   |                 |         |
| 3   |    | 233.6999 | 19.65   | 12.30  | 31.95       | 46.00  | -14.05 | peak     |                   |                 |         |
| 4   |    | 626.5499 | 7.53    | 23.32  | 30.85       | 46.00  | -15.15 | peak     |                   |                 |         |
| 5   |    | 865.8166 | 2.30    | 27.72  | 30.02       | 46.00  | -15.98 | peak     |                   |                 |         |


#### **RESULT: PASS**

Mode: High Channel TX

Note:


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

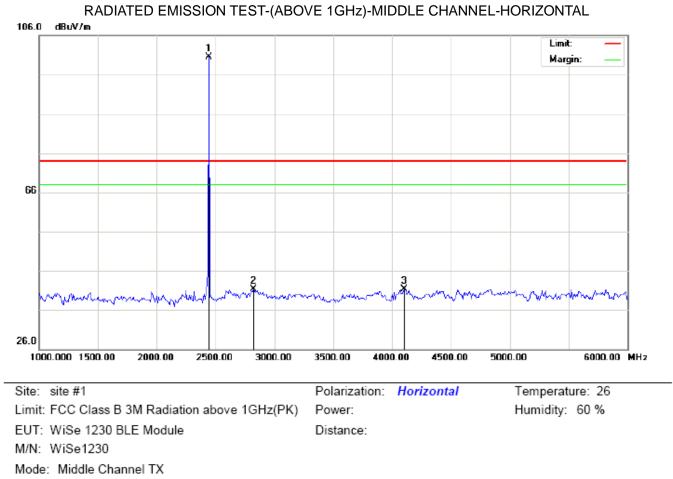
2. The "Factor" value can be calculated automatically by software of measurement system.



#### RADIATED EMISSION ABOVE 1GHz

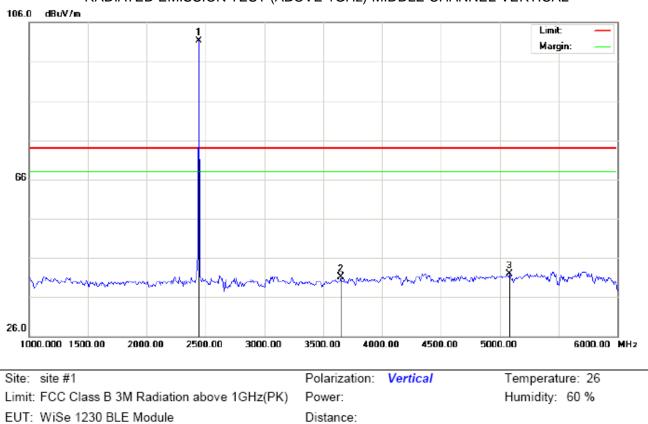
Antenna Table Freq. Reading Factor Measurement Limit Over Mk Height Degree No. Detector Comment MHz dBu∨ dB/m dBuV/m dBuV/m dB degree cm \* 2402.000 91.11 10.32 101.43 74.00 1 27.43 peak 2 3425.000 31.02 12.04 43.06 74.00 -30.94 peak 35.25 7.86 43.11 74.00 -30.89 3 4441.667 peak




#### RADIATED EMISSION TEST-(ABOVE 1GHz)-LOW CHANNEL-VERTICAL

| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | -  | MHz      | dBu∀    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 2402.000 | 89.67   | 10.32  | 99.99       | 74.00  | 25.99  | peak     |                   |                 |         |
| 2   |    | 3841.667 | 26.48   | 14.21  | 40.69       | 74.00  | -33.31 | peak     |                   |                 |         |
| 3   |    | 4991.667 | 32.88   | 8.18   | 41.06       | 74.00  | -32.94 | peak     |                   |                 |         |

#### **RESULT: PASS**


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.



Note:

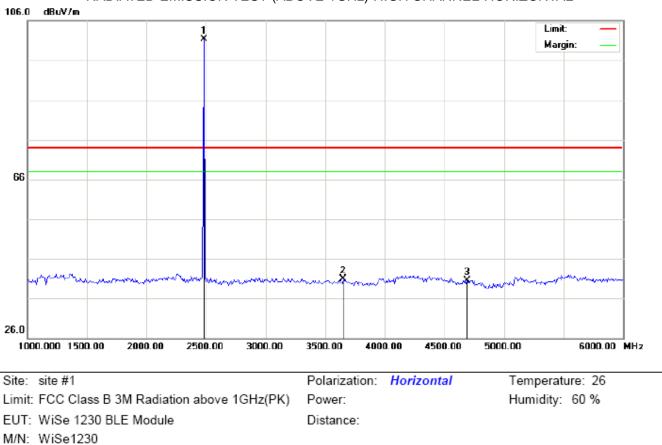
| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | •  | MHz      | dBu∨    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 2440.000 | 90.22   | 10.36  | 100.58      | 74.00  | 26.58  | peak     |                   |                 |         |
| 2   |    | 2825.000 | 30.07   | 11.22  | 41.29       | 74.00  | -32.71 | peak     |                   |                 |         |
| 3   |    | 4100.000 | 27.84   | 13.53  | 41.37       | 74.00  | -32.63 | peak     |                   |                 |         |



RADIATED EMISSION TEST-(ABOVE 1GHz)-MIDDLE CHANNEL-VERTICAL

M/N: WiSe1230

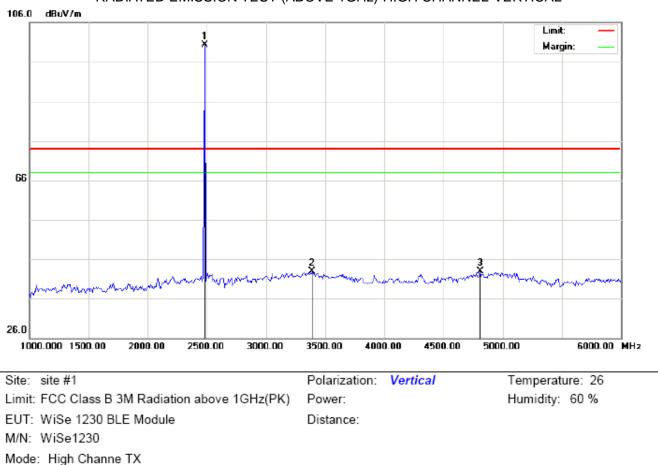
M/N: WISe1230


Mode: Middle Channel TX Note:

| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | •  | MHz      | dBu∀    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 2440.000 | 90.88   | 10.36  | 101.24      | 74.00  | 27.24  | peak     |                   |                 |         |
| 2   |    | 3650.000 | 28.06   | 13.03  | 41.09       | 74.00  | -32.91 | peak     |                   |                 |         |
| 3   |    | 5083.333 | 35.39   | 6.53   | 41.92       | 74.00  | -32.08 | peak     |                   |                 |         |

# **RESULT: PASS**

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.


2. The "Factor" value can be calculated automatically by software of measurement system.



RADIATED EMISSION TEST-(ABOVE 1GHz)-HIGH CHANNEL-HORIZONTAL

Mode: High channel TX Note:

| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | -  | MHz      | dBu∨    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 2480.000 | 90.93   | 10.41  | 101.34      | 74.00  | 27.34  | peak     |                   |                 |         |
| 2   |    | 3650.000 | 27.78   | 13.03  | 40.81       | 74.00  | -33.19 | peak     |                   |                 |         |
| 3   |    | 4691.667 | 33.13   | 7.39   | 40.52       | 74.00  | -33.48 | peak     |                   |                 |         |



RADIATED EMISSION TEST-(ABOVE 1GHz)-HIGH CHANNEL-VERTICAL

Note:

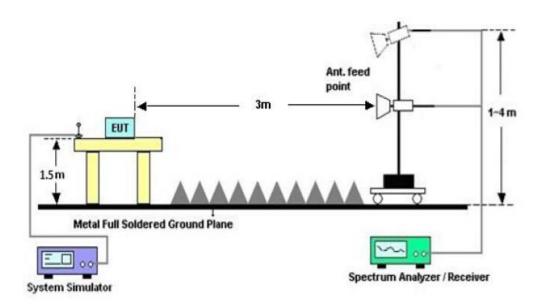
| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | -  | MHz      | dBu∀    | dB/m   | dBu\//m     | dBuV/m | dB     |          | cm                | degree          |         |
| 1   | *  | 2480.000 | 89.97   | 10.41  | 100.38      | 74.00  | 26.38  | peak     |                   |                 |         |
| 2   |    | 3391.667 | 30.96   | 12.01  | 42.97       | 74.00  | -31.03 | peak     |                   |                 |         |
| 3   |    | 4808.333 | 35.15   | 7.70   | 42.85       | 74.00  | -31.15 | peak     |                   |                 |         |

### **RESULT: PASS**

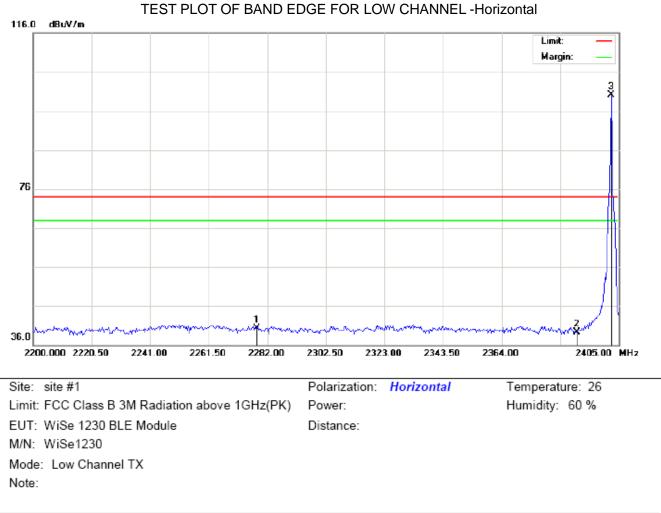
Note: 6~25GHz at least have 20dB margin. No recording in the test report.

Factor=Antenna Factor+ Cable loss-Amplifier gain,

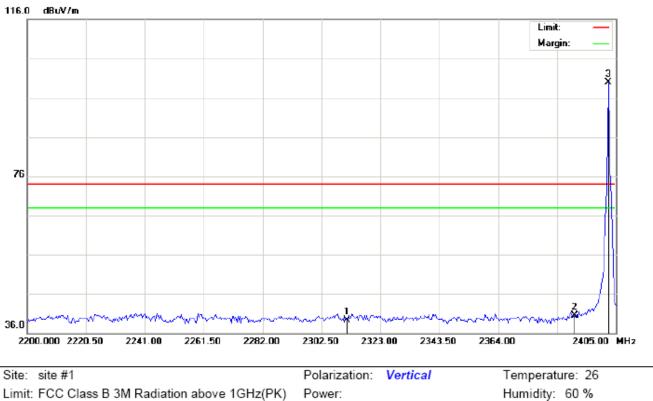
Margin=Measurement-Limit.


The "Factor" value can be calculated automatically by software of measurement system.

#### 9. BAND EDGE EMISSION 9.1. MEASUREMENT PROCEDURE


## 1. Set the EUT Work on the top, the bottom operation frequency individually.

- 2. Set SPA Start or Stop Frequency=Operation Frequency, RBW>=100kHz, VBW>=3\*RBW, Center frequency =Operation frequency
- 3. The band edges was measured and recorded.


#### 9.2. TEST SET-UP



#### 9.3. TEST RESULT



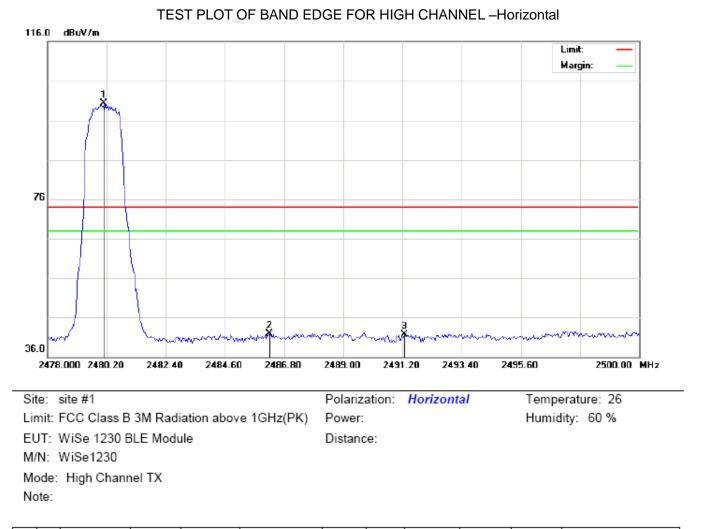
| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height |        | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|--------|---------|
|     | •  | MHz      | dBu∀    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree |         |
| 1   |    | 2278.241 | 30.03   | 10.19  | 40.22       | 74.00  | -33.78 | peak     |                   |        |         |
| 2   |    | 2390.308 | 29.00   | 10.31  | 39.31       | 74.00  | -34.69 | peak     |                   |        |         |
| 3   | *  | 2402.000 | 89.72   | 10.32  | 100.04      | 74.00  | 26.04  | peak     |                   |        |         |



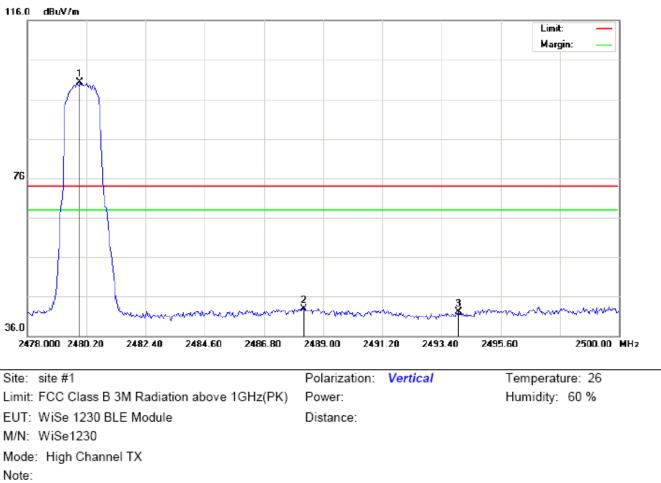
#### TEST PLOT OF BAND EDGE FOR LOW CHANNEL - Vertical

 Site:
 site #1
 Polarization:
 Vertical

 Limit:
 FCC Class B 3M Radiation above 1GHz(PK)
 Power:


 EUT:
 WiSe 1230 BLE Module
 Distance:

 M/N:
 WiSe1230


 Mode:
 Low Channel TX

 Note:
 Note:

| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | -  | MHz      | dBu∨    | dB/m   | dBu\//m     | dBuV/m | dB     |          | cm                | degree          |         |
| 1   |    | 2311.383 | 29.15   | 10.22  | 39.37       | 74.00  | -34.63 | peak     |                   |                 |         |
| 2   |    | 2390.650 | 30.10   | 10.31  | 40.41       | 74.00  | -33.59 | peak     |                   |                 |         |
| 3   | *  | 2402.000 | 89.59   | 10.32  | 99.91       | 74.00  | 25.91  | peak     |                   |                 |         |



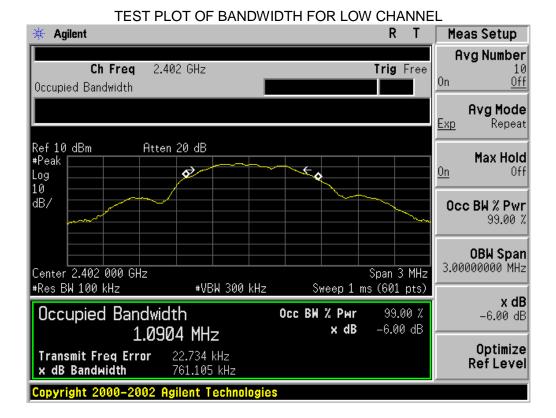
#### Antenna Table Reading Measurement Factor Limit Over Freq. Mk Height Degree No. Detector Comment MHz dBu∨ dB/m dBuV/m dBuV/m dB cm degree \* 100.25 2480.000 89.84 74.00 26.25 1 10.41 peak 2 2486.250 31.51 10.41 41.92 74.00 -32.08 peak 3 2491.273 31.24 10.42 41.66 74.00 -32.34 peak



#### Antenna Table Measurement Over Reading Factor Limit Freq. Mk Height Degree No. Detector Comment MHz dBu∨ dB/m dBuV/m dBuV/m dB cm degree \* 89.95 100.36 74.00 2480.000 10.41 26.36 1 peak 2 2488.267 32.56 10.42 42.98 74.00 -31.02 peak 3 2494.023 31.62 10.42 42.04 74.00 -31.96 peak

**RESULT: PASS** 

#### TEST PLOT OF BAND EDGE FOR HIGH CHANNEL -Vertical


#### 10.6DB BANDWIDTH


#### **10.1. TEST PROCEDURE**

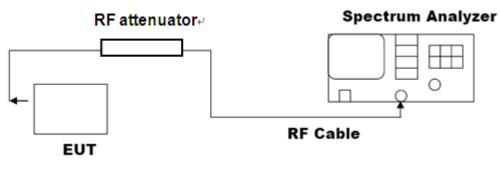
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW≥3\*RBW.
- 4. Set SPA Trace 1 Max hold, then View.

#### **10.2. SUMMARY OF TEST RESULTS/PLOTS**

| Channel | 6dB Bandwidth (KHz) | Minimum Limit (KHz) | Pass/Fail |
|---------|---------------------|---------------------|-----------|
| Low     | 0.761               |                     | Pass      |
| Middle  | 0.797               | 500KHz              | Pass      |
| High    | 0.784               |                     | Pass      |

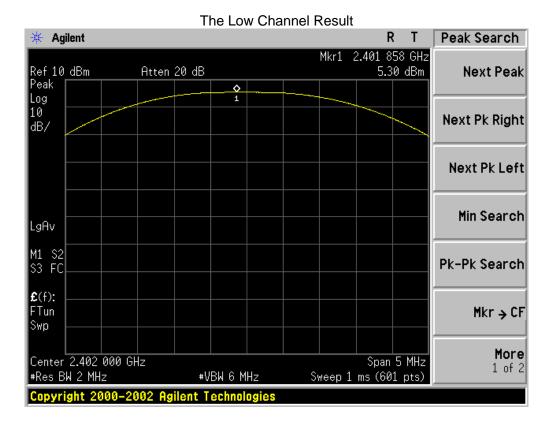





TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

# **11. CONDUCTED OUTPUT POWER**

# 11.1. MEASUREMENT PROCEDURE


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. Use the following spectrum analyzer settings:
- a) Set the RBW  $\geq$  DTS bandwidth.
- b) Set VBW  $\geq$  3  $\Box$  RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.
- 4. Allow the trace to stabilize.
- 5. Record the result form the Spectrum Analyzer.

## 11.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

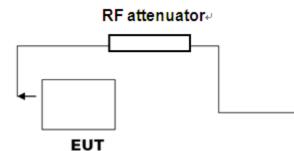


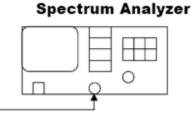
#### **11.3. LIMITS AND MEASUREMENT RESULT**

| Channel        | Peak Power<br>(dBm) | Applicable<br>Limits<br>(dBm) | Pass/Fail |
|----------------|---------------------|-------------------------------|-----------|
| Low Channel    | 5.30                | 30                            | Pass      |
| Middle Channel | 4.63                | 30                            | Pass      |
| High Channel   | 4.53                | 30                            | Pass      |



| 🔆 Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                | annel Resul  | RT                                   | Peak Search                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------|--------------|--------------------------------------|-----------------------------------------------------------------------------------------|
| in rightin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                | Mkr1 2       | .439 967 GHz                         | , I                                                                                     |
| Ref 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Atten 2    | 20 dB                                          |              | 4.63 dBm                             | Next Peak                                                                               |
| Peak 👘 👘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | <b></b>                                        |              |                                      |                                                                                         |
| .0g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 1                                              |              |                                      |                                                                                         |
| 10<br>187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                |              |                                      | Next Pk Right                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                |              |                                      |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                |              |                                      |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                |              |                                      | Next Pk Left                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                |              |                                      |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                |              |                                      | Min Search                                                                              |
| _gAv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                |              |                                      | nin oour or                                                                             |
| 11 S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                |              |                                      |                                                                                         |
| 53 FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                |              |                                      | Pk-Pk Search                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                |              |                                      |                                                                                         |
| <b>£</b> (f):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                |              |                                      |                                                                                         |
| FTun<br>Swp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                |              |                                      | Mkr → CF                                                                                |
| - uh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                |              |                                      |                                                                                         |
| Center 2.440 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>າ0 ເປ≂ |                                                |              | Span 5 MHz                           | More                                                                                    |
| Center <u>2.440 00</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO ONZ     |                                                |              |                                      | 4 6 7                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | #VBW 6 MHz                                     | Sweep 1      |                                      | 1 0† 2                                                                                  |
| ⊭Res BW 2 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | #VBW 6 MHz                                     | Sweep 1      | ms (601 pts)                         | 1 of 2                                                                                  |
| ŧRes BW 2 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | lent Technologies                              |              |                                      | 1 of 2                                                                                  |
| *Res BW 2 MHz<br>Copyright 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                |              |                                      |                                                                                         |
| *Res BW 2 MHz<br>Copyright 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | lent Technologies                              | annel Result | ms (601 pts)<br>R T                  | Peak Search                                                                             |
| *Res BW 2 MHz<br>Copyright 2000<br>X Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | <mark>lent Technologies</mark><br>The High Cha | annel Result | ms (601 pts)                         | Peak Search                                                                             |
| <b>∗Res BW 2 MHz</b><br>Copyright 2000<br><b>☆ Agilent</b><br>Ref 10 dBm<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search                                                                             |
| <b>∗Res BW 2 MHz</b><br>Copyright 2000<br><b>★ Agilent</b><br>Ref 10 dBm<br>Peak<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak                                                                |
| PRes BW 2 MHz<br>Copyright 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak                                                                |
| Res BW 2 MHz<br>Copyright 2000<br>Copyright 2000 | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak                                                                |
| Res BW 2 MHz<br>Copyright 2000<br>Copyright 2000 | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right                                               |
| Res BW 2 MHz<br>Copyright 2000<br>Copyright 2000 | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search                                                                             |
| Res BW 2 MHz<br>Copyright 2000<br>Copyright 2000 | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right                                               |
| Res BW 2 MHz Copyright 2000 Copyright 200 Copyright 2                                                                                                                                                                                                                                                             | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Left                               |
| •Res BW 2 MHz         Copyright 2000         Agilent         Ref 10 dBm         Peak         .0g         L0         dB/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right                                               |
| ■Res BW 2 MHz Copyright 2000 Agilent Ref 10 dBm Peak L0 <pl0< p=""> <pl0< p=""> <pl0< p=""> <pl0< p=""> <pl0< p=""></pl0<></pl0<></pl0<></pl0<></pl0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Left                               |
| ■Res BW 2 MHz Copyright 2000 Agilent Ref 10 dBm Peak L0 <pl0< p=""> <pl0< p=""> <pl0< p=""> <pl0< p=""> <pl0< p=""> <pl0< p=""> <pl< td=""><td>0–2002 Agi</td><td>lent Technologies<br/>The High Cha<br/>20 dB</td><td>annel Result</td><td>ms (601 pts)<br/>R T<br/>2.479 892 GHz</td><td>Peak Search<br/>Next Peak<br/>Next Pk Right<br/>Next Pk Left</td></pl<></pl0<></pl0<></pl0<></pl0<></pl0<></pl0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Left                               |
| *Res BW 2 MHz         Copyright 2000         * Agilent         Ref 10 dBm         Peak         Log         10         dB/         LgAv         M1 S2         S3 FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Left<br>Min Search                 |
| *Res BW 2 MHz           Copyright 2000           * Agilent           Ref 10 dBm           Peak           L0           JB/           L0           JB/           L0           L0           JB/           L0           L1           L2           L3           L4           L5           L6           L7           L8           L9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Left<br>Min Search<br>Pk-Pk Search |
| Ress BW 2 MHz         Copyright 2000         Agilent         Ref 10 dBm         Peak         L0         JB/         JB/         L0         JB/         L0         L0         JB/         L0         L0         L0         JB/         L0         L1         S2         S3         FC         E(f):         FTun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Left<br>Min Search<br>Pk-Pk Search |
| Res         BW         2         MHz           Copyright         2000           Agilent         Agilent           Ref         10         dBm           Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0–2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Left<br>Min Search<br>Pk-Pk Search |
| Res         BW         2         MHz           Copyright         2000           Agilent         Agilent           Ref         10         dBm           Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-2002 Agi | lent Technologies<br>The High Cha<br>20 dB     | annel Result | ms (601 pts)<br>R T<br>2.479 892 GHz | Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Left<br>Min Search                 |

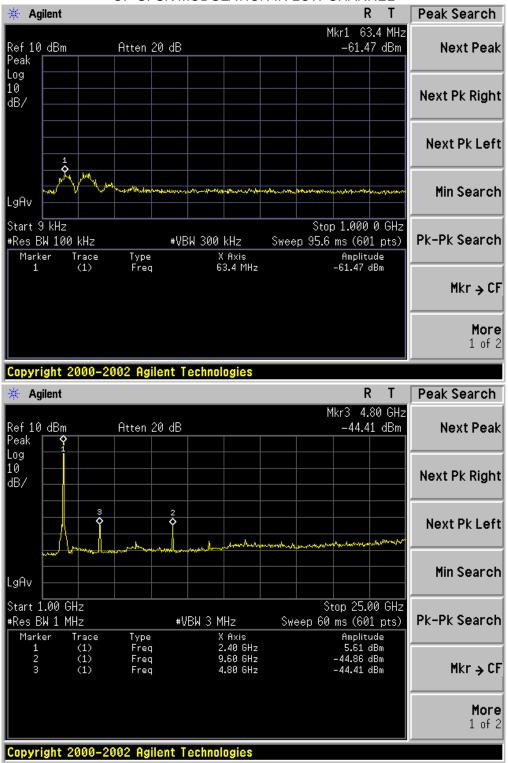

Copyright 2000-2002 Agilent Technologies


# 12. CONDUCTED SPURIOUS EMISSION

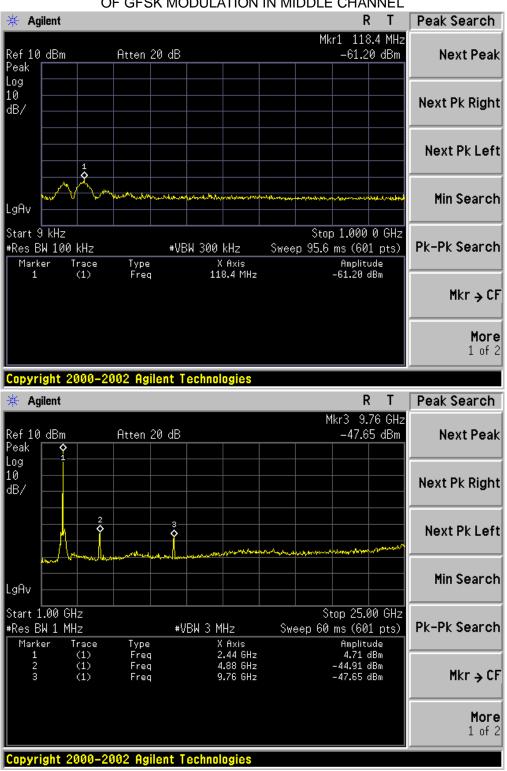
## 12.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
  - 1. RBW = 100 kHz; VBW  $\geq$  RBW; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

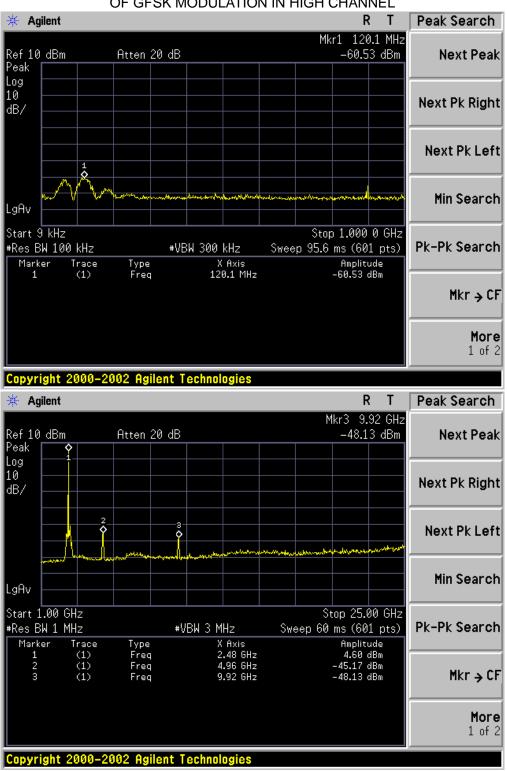
## 12.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)







**RF** Cable

## 12.3. LIMITS AND MEASUREMENT RESULT


| LIMITS AND MEASUREMENT RESULT                                                                                                                                                                                                                                                                                                                                                 |                                                                   |        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                               | Measurement Result                                                |        |  |  |
| Applicable Limits                                                                                                                                                                                                                                                                                                                                                             | Test Data                                                         | Result |  |  |
| In any 100 KHz Bandwidth Outside the<br>frequency band in which the spread spectrum<br>intentional radiator is operating, the radio frequency                                                                                                                                                                                                                                 | At least -20dBc than the limit<br>Specified on the BOTTOM Channel | PASS   |  |  |
| power that is produce by the intentional radiator shall<br>be at least 20 dB below that in 100KHz bandwidth<br>within the band that contains the highest level of the<br>desired power.<br>In addition, radiation emissions which fall in the<br>restricted bands, as defined in §15.205(a), must also<br>comply with the radiated emission limits specified<br>in§15.209(a)) | At least -20dBc than the limit<br>Specified on the TOP Channel    | PASS   |  |  |

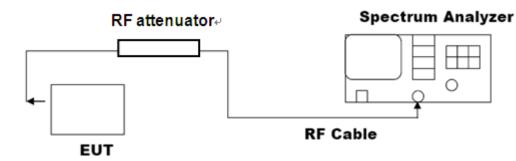


TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF GFSK MODULATION IN LOW CHANNEL



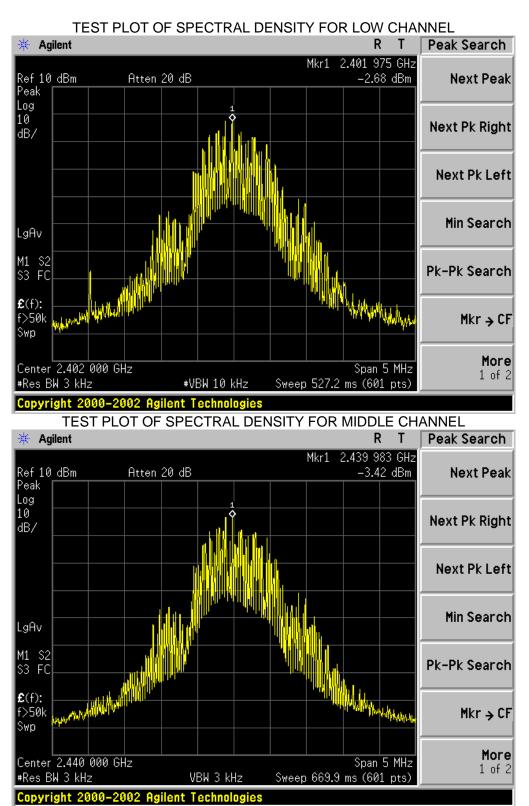
### TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN MIDDLE CHANNEL

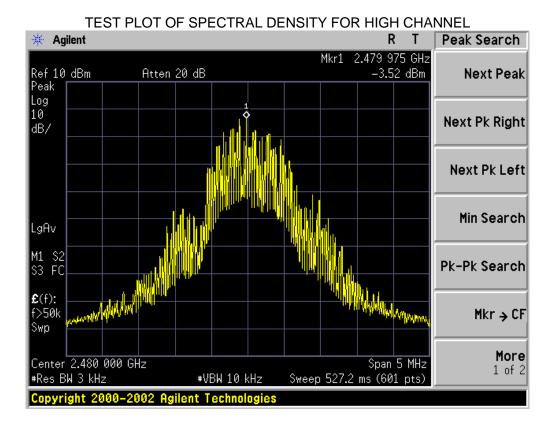



### TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN HIGH CHANNEL

## 13. CONDUCTED OUTPUT POWER SPECTRAL DENSITY 13.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set the span to 1.5 times the DTS bandwidth, RBW: 3kHz<=RBW<=100KHz, VBW>=3\*RBW
- (4). Set SPA Trace 1 Max hold, then View.


Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.


## 13.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)



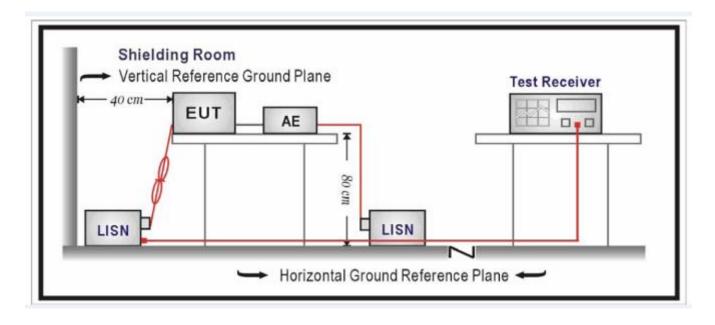
## **13.3 LIMITS AND MEASUREMENT RESULT**

| Channel No.    | PSD<br>(dBm/3KHz) | Limit<br>(dBm/3KHz) | Result |
|----------------|-------------------|---------------------|--------|
| Low Channel    | -2.68             | 8                   | Pass   |
| Middle Channel | -3.42             | 8                   | Pass   |
| High Channel   | -3.52             | 8                   | Pass   |





## 14. LINE CONDUCTED EMISSION TEST


## 14.1 LIMITS

| Fraguanay     | Maximum RF Line Voltage |                |  |
|---------------|-------------------------|----------------|--|
| Frequency     | Q.P.( dBuV)             | Average( dBuV) |  |
| 150kHz~500kHz | 66-56                   | 56-46          |  |
| 500kHz~5MHz   | 56                      | 46             |  |
| 5MHz~30MHz    | 60                      | 50             |  |

\*\*Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

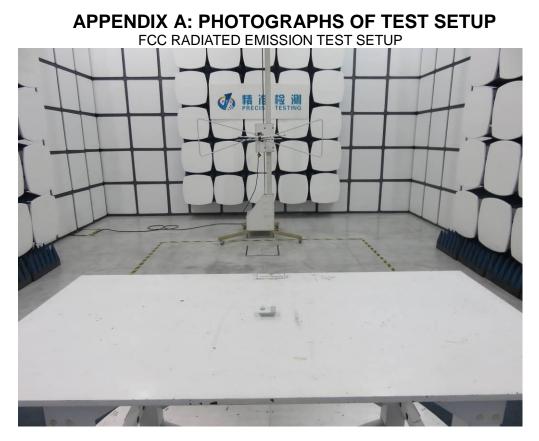
### 14.2 TEST SETUP

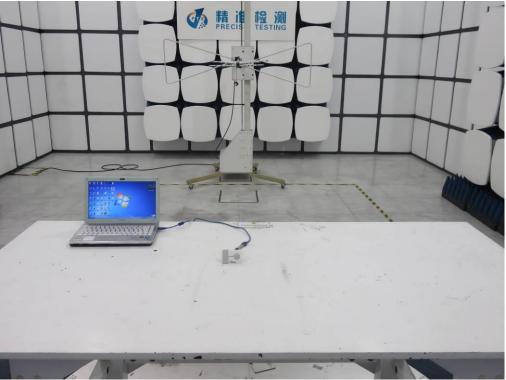


### 14.3 PRELIMINARY PROCEDURE

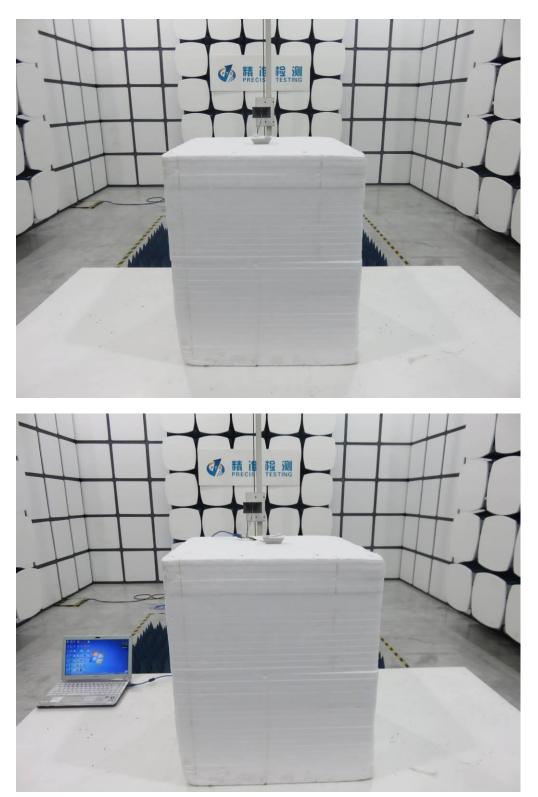
- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per ANSI C63.10.
- 3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4) All support equipments received AC120V/60Hz power from a LISN, if any.
- 5) The EUT received DC charging voltage by adapter which received 120V/60Hzpower by a LISN.
- 6) The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode(s) were scanned during the preliminary test.

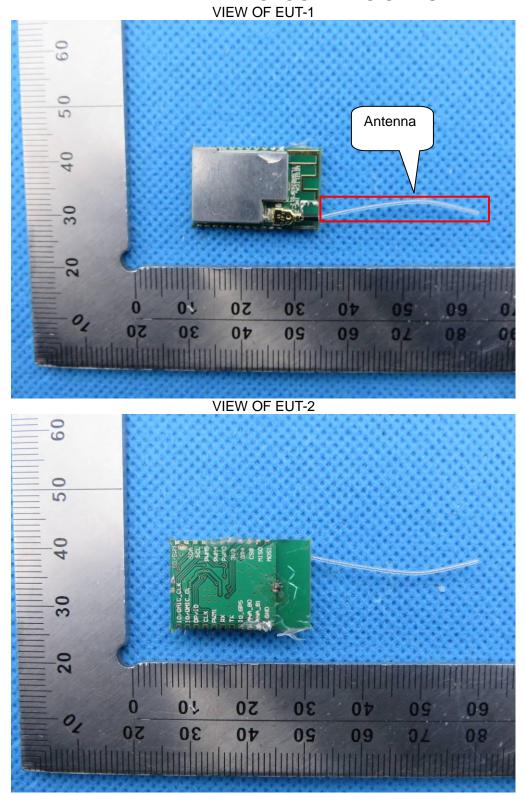
Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


### 14.4 FINAL TEST PROCEDURE


- 1) EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less -2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3) The test data of the worst case condition(s) was reported on the Summary Data page.

### 14.5 TEST RESULT OF POWER LINE


N/A

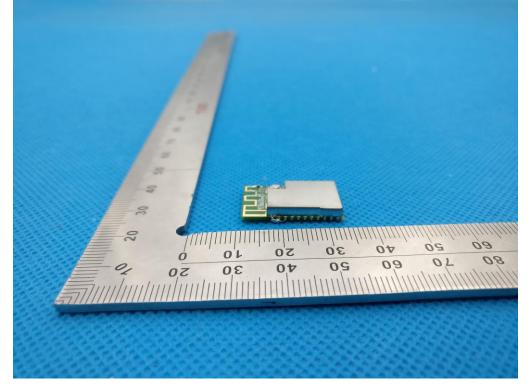

Note: Owing to the EUT supplied by battery, the test item is not applicable.



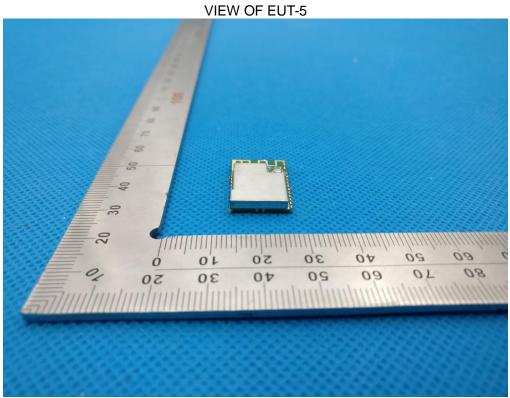


Report No.: AGC07628170101FE08 Page 47 of 51

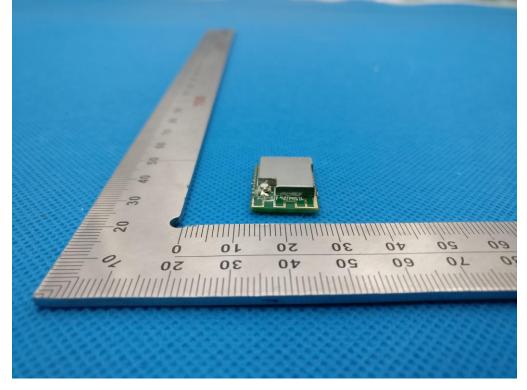


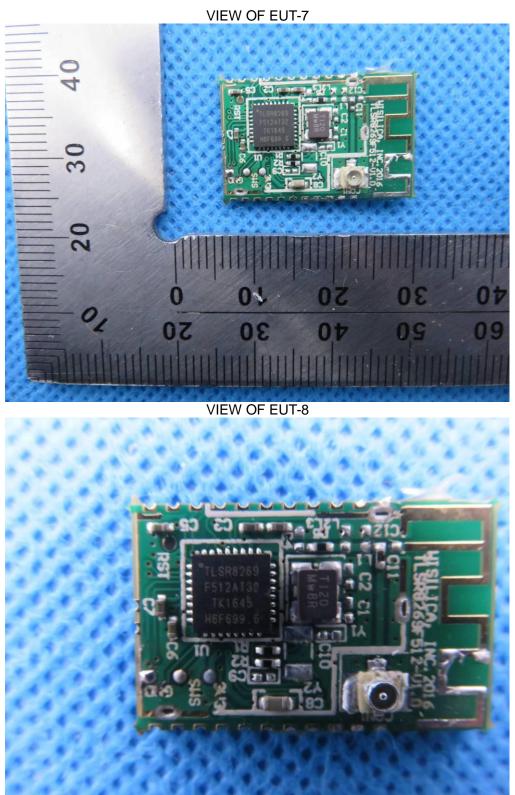



# **APPENDIX B: PHOTOGRAPHS OF EUT**


#### Report No.: AGC07628170101FE08 Page 49 of 51




VIEW OF EUT-4




#### Report No.: AGC07628170101FE08 Page 50 of 51



VIEW OF EUT-6





## ----END OF REPORT----