

SHENZHEN LIANCHUANG TECHNOLOGY GROUP CO., LTD.

SCOPE OF WORK EMC TESTING–972-1003-W, DF-AF9005C

REPORT NUMBER 171108150GZU-001

ISSUE DATE 20-March-2018 PAGES 115 [REVISED DATE]

DOCUMENT CONTROL NUMBER FCC WIFI-c © 2017 INTERTEK

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

 Telephone:
 86-20-8213 9688

 Facsimile:
 86-20-3205 7538

 www.intertek.com

Applicant Name &:SHENZHEN LIANCHUANG TECHNOLOGY GROUP CO., LTD.AddressLIANCHUANG TECHNICAL ZONE,NO.21 BULAN ROAD,NANWAN
STREET, LONGGANG DISTRICT ,SHENZHEN ,P.R. CHINAManufacturing Site:Same as applicantIntertek Report No:171108150GZU-001FCC ID:2AG3VDF-AF9005C

Test standards

47 CFR PART 15 Subpart C: 2017 section 15.247

Sample Description

Product	:	Air Cooler/Humidifier
Models No.	:	972-1003-W, DF-AF9005C
Electrical Rating	:	120Vac, 60Hz
Serial No.		Not Labeled
Date Received	:	01 March 2018
Date Test	:	01 March 2018-19 March 2018
Conducted		

Prepared and Checked By

Danvel. He

Daniel He Project Engineer Intertek Guangzhou Approved By:

p, len

Helen Ma Team Leader Intertek Guangzhou

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Version: 21 August 2017

TEST REPORT

CONTENT

TEST RE	PORT1
CONTE	NT3
1.0	TEST RESULT SUMMARY4
2.0	GENERAL DESCRIPTION
2.1	Product Description
2.2	Related Submittal(s) Grants
2.3	Test Methodology
2.4	TEST FACILITY
3.0	SYSTEM TEST CONFIGURATION
3.1	JUSTIFICATION
3.2	EUT Exercising Software
3.3	SPECIAL ACCESSORIES
3.4	Measurement Uncertainty
3.5	Equipment Modification9
3.6	SUPPORT EQUIPMENT LIST AND DESCRIPTION
4.0	MEASUREMENT RESULTS 10
4.1	ANTENNA REQUIREMENT
4.2	6 dB Bandwidth (DTS bandwidth)11
4.3	MAXIMUM PEAK CONDUCTED OUTPUT POWER19
4.4	PEAK POWER SPECTRAL DENSITY
4.5	Out of Band Conducted Emissions
4.6	Out of Band Radiated Emissions
4.7	RADIATED EMISSIONS IN RESTRICTED BANDS
4.8	Band Edges Requirement
4.9	Conducted Emission Test
5.0	TEST EQUIPMENT LIST

1.0 TEST RESULT SUMMARY

Test Requirement	Test Method	Result
FCC PART 15 C section 15.247 (c) and Section 15.203	FCC PART 15 C section 15.247 (c) and Section 15.203	PASS
FCC PART 15 C section 15.247 (a)(2)	ANSI C63.10: Clause 11.8	PASS
FCC PART 15 C section 15.247(b)(3)	ANSI C63.10: Clause 11.9.1.2	PASS
FCC PART 15 C section 15.247(e)	ANSI C63.10: Clause 11.10.2	PASS
FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.11	PASS
FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.11, 6.4, 6.5 and 6.6	N/A
FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.12.1, 6.4, 6.5 and 6.6	PASS
FCC PART 15 C section 15.247 (d) &15.205	ANSI C63.10: Clause 11.11 and 11.13	PASS
FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2	PASS
	FCC PART 15 C section 15.247 (c) and Section 15.203 FCC PART 15 C section 15.247 (a)(2) FCC PART 15 C section 15.247 (b)(3) FCC PART 15 C section 15.247(e) FCC PART 15 C section 15.247(e) FCC PART 15 C section 15.209 &15.247(d) FCC PART 15 C section 15.205 FCC PART 15 C	FCC PART 15 C section 15.247 (c) and Section 15.203FCC PART 15 C section 15.203FCC PART 15 C section 15.247 (a)(2)ANSI C63.10: Clause 11.8FCC PART 15 C section 15.247 (b)(3)ANSI C63.10: Clause 11.9.1.2FCC PART 15 C section 15.247(e)ANSI C63.10: Clause 11.10.2FCC PART 15 C section 15.247(e)ANSI C63.10: Clause 11.10.2FCC PART 15 C section 15.209 & ANSI C63.10: Clause 11.11ANSI C63.10: Clause 11.11FCC PART 15 C section 15.209 & ANSI C63.10: Clause 11.11, 6.4, 6.5 and 6.6ANSI C63.10: Clause 11.12, 1, 6.4, 6.5 and 6.6FCC PART 15 C section 15.209 & ANSI C63.10: Clause 11.12, 1, 6.4, 6.5 and 6.6ANSI C63.10: Clause 11.12, 1, 6.4, 6.5 and 6.6FCC PART 15 C section 15.209 & ANSI C63.10: Clause 11.12, 1, 6.4, 6.5 and 6.6ANSI C63.10: Clause 11.11, 1.13FCC PART 15 C section 15.247 (d)ANSI C63.10: Clause 11.11 and 11.13FCC PART 15 C section 15.247 (d)ANSI C63.10: Clause 11.11 and 11.13FCC PART 15 C section 15.247 (d)ANSI C63.10: Clause 11.11 and 11.13

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report

Remark: Model 972-1003-W is declared to be identical to model DF-AF9005C in terms of electrical and mechanical design. Their difference lies in the model name and trademark, this will not influence the test result, so model DF-AF9005C was selected for test.

2.0 General Description

2.1 **Product Description**

Operating Frequency: Type of Modulation:	2412 MHz to 2462 MHz for 802.11b/g/n(HT20), 2422 MHz to 2452 MHz for 802.11n(HT40) 802.11b: DSSS(CCK/QPSK/BPSK) 802.11g: OFDM(BPSK/QPSK/16QAM/64QAM)
	802.11g. OFDM(BFSK/QFSK/16QAM/64QAM) 802.11n: OFDM (BPSK/QPSK/16QAM/64QAM)
Transmit Data Rate:	802.11b :1/2/5.5/11 Mbps
	802.11g :6/9/12/18/24/36/48/54 Mbps
	802.11n(HT20): 6.5/13/19.5/26/39/52/58.5/65 Mbps/72.2Mbps
	802.11n(HT40): 15/30/45/60/90/120/135/150 Mbps
Number of Channels	11 Channels for 802.11b/g/n(HT20)
	7 Channels for 802.11n(HT40)
Channel Separation:	5 MHz
Antenna Type	PCB Layout
Function:	Air Cooler with 2.4 GHz WIFI
EUT Power Supply:	AC 120V 60 Hz
Power cord:	1.2 m x 3 wires unscreened AC supply cable

EUT channels and frequencies list:

For 802.11b/g/n(HT20): test frequencies are lowest channel 1: 2412 MHz, middle channel 6: 2437 MHz and highest channel 11: 2462 MHz.

For 802.11n(HT40): test frequencies are lowest channel 3: 2422 MHz, middle channel 6: 2437 MHz and highest channel 9: 2452 MHz.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	

TEST REPORT

2.2 Related Submittal(s) Grants

This is an application for certification of: DTS- Part 15 Digital Transmission Systems (WIFI transmitter portion)

Remaining portions are subject to the following procedures:

- 1. Receiver portion of WIFI: exempt from technical requirement of this Part.
- 2. The Air Cooler function: exempt from FCC requirement.
- 3. Infrared controller: FCC VOC requirement.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans and final tests were performed in the semi-anechoic chamber to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise.

2.4 Test Facility

All tests were performed at:

Room102/104, No 203, KeZhu Road, Science City, GETDD Guangzhou, China Except Conducted Emissions was performed at: Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

A2LA Certificate Number 0078.10

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch is accredited by A2LA and Listed in FCC website. FCC accredited test labs may perform both Certification testing under Parts 15 and 18 and Declaration of Conformity testing.

3.0 System Test Configuration

3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. It was powered by AC 120V/60Hz supply.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. The spurious emissions more than 20 dB below the permissible value are not reported.

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Frequency range of radiated emission measurements

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to
	40 GHz, whichever is lower
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to
30 GHz	100 GHz, whichever is lower
	5th harmonic of highest fundamental frequency or to
At or above 30 GHz	200 GHz, whichever is lower, unless otherwise
	specified

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation	
1 MHz or less	1	Middle	
1 MHz to 10 MHz	2	1 near top and 1 near bottom	
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom	

TEST REPORT

3.2 EUT Exercising Software

Software: "Atheros Radio Test 2(ART2-GUI)" for fixing frequency.

3.3 Special Accessories

No special accessories used.

3.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	20 dB Bandwidth	2.3%
2	Carrier Frequencies Separated	2.3%
3	Maximum Peak Conducted Output Power	1.5
4	Out of Band Conducted Emissions	1.5
5 Radiated Emissions		4.7 dB (25 MHz-1 GHz)
5		4.8 dB (1 GHz-18 GHz)
6	Conducted Emissions at Mains Terminals	2.58
7	Temperature	0.5 °C
8	Humidity	0.4 %
9	Time	1.2%

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty is calculated in accordance with ETSI TR 100 028-2001. The measurement uncertainty is given with a confidence of 95%, k=2.

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance – Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value

3.5 Equipment Modification

Any modifications installed previous to testing by SHENZHEN LIANCHUANG TECHNOLOGY GROUP CO., LTD. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Guangzhou Branch.

3.6 Support Equipment List and Description

This product was tested with corresponding support equipment as below:

Support Equipment

Description	Manufacturer	Model No.	SN/Version	Supplied by
NoteBook	НР	Compaq 6710b	SN:CNU8240LF9	Intertek
USB extension cord	USB-01	USB	1.0 m(shielded)	Client

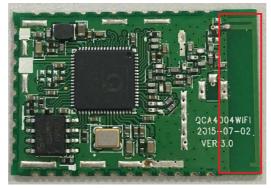
TEST REPORT

4.0 Measurement Results

4.1 Antenna Requirement

Standard requirement:

15.203 requirement:

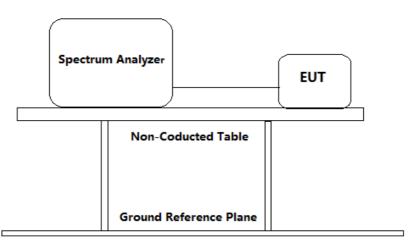

For intentional device. According to 15.203 an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna

The antenna is a PCB Layout and no consideration of replacement. The best case gain of the antenna is 0 dBi.



4.2 6 dB Bandwidth (DTS bandwidth)

Test Requirement:FCC Part 15 C section 15.247
(a)(2)Systems using digital modulation techniques may
operate in the 902-928 MHz, 2400-2483.5MHz, and 5725-
5850 MHz bands. The minimum 6 dB bandwidth shall be at
least 500 kHz.Test Method:ANSI C63.10: Clause 11.8Test Status:Pre-Scan has been conducted to determine the worst-case
mode from all possible combinations between available
modulations, data rates and antenna ports (if EUT with
antenna diversity architecture). Following channel(s) was
(were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =1 dB) from the antenna port to the spectrum.
- 2. Set the spectrum analyzer:
 - a) Set RBW = 100 kHz
 - b) Set the VBW \geq [3 × RBW]
 - c) Detector = peak.
 - d) Trace mode = max hold.
 - e) Sweep = auto couple
 - f) Allow the trace to stabilize.

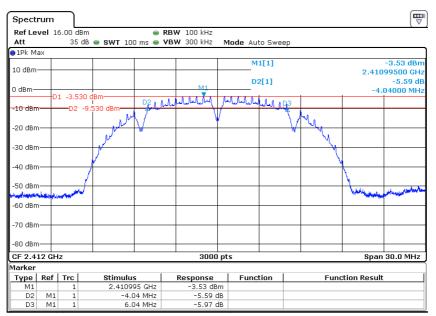
g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

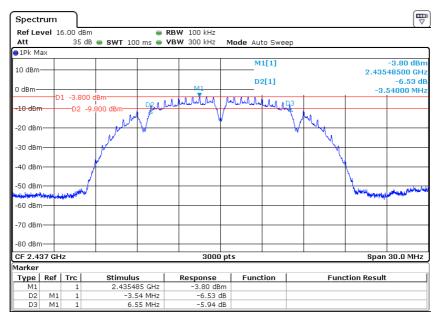
- h) Span=2*BW~5*BW
- 3. Repeat until all the test status is investigated.
- 4. Report the worst case.

Used Test Equipment List

Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

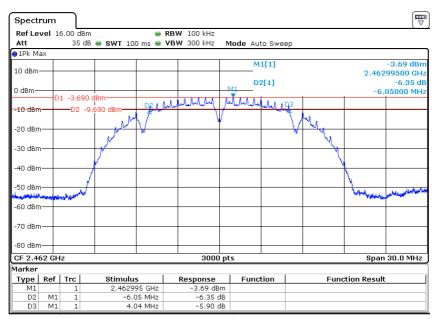
Channel No.	Frequency (MHz)	Mode	Data Rate	Measured 6dB bandwidth	Limit	Result
				(MHz)		
1	2412		11 Mbps	10.08		Pass
6	2437	802.11b	11 Mbps	10.09		Pass
11	2462		11 Mbps	10.09		Pass
1	2412		54Mbps	16.346		Pass
6	2437	802.11g	54Mbps	16.360		Pass
11	2462		54 Mbps	16.360	≥500KHz	Pass
1	2412	802.11n	72.2 Mbps	17.360	2200802	Pass
6	2437	(HT20)	72.2 Mbps	17.060		Pass
11	2462		72.2 Mbps	17.453		Pass
3	2422	802.11n	150 Mbps	36.320		Pass
6	2437	(HT40)	150Mbps	36.347		Pass
9	2452		150 Mbps	36.161		Pass

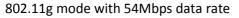

Test result: The unit does meet the FCC requirements.

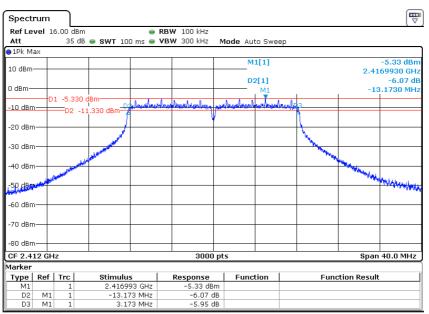

Result plot as follows:

802.11b mode with 11Mbps data rate

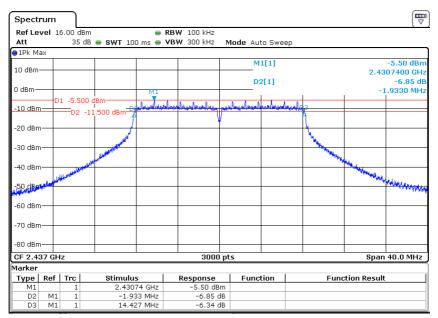
Channel 1: 2.412GHz

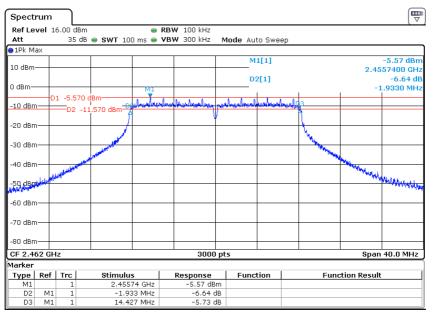

Channel 6: 2.437GHz:




TEST REPORT

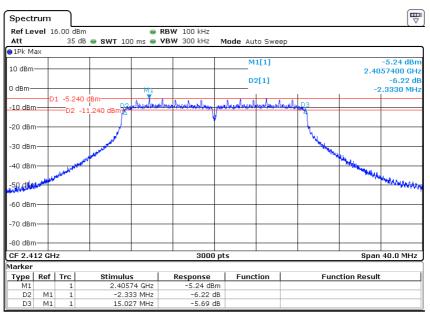
Channel 11: 2.462GHz:


Channel 1: 2.412GHz:

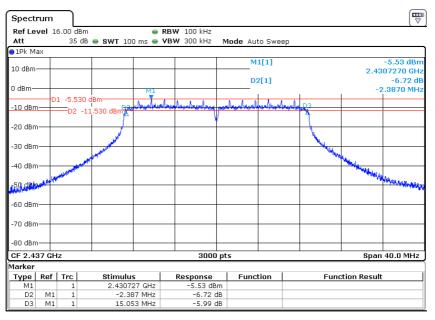


TEST REPORT

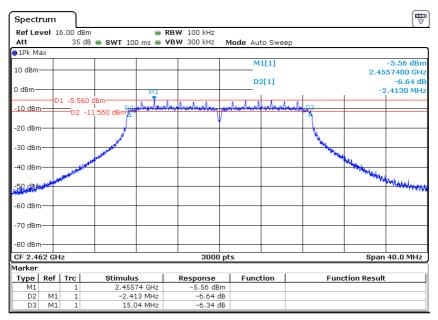
Channel 6: 2.437GHz:

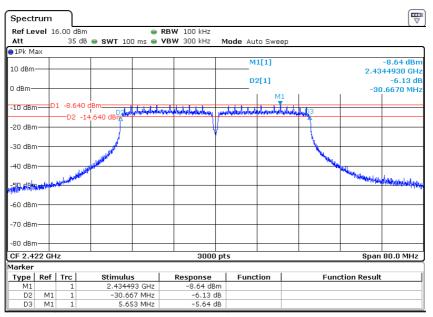


Channel 11: 2.462GHz:

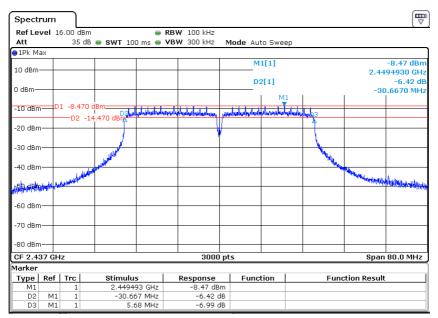


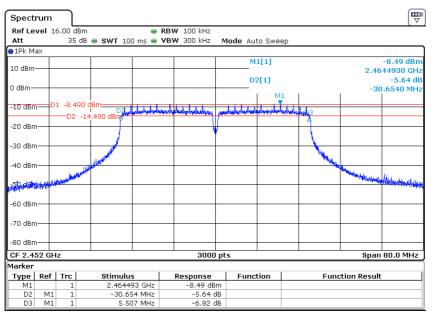
802.11n(HT20) mode with 72.2Mbps data rate Channel 1: 2.412GHz:


Channel 6: 2.437GHz:


TEST REPORT

Channel 11: 2.462GHz:

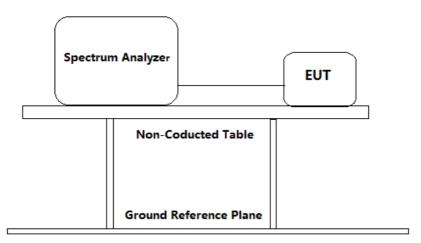

Channel 3: 2.422GHz:



TEST REPORT

Channel 6: 2.437GHz:

Channel 9: 2.452GHz:



TEST REPORT

4.3 Maximum Peak Conducted Output Power

Test Requirement:	FCC Part 15 C section 15.247 (b)(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b) (1), (b) (2), and (b) (3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10: Clause 11.9.1.2(Integrated band power method)
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =1 dB) from the antenna port to the spectrum.
- 2. Set the spectrum analyzer:
 - a) Set the RBW = 1 MHz.
 - b) Set the VBW \geq [3 × RBW].
 - c) Set the span≥[1.5 × DTS bandwidth].
 - d) Detector = peak.
 - e) Sweep time = auto couple.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges.

TEST REPORT

- 3. Repeat until all the test status is investigated.
- 4. Report the worst case.

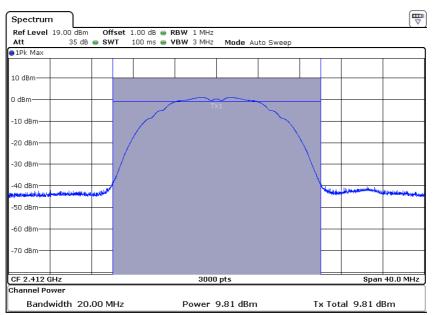
Used Test Equipment List

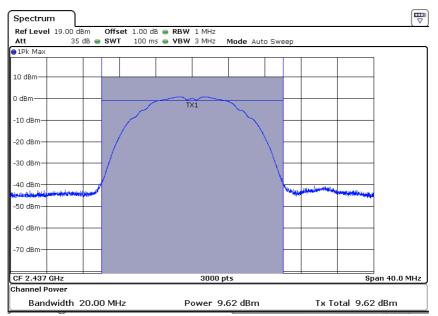
Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

Test result:

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured Channel Power (dBm)	Limit	Result
1	2412		11 Mbps	9.81		Pass
6	2437	802.11b	11 Mbps	9.62		Pass
11	2462		11 Mbps	9.73		Pass
1	2412		54 Mbps	15.52		Pass
6	2437	802.11g	54 Mbps	15.31		Pass
11	2462		54 Mbps	15.23	1W	Pass
1	2412	802.11n	72.2 Mbps	15.39	(30dBm)	Pass
6	2437	(HT20)	72.2 Mbps	15.20		Pass
11	2462	(0)	72.2 Mbps	15.21		Pass
3	2422	802.11n	150 Mbps	15.32		Pass
6	2437	(HT40)	150 Mbps	15.32		Pass
9	2452	(150 Mbps	15.24		Pass

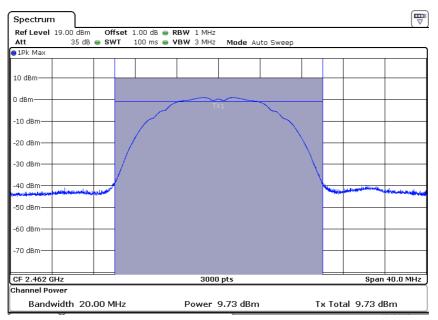
Remark: Level = Read Level + Cable Loss


The unit does meet the FCC requirements.

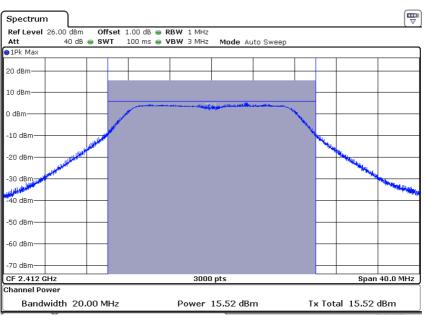

Result plot as follows:

802.11b mode with 11Mbps data rate

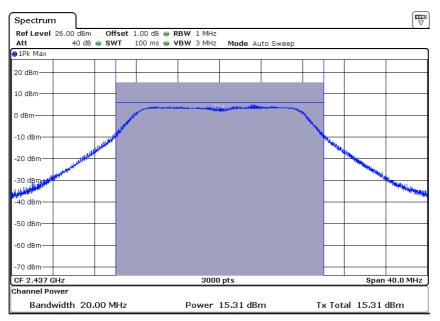
Channel 1: 2.412GHz:

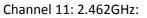


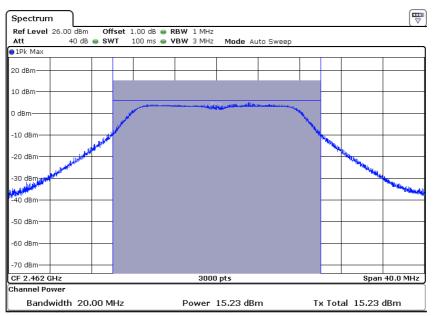
Channel 6: 2.437GHz:



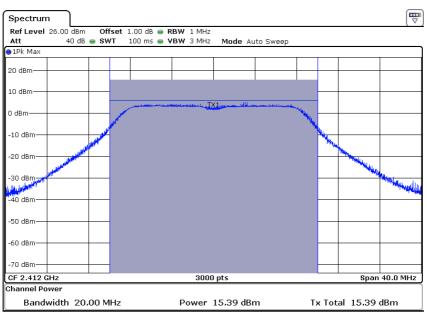
Channel 11: 2.462GHz:

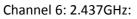


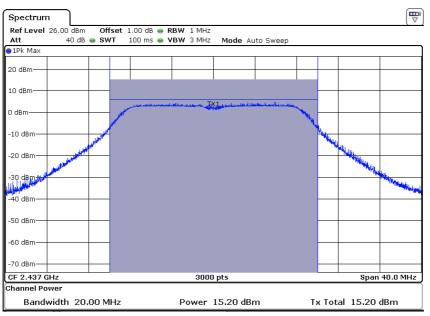

802.11g mode with 54Mbps data rate Channel 1: 2.412GHz:



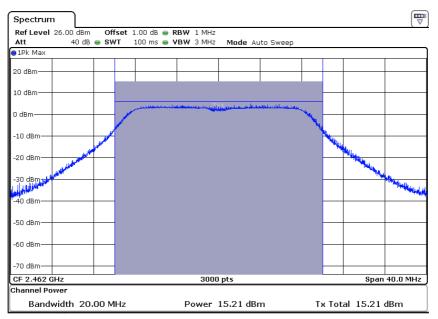
Channel 6: 2.437GHz:

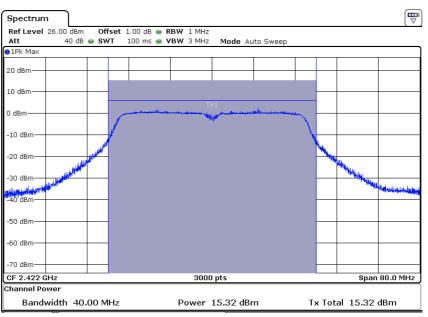




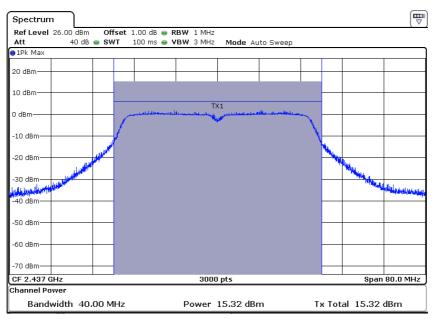


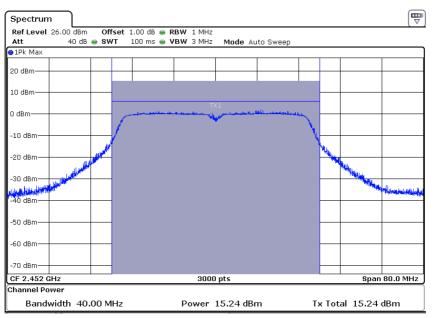
802.11n(HT20) mode with 72.2Mbps data rate Channel 1: 2.412GHz:





Channel 11: 2.462GHz:


802.11n(HT40) mode with 150Mbps data rate Channel 3: 2.422GHz:

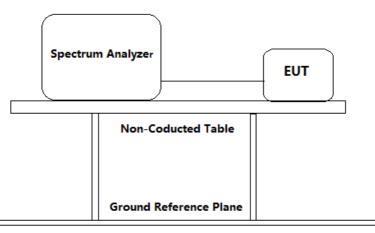


TEST REPORT

Channel 6: 2.437GHz:

Channel 9: 2.452GHz:

Test result: The unit does meet the FCC requirements.



TEST REPORT

4.4 Peak Power Spectral Density

Test Requirement:	FCC Part 15 C section 15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to
Test Method:	determine the power spectral density. ANSI C63.10: Clause 11.10.2
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =1 dB) from the antenna port to the spectrum analyzer or power meter.
- 2. Set the spectrum analyzer:
 - a) Set analyzer center frequency to DTS channel center frequency.
 - b) Set the span= 1.5 × DTS bandwidth.
 - c) Set the RBW to 3 kHz \leqslant RBW \leqslant 100 kHz.
 - d) Set the VBW \geq [3 × RBW].
 - e) Detector = peak.
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the maximum amplitude level within

TEST REPORT

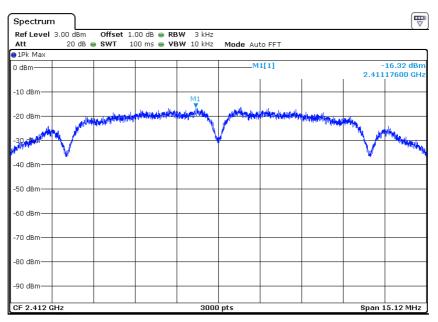
the RBW.

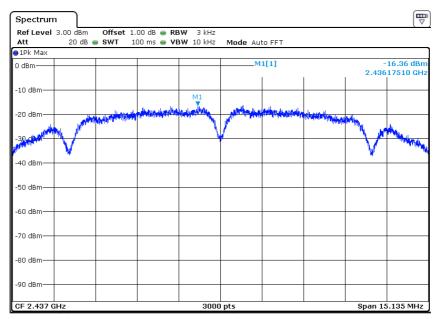
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
- 3. Measure the Power Spectral Density of the test frequency with special test status.
- 4. Repeat until all the test status is investigated.
- 5. Report the worst case.

Used Test Equipment List

Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

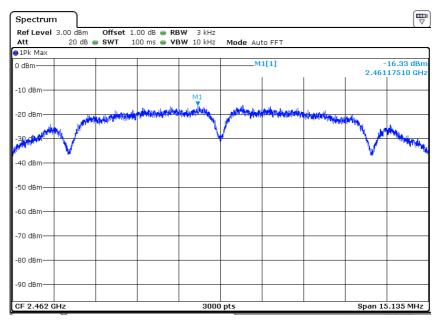
Test result:


Channel No.	Frequency (MHz)	Mode	Data Rate	Measured Peak Power Spectral Density (dBm/3kHz)	Limit	Result
1	2412		11 Mbps	-16.32		Pass
6	2437	802.11b	11 Mbps	-16.36		Pass
11	2462		11 Mbps	-16.33		Pass
1	2412		54 Mbps	-15.84		Pass
6	2437	802.11g	54 Mbps	-16.32		Pass
11	2462		54 Mbps	-16.00	8dBm/	Pass
1	2412	802.11n	72.2 Mbps	-17.02	3 KHz	Pass
6	2437	(HT20)	72.2 Mbps	-16.40		Pass
11	2462	(1120)	72.2 Mbps	-16.44		Pass
3	2422	802.11n	150 Mbps	-19.93	1	Pass
6	2437	(HT40)	150 Mbps	-20.37		Pass
9	2452		150 Mbps	-20.27		Pass

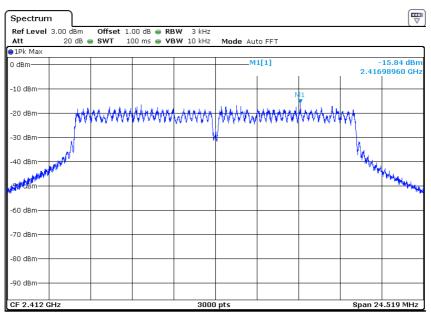

TEST REPORT

Result plot as follows:

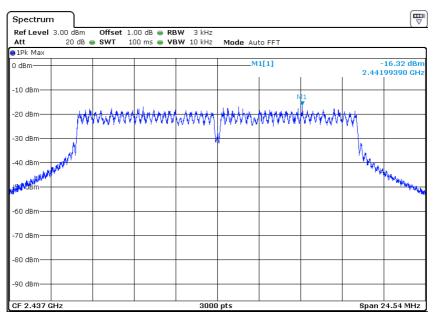
802.11b mode with 11Mbps data rate Channel 1: 2.412GHz:

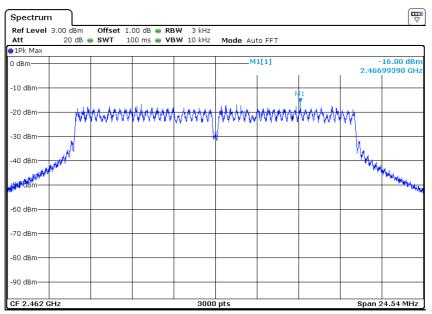


Channel 6: 2.437GHz:



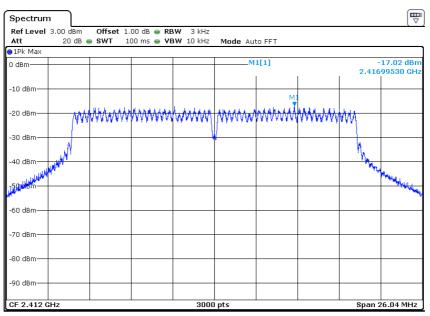
Channel 11: 2.462GHz:


802.11g mode with 54Mbps data rate Channel 1: 2.412GHz:

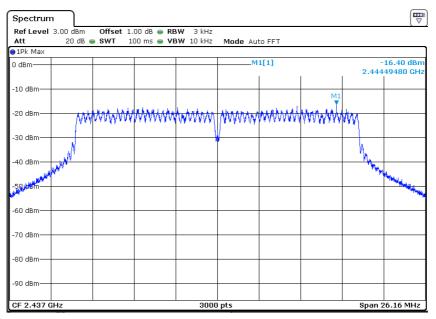


TEST REPORT

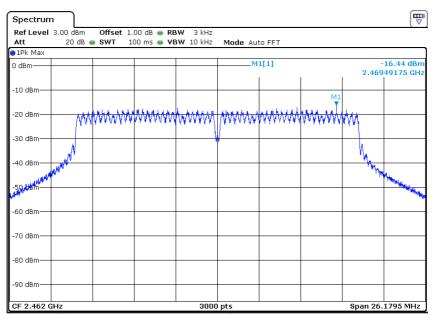
Channel 6: 2.437GHz:

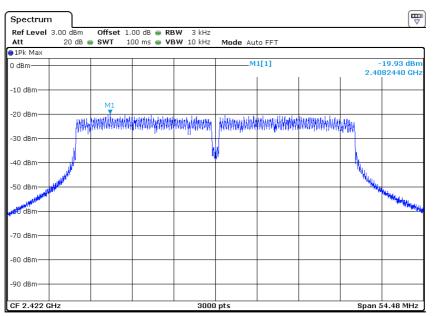


Channel 11: 2.462GHz:



802.11n(HT20) mode with 72.2Mbps data rate Channel 1: 2.412GHz:


Channel 6: 2.437GHz:


TEST REPORT

Channel 11: 2.462GHz:

Channel 3: 2.422GHz:

TEST REPORT

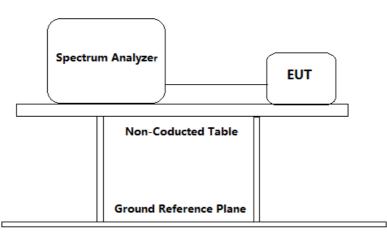
Channel 9:

Channel 6: 2.437GHz:

Att	3.00 dBm 20 dB (00 dB 👄 RI LOO ms 👄 VI		Mode Au	to FFT			
∋1Pk Max	20 00 1			20 10 10 10	Houe Au				
0 dBm					M	1[1]		2	-20.37 dB 4482408 GF
								2.	++02+00 Gr
-10 dBm									
-20 dBm-							11		
-20 ubiii	hikka.	NAMANANAN	MANNA ANA	NAMAN LANDANAN	Ashtonia dahah	ANNANANANAN NA	Adalaadar dahaa daha	untra	
-30 dBm	וייזי	Internetic	a a a a a fara	multure	Turningham	midnutin	an dan an dada	84990	
					8				
-40 dBm				, , , , , , , , , , , , , , , , , , ,	1			- <u>h</u>	
	A BELLEVIL							The second second	
-50 dBm	N ^{PT}								And Annual An
and the state of the									The second s
gu dBm									
-70 dBm									
-80 dBm									
-90 dBm									
CF 2.437 G				3000					4.5205 MH
Spectrum	, L				2				ļ
Spectrum Ref Level	3.00 dBm		.00 dB 🖷 Ri		Mada Au				
Spectrum Ref Level Att	, L		.00 dB 👄 RI L00 ms 👄 VI		Mode Au	to FFT			
Spectrum Ref Level Att 1Pk Max	3.00 dBm					to FFT			-20.27 dB
	3.00 dBm							2.4	-20.27 dB
Spectrum Ref Level Att PIPk Max 0 dBm	3.00 dBm							2.4	-20.27 dB
Spectrum Ref Level Att 1Pk Max 0 dBm -10 dBm	3.00 dBm							2.4	-20.27 dB
Spectrum Ref Level Att PIPk Max 0 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]			-20.27 dB
Spectrum Ref Level Att 1Pk Max 0 dBm -10 dBm -20 dBm	3.00 dBm 20 dB (SWT :	LOO ms 🖷 ۷	BW 10 kHz	M	1[1]			-20.27 dB
Spectrum Ref Level Att 1Pk Max 0 dBm -10 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]			-20.27 dB
Spectrum Ref Level Att 1Pk Max 0 dBm -10 dBm -20 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]			-20.27 dB
Spectrum Ref Level Att 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]		MMM N.	-20.27 dB 1436193 GF
Spectrum Ref Level Att 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]			-20.27 dB
Spectrum Ref Level Att IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]		MMM N.	-20.27 dB
Spectrum Ref Level Att 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]		MMM N.	-20.27 dB
Spectrum Ref Level Att IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]		MMM N.	-20.27 dB 4436193 GH
Spectrum Ref Level Att IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]		MMM N.	-20.27 dB
Spectrum Ref Level Att IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]		MMM N.	-20.27 dB
Spectrum Ref Level Att IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]		MMM N.	-20.27 dB
Spectrum Ref Level Att IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	3.00 dBm 20 dB (SWT :	100 ms • VI	BW 10 kHz	M	1[1]		MMM N.	-20.27 dB

TEST REPORT

4.5 Out of Band Conducted Emissions


Test Requirement: FCC Part 15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Method: ANSI C63.10: Clause 11.11

Test Status: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

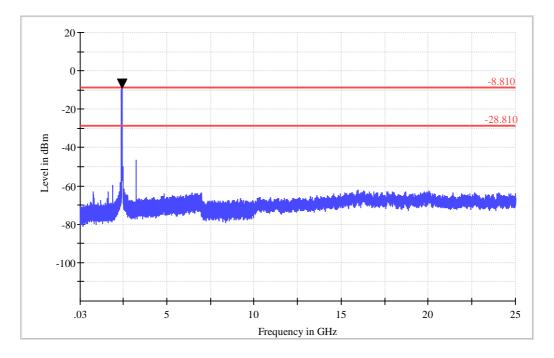
- 1. Remove the antenna from the EUT and then connect a low RF cable (cable loss =1dB) from the antenna port to the spectrum analyzer or power meter.
- 2. Establish a reference level by using the following procedure:
 - a) Set instrument center frequency to DTS channel center frequency.
 - b) Set the span to \geq 1.5 imes DTS bandwidth.
 - c) Set the RBW = 100 kHz.
 - d) Set the VBW \geq [3 × RBW].
 - e) Detector = peak.
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the maximum PSD level.

TEST REPORT

Note that the channel found to contain the maximum PSD level can be used to establish the reference level

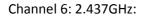
3. Emission level measurement

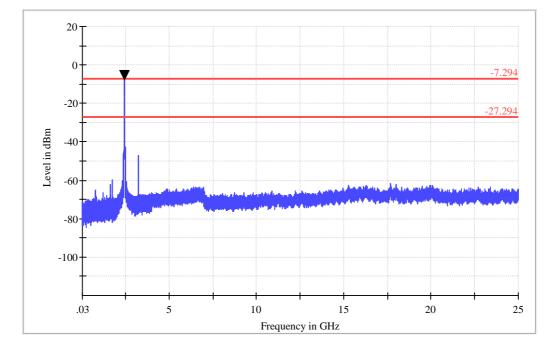
a) Set the center frequency and span to encompass frequency range to be measured.


- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.
- 4. Measure the Conducted unwanted Emissions of the test frequency with special test status.
- 5. Repeat until all the test status is investigated.
- 6. Report the worst case.

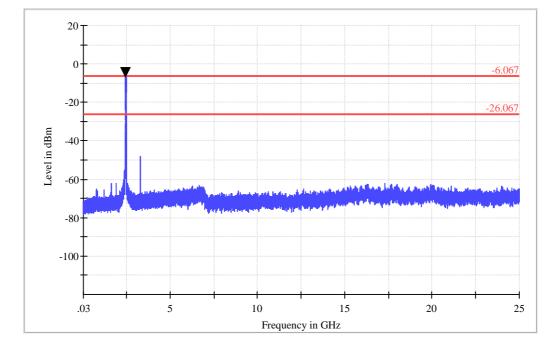
Used Test Equipment List

Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

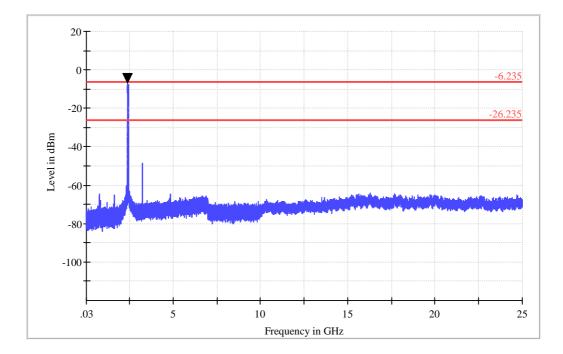

Result plot as follows:

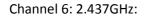

802.11b mode with 11Mbps data rate Channel 1: 2.412GHz:

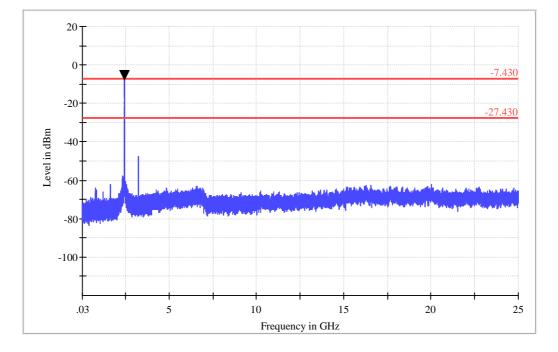
In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.



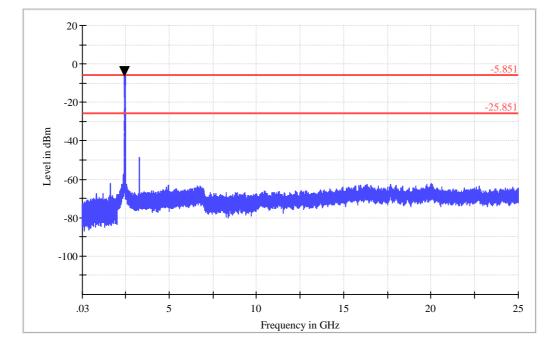
Channel 11:2.462 GHz:

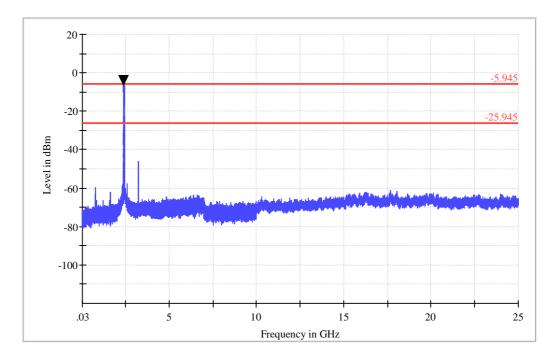


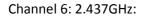

TEST REPORT


802.11g mode with 54Mbps data rate

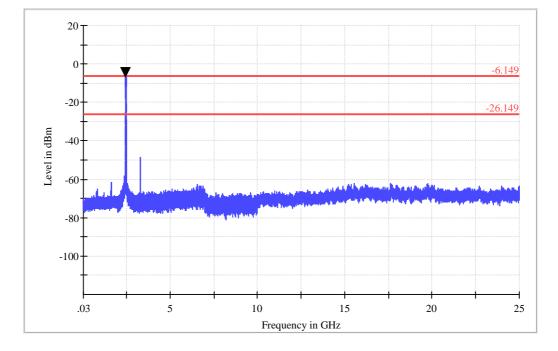
Channel 1: 2.412GHz:

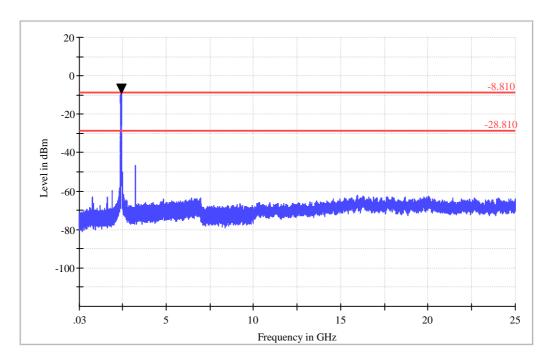



Channel 11: 2.462 GHz:

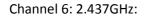


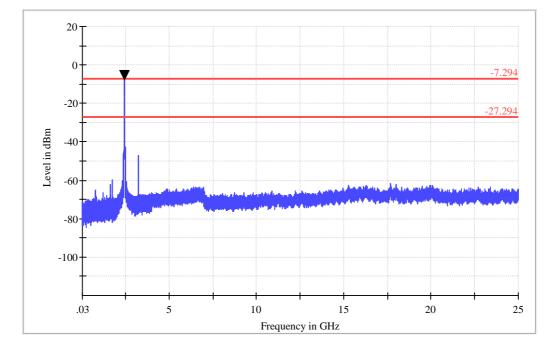
802.11n(HT20) mode with 72.2Mbps data rate Channel 1: 2.412GHz:

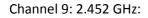


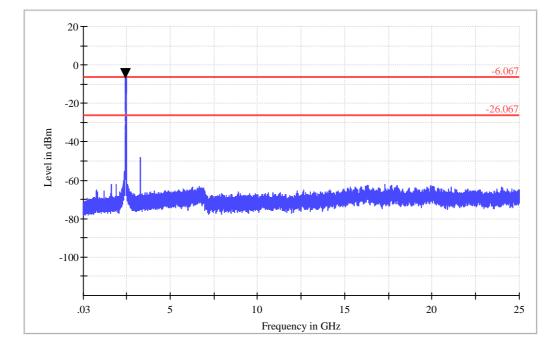


Channel 11:2.462 GHz:






802.11n(HT40) mode with 150Mbps data rate Channel 3: 2.422GHz:



TEST REPORT

4.6 Out of Band Radiated Emissions

For out of band radiated emissions into Non-Restricted Frequency Bands were performed at a 3m separation distance to determine whether these emissions complied with the 20dB attenuation requirement.

- $[\times]$ Not required, since all emissions are more than 20dB below fundamental
- [] See attached data sheet

TEST REPORT

4.7 Radiated Emissions in Restricted Bands

Test Requirement:	FCC Part 15 C section 15.247
	(d) In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method:	ANSI C63.10: Clause 11.12.1, 6.4, 6.5 and 6.6
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)
Limit:	40.0 dBμV/m between 30MHz & 88MHz;
	43.5 dBμV/m between 88MHz & 216MHz;
	46.0 dBμV/m between 216MHz & 960MHz;
	54.0 dBμV/m above 960MHz.
Detector:	For Peak and Quasi-Peak value: RBW =
	1 MHz for $f \ge 1$ GHz,
	200 Hz for 9 kHz to 150 kHz
	9 kHz for 150 kHz to 30 MHz 120 kHz for 30 MHz to 1GHz
	120 km 2 for 30 km 2 to 1GHz VBW \geq RBW
	Sweep = auto
	Detector function = peak for $f \ge 1$ GHz, QP for $f < 1$ GHz Trace = max hold
	For AV value:
	RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for $f < 1$ GHz
	VBW=10 Hz
	Sweep = auto Trace = max hold
Field Strength Calculation:	
	The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below: FS = RA + AF + CF - AG + PD + AV FS = RA + Correct Factor + AV
Where:	FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$ AF = Antenna Factor in dB CF = Cable Attenuation Factor in dB AG = Amplifier Gain in dB PD = Pulse Desensitization in dB AV = Average Factor in - dBCorrect Factor = AF + CF – AG + PD In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows: FS = RA + AF + CF - AG + PD + AVAssume a receiver reading of $62.0 \text{ dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dBµV/m. $RA = 62.0 dB\mu V$ AF = 7.4 dB $CF = 1.6 \, dB$ AG = 29.0 dB

PD = 0 dB

AV = -10 dB

Correct Factor = 7.4 + 1.6 - 29.0 + 0 = -20 dB

 $FS = 62 + (-20) + (-10) = 32 \text{ dB}\mu\text{V/m}$

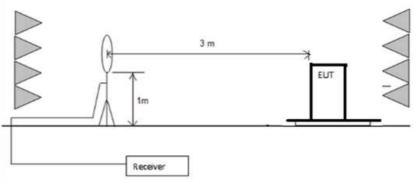
Remark: Above the 1GHz, spectrum used the RBW 1MHz(1/RBW=1us) for test, which is shorter than the width of one pulse, so PD=0dB

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. Only spurious emissions are permitted in any of the frequency bands listed below:

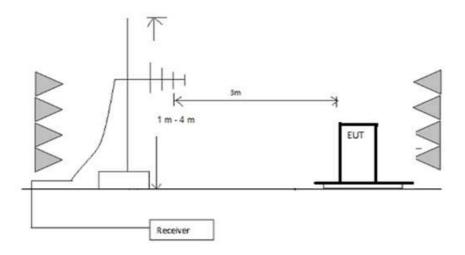
TEST REPORT

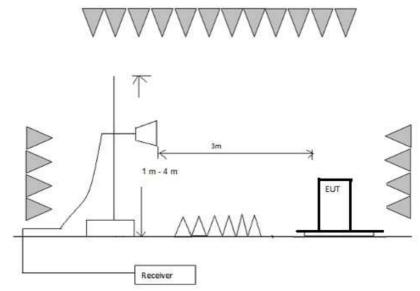
MHz	MHz	MHz	GHz
$\begin{array}{c} 0.090 - 0.110 \\ 10.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 - 12.52025 \\ 12.57675 - 12.57725 \\ 13.36 - 13.41 \end{array}$	$\begin{array}{c} 16.42 - 16.423 \\ 16.69475 - 16.69525 \\ 16.80425 - 16.80475 \\ 25.5 - 25.67 \\ 37.5 - 38.25 \\ 73 - 74.6 \\ 74.8 - 75.2 \\ 108 - 121.94 \\ 123 - 138 \\ 149.9 - 150.05 \\ 156.52475 - \\ 156.52525 \\ 156.7 - 156.9 \\ 162.0125 - 167.17 \\ 167.72 - 173.2 \\ 240 - 285 \\ 322 - 335.4 \end{array}$	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	$\begin{array}{r} 4.5 - 5.15 \\ 5.35 - 5.46 \\ 7.25 - 7.75 \\ 8.025 - 8.5 \\ 9.0 - 9.2 \\ 9.3 - 9.5 \\ 10.6 - 12.7 \\ 13.25 - 13.4 \\ 14.47 - 14.5 \\ 15.35 - 16.2 \\ 17.7 - 21.4 \\ 22.01 - 23.12 \\ 23.6 - 24.0 \\ 31.2 - 31.8 \\ 36.43 - 36.5 \end{array}$



TEST REPORT

Test Configuration:


1) 9 kHz to 30 MHz emissions:


2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 40 GHz emissions:

Test Procedure:

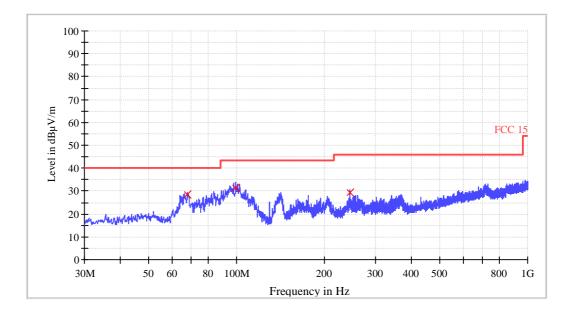
Floor standing EUT, was placed on a 10mm high non-metallic supported on GRP

Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2010 was used to perform radiated emission test above 1 GHz.

The receiver was scanned from 9 kHz to 25 GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

Used Test Equipment List:

3m Semi-Anechoic Chamber, EMI Test Receiver (9 kHz~7 GHz), Signal and Spectrum Analyzer (10 Hz~40 GHz), Loop antenna (9 kHz-30 MHz). TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX), Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX) and High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX). Refer to Clause 5 Test Equipment List for details.


TEST REPORT

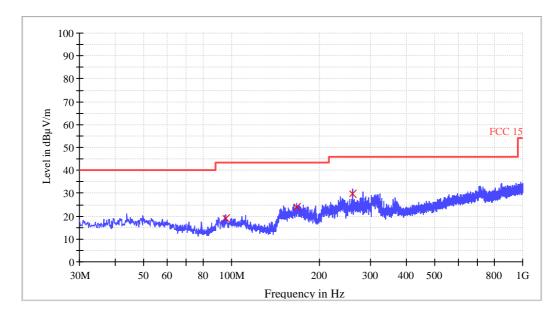
802.11b mode with 11Mbps data rate

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Test at Channel 1 (2.412 GHz) in transmitting status

30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement Vertical:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
67.96	17.9	10.5	28.4	40.0
99.24	19.0	12.2	31.2	43.5
244.48	15.8	13.5	29.3	46.0


Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

TEST REPORT

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
95.36	7.5	11.4	18.9	43.5
167.88	14.2	9.7	23.9	43.5
260.00	15.9	13.9	29.8	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions.

PK Measurement:

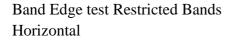
Frequency (MHz)	PK Reading Level (dBμV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4823.30	42.3	-0.5	41.8	74	Horizontal
7266.20	42.8	3.4	46.2	74	Horizontal
9648.16	38.2	6.3	44.5	74	Horizontal
4823.30	40.6	-0.5	40.1	74	Vertical
7266.20	45.8	3.4	49.2	74	Vertical
9648.16	39.0	6.3	45.3	74	Vertical

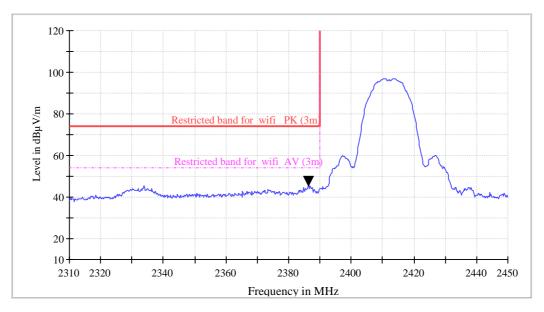
AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4823.30	/	-0.5	/	54	Horizontal
7266.20	/	3.4	/	54	Horizontal
9648.16	/	6.3	/	54	Horizontal
4823.30	/	-0.5	/	54	Vertical
7266.20	/	3.4	/	54	Vertical
9648.16	/	6.3	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

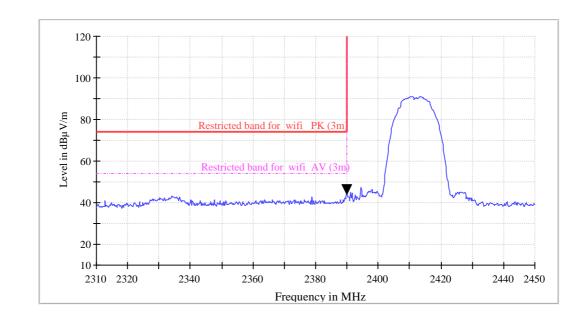

Remark:

Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	· · ·
2386.30	48.1	-2.3	45.8	74.0

Remark:


Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

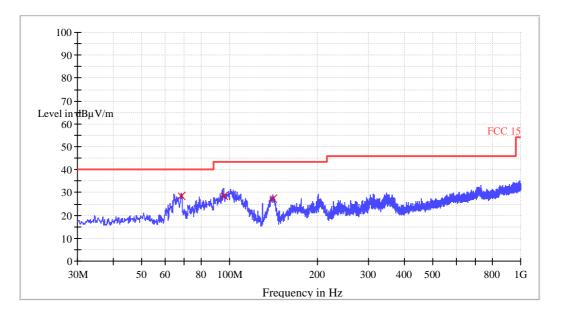
When Peak emission level was below AV limit, the AV emission level did not be recorded.

Vertical

Frequency (MHz)	PK Reading Level	Correction factors (dB/m)	PK Emission Level	Limit (dBµV/m)
	(dBµV)		(dBµV/m)	
2390.0	46.7	-2.3	44.4	74.0

Remark:

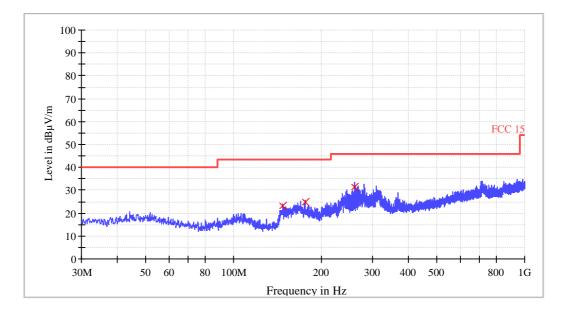
Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Test at Channel 6 (2.437 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement Vertical:



Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
68.32	18.2	10.4	28.6	40.0
95.36	16.9	11.4	28.3	43.5
141.32	18.6	8.8	27.4	43.5

TEST REPORT

Horizontal:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
147.48	14.0	9.0	23.0	43.5
176.00	14.9	10.1	25.0	43.5
260.00	17.6	13.9	31.5	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

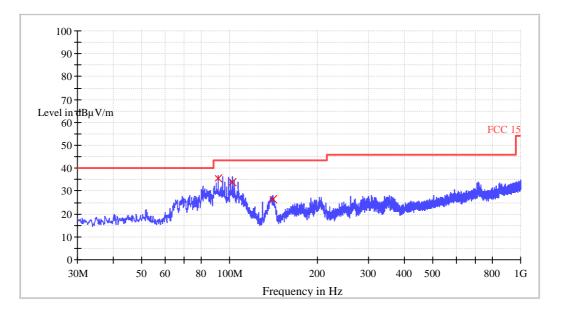
Frequency (MHz)	PK Reading Level (dBμV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4874.30	41.3	-0.5	40.8	74	Horizontal
7653.80	43.5	3.8	47.3	74	Horizontal
9748.21	34.4	6.8	41.2	74	Horizontal
4874.30	41.8	-0.5	41.3	74	Vertical
7653.80	43.1	3.8	46.9	74	Vertical
9748.21	34.3	6.8	41.1	74	Vertical

AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4874.30	/	-0.5	/	54	Horizontal
7653.80	/	3.8	/	54	Horizontal
9748.21	/	6.8	/	54	Horizontal
4874.30	/	-0.5	/	54	Vertical
7653.80	/	3.8	/	54	Vertical
9748.21	/	6.8	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correction Factor

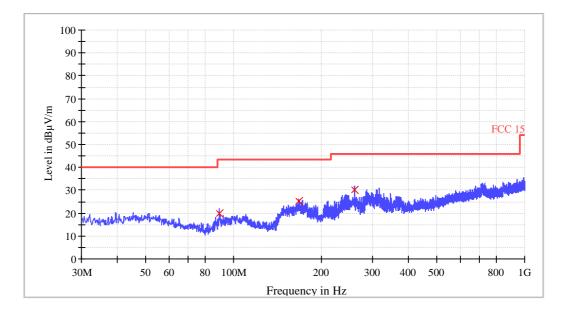

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor. Remark:

Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Test at Channel 11 (2.462 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement Vertical:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
91.6	25.1	10.6	35.7	43.5
102.52	21.3	12.4	33.7	43.5
140.72	17.6	8.8	26.4	43.5


Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

TEST REPORT

Horizontal:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
89.40	9.6	10.1	19.7	43.5
167.72	15.7	9.6	25.3	43.5
260.00	16.1	13.9	30.0	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

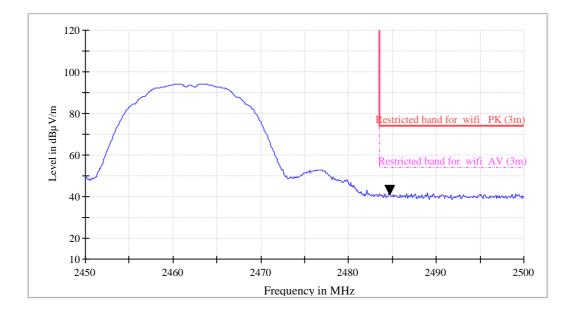
Frequency (MHz)	PK Reading Level (dBµV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4923.60	41.8	-0.5	41.3	74	Horizontal
7682.70	42.9	4.2	47.1	74	Horizontal
9848.25	37.9	7.3	45.2	74	Horizontal
4923.60	41.1	-0.5	40.6	74	Vertical
7682.70	44.1	4.2	48.3	74	Vertical
9848.25	38.3	7.3	45.6	74	Vertical

AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4874.30	/	-0.5	/	54	Horizontal
7653.80	/	4.2	/	54	Horizontal
9748.21	/	7.3	/	54	Horizontal
4874.30	/	-0.5	/	54	Vertical
7653.80	/	4.2	/	54	Vertical
9748.21	/	7.3	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor. Remark:

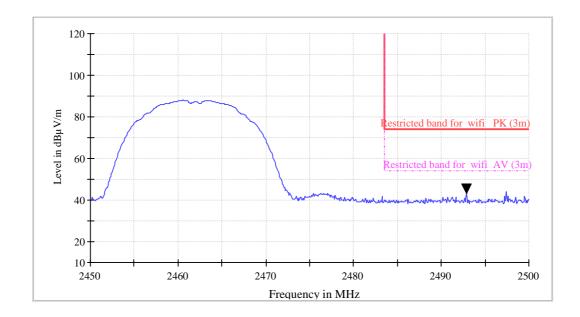
Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Band Edge test Restricted Bands Horizontal

	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	
2484.7	43.6	-2.1	41.5	74.0

Remark:


Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

When Peak emission level was below AV limit, the AV emission level did not be recorded.

Vertical

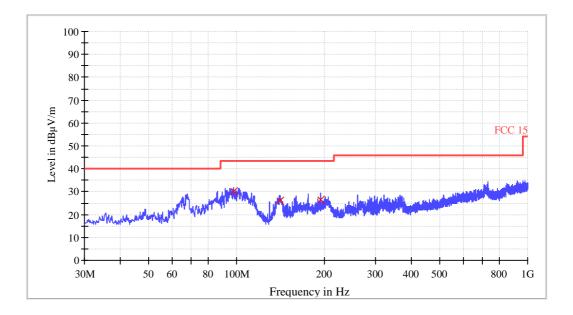
	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	•
2492.92	45.7	-2.1	43.6	74.0

Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

When Peak emission level was below AV limit, the AV emission level did not be recorded.


TEST REPORT

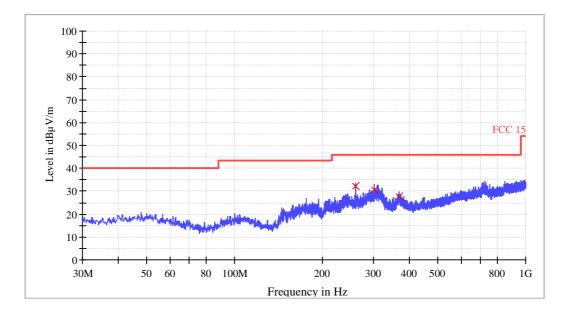
802.11g mode with 54Mbps data rate

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Test at Channel 1 (2.412 GHz) in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement Vertical:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
97.40	18.2	11.8	30.0	43.5
141.44	17.3	8.8	26.1	43.5
195.04	14.5	11.8	26.3	43.5


Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

TEST REPORT

Horizontal:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
260.00	18.3	13.9	32.2	46.0
303.16	15.5	15.0	30.5	46.0
367.20	11.0	16.7	27.7	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions.

PK Measurement:

Frequency (MHz)	PK Reading Level (dBμV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4823.23	40.2	-0.5	39.7	74	Horizontal
7266.49	43.2	3.4	46.6	74	Horizontal
9648.65	39.5	6.3	45.8	74	Horizontal
4823.23	40.7	-0.5	40.2	74	Vertical
7266.49	42.9	3.4	46.3	74	Vertical
9648.65	38.9	6.3	45.2	74	Vertical

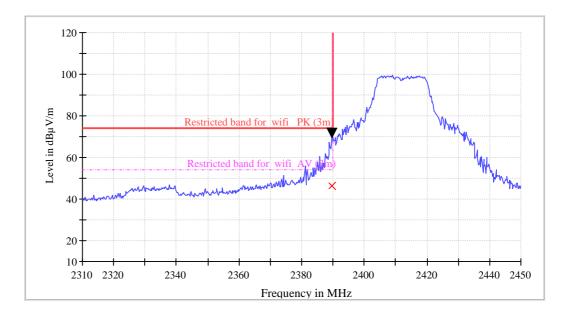
AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4823.23	/	-0.5	/	54	Horizontal
7266.49	/	3.4	/	54	Horizontal
9648.65	/	6.3	/	54	Horizontal
4823.23	/	-0.5	/	54	Vertical
7266.49	/	3.4	/	54	Vertical
9648.65	/	6.3	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss – Preamplifier Factor.

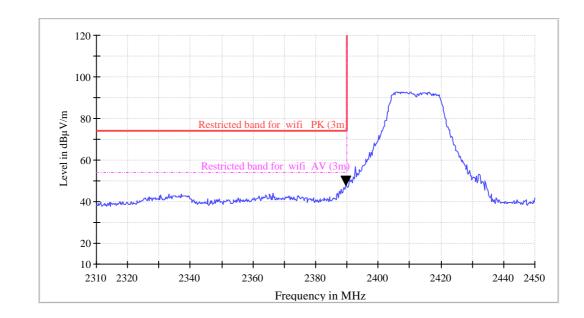

Remark:

Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Band Edge test Restricted Bands Horizontal

	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	
2390.0	72.2	-2.3	69.9	74.0


Frequency (MHz)	AV Reading Level (dBµV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	Limit (dBµV/m)
2390.0	48.8	-2.3	46.5	54.0

Remark:

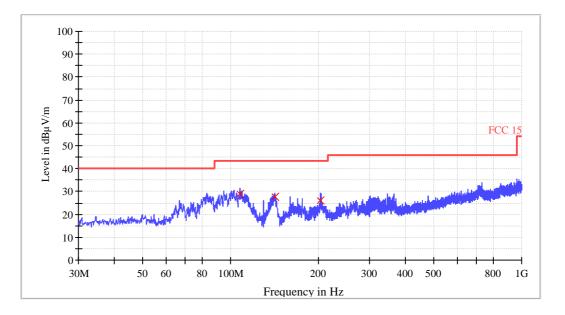
Final Test Level =Receiver Reading + Correction Factor Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

Vertical

Frequency (MHz)	PK Reading Level (dBµV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	Limit (dBµV/m)
2390.0	<u>(ubµ v)</u> 50.4	-2.3	48.1	74.0

Remark:

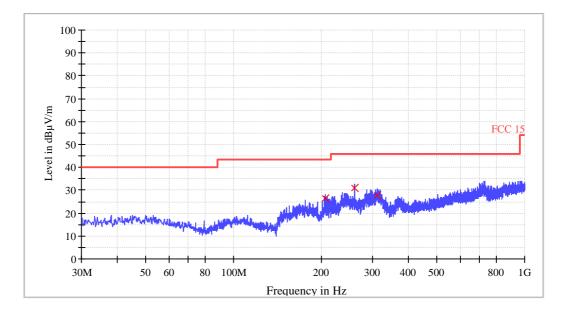
Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Test at Channel 6 (2.437 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement Vertical:



Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
107.72	16.4	12.4	28.8	43.5
141.56	19.0	8.8	27.8	43.5
202.92	13.8	12.4	26.2	43.5

TEST REPORT

Horizontal:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
206.68	13.9	12.5	26.4	43.5
260.00	17.2	13.9	31.1	46.0
312.16	12.4	15.3	27.7	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

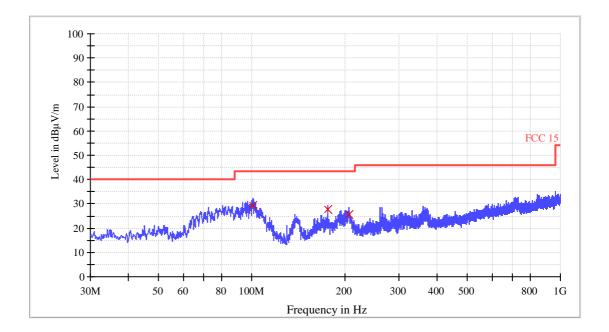
Frequency (MHz)	PK Reading Level (dBμV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4874.54	40.8	-0.5	40.3	74	Horizontal
7653.76	43.8	3.8	47.6	74	Horizontal
9748.37	38.6	6.8	45.4	74	Horizontal
4874.54	39.8	-0.5	39.3	74	Vertical
7653.76	42.6	3.8	46.4	74	Vertical
9748.37	38.4	6.8	45.2	74	Vertical

AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4874.30	/	-0.5	/	54	Horizontal
7653.80	/	3.8	/	54	Horizontal
9748.21	/	6.8	/	54	Horizontal
4874.30	/	-0.5	/	54	Vertical
7653.80	/	3.8	/	54	Vertical
9748.21	/	6.8	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

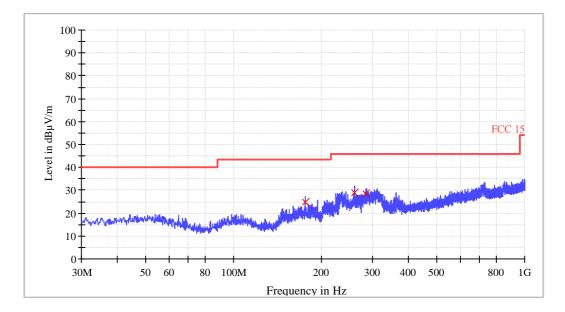
Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor. Remark:

Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Test at Channel 11 (2.462 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement Vertical:


Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
101.04	17.0	12.4	29.4	43.5
176.00	17.4	10.1	27.5	43.5
205.92	12.9	12.5	25.4	43.5

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

TEST REPORT

Horizontal:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
176.00	14.8	10.1	24.9	43.5
259.88	15.1	13.9	29.0	46.0
285.36	14.0	14.6	28.6	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

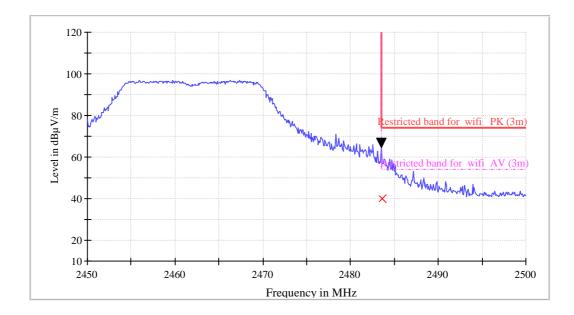
Frequency (MHz)	PK Reading Level (dBµV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4924.53	41.4	-0.5	40.9	74	Horizontal
7681.59	42.2	4.2	46.4	74	Horizontal
9848.47	37.3	7.3	44.6	74	Horizontal
4924.53	41.1	-0.5	40.6	74	Vertical
7681.59	43.5	4.2	47.7	74	Vertical
9848.47	37.9	7.3	45.2	74	Vertical

AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4924.53	/	-0.5	/	54	Horizontal
7681.59	/	4.2	/	54	Horizontal
9848.47	/	7.3	/	54	Horizontal
4924.53	/	-0.5	/	54	Vertical
7681.59	/	4.2	/	54	Vertical
9848.47	/	7.3	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor. Remark:

Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

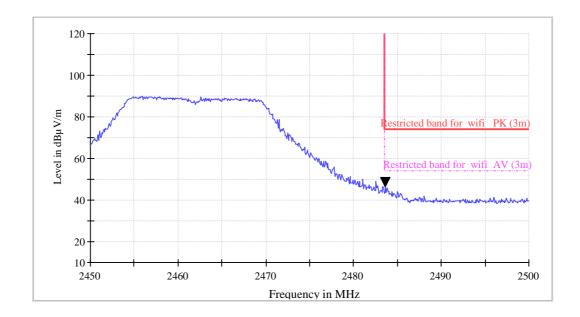
TEST REPORT

Band Edge test Restricted Bands Horizontal

	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	•
2483.5	66.9	-2.1	64.8	74.0

Frequency (MHz)	AV Reading Level (dBµV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	Limit (dBµV/m)
2483.5	42.2	-2.1	40.1	54.0

Remark:


Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

When Peak emission level was below AV limit, the AV emission level did not be recorded.

Vertical

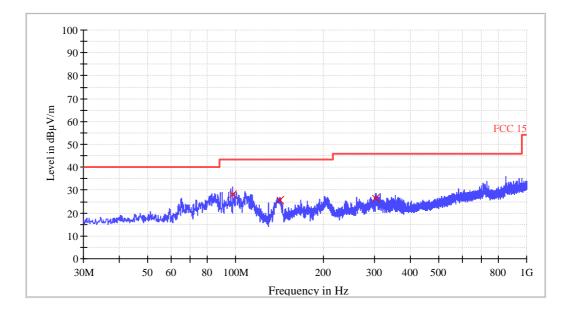
	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	· · ·
2492.92	49.2	-2.1	47.1	74.0

Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

When Peak emission level was below AV limit, the AV emission level did not be recorded.

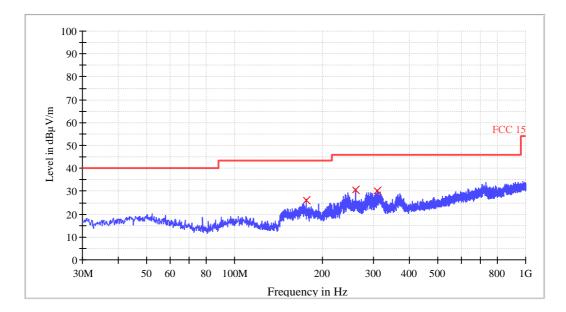

TEST REPORT

802.11n (HT20) mode with 72.2Mbps data rate

802.11g mode with 54Mbps data rate 9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Test at Channel 1 (2.412 GHz) in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement Vertical:


Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
97.76	16.2	11.9	28.1	43.5
141.92	16.7	8.8	25.5	43.5
303.40	11.3	15.0	26.3	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

TEST REPORT

Horizontal:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
176.00	15.9	10.1	26.0	43.5
260.00	16.7	13.9	30.6	46.0
309.48	14.8	15.2	30.0	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions.

PK Measurement:

Frequency (MHz)	PK Reading Level (dBμV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4823.26	40.1	-0.5	39.6	74	Horizontal
7266.49	43.7	3.4	47.1	74	Horizontal
9648.65	39.6	6.3	45.9	74	Horizontal
4823.26	39.6	-0.5	39.1	74	Vertical
7266.49	43.5	3.4	46.9	74	Vertical
9648.65	38.0	6.3	44.3	74	Vertical

AV Measurement:

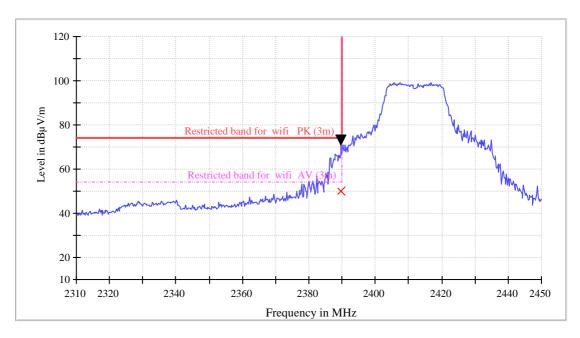
Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4823.26	/	-0.5	/	54	Horizontal
7266.49	/	3.4	/	54	Horizontal
9648.65	/	6.3	/	54	Horizontal
4823.26	/	-0.5	/	54	Vertical
7266.49	/	3.4	/	54	Vertical
9648.65	/	6.3	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

Remark:


Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

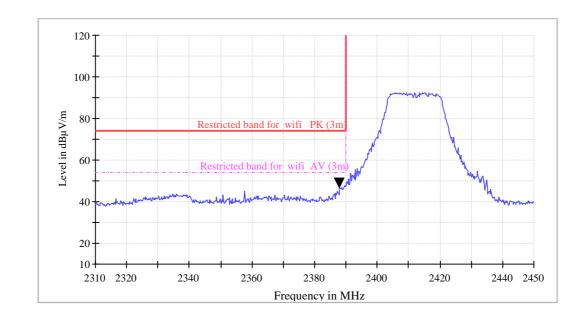
TEST REPORT

Band Edge test Restricted Bands

Horizontal

	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	
2390.0	73.9	-2.3	71.6	74.0

Frequency	AV Reading	Correction factors	AV Emission	Limit
(MHz) 2390.0	Level (dBµV) 52.2	(dB/m) -2.3	Level (dBµV/m) 49.9	(dBµV/m) 54.0


Remark:

Final Test Level =Receiver Reading + Correction Factor

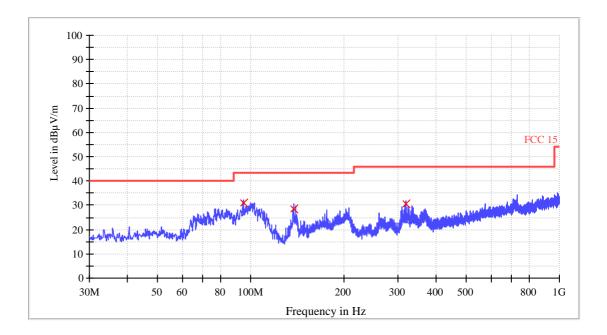
Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

Vertical

Frequency (MHz)	PK Reading Level	Correction factors (dB/m)	PK Emission Level	Limit (dBµV/m)
	(dBµV)		(dBµV/m)	
2390.0	49.5	-2.3	47.2	74.0

Remark:

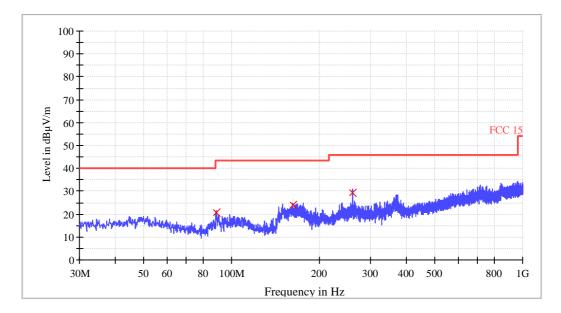
Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Test at Channel 6 (2.437 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement Vertical:



Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
94.64	19.8	11.3	31.1	43.5
138.28	19.7	8.9	28.6	43.5
317.96	15.3	15.4	30.7	46.0

TEST REPORT

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
88.44	11.0	9.9	20.9	43.5
162.28	14.6	9.3	23.9	43.5
260.00	15.6	13.9	29.5	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

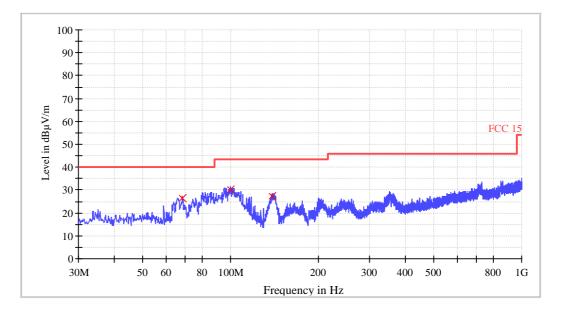
Frequency (MHz)	PK Reading Level (dBμV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4874.59	39.3	-0.5	38.8	74	Horizontal
7653.82	43.5	3.8	47.3	74	Horizontal
9748.46	38.4	6.8	45.2	74	Horizontal
4874.59	38.6	-0.5	38.1	74	Vertical
7653.82	41.6	3.8	45.4	74	Vertical
9748.46	36.9	6.8	43.7	74	Vertical

AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4874.59	/	-0.5	/	54	Horizontal
7653.82	/	3.8	/	54	Horizontal
9748.46	/	6.8	/	54	Horizontal
4874.59	/	-0.5	/	54	Vertical
7653.82	/	3.8	/	54	Vertical
9748.46	/	6.8	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

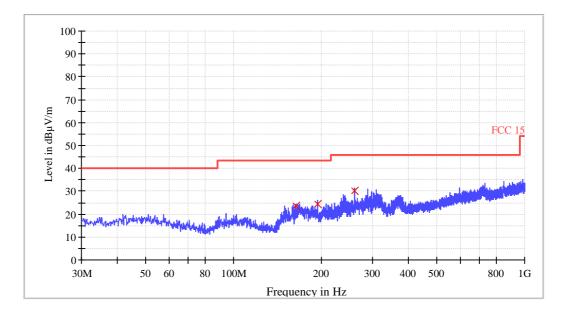
Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor. Remark:

Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Test at Channel 11 (2.462 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement Vertical:


Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
68.32	15.9	10.4	26.3	40.0
100.08	17.9	12.4	30.3	43.5
139.24	18.6	8.8	27.4	43.5

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

TEST REPORT

Horizontal:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
163.84	14.1	9.4	23.5	43.5
194.88	12.7	11.8	24.5	43.5
260.00	16.4	13.9	30.3	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

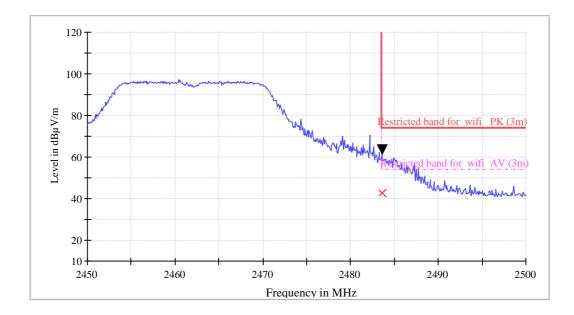
Frequency (MHz)	PK Reading Level (dBµV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4924.62	41.3	-0.5	40.8	74	Horizontal
7681.39	42.7	4.2	46.9	74	Horizontal
9848.27	37.4	7.3	44.7	74	Horizontal
4924.62	39.9	-0.5	39.4	74	Vertical
7681.39	40.1	4.2	44.3	74	Vertical
9848.27	36.2	7.3	43.5	74	Vertical

AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4924.62	/	-0.5	/	54	Horizontal
7681.39	/	4.2	/	54	Horizontal
9848.27	/	7.3	/	54	Horizontal
4924.62	/	-0.5	/	54	Vertical
7681.39	/	4.2	/	54	Vertical
9848.27	/	7.3	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor. Remark:

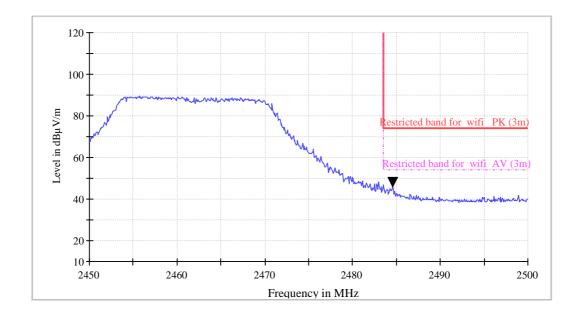
Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Band Edge test Restricted Bands Horizontal

	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	· · ·
2483.5	64.0	-2.1	61.9	74.0

Frequency (MHz)	AV Reading Level (dBµV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	Limit (dBµV/m)
2483.5	44.8	-2.1	42.7	54.0


Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

Vertical

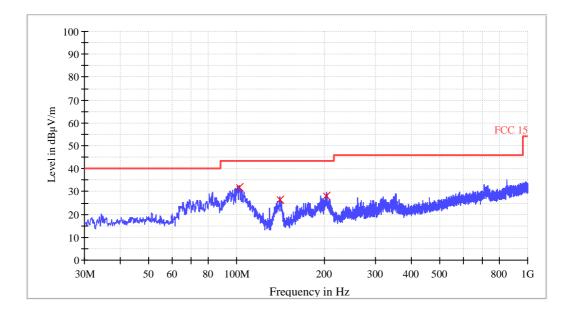
	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	· · ·
2492.92	48.5	-2.1	46.4	74.0

Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

When Peak emission level was below AV limit, the AV emission level did not be recorded.

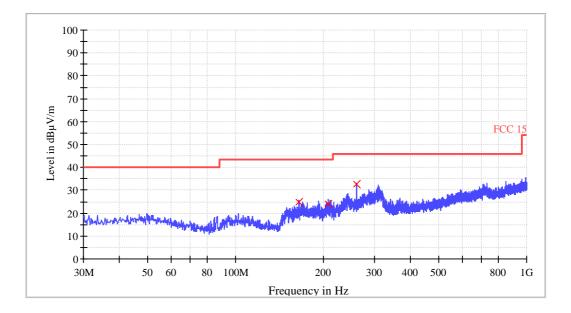

TEST REPORT

802.11n (HT40) mode with 150Mbps data rate

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Test at Channel 3 (2.422 GHz) in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement Vertical:


Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
102.28	19.4	12.4	31.8	43.5
141.32	17.7	8.8	26.5	43.5
204.12	15.6	12.4	28.0	43.5

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

TEST REPORT

Horizontal:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
164.6	15.3	9.5	24.8	43.5
208.72	11.3	12.6	23.9	43.5
260.00	18.6	13.9	32.5	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

1~25 GHz Radiated Emissions.

PK Measurement:

Frequency (MHz)	PK Reading Level (dBμV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4844.25	39.6	-0.5	39.1	74	Horizontal
7266.59	43.8	3.4	47.2	74	Horizontal
9688.49	38.6	6.3	44.9	74	Horizontal
4844.25	39.8	-0.5	39.3	74	Vertical
7266.59	41.9	3.4	45.3	74	Vertical
9688.49	37.6	6.3	43.9	74	Vertical

AV Measurement:

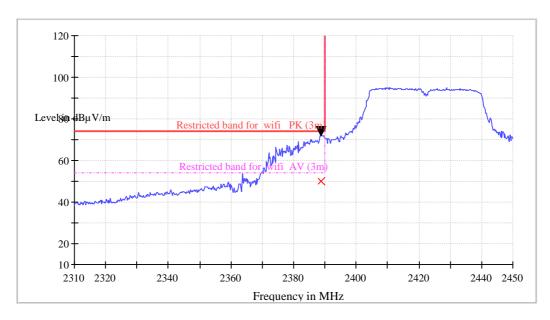
Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4844.25	/	-0.5	/	54	Horizontal
7266.59	/	3.4	/	54	Horizontal
9688.49	/	6.3	/	54	Horizontal
4844.25	/	-0.5	/	54	Vertical
7266.59	/	3.4	/	54	Vertical
9688.49	/	6.3	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss – Preamplifier Factor.

Remark:

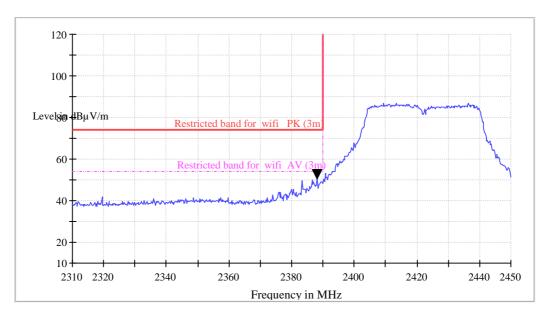

Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Band Edge test Restricted Bands

Horizontal

	PK	Correction	PK	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	•
2388.88	74.4	-2.3	72.1	74.0


Frequency (MHz)	AV Reading Level	Correction factors (dB/m)	AV Emission Level	Limit (dBµV/m)
	(dBµV)		(dBµV/m)	
2388.88	52.4	-2.3	50.1	54.0

Remark:

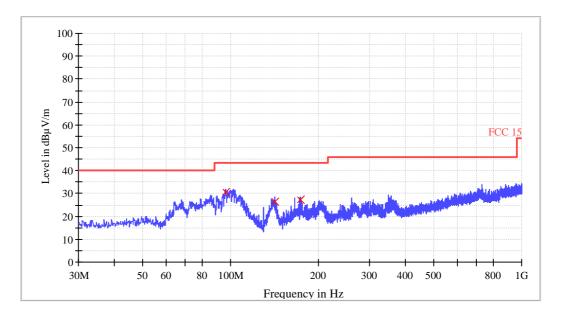
Final Test Level =Receiver Reading + Correction Factor Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

Vertical

	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	· · ·
2388.88	53.5	-2.3	51.2	74.0

Remark:

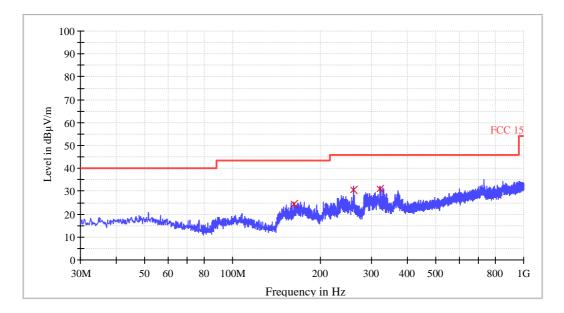
Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Test at Channel 6 (2.437 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement Vertical:



Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
95.96	19.3	11.5	30.8	43.5
142.16	17.7	8.9	26.6	43.5
174.04	17.2	10.0	27.2	43.5

TEST REPORT

Horizontal:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
163.00	14.8	9.4	24.2	43.5
260.00	16.7	13.9	30.6	46.0
321.48	15.6	15.5	31.1	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

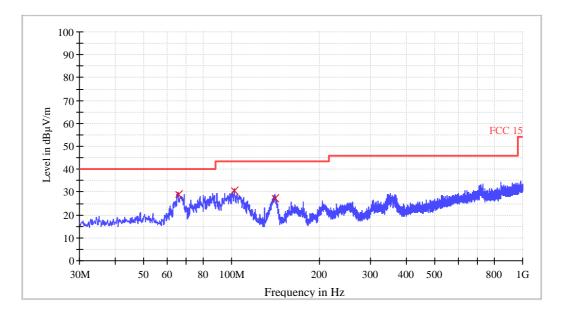
Frequency (MHz)	PK Reading Level (dBμV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4874.56	41.0	-0.5	40.5	74	Horizontal
7653.73	44.1	3.8	47.9	74	Horizontal
9748.69	37.8	6.8	44.6	74	Horizontal
4874.56	40.3	-0.5	39.8	74	Vertical
7653.73	42.9	3.8	46.7	74	Vertical
9748.69	37.5	6.8	44.3	74	Vertical

AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4874.56	/	-0.5	/	54	Horizontal
7653.73	/	3.8	/	54	Horizontal
9748.69	/	6.8	/	54	Horizontal
4874.56	/	-0.5	/	54	Vertical
7653.73	/	3.8	/	54	Vertical
9748.69	/	6.8	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

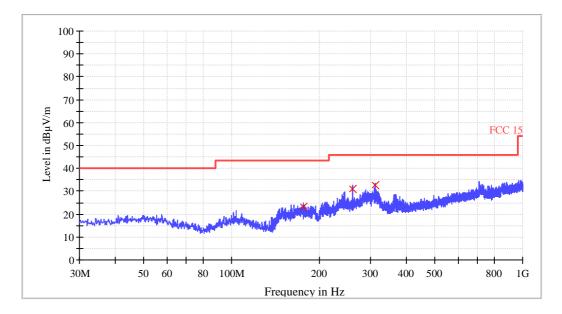
Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor. Remark:

Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Test at Channel 9 (2.452 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement Vertical:


Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
65.64	17.8	11.1	28.9	40.0
102.16	18.3	12.4	30.7	43.5
141.08	18.4	8.8	27.2	43.5

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak $(dB\mu V/m) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

TEST REPORT

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
176.00	13.8	9.4	23.2	43.5
259.88	19.3	11.8	31.1	46.0
310.92	18.9	13.9	32.8	46.0

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

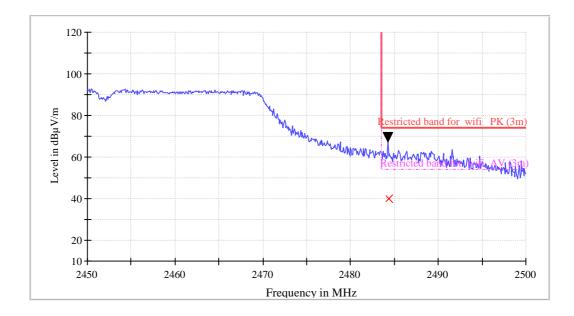
Frequency (MHz)	PK Reading Level (dBµV)	Correction factors (dB/m)	PK Emission Level (dBµV/m)	PK Limit (dBµV/m)	Antenna polarization
4904.42	40.2	-0.5	39.7	74	Horizontal
7356.27	39.2	4.2	43.4	74	Horizontal
9808.53	36.9	7.3	44.2	74	Horizontal
4904.42	40.1	-0.5	39.6	74	Vertical
7356.27	38.9	4.2	43.1	74	Vertical
9808.53	37.0	7.3	44.3	74	Vertical

AV Measurement:

Frequency (MHz)	AV Reading Level (dBμV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	AV Limit (dBµV/m)	Antenna polarization
4904.42	/	-0.5	/	54	Horizontal
7356.27	/	4.2	/	54	Horizontal
9808.53	/	7.3	/	54	Horizontal
4904.42	/	-0.5	/	54	Vertical
7356.27	/	4.2	/	54	Vertical
9808.53	/	7.3	/	54	Vertical

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correction Factor


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor. Remark:

Harmonic Emissions was tested with filter (Product name: MICRO-TRONICS, model name: BRM50702), other radiated emissions were found below the reference noise level When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

Band Edge test Restricted Bands Horizontal

	РК	Correction	РК	
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		(dBµV/m)	· · ·
2484.21	69.6	-2.1	67.5	74.0

Frequency (MHz)	AV Reading Level (dBµV)	Correction factors (dB/m)	AV Emission Level (dBµV/m)	Limit (dBµV/m)
2484.21	42.2	-2.1	40.1	54.0


Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

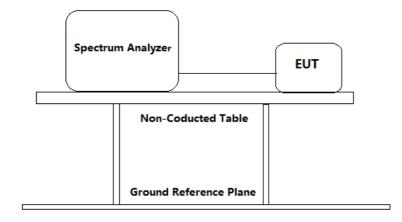
When Peak emission level was below AV limit, the AV emission level did not be recorded.

F	PK Decelier	Correction	PK	T inst
Frequency	Reading	factors	Emission	Limit
(MHz)	Level	(dB/m)	Level	(dBµV/m)
	(dBµV)		$(dB\mu V/m)$	
2484.21	52.2	-2.1	50.1	74.0

Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.


When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT

4.8 Band Edges Requirement

Test Requirement:	FCC Part 15 C section 15.247
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.
Frequency Band:	2400 MHz to 2483.5 MHz
Test Method:	ANSI C63.10: Clause 11.11 and 11.13
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.
Test Configuration:	For Band Edges Emission in Radiated mode, Please refer to clause 4.7

Test Procedure: For Band Edges Emission in Radiated mode, Please refer to clause 4.7

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.

a) Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

b) Set the center frequency and span to encompass frequency range to be measured.

- c) RBW = 100 kHz.
- d) VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto.

TEST REPORT

g) Trace mode = max hold.

h) Allow sweep to continue until the trace stabilizes (required measurement time may increase for low-duty-cycle applications).

i) For radiated Band-edge emissions within a restricted band and within 2 MHz of an authorized band edge, integration method is considered.

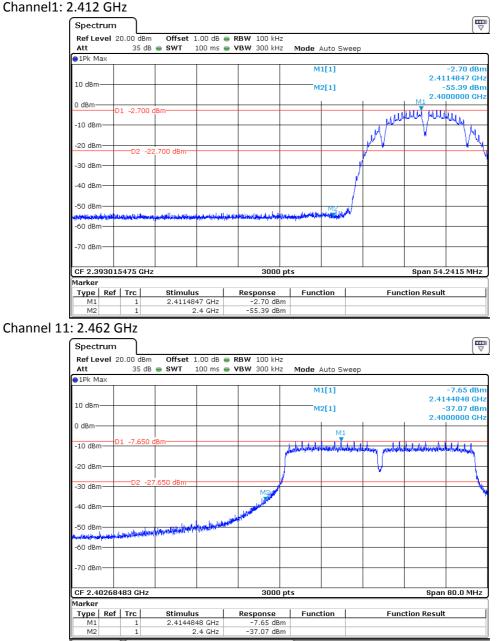
- 2. Repeat until all the test status is investigated.
- 3. Report the worst case.

Used Test Equipment List:

3m Semi-Anechoic Chamber, EMI Test Receiver (9 kHz~7 GHz), Signal and Spectrum Analyzer (10 Hz~40 GHz), Loop antenna (9 kHz-30 MHz). TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX), Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX) and High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX). Refer to Clause 5 Test Equipment List for details.

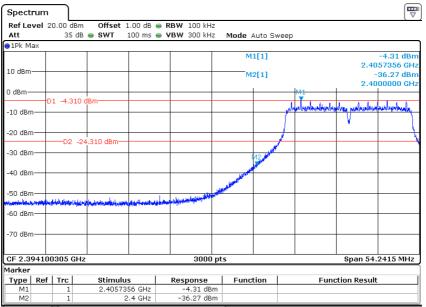
Test result with plots as follows: For conduct mode:

The band edges was measured and recorded Result:


The Lower Edges attenuated more than 20dB.

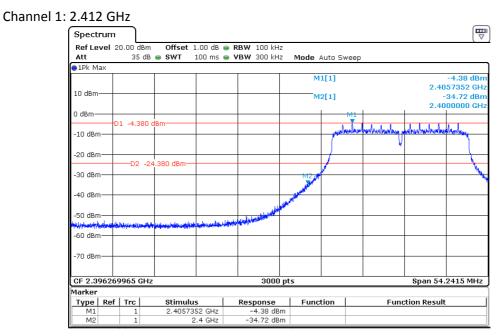
The Upper Edges attenuated more than 20dB.

TEST REPORT


Result plots as follows: 802.11b mode with 11 Mbps data rate

802.11g mode with 54 Mbps data rate

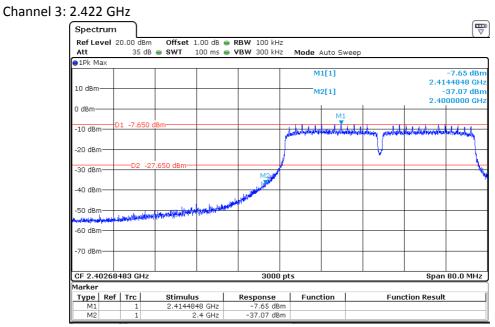
Channel1: 2.412 GHz



Channel 11: 2.462 GHz

Spectrum									
Ref Level 2	20.00 dBm	Offset	L.OO dB 👄	RBW 100 kHz					
Att	35 dB	SWT	100 ms 👄	VBW 300 kHz	Mode /	Auto Sw	/еер		
●1Pk Max									
					М	1[1]			-4.59 dBm
10 dBm									57470 GHz
TO UBIII					M	2[1]			51.34 dBm
0 dBm							1	2.48	35000 GHz
	1 4 500 4	10 m							
-10 dBm	Mappinghanlay and	gilagenerating the							
-10 ubiii	V								
-20 dBm									
-20 0611		.590 dBm-							
-30 dgm	02 -2-								
-30 0.511			N						
🗚 dBm									
alo abili			No.						
-50 dBm				M2					
30 0011				The Manual and	Loord Look and State	. Janah da janah d	ter and the second states the	A DER LANDARD	و الماليومية و المربعينيات
-60 dBm									
-70 dBm									
CF 2.4876 C	iHz			3000 p	ts			Span	80.0 MHz
Marker	1- 1			_	1 -				
Type Ref M1		2.4557		Response -4.59 dBm	Func	tion	Fun	ction Result	
M1 M2	1		47 GHZ 35 GHZ	-4.59 dBm -51.34 dBm					
112	1 1	2.40	55 612	51.5 7 ubm	1				

802.11n(HT20) mode with 72.2Mbps data rate

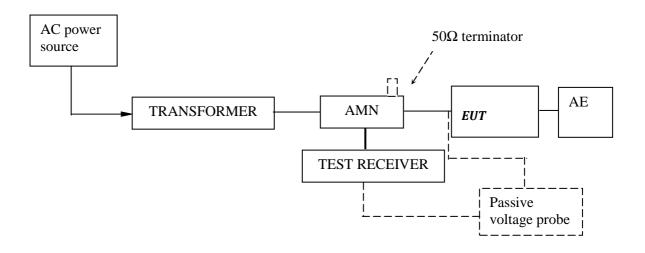


Channel 11: 2.462 GHz

Spectrum	ī									
Ref Level	20.00 dB	m Offset	1.00 dB (RBW 100 kHz						
Att	35 c	ib 👄 SWT	100 ms (📄 VBW 300 kHz	Mode A	uto Sw	еер			
⊖1Pk Max)	
10 dBm								-4.51 dBm 70000 GHz		
					M2[1]			-52.78 dBm 2.4835000 GHz		
0 dBm	Mi									
-10 dBm	D1 -4.51	o dBm	1							
-20 dBm		1	Į							
-30 gsm	D2 ·	24.510 dBm-								
40 dBm—										
-50 dBm				Man M2						
-60 dBm				The second s	alles, they have	histowa dibł	broken politica for and the former	الابريعيانية مغطيتها الألفاط	enter and the state of the state of	
-70 dBm										
CF 2.4876	GHz			3000	ots			 Span	80.0 MHz	
Marker										
Type Re		Stimul		Response						
M1 M2	1		457 GHz 835 GHz	-4.51 dBm -52.78 dBm						

802.11n(HT40) mode with 150Mbps data rate

Channel 9: 2.452 GHz


Spectrum											
Ref Level 2	0.00 di	Bm Offset 1	1.00 dB	🔵 RBW 100 kH	łz						
Att	35	dB 👄 SWT	100 ms (🔵 VBW 300 kH	z Mode	Auto S\	veep				
●1Pk Max											
					M	1[1]				-7.53 dBm	
10 dBm									2.4644930 GHz		
10 0.0111					M	2[1]			-46.95 dBn 2.4835000 GH		
						I			2.48	335000 GH2	
				M1							
-10 dBm -	1 -7.50	30 dBm	111	-	1						
July 1 your	African analysis	and an antiophotophotophotophotophotophotophotoph	han dan kana kana kana kana kana kana kan	hai ahunda ilaya ku	4 4						
-20 dBm					11						
20 4411		۳			11						
-30 Bm	D2	-27.530 dBm									
					N.						
-40 dBm					- Netering						
						When La	M2		WAAR AND CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACT OF CONTRACT OF CONT		
-50 dBm							PARTICIPATI	فاستيا للغاراطة	defaulte or a		
										Marine Hill Hand and design from	
-60 dBm											
-70 dBm											
									L	L	
CF 2.4692 G	HZ			300) pts				Spar	80.0 MHz	
narker					1 -			_			
Type Ref		Stimulu: 2.4644		Response -7.53 di			ction Result				
M1 M2	1		93 GHZ 35 GHZ	-46.95 di							
1912		2.48	JU GHZ	-40.95 Ut	200						

TEST REPORT

4.9 Conducted Emission Test

Test Configuration:

Test Setup and Procedure:

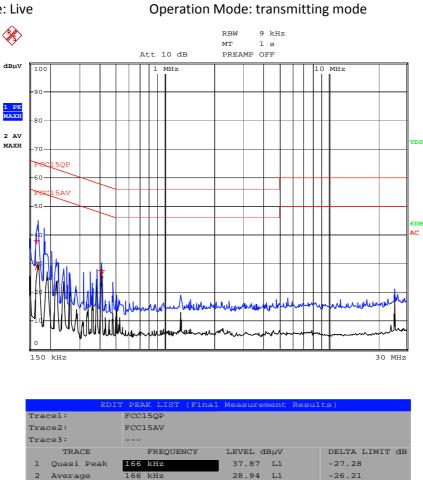
Test was performed according to ANSI C63.10 Clause 6.2. The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane (Ground Reference Plane). And for floor standing EUT, was placed on a 10mm high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m

The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.

Remark: Pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, and record the worst-case as b mode with 11Mbps data rate



TEST REPORT

Test Data and Curve

At main terminal: Pass

Tested Wire: Live

27.79 L1

26.22 L1

-29.93

-21.50

Remark:

1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)

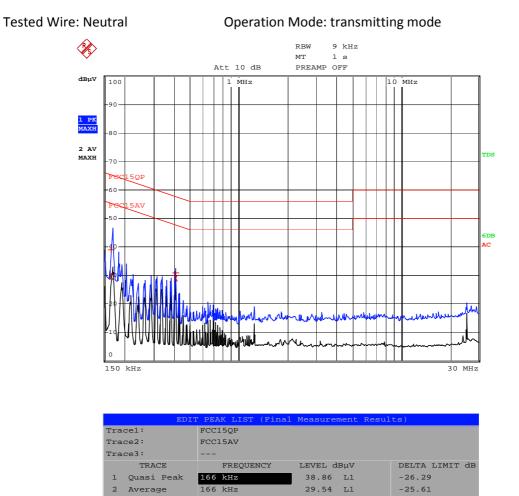
Average

Average

Quasi Peak

406 kHz

406 kHz


2

1

2

- 2. Level $(dB\mu V) = Corr. (dB) + Read Level (dB\mu V)$
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

30.76 Ll

28.93 Ll

-26.96

-18.79

Remark:

1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)

Quasi Peak

2 Average

406 kHz

406 kHz

1

- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

5.0 Test Equipment List

Radiated Emission/Radio

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date	Calibration
Equipment 10.	Equipment	moder		(YYYY-MM-DD)	Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m ³	ETS• LINDGRE N	2018/5/1	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	2019/3/11	1Y
EM031-03	Signal and Spectrum Analyzer (10 Hz~40 GHz)	R&S FSV40	R&S	2018/5/18	1Y
EM011-04	Loop antenna (9 kHz-30 MHz)	HFH2-Z2	R&S	2018/6/14	1Y
EM061-03	TRILOG Super Broadband test Antenna (30 MHz-1.5 GHz) (TX)	VULB 9161	SCHWARZBECK	2018/6/7	1Y
EM033-01	TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX)	VULB 9163	SCHWARZBECK	2018/9/19	1Y
EM033-02	Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX)	R&S HF907	R&S	2018/6/7	1Y
EM033-03	High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX)	R&S SCU-26	R&S	2018/5/4	1 Y
EM033-04	High Frequency Antenna & preamplifier (26 GHz-40 GHz)	R&S SCU-40	R&S	2018/5/4	1Y
EM031-02-01	Coaxial cable(9 kHz-1 GHz)	N/A	R&S	2018/5/18	1Y
EM033-02-02	Coaxial cable(1 GHz-18 GHz)	N/A	R&S	2018/5/18	1Y
EM033-04-02	Coaxial cable(18 GHz~40 GHz)	N/A	R&S	2018/5/25	1Y
EM031-01	Signal Generator (9 kHz~6 GHz)	SMB100A	R&S	2018/8/1	1Y
EM085-02	Signal Generator (10MHz-40GHz)	68369B	Wiltron	2018/5/31	1Y
EM040-01	Band Reject/Notch Filter	WRHFV	Wainwright	N/A	1Y
EM040-02	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM040-03	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM022-03	2.45 GHz Filter	BRM50702	Micro-Tronics	2018/5/9	1Y
SA016-16	Programmable Temperature & Humidity Test Chamber	MHU-800LJ	TERCHY	2018/10/15	1Y
SA016-22	Climatic Test Chamber	C7-1500	Vötsch	2018/10/27	1Y
SA012-74	Digital Multimeter	FLUKE175	FLUKE	2018/10/15	1Y
EM010-01	Regulated DC Power supply	PAB-3003A	GUANHUA	N/A	1Y
SA040-22	Regulated DC Power supply	IT6721	ITECH	2018/9/14	1Y
EM084-06	Audio Analyzer	8903B	HP	2018/4/3	1Y
EM084-07	Modulation Analyzer	8901B	HP	2018/6/15	1Y
EM045-01-01	EMC32 software (RE/RS)	V10.01.00	R&S	N/A	N/A
EM045-01-09	EMC32 software (328/893)	V9.26.01	R&S	N/A	N/A

Conducted emission at the mains terminals

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date	Calibration
	Equipment	Widder	Manufacturer	(YYYY-MM-DD)	Interval
EM080-05	EMI receiver	ESCI	R&S	2018/7/24	1Y
EM006-05	LISN	ENV216	R&S	2018/6/4	1Y
EM006-06	LISN	ENV216	R&S	2018/9/14	1Y
EM006-06-01	Coaxial cable	/	R&S	2018/4/6	1Y
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	2019/1/7	1Y