

Report No: CCISE191004502

FCC REPORT

Applicant:	Baicells Technologies Co., Ltd.
Address of Applicant:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China
Equipment Under Test (E	EUT)
Product Name:	USB Dongle
Model No.:	u4G-UE1305
FCC ID:	2AG32U4GUE1305
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B
Date of sample receipt:	17 Oct., 2019
Date of Test:	17 Oct., to 20 Oct., 2019
Date of report issued:	21 Oct., 2019
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	21 Oct., 2019	Original

Tested by:

Date:

21 Oct., 2019

Reviewed by:

Carry Chen Test Engineer Winner Mang Date:

Project Engineer

21 Oct., 2019

CCIS

Report No: CCISE191004502

3 Contents

		Pa	age
1	С	OVER PAGE	1
2	v	ERSION	2
3	С	ONTENTS	3
4	Т	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	Test Mode	5
	5.4	Measurement Uncertainty	5
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	Related Submittal(s) / Grant (s)	6
	5.7	LABORATORY FACILITY	6
	5.8	LABORATORY LOCATION	
	5.9	Test Instruments list	7
6	Т	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	
	6.2	RADIATED EMISSION	11
7	Т	EST SETUP PHOTO	. 17
8	Е	UT CONSTRUCTIONAL DETAILS	. 18

4 Test Summary

Test Item	Section in CFR 47	Result			
Conducted Emission	Part 15.107	Pass			
Radiated Emission	Part 15.109	Pass			
Remark: Pass: The EUT complies with the essential requirements in the standard. N/A: The EUT not applicable of the test item.					

5 General Information

5.1 Client Information

Applicant:	Baicells Technologies Co., Ltd.
Address:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China
Manufacturer:	Baicells Technologies Co., Ltd.
Address:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China

5.2 General Description of E.U.T.

Product Name:	USB Dongle
Model No.:	u4G-UE1305
Power supply:	AC 120V/60Hz(By PC)
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode Detail description		
On mode	Keep the EUT in Downloading mode	
vertical polarities were performe continuously working, investigated typical configuration to obtain wors	by the ground plane of 3m chamber. Measurements in both horizontal and d. During the test, each emission was maximized by: having the EUT d all operating modes, rotated about all 3 axis (X, Y & Z) and considered at position, manipulating interconnecting cables, rotating the turntable, varying oth horizontal and vertical polarizations. The emissions worst-case are shown ges.	

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

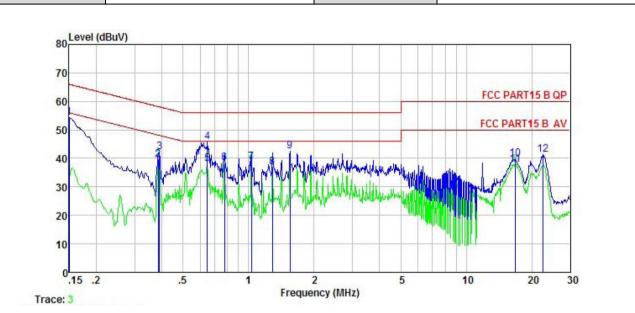
Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107			
Test Method:	ANSI C63.4:2014			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:		Limit ((dBµV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	0.5-30	60	50	
	* Decreases with the logarith	nm of the frequency.		
Test setup:	Reference Pla	ne		
	Image: Lish docs 40cm 80cm Image: Lish docs Filter AC power Image: Filter docs Filter docs Filter docs Image: Filter docs Filter docs Filter docs			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for detai	ls		
Test results:	Pass			

Measurement data:

Product name:	USB Dongle	Product model:	u4G-UE1305
Test by:	Carey	Test mode:	ON mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∛	₫₿	dB	dBu∛	dBu∛	<u>d</u> B	
1	0.150	43.97	-0.45	10.78	54.30	66.00	-11.70	QP
2	0.385	29.25	-0.37	10.72	39.60	48.17	-8.57	Average
3	0.389	31.80	-0.37	10.72	42.15	58.08	-15.93	QP
4	0.647	35.33	-0.38	10.77	45.72	56.00	-10.28	QP
5	0.647	27.64	-0.38	10.77	38.03	46.00	-7.97	Average
6	0.775	27.94	-0.38	10.80	38.36	46.00	-7.64	Average
7	1.032	28.14	-0.38	10.87	38.63	46.00		Average
1 2 3 4 5 6 7 8 9	1.289	26.50	-0.39	10.90	37.01	46.00		Average
9	1.552	31.88		10.93	42.41		-13.59	
10	16.750	29.65	-0.79	10.91	39.77	60.00	-20.23	QP
11	16.750	27.80		10.91	37.92			Average
12	22.416	31.42		10.90	41.31		-18.69	

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

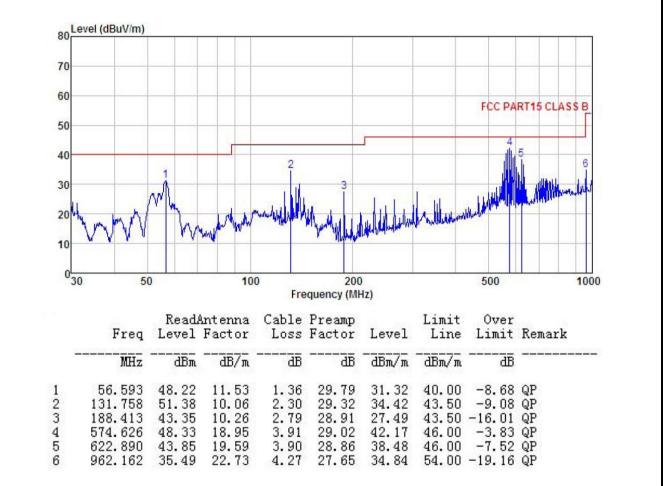
Product name:	USB Dongle			Product	model:	u4G-UE1305			
Test by:	Carey			Test mo	de:	ON mo	de		
Test frequency:	150 kHz ~ 30 MHz			Phase:		Neutral	l		
Test voltage:	AC 120 V/60			Environment:		Temp:	22.5℃ H	luni: 55%	
80 Level (dE	BuV)							_	
70									
10								10	
60						F	CC PART15 B G	1P	
50 m		6				FC	CC PART15 B A	V	
2	4	M4 8	11	- 11/12					
40	Munu and	A PWALLA	Lil Palos	HUMAN	and della .		12		
30	Variation Charles	AINM	M M	IN MAR	A CONTRACTOR	Martin Same	MM		
30	1 mar Marry	March	m man	AT AN AN LOW WORK	martin and	MANA	MANY MAN		
20	IV VI					The way	And A P	Narra-	
20	A D								
	4.0							1	
10	4.0							here	
10	Y V							her	
	.5	1	2		5	10	20	30	
10	.5	1		ncy (MHz)	5	10	20	30	
10 0.15 .2	.5 Read		Frequen		5 Limit	10 Over		30	
10 0.15 .2 Trace: 1	Read		Frequen Cable			Over		30	
10 0.15 .2 Trace: 1	Read	1 LISN L Factor	Frequen Cable	icy (MHz)	Limit	Over	Remark	30	
10 0.15 .2 Trace: 1	Read Treq Level MHz dBuy	H LISN L Factor 7 dB	Frequen Cable Loss dB	Level	Limit Line dBuV	Over Limit dB	Remark	30	
10 0.15 .2 Trace: 1	Read Freq Level MHz dBuy 150 45.02	H LISN Factor 7 dB 2 -0.68	Frequen Cable Loss dB 10.78	Level dBuV 55.12	Limit Line dBuV 66.00	Over Limit dB -10.88	Remark 	30	
10 0.15 .2 Trace: 1	Read Freq Level MHz dBuy 150 45.02 154 33.29	H LISN Factor 7 dB 2 -0.68 9 -0.68	Frequen Cable Loss dB 10.78 10.78	Level dBuV 55.12 43.39	Limit Line dBuV 66.00 55.78	Over Limit 	Remark QP Average	30	
10 0.15 .2 Trace: 1	Read Freq Level MHz dBuy 150 45.02	H LISN Factor 7 dB 2 -0.68 9 -0.68 1 -0.68	Frequen Cable Loss dB 10.78	Level dBuV 55.12	Limit Line dBuV 66.00 55.78 65.34	Over Limit dB -10.88	Remark QP Average QP	30	
10 0.15 .2 Trace: 1 F 1 0. 2 0. 3 0. 4 0.	Read Freq Level MHz dBuy 150 45.02 154 33.29 162 42.21	H LISN Factor dB 2 -0.68 9 -0.68 1 -0.68 5 -0.64	Frequent Cable Loss dB 10.78 10.78 10.77	Level dBuV 55.12 43.39 52.30	Limit Line dBuV 66.00 55.78 65.34	Over Limit 	Remark QP Average QP	30	
10 0.15 .2 Trace: 1 F 1 0. 2 0. 3 0. 4 0. 5 0.	Read req Level MHz dBuy 150 45.02 154 33.29 162 42.21 385 33.15 385 29.42	H LISN Factor dB 2 -0.68 9 -0.68 1 -0.68 5 -0.64 2 -0.64	Frequent Cable Loss dB 10.78 10.78 10.77 10.72	Level dBuV 55.12 43.39 52.30 43.23 39.50	Limit Line dBuV 66.00 55.78 65.34 58.17 48.17	Over Limit 	Remark QP Average QP QP Average	30	
10 0.15 .2 Trace: 1 F 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0.	Read req Level MHz dBuy 150 45.02 154 33.29 162 42.21 385 33.15 385 29.42	H LISN Factor dB 2 -0.68 9 -0.68 1 -0.68 5 -0.64 2 -0.64 2 -0.64	Frequent Cable Loss dB 10.78 10.78 10.77 10.72 10.72	Level dBuV 55.12 43.39 52.30 43.23 39.50	Limit Line dBuV 66.00 55.78 65.34 58.17 48.17 56.00	Over Limit dB -10.88 -12.39 -13.04 -14.94 -8.67 -10.07	Remark QP Average QP QP Average	30	
10 0.15 .2 Trace: 1 F 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0.	Read req Level MHz dBuy 150 45.02 154 33.29 162 42.21 385 33.18 385 29.42 641 35.80 641 29.73	H LISN Factor dB 2 -0.68 9 -0.68 1 -0.68 5 -0.64 2 -0.64 2 -0.64	Frequent Cable Loss dB 10.78 10.78 10.77 10.72 10.72 10.77	Level dBuV 55.12 43.39 52.30 43.23 39.50 45.93	Limit Line dBuV 66.00 55.78 65.34 58.17 48.17 56.00 46.00	Over Limit dB -10.88 -12.39 -13.04 -14.94 -8.67 -10.07	Remark QP Average QP QP Average QP Average	30	
10 0.15 .2 Trace: 1 F 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 1.	Read req Level MHz dBuy 150 45.02 154 33.29 162 42.21 385 33.15 385 29.42 641 35.80 641 29.77 027 32.41	H LISN Factor dB 2 -0.68 -0.68 -0.68 -0.68 -0.64 2 -0.64 0 -0.64 7 -0.64	Frequent Cable Loss dB 10.78 10.78 10.77 10.72 10.72 10.77 10.77 10.77	Level dBuV 55.12 43.39 52.30 43.23 39.50 45.93 39.90	Limit Line dBuV 66.00 55.78 65.34 58.17 48.17 56.00 46.00 56.00	Over Limit -10.88 -12.39 -13.04 -14.94 -8.67 -10.07 -6.10 -13.35	Remark QP Average QP QP Average QP Average	30	
10 0.15 .2 Trace: 1 F 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 1. 9 1.	Read req Level MHz dBuy 150 45.02 154 33.29 162 42.21 385 33.15 385 29.42 641 35.80 641 29.71 027 32.41 276 28.15	H LISN Factor 7 dB 2 -0.68 9 -0.68 0 -0.68 1 -0.68 5 -0.64 2 -0.64 0 -0.64 1 -0.63 5 -0.64	Frequent Cable Loss dB 10.78 10.78 10.77 10.72 10.72 10.77 10.77 10.87 10.90	Level dBuV 55.12 43.39 52.30 43.23 39.50 45.93 39.90 42.65 38.41	Limit Line dBuV 66.00 55.78 65.34 58.17 48.17 56.00 46.00 56.00 46.00	Over Limit -10.88 -12.39 -13.04 -14.94 -8.67 -10.07 -6.10 -13.35 -7.59	Remark QP Average QP Average QP Average QP Average QP	30	
10 0.15 .2 Trace: 1 F 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 1. 9 1. 10 1.	Read req Level MHz dBuy 150 45.02 154 33.29 162 42.21 385 33.15 385 29.42 641 35.80 641 29.71 027 32.41 276 28.15 527 27.62	H LISN Factor D -0.68 -0.68 -0.68 -0.68 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64	Frequent Cable Loss dB 10.78 10.78 10.77 10.72 10.72 10.77 10.77 10.87 10.90 10.93	Level dBuV 55.12 43.39 52.30 43.23 39.50 45.93 39.90 42.65 38.41 37.90	Limit Line dBuV 66.00 55.78 65.34 58.17 48.17 56.00 46.00 46.00 46.00	Over Limit -10.88 -12.39 -13.04 -14.94 -8.67 -10.07 -6.10 -13.35 -7.59	Remark QP Average QP Average QP Average QP Average Average	30	

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
 Final Level =Receiver Read level + LISN Factor + Cable Loss.

CCIS

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Section 15.109							
Test Method:	ANSI C63.4:201	4						
Test Frequency Range:	30MHz to 6000	MHz						
Test site:	Measurement D	istance:	3m (Se	mi-Anechoi	c Charr	nber)		
Receiver setup:	Frequency	Deteo	ctor	RBW	VBV	Ν	Remark	
	30MHz-1GHz	peak	120kHz 300k					
	Above 1GHz				3MH		Peak Value	
		RM		1MHz	3MH	IZ	Average Value	
Limit:	Frequenc 30MHz-88M		Limit	(dBuV/m @ 40.0	23m)	0	Remark Quasi-peak Value	
	88MHz-216N		43.5				Quasi-peak Value	
	216MHz-960		43.5				Quasi-peak Value	
	960MHz-1G		54.0			Quasi-peak Value		
			54.0			,	Average Value	
	Above 1G	-lz	74.0				Peak Value	
Test setup:	Below 1GHz	im « 4m 4m im « im « im «			Antenna Search Antenn RF Test Receiver –	h		
		EUT mtable) Test	\sim	Horn Anter	Controller	nna Tow	er	


Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

Bolow Fornz.			
Product Name:	USB Dongle	Product model:	u4G-UE1305
Test By:	Carey	Test mode:	ON mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	US	B Dongle			Pro	oduct mo	del:	u4G-UE1305			
Test By:	Car	Carey 30 MHz ~ 1 GHz AC 120/60Hz			Test mode:			ON mode			
Test Frequency:	30				Polarization:				Horizontal		
Test Voltage:	AC				En	vironmer	nt:	Temp:	24 °C	Huni: 57%	
80 Leve	el (dBuV/m)										
00											
70											
60											
00								FCC PAR	T15 CLA	SSB	
50											
						1		4		6	
40						2			=		
40						3			а 1016-		
40 30		1		2	>					under	
30		Å		2	2		Λ	and and the state		under	
		Mha	3	and the second second	Monulu		Auroration	with the state		under V	
30	about the state	Mh	Inversion	annen frank frank	Mirriliu		Auroration	mensel		uner d	
30 20 10	an a				Mirrili	and more thank	Actually	1000 ···	N M		
30 20	wathan and	1 M W	June Marchanne	0	2 MMM 200 200 200	and Morrish	Auralia	500		1000	
30 20 10	under and	50	10	0 Fre	equency (MH	and Morrish		500		1000	
30 20 10		50 ReadA	10 Intenna	0 Fre Cable	equency (MH Preamp		Limit	500 Over			
30 20 10	Freq	50 ReadA Level	10 ntenna Factor	0 Fre Cable Loss	equency (MH Preamp Factor	Hz) Level	Limit Line	500 Over Limit			
30 20 10		50 ReadA	10 Intenna	0 Fre Cable	equency (MH Preamp		Limit	500 Over			
30 20 10 0 30	Freq MHz	50 ReadA Level dBm	10 ntenna Factor dB/m	0 Fre Cable Loss dB	equency (MH Preamp Factor dB	lz) Level dBm/m	Limit Line dBm/m	500 Over Limit dB	Remar		
30 20 10 ^{Viev} 0 30	Freq MHz 56.001 43.830	50 ReadA Level dBm 47.00 42.69	10 ntenna Factor dB/m 11.55 9.27	0 Fre Cable Loss dB 1.36 2.44	equency (M) Preamp Factor dB 29.79 29.25	dBm/m 30.12 25.15	Limit Line dBm/m 40.00 43.50	500 Over Limit -9.88 -18.35	Remar 		
30 20 10 ^{V/w} 0 30	Freq MHz 56.001 43.830 239.987	50 ReadA Level dBm 47.00 42.69 47.41	10 ntenna Factor dB/m 11.55 9.27 12.30	0 Cable Loss dB 1.36 2.44 2.82	equency (M) Preamp Factor dB 29.79 29.25 28.59	Level dBm/m 30.12 25.15 33.94	Limit Line dBm/m 40.00 43.50 46.00	500 Over Limit 	Remar QP QP QP		
$ \begin{array}{c} 30 \\ 20 \\ 10 \\ 10 \\ 0 \\ 30 \\ 1 \\ 2 \\ 1 \\ 3 \\ 2 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	Freq MHz 56.001 43.830	ReadA Level 47.00 42.69 47.41 44.18	10 ntenna Factor dB/m 11.55 9.27	0 Fre Cable Loss dB 1.36 2.44	equency (M) Preamp Factor dB 29.79 29.25	Level dBm/m 30.12 25.15 33.94 38.02	Limit Line dBm/m 40.00 43.50 46.00 46.00	500 Over Limit -9.88 -18.35	Reman QP QP QP QP QP QP		

This revel - Receiver Read level + Anterina Factor + Cable Loss - Freamphile Factor.
 The project result of the formulation of the function of the line to be in test and the second second

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

	Test mode: Polarization Environme	n: :nt:	FCCI	24℃ H PART 15 (PM	<u>/)</u>
	Environme	nt:	Temp: 2	24°C H	<u>()</u>
And Martin Martin			FCC I	PART 15 (PM	<u>()</u>
And Martin Martin	when when the second	lman, www.	FCCI	PART 15 (AV	<u>/)</u>
And Alge And Marker Marker	man and the star	low-m/www.	FCCI	PART 15 (AV	<u>/)</u>
hod Marked Market	mar and the start	low-m/wyword	FCCI	PART 15 (AV	<u>/)</u>
and Algebia Marian and	man and the start	lannin wat		-	
and Martin Martin Mart	mar mar and the set	www.www		-	
and real and the second second	man and the A	lan www.	hourseas	mawwwww	10
and Alechanderson and	www.www.www.	lannanan	how have	Manna	104
and Martin Martin Martin					
2000				5000 6	000
	ency (MHz)				
		Limit	Over	23	
or Loss Fa	ctor Level	Line	Limit 1	Remark	
37m 38	dB dBuV/m	dBuV/m	dB		
		54.00 - 74.00 -			
02 6.80 4	1.81 34.75	54.00 -	-19.25	Average	
3	na Cable Pr or Loss Fa 7m dB 29 5.24 4 29 5.24 4 02 6.80 4 02 6.80 4 64 7.60 4	Frequency (MHz) na Cable Preamp or Loss Factor Level 7m dB dB dBuV/m 29 5.24 41.58 38.12 29 5.24 41.58 29.37 02 6.80 41.81 43.68 02 6.80 41.81 34.75 64 7.60 41.90 45.45	Frequency (MHz) na Cable Preamp Limit or Loss Factor Level Line 7m dB dB dBuV/m dBuV/m	Frequency (MHz) na Cable Preamp Limit Over or Loss Factor Level Line Limit I /m dB dB dBuV/m dBuV/m dB dB 29 5.24 41.58 38.12 74.00 -35.88 I 29 5.24 41.58 29.37 54.00 -24.63 I 02 6.80 41.81 43.68 74.00 -30.32 I 02 6.80 41.81 34.75 54.00 -19.25 I 64 7.60 41.90 45.45 74.00 -28.55 I	Frequency (MHz) na Cable Preamp Limit Over or Loss Factor Level Line Limit Remark 7m dB dB dBuV/m dBuV/m dB 29 5.24 41.58 38.12 74.00 -35.88 Peak 29 5.24 41.58 29.37 54.00 -24.63 Average 02 6.80 41.81 43.68 74.00 -30.32 Peak 02 6.80 41.81 34.75 54.00 -19.25 Average 64 7.60 41.90 45.45 74.00 -28.55 Peak

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Nar	ne:	USB Do	ongle			Produc	t model:	u2	u4G-UE1305		
Test By:		Carey			Test mode:		0	ON mode			
Test Freque	ncy:	1 GHz ·	~ 6 GHz		Polarization:			H	Horizontal		
Test Voltage	: :	AC 120	/60Hz			Environ	ment:	Te	emp: 24℃	Huni: 57%	
80	Level (dBu	//m)									
00								B	FCC PART 15	5 (PK)	
70											
60											
									FCC PART 15	5 (AV)	
50								3	5 1 - 0 - 6 - 6 - 6	uniteda	
40	j					unnorm	man	annound	nswamanan 6		
30	Martine and and	and the second second	not water marker	m tops with and	Alfertual of secondar	2					
20											
20											
10											
C	1000 12	200	1500	2000					5000	6000	
	1000 12	.00	1500		Frequency	(MHz)			5000	0000	
		Rea	adAnt enna	Cable	Presmo		Limit	Over			
	Fr	eq Leve	el Factor	Loss	Factor	Level			Remark		
								<u>d</u> B			
	M	Hz dBu	uV dB/m	dB	dB	dBuV/m	dBuV/m	ab			
1	M 2972.4		94 28.44	5.32	41.53	39.17	74.00	-34.83	Peak		
2	2972.4 2972.4	60 46.9 60 37.6	94 28.44 56 28.44	5.32 5.32	41.53 41.53	39.17 29.89	74.00 54.00	-34.83 -24.11	Average		
2 3	2972.4 2972.4 4208.0	60 46.9 60 37.6 15 47.2	94 28.44 66 28.44 25 30.34	5.32 5.32 6.41	41.53 41.53 41.81	39.17 29.89 42.19	74.00 54.00 74.00	-34.83 -24.11 -31.81	Average Peak		
2	2972.4 2972.4	60 46.9 60 37.6 15 47.2 15 38.4 68 47.3	94 28.44 66 28.44 25 30.34 45 30.34 71 32.18	5.32 5.32 6.41 6.41 7.10	41.53 41.53 41.81 41.81 41.90	39.17 29.89 42.19 33.39 45.09	74.00 54.00 74.00 54.00 74.00	-34.83 -24.11 -31.81 -20.61 -28.91	Average Peak Average		