

SHEZHEN LIANCHUANG TECHNOLOGY GROUP CO., LTP TEST REPORT

SCOPE OF WORK EMC TESTING–DF-HU28010U1 REPORT NUMBER 170811077GZU-001 ISSUE DATE [19-October-2017 [PAGES 17

[REVISED DATE]

DOCUMENT CONTROL NUMBER FCC Part 18:2016-b © 2017 INTERTEK

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

 Telephone:
 86-20-8213 9688

 Facsimile:
 86-20-3205 7538

 www.intertek.com

Applicant Name &	:	SHEZHEN LIANCHUANG TECHNOLOGY GROUP CO., LTD.
Address		LIANCHUANG TECHNICAL ZONE, NO.21 BULAN ROAD, NANWAN
		STREET, LONGGANG DISTRICT , SHENZHEN , P.R. CHINA
Manufacturing Site	:	Same as applicant
Intertek Report No:		170811077GZU-001

Test standards

47 CFR Part 18 [2016 Edition]

Sample Description

Product	:	Ultrasonic humidifier
Model No.	:	DF-HU28010U1
Operation		1.7MHz
frequency		
FCC ID		2AG3VDF-HU28010U1
Electrical Rating	:	120Vac, 60Hz
Serial No.		Not Labeled
Date Received	:	11 August 2017
Date Test	:	11 August 2017-18 October 2017
Conducted		

Prepared and Checked By

Approved By:

anvel. He

Daniel He Project Engineer Intertek Guangzhou

Helen

Helen Ma Team Leader Intertek Guangzhou

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Version: 12-July-2017

TEST REPORT

CONTENT

TEST	REPORT		1
CON	NTENT		3
1.	TEST RE	SULTS SUMMARY	4
2.	EMC RE	SULTS CONCLUSION	5
3.			
4.		1ENT USED DURING TEST	
5.	EMI TES	Т	8
5	.1 FCC	PART 18 CONTINUOUS CONDUCTED DISTURBANCE VOLTAGE TEST	
	5.1.1	Block Diagram of Test Setup	
	5.1.2	Test Setup and Procedure	
	5.1.3	Limit	
	5.1.4	Test Data and curve	
5	.2 FCC	PART 18 RADIATED EMISSION 9 KHZ TO 30 MHZ	
5	.3 FCC	PART 18 RADIATED EMISSION 30 MHz -1000 MHz	
	5.3.1	Block Diagram of Test Setup	
	5.3.2	Test Setup and Procedure	
	5.3.3	Limit	
	5.3.4	Test Data and Curve	
6.	APPEND	DIX I - PHOTOS OF TEST SETUP	

1. TEST RESULTS SUMMARY

Test Item	Standard	Result				
Conducted disturbance voltage	FCC Part 18: 2016	Pass				
at mains ports						
Radiated Emission	FCC Part 18: 2016	N/A				
(9 kHz to 30 MHz)						
Radiated Emission	FCC Part 18: 2016	Pass				
(30 MHz to 1 GHz)						
Remark:						
Reference publication is used for methods of measurement: FCC OST/ MP-5:1986						

Remark:

1. The symbol "N/A" in above table means Not Applicable.

2. When determining the test results, measurement uncertainty of tests has been considered.

TEST REPORT

2. EMC RESULTS CONCLUSION

RE: EMC Testing Pursuant to FCC part 18 performed on the Ultrasonic humidifier, Model: DF-HU28010U1.

We tested the Ultrasonic humidifier, Model: DF-HU28010U1, to determine if it was in compliance with the relevant standards as marked on the Test Results Summary. We found that the unit met the requirement of FCC part 18 standard when tested as received. The worst case's test data was presented in this test report.

The production units are required to conform to the initial sample as received when the units are placed on the market.

TEST REPORT

3. LABORATORY MEASUREMENTS

Configuration Information

Support Equipment: N/A

Rated Voltage and frequency under test: Condition of Environment: 120Vac, 60Hz Temperature: 22~28°C Relative Humidity:35~60% Atmosphere Pressure:86~106kPa

Notes:

1. The EMI measurements had been made in the operating mode produced the largest emission in the frequency band being investigated consistent with normal applications. An attempt had been made to maximize the emission by varying the configuration of the EUT.

2. Test Facility accreditation:

A2LA Certificate Number 0078.10

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch is accredited by A2LA and Listed in FCC website. FCC accredited test labs may perform both Certification testing under Parts 15 and 18 and Declaration of Conformity testing.

3. Test Location:

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

All tests were performed at:

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

Except Radiated Emissions was performed at:

Room102/104, No 203, KeZhu Road, Science City, GETDD Guangzhou, China

No.	ltem	Measurement Uncertainty
1	Conduction Emission (9 kHz-150 kHz)	2.51 dB
2	Conduction Emission (150 kHz-30 MHz)	2.69 dB
3	Disturbance Power (30 MHz-300 MHz)	3.21 dB
4	Radiated Emission (30 MHz-1 GHz)	4.79 dB
5	Radiated Emission (1 GHz-6 GHz)	5.02 dB
6	Radiated Emission (6 GHz-18 GHz)	5.17 dB

4. Measurement Uncertainty

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

The measurement uncertainty is given with a confidence of 95%, k=2.

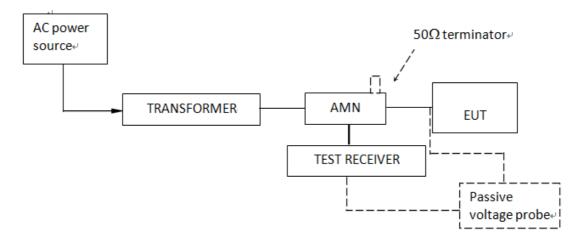
4. EQUIPMENT USED DURING TEST

Conducted Disturbance-Mains Terminal(1)

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date (DD-MM-YYYY)	Calibration Interval
EM080-05	EMI receiver	ESCI	R&S	24/07/2018	1Y
EM006-05	LISN	ENV216	R&S	04/06/2018	1Y
SA047-79	Digital Temperature-Humidity Recorder	RC-HT601A	HATAIKE	07/06/2018	1Y
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	23/01/2018	1Y

Radiated Disturbance (30 MHz-1 GHz)

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date (DD-MM-YYYY)	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m3	ETS- LINDGREN	01/05/2018	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	27/03/2018	1Y
EM033-01	TRILOG Super Broadband test Antenna (30 MHz-3 GHz)	VULB 9163	SCHWARZBE CK	19/09/2018	1Y
EM031-02-01	Coaxial cable	/	R&S	18/05/2018	1Y
SA047-118	Digital Temperature-Humidity Recorder	RS210	YIJIE	10/07/2018	1Y
EM045-01-01	EMC32 software (RE/RS)	V10.01.00	R&S	N/A	N/A


TEST REPORT

5. EMI TEST

5.1 FCC part 18 Continuous Conducted Disturbance Voltage Test

Test Result: Pass

5.1.1 Block Diagram of Test Setup

5.1.2 Test Setup and Procedure

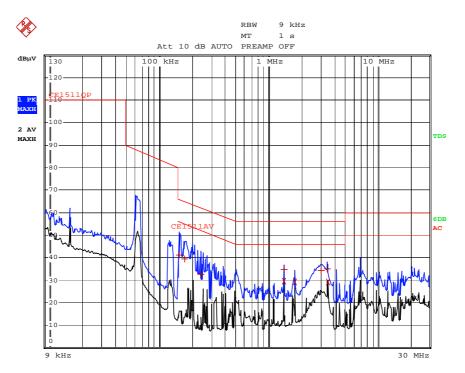
The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50Ω linear impedance artificial hand is used if appropriate (for handheld apparatus).

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane(Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.4m from a vertical metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

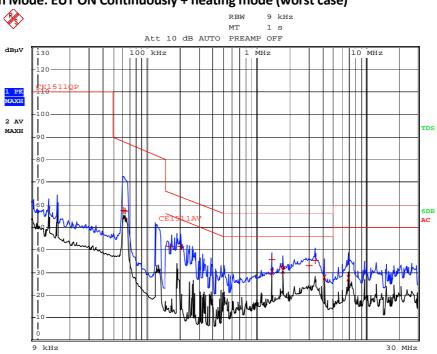
The bandwidth of test receiver was set at 200 Hz for measurements from 9 kHz to 150 kHz and 9 kHz for measurements from 150 kHz to 30 MHz.

5.1.3 Limit


Frequency range MHz	AC mains terminals dB (uV)			
101112	Quasi-peak	Average		
0.009 to 0.05	110	-		
0.05 to 0.15	90 to 80*	-		
0.15 to 0.5	66 to 56*	56 to 46*		
0.5 to 5	56	46		
5 to 30	60	50		
Note 1: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz. Note 2: The lower limit is applicable at the transition frequency.				

TEST REPORT

5.1.4 Test Data and curve


At mains terminal: Tested Wire: Live Operation Mode: EUT ON Continuously + heating mode (worst case)

	EDIT PEAK	LIST (Fin	al Measure	ment Resul	ts)
Tracel:	CE151	L1QP			
Trace2:	CE151	L1AV			
Trace3:					
TRACE	: F	FREQUENCY	LEVEL d	lBμV	DELTA LIMIT dB
1 Quasi B	Peak 154 k	cHz	41.26	L1	-24.51
1 Quasi B	eak 174 k	cHz	39.29	L1	-25.47
1 Quasi B	eak 238 k	cHz	32.52	L1	-29.63
1 Quasi B	Peak 1.398	3 MHz	34.73	L1	-21.26
2 Average	1.398	3 MHz	29.64	Ll	-16.35
2 Average	1.746	5 MHz	29.02	Ll	-16.97
1 Quasi B	Peak 3.058	3 MHz	34.41	L1	-21.58
1 Quasi B	eak 3.49	MHz	34.86	L1	-21.13
2 Average	3.494	1 MHz	29.14	Ll	-16.85

TEST REPORT

Tested Wire: Neutral Operation Mode: EUT ON Continuously + heating mode (worst case)

EDIT PEAK LIST (Final Measurement Results)					
Tracel:	CE1511QP				
Trace2:	CE1511AV				
Trace3:					
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB		
1 Quasi Peak	61.72 kHz	57.49 Ll	-30.58		
1 Quasi Peak	64.04 kHz	57.18 L1	-30.56		
1 Quasi Peak	166 kHz	41.36 L1	-23.79		
1 Quasi Peak	202 kHz	41.34 L1	-22.18		
1 Quasi Peak	1.398 MHz	35.50 Ll	-20.49		
2 Average	1.398 MHz	30.19 L1	-15.80		
2 Average	1.746 MHz	30.79 Ll	-15.20		
1 Quasi Peak	1.754 MHz	32.68 L1	-23.31		
1 Quasi Peak	3.042 MHz	33.08 L1	-22.91		
1 Quasi Peak	3.49 MHz	35.22 L1	-20.78		
2 Average	4.194 MHz	27.72 L1	-18.27		
2 Average	6.982 MHz	27.40 L1	-22.59		

TEST REPORT

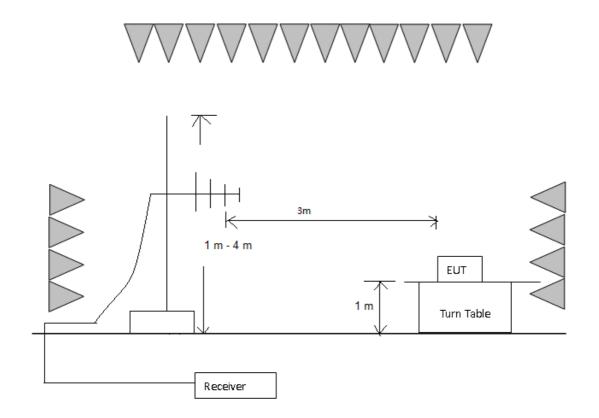
5.2 FCC part 18 Radiated Emission 9 kHz to 30 MHz

Test Result: N/A

Not applicable. Please refer to§ 18.307 (f) Conduction limits and § 18.309 frequency range of measurements for details.

§ 18.307 (f) Conduction limits:

For ultrasonic equipment, compliance with the conducted limits shall preclude the need to show compliance with the field strength limits below 30 MHz unless requested by the Commission.



TEST REPORT

5.3 FCC part 18 Radiated Emission 30 MHz -1000 MHz

Test Result: Pass

5.3.1 Block Diagram of Test Setup

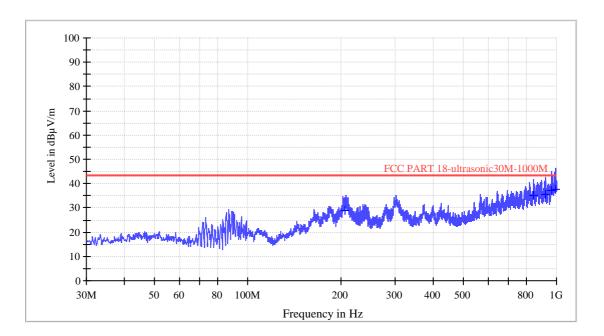
5.3.2 Test Setup and Procedure

The measurement was applied in a semi-anechoic chamber. The EUT and simulators were placed on a 1 m high foam table above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mask. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

Broadband antenna was used as receiving antenna. Both horizontal and vertical polarization of the antenna was set on measurement. In order to find the maximum emission, all of the interface cables were manipulated according to FCC OST/MP-5 requirement during radiated test.

The bandwidth setting on R&S Test Receiver was 120 kHz. The frequency range from 30 MHz to 1000 MHz was checked

5.3.3 Limit

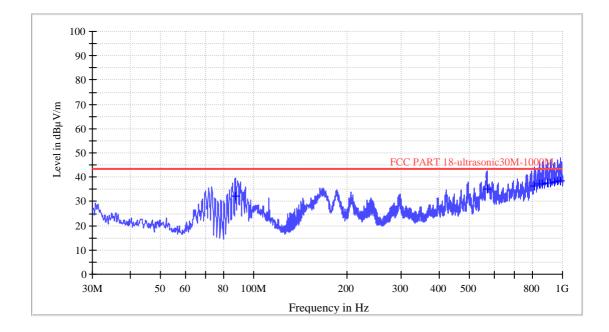

Frequency range (MHz)	Field strength at 30 meters (μV/m)	Field strength at 3 meters (dBμV/m)				
30-1000	15	43.5				
Note:	Note:					
Test limit is calculated and base on equipment type and operating frequency.						
Detector: Peak for pr	Detector: Peak for pre-scan, Average for the final result					

TEST REPORT

5.3.4 Test Data and Curve

Operation Mode: EUT ON Continuously + heating mode (worst case) Horizontal

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
206.80	16.2	12.8	29.0	43.5	-14.5
843.72	10.1	24.9	35.0	43.5	-8.5
918.28	9.9	25.8	35.7	43.5	-7.8
965.32	11.1	26.2	37.3	43.5	-6.2
989.68	11.3	26.4	37.7	43.5	-5.8


Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Average $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Average (dB μ V/m) Limit AVG (dB μ V/m)

Vertical

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
87.12	22.4	10.0	32.4	43.5	-11.1
568.72	13.7	21.2	34.9	43.5	-8.6
813.52	11.9	24.5	36.4	43.5	-7.1
839.48	12.2	24.8	37.0	43.5	-6.5
864.20	12	25.2	37.2	43.5	-6.3
892.56	12	25.6	37.6	43.5	-5.9
914.04	12	25.8	37.8	43.5	-5.7
940.24	12	26.0	38.0	43.5	-5.5
963.88	12.3	26.2	38.5	43.5	-5
985.44	11.8	26.4	38.2	43.5	-5.3

1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)

2. Average $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$

3. Margin (dB) = Average (dB μ V/m) – Limit AVG (dB μ V/m)

TEST REPORT

6. APPENDIX I - PHOTOS OF TEST SETUP

