

TEST A.6: 3.5 GH	Z EMISSION AND INTERFE	RENCE LIMITS
	Product standard:	Part 96.41 Subclause (e)
LIMITS:	Test standard:	ANSI C63.26-2015
<u>LIMITS</u>		
shall be checked at the or equivalent data shall when the equipment is	e equipment output terminals when Il show the magnitude of each harn operated under the conditions spe	he equipment and appearing on a spurious frequency properly loaded with a suitable artificial antenna. Curves nonic and other spurious emission that can be detected ecified in § 2.1049 as appropriate. The magnitude of B below the permissible value need not be specified.
sizes, at the lowest and		fied in Section 96.41(e) for all declared channel the middle of the band. The RMS detector was used an.
A narrower RBW is p integrated over the full		neasurement accuracy, provided the measured power is
within 0-10 MFgreater than 10	outside the fundamental are stated Iz above and below the assigned c 0 MHz above and below the assign below 3530 MHz and above 3720 M	hannel ≤ -13 dBm/MHz ed channel ≤ -25 dBm/MHz
TEST S	ETUP	
	Ta	EUT enducted ble
level in the average	ycle correction was added in R power measurement. on = 10 log (1/0.67) = 1.67 (dB)	F level offset to get the accurate measured emission
	$\sin - 10 \log(1/0.07) - 1.07 (dB)$	

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#01 (Band 48)
TEST RESULTS:	PASS

<u>2x2 MIMO</u>

Port 1 and 2:

10 MHz BW

The spurious signals detected were more than 20 dB below the reference limit for the lowest, middle and highest operating channels.

20 MHz BW

The spurious signals detected were more than 20 dB below the reference limit for the lowest, middle and highest operating channels.

Port 3 and 4:

10 MHz BW

The spurious signals detected were more than 20 dB below the reference limit for the lowest, middle and highest operating channels.

20 MHz BW

The spurious signals detected were more than 20 dB below the reference limit for the lowest, middle and highest operating channels.

4x4 MIMO

Port 1,2,3 and 4

<u>10 MHz BW</u>

The spurious signals detected were more than 20 dB below the reference limit for the lowest, middle and highest operating channels.

<u>20 MHz BW</u>

The spurious signals detected were more than 20 dB below the reference limit for the lowest, middle and highest operating channels.

(See next plots)

<u>Port 1</u>

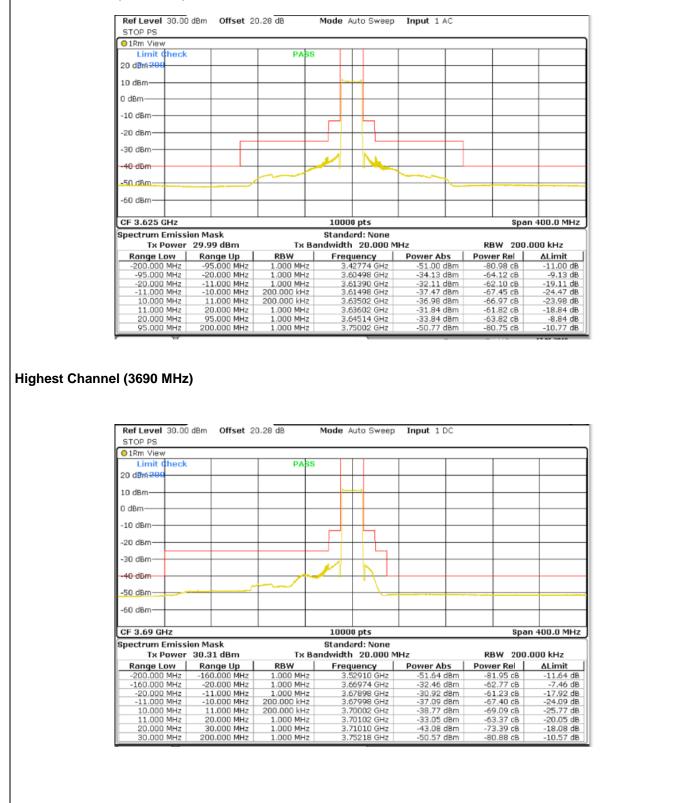
<u>10 MHz BW</u>

Lowest Channel (3555 MHz)

Ref Level 30.00	dBm Offset 2	0.28 dB	Mode Auto Swa	eep Input 1 DC		
PS						
01Rm View						
Limit Check		PASS				
20 dBmi 200						
10 dBm		<u> </u>				
) dBm						
10 dBm						
10 0011						
20 dBm		↓				
-30 dBm		<u> </u>				
40 dBm						
40 ubm						
50 dBm				- A A A A A A A A A A A A A A A A A A A		
-60 dBm		+ +				
CF 3.555 GHz			10000 pts		Spa	n 400.0 MH
pectrum Emiss	ion Mask		Standard: Nor	ie		
Tx Power	30.20 dBm	Тх Ва	andwidth 10.00	0 MHz	RBW 100.	000 kHz
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit
-200.000 MHz	-25.000 MHz	1.000 MHz	3.41468 GH	iz -50.47 dBm	-80.68 cB	-10.47 d
-25.000 MHz	-15.000 MHz	1.000 MHz	3.53994 GH		-77.15 cB	-21.95 d
-15.000 MHz	-6.000 MHz	1.000 MHz	3.54898 GH		-46.62 cB	-3.42 d
-6.000 MHz	-5.000 MHz	100.000 kHz	3.54998 GH		-58.46 cB	-15.26 d
5.000 MHz	6.000 MHz	100.000 kHz	3.56002 GH		-57.90 cB	-14.70 d
						0.15 4
6.000 MHz	15.000 MHz	1.000 MHz	3.56102 GH		-46.35 cB	-3.15 d
	15.000 MHz 165.000 MHz 200.000 MHz	1.000 MHz 1.000 MHz 1.000 MHz	3.56102 GF 3.57010 GF 3.75330 GF	iz -37.65 dBm	-40.35 CB -67.85 CB -81.32 CB	-12.65 d -11.12 d

	dBm Offset 2	0.28 dB	Mode Auto Sweep	Input 1 DC		
STOP PS						
1Rm View						
Limit Check		PASS				
0 dBmi 200						
		1 1				
0 dBm				<u> </u>		
10		1 1				
dBm						
10 dBm						
		1 1				
20 dBm						
30 dBm						
+0-dBm						
lo abin		-				
50 dBm		f luna				
		1 1				
50 dBm		<u> </u>				
F 3.625 GHz			10000 pts		spa	n 400.0 MH
oectrum Emissi			Standard: None			
Tx Power	29.81 dBm	Tx Ba	ndwidth 10.000 N	1Hz	RBW 100.	000 kHz
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit
-200.000 MHz	-95.000 MHz	1.000 MHz	3.43562 GHz	-50.97 dBm	-80.78 cB	-10.97 d
-95.000 MHz	-15.000 MHz	1.000 MHz	3.60986 GHz	-38.30 dBm	-68.10 cB	-13.30 d
-15.000 MHz	-6.000 MHz	1.000 MHz	3.61898 GHz	-16.54 dBm	-46.35 cB	-3.54 d
-6.000 MHz	-5.000 MHz	100.000 kHz	3.61998 GHz	-28.02 dBm	-57.82 cB	-15.02 d
5.000 MHz	6.000 MHz	100.000 kHz	3.63002 GHz	-27.99 dBm	-57.79 cB	-14.99 d
6.000 MHz	15.000 MHz	1.000 MHz	3.63102 GHz	-16.61 dBm	-46.42 cB	-3.61 d
15.000 MHz	95.000 MHz	1.000 MHz	3.64002 GHz	-39.95 dBm	-69.75 cB	-14.95 d
95.000 MHz	200.000 MHz	1.000 MHz	3.74730 GHz	-50.78 dBm	-80.58 cB	-10.78 di

Highest Channel (3695 MHz)


Ref Level 30.00 dBm Offset 20.28 dB Mode Auto Sweep Input 1 DC STOP PS 01Rm View Limit Check PASS 20 dBm 20 10 dBm 0 dBm -10 dBm -20 dBm--30 dBm 40 dBm -50 dBm--60 dBm-Span 400.0 MHz CF 3.695 GHz 10000 pts Spectrum Emission Mask Standard: None Tx Power 30.54 dBm Tx Bandwidth 10.000 MHz RBW 100.000 kHz Range Low -200.000 MHz -165.000 MHz Range Up -165.000 MHz -15.000 MHz RBW Frequency Power Abs Power Rel ∆Limit 1.000 MHz 1.000 MHz -11.70 dB -12.73 dB -2.85 dB -14.20 dB -14.83 dB -3.12 dB 2934 GHz -51.70 dBm -37.73 dBm -82.24 cB 3.67982 GHz 3.68898 GHz 3.68998 GHz -68.27 cB -165.000 MHz -15.000 MHz -6.000 MHz 5.000 MHz 6.000 MHz 15.000 MHz 1.000 MHz 1.000 MHz 100.000 kHz 100.000 kHz 1.000 MHz 1.000 MHz -6.000 MHz -5.000 MHz -46.39 cB -57.74 cB -58.37 cB -15.85 dBm -27.20 dBm -27.83 dBm -16.12 dBm 6.000 MHz 15.000 MHz .70002 GHz .70102 GHz 46.66 cB -23.63 dB -10.68 dB 15.000 MHz 25.000 MHz 25.000 MHz 200.000 MHz .71006 GHz .76670 GHz -48.63 dBm -50.68 dBm -79.18 cB -81.22 cB 1.000 MHz

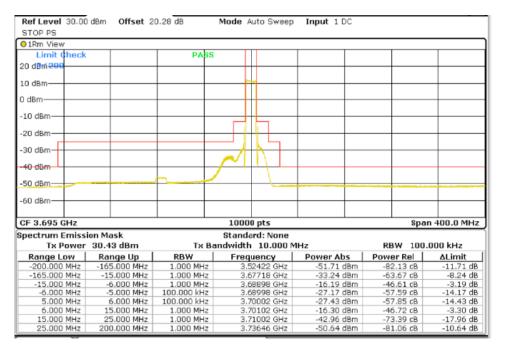
20 MHz BW

Lowest Channel (3560 MHz)

Ref Level 30.00 dBm Offset 20.28 dB Mode Auto Sweep Input 1 DC STOP PS 01Rm View Limit Check PASS 20 dBm 20 10 dBm· 0 dBm--10 dBm— -20 dBm--30 dBm 40 dBm -50 dBm -60 dBm-Span 400.0 MHz 10000 pts CF 3.56 GHz Spectrum Emission Mask Standard: None RBW 200.000 kHz Tx Power 30.45 dBm Tx Bandwidth 20.000 MHz Power Abs -50.46 dBm -41.09 dBm -29.36 dBm -33.96 dBm -33.96 dBm -28.26 dBm -32.37 dBm -51.10 dBm Range Low -200.000 MHz -30.000 MHz -20.000 MHz -11.000 MHz 10.000 MHz 10.000 MHz 160.000 MHz Frequency 3.39590 GHz 3.53998 GHz 3.54874 GHz 3.54998 GHz 3.57002 GHz ΔLimit -10.46 dB -16.09 dB -16.36 dB -22.20 dB -20.96 dB Range Up -30.000 MHz -20.000 MHz Power Rel -80.91 cB -71.54 cB RBW 1.000 MHz 1.000 MHz -20.000 MHz -11.000 MHz -10.000 MHz 11.000 MHz 20.000 MHz 160.000 MHz -59.80 cB -65.65 cB -64.41 cB -58.71 cB 1.000 MHz 200.000 kHz 200.000 kHz 1.000 MHz 1.000 MHz .57102 GHz -15.26 dB 3.58006 GHz 3.75742 GHz -62.82 cB -81.54 cB -7.37 dB 160.000 MHz 200.000 MHz 1.000 MH; -11.10 dB

Port 2

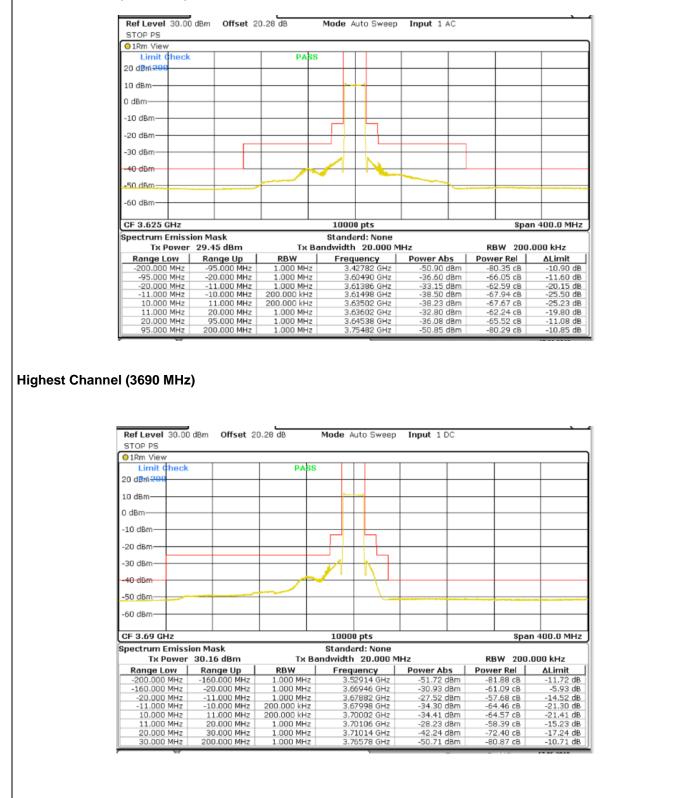
<u>10 MHz BW</u>


Lowest Channel (3555 MHz)

O1Rm View						
Limit Check		PASS				
20 dBm 200		<u>↓ </u>				
10 dBm		<u> </u>				
0 dBm						
J GDIII						
-10 dBm						
20 dBm						
-30 dBm						
00 000			1 AIN			
40 dBm		<u> </u>	- /	+		
-50. dBm						
-50.0800-						
-60 dBm						
CF 3.555 GHz			10000 pts		Spar	n 400.0 MH
pectrum Emiss	ion Mask		Standard: None			
Tx Power	30.56 dBm	Tx Ba	ndwidth 10.000	MHz	RBW 100.	000 kHz
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit
-200.000 MHz	-25.000 MHz	1.000 MHz	3.41468 GHz	-50.41 dBm	-80.97 cB	-10.41 d
-25.000 MHz	-15.000 MHz	1.000 MHz	3.53990 GHz	-49.07 dBm	-79.63 cB	-24.07 d
-15.000 MHz	-6.000 MHz	1.000 MHz	3.54898 GHz	-15.88 dBm	-46.44 cB	-2.88 c
	-5.000 MHz	100.000 kHz	3.54998 GHz	-27.64 dBm	-58.20 cB	-14.64 d
-6.000 MHz			3.56002 GHz	-27.25 dBm	-57.81 cB	-14.25 d
5.000 MHz	6.000 MHz	100.000 kHz				
5.000 MHz 6.000 MHz	15.000 MHz	1.000 MHz	3.56102 GHz	-15.48 dBm	-46.04 cB	-2.48 d
5.000 MHz						

01Rm View						
Limit Check		PASS				
20 dBr6 200				<u> </u>		
10 dBm						
0 dBm						
-10 dBm						-
-20 dBm						
-20 dBm						
-30 dBm						
			11			
40 dBm				+		
50 dBm						
-60 dBm						
CF 3.625 GHz	-		10000 pts		Spai	n 400.0 MH
pectrum Emissi	on Mask		Standard: None			
Tx Power	29.84 dBm	Tx Ba	ndwidth 10.000 N	1Hz	RBW 100.	000 kHz
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit
-200.000 MHz	-95.000 MHz	1.000 MHz	3.43142 GHz	-50.95 dBm	-80.79 cB	-10.95 d
-95.000 MHz	-15.000 MHz	1.000 MHz	3.60974 GHz	-40.26 dBm	-70.10 cB	-15.26 d
-15.000 MHz	-6.000 MHz	1.000 MHz	3.61898 GHz	-16.67 dBm	-46.51 cB	-3.67 d
-6.000 MHz	-5.000 MHz	100.000 kHz	3.61998 GHz	-28.94 dBm	-58.78 cB	-15.94 d
5.000 MHz	6.000 MHz	100.000 kHz	3.63002 GHz	-29.00 dBm	-58.84 cB	-16.00 d
	1E 000 MUs	1.000 MHz	3.63102 GHz	-16.78 dBm	-46.62 cB	-3.78 d
6.000 MHz	15.000 MHz	1.000 MH2	0100406 0116			
	95.000 MHz	1.000 MHz	3.64002 GHz	-39.97 dBm	-69.81 cB	-14.97 di

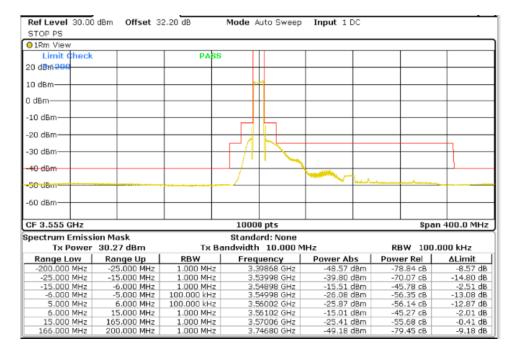
Highest Channel (3695 MHz)



20 MHz BW

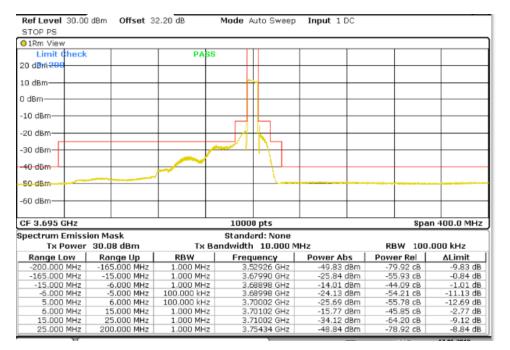
Lowest Channel (3560 MHz)

Ref Level 30.00) dBm Offset 2	0.28 dB	Mode Auto	Sweep	Input 1D	C		
01Rm View								
Limit Check		PASS						
20 dBm 200								
LO dBm		+						
dBm								
dBm								
10 dBm								
20 dBm		+	\rightarrow	<u> </u>				
								_
30 dBm								
40 dBm								
				and the second second				
50.d8m								
50 dBm								
F 3.56 GHz			10000 pt	· c			Sna	n 400.0 MH
pectrum Emiss	ion Mack		Standard:					
	30.09 dBm	TVB	andwidth 2		147		RBW 200	000 647
Range Low	Range Up	RBW	Frequen		Power Ab	e 1	Power Rel	∆Limit
-200.000 MHz	-30.000 MHz	1.000 MHz	3,4036		-50.45 d		-80.54 cB	-10.45 d
-30.000 MHz	-20.000 MHz	1.000 MHz	3.5399		-45.08 d		-75.18 cB	-20.08 d
-20.000 MHz	-11.000 MHz	1.000 MHz	3,5489		-33.57 d		-63.66 cB	-20.57 d
-11.000 MHz	-10.000 MHz	200.000 kHz	3.5499		-39.31 d		-69.41 cB	-26.31 d
10.000 MHz	11.000 MHz	200.000 kHz	3.5700	2 GHz	-38.75 d		-68.85 cB	-25.75 d
11.000 MHz	20.000 MHz	1.000 MHz	3.5710		-33.94 d		-64.03 cB	-20.94 d
20.000 MHz	160.000 MHz	1.000 MHz	3.5801		-34.89 d		-64.99 cB	-9.89 d
160.000 MHz	200.000 MHz	1.000 MHz	3,7504	IG GH2	-51.05 d	Bro	-81.15 cB	-11.05 d



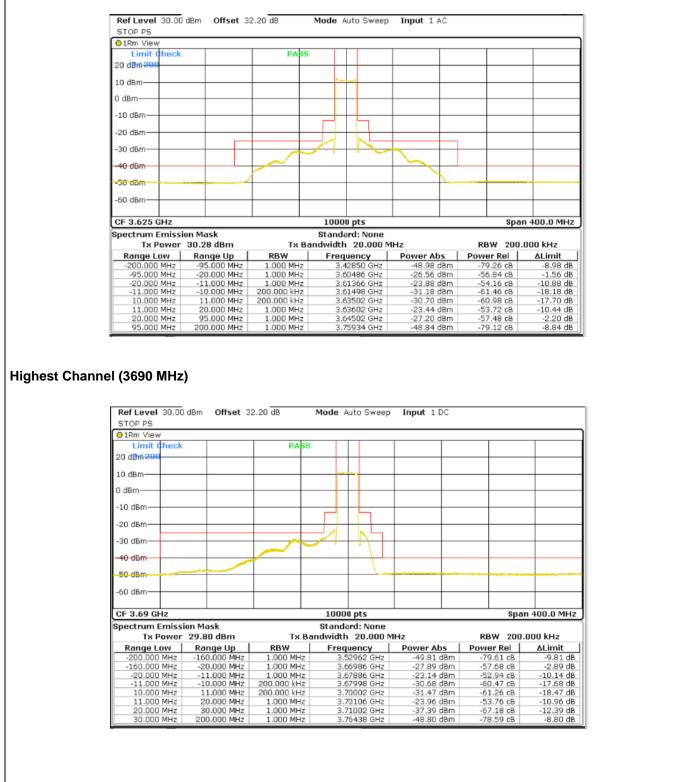
<u>Port 3</u>

<u>10 MHz BW</u>


Lowest Channel (3555 MHz)

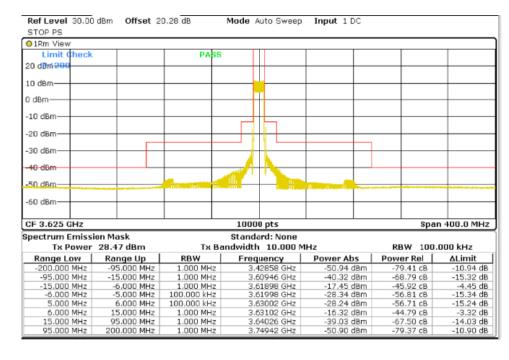
Ref Level 30.00 STOP PS) dBm Offset 3	2.20 dB	Mode Auto Sweep	Input 1 DC		
01Rm View						
Limit Check		PASS				
20 dBm 200						_
10 dBm		<u> </u>				
0 dBm						
-10 dBm						-
-20 dBm						
-20 ubm						
-30 dBm		++/				
40 40						
-40 dBm						
-50 dbm						
-60 dBm						
CF 3.625 GHz			10000 pts		Spa	n 400.0 Mł
Spectrum Emiss	ion Mask		Standard: None			
Tx Power	30.39 dBm	Tx Ba	ndwidth 10.000 f	MHz	RBW 100.	000 kHz
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit
-200.000 MHz	-95.000 MHz	1.000 MHz	3.42526 GHz	-49.04 dBm	-79.43 cB	-9.04
-95.000 MHz	-15.000 MHz	1.000 MHz	3.60978 GHz	-27.45 dBm	-57.84 cB	-2.45
-15.000 MHz	-6.000 MHz	1.000 MHz	3.61898 GHz	-14.50 dBm	-44.89 cB	-1.50
-6.000 MHz	-5.000 MHz	100.000 kHz	3.61998 GHz	-24.78 dBm	-55.17 cB	-11.78
5.000 MHz	6.000 MHz	100.000 kHz	3.63002 GHz	-25.35 dBm	-55.74 cB	-12.35
6.000 MHz	15.000 MHz	1.000 MHz	3.63102 GHz	-14.97 dBm	-45.36 cB	-1.97
15.000 MHz	95.000 MHz	1.000 MHz	3.64042 GHz	-25.48 dBm	-55.87 cB	-0.48
95.000 MHz	200.000 MHz	1.000 MHz	3.75206 GHz	-48.88 dBm	-79.27 cB	-8.88 (

Highest Channel (3695 MHz)


20 MHz BW

Lowest Channel (3560 MHz)

Ref Level 30.00	dBm Offset 3	2.20 dB	Mode Auto Swe	ep Input 1 DC		
1Rm View						
Limit Check		PASS				
20 dBmi 200						
.0 dBm		+				
dBm						
ubili						
10 dBm						
20 dBm		<u> </u>				
30 dBm						
So abili			/' ' `			
40 dBm						_
50 dBm						
-60 dBm						
F 3.56 GHz			10000 pts		Spa	n 400.0 MH
pectrum Emiss	ion Mask		Standard: Non	e		
Tx Power	30.95 dBm	Tx Ba	ndwidth 20.00	0 MHz	RBW 200	.000 kHz
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit
-200.000 MHz	-30.000 MHz	1.000 MHz	3.39898 GH	z -48.60 dBm	-79.56 cB	-8.60 d
-30.000 MHz	-20.000 MHz	1.000 MHz	3.53998 GH		-69.44 cB	-13.48 d
-20.000 MHz	-11.000 MHz	1.000 MHz	3.54898 GH		-54.45 cB	-10.50 d
-11.000 MHz	-10.000 MHz	200.000 kHz	3.54998 GH		-62.16 cB	-18.21 0
10.000 MHz 11.000 MHz	11.000 MHz 20.000 MHz	200.000 kHz 1.000 MHz	3.57002 GH 3.57102 GH		-61.20 cB -53.78 cB	-17.25 d -9.83 d
20.000 MHz	160.000 MHz	1.000 MHz	3.60542 GH		-56.96 cB	-9.830
160.000 MHz	200.000 MHz	1.000 MHz	3.75530 GH		-80.09 cB	-9.14 d



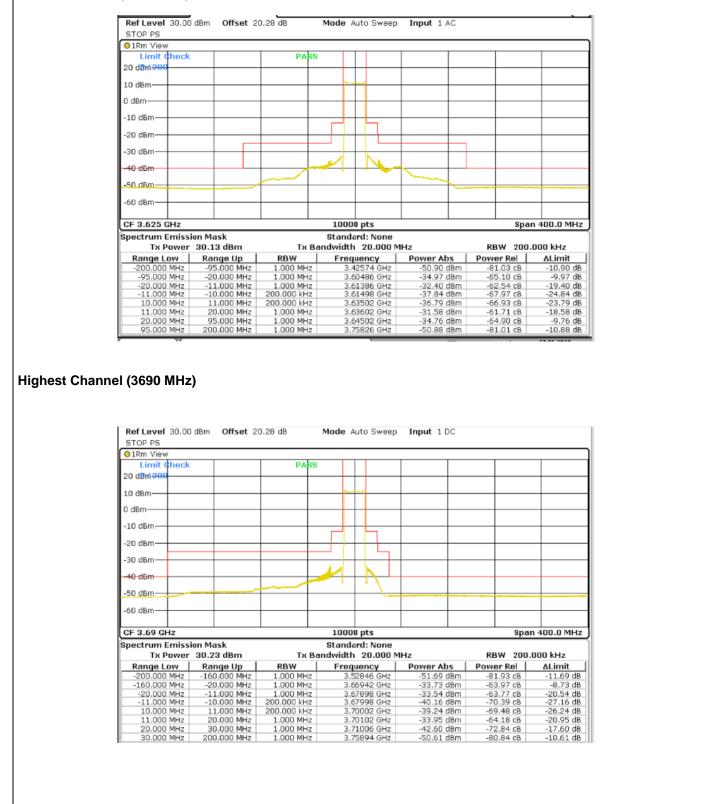
<u>Port 4</u>

<u>10 MHz BW</u>

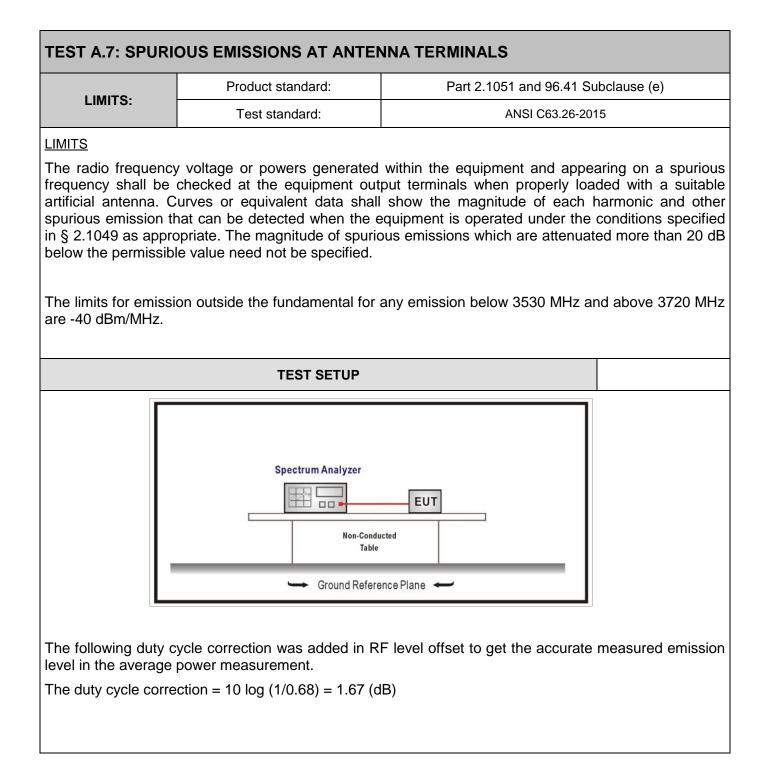
Lowest Channel (3555 MHz)

Ref Level 30.00) dBm Offset 2	0.28 dB	Mode Auto Sweep	p Input 1 DC		
STOP PS						
Limit Check		PASS				_
		PASS				
20 dBmi 200						
10 dBm						
) dBm		+ +				
-10 dBm						
-10 UBIII						
20 dBm		├				
-30 dBm		<u> </u>				
40 dBm						
-50 dBm				<u>+</u>		
-60 dBm						
-00 ubiii						
CF 3.555 GHz			10000 pts		Spai	n 400.0 MH
pectrum Emiss	ion Mask		Standard: None			
Tx Power	30.14 dBm	Тх Ва	andwidth 10.000	MHz	RBW 100.	000 kHz
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	∆Limit
-200.000 MHz	-25.000 MHz	1.000 MHz	3.40167 GHz	-50.40 dBm	-80.54 cB	-10.40 d
-25.000 MHz	-15.000 MHz	1.000 MHz	3.53994 GHz	-47.33 dBm	-77.47 cB	-22.33 d
-15.000 MHz	-6.000 MHz	1.000 MHz	3.54898 GHz	-16.09 dBm	-46.22 cB	-3.09 di
-6.000 MHz	-5.000 MHz	100.000 kHz	3.54998 GHz	-27.88 dBm	-58.02 cB	-14.88 d
5.000 MHz	6.000 MHz	100.000 kHz	3.56002 GHz	-28.37 dBm	-58.50 cB	-15.37 d
6.000 MHz	15.000 MHz	1.000 MHz	3.56102 GHz	-16.71 dBm	-46.85 cB	-3.71 d
15.000 MHz	165.000 MHz	1.000 MHz	3.57002 GHz	-40.15 dBm	-70.29 cB	-15.15 di
166.000 MHz	200.000 MHz	1.000 MHz	3.75450 GHz	-51.14 dBm	-81.27 cB	-11.14 d

Highest Channel (3695 MHz)


Ref Level 30.00 dBm Offset 20.28 dB Mode Auto Sweep Input 1 DC STOP PS 01Rm View Limit Check PASS 20 dBm 200 10 dBm-0 dBm -10 dBm -20 dBm -30 dBm-40 dBm -50 dBm--60 dBm-Span 400.0 MHz CF 3.695 GHz 10000 pts Spectrum Emission Mask Standard: None Tx Power 30.54 dBm RBW 100.000 kHz Tx Bandwidth 10.000 MHz Range Up -165.000 MHz -15.000 MHz RBW Frequency 3.52934 GHz 3.67982 GHz Power Rel Power Abs ∆Limit Range Low -200.000 MHz -165.000 MHz 1.000 MHz 1.000 MHz -11.70 dB -12.73 dB -51.70 dBm -37.73 dBm -82.24 cB -68.27 cB -15.000 MHz -6.000 MHz 5.000 MHz -6.000 MHz -5.000 MHz 6.000 MHz 1.000 MHz 100.000 kHz 100.000 kHz 3.68998 GHz 3.68998 GHz 3.70002 GHz -15.85 dBm -27.20 dBm -27.83 dBm -46.39 cB -57.74 cB -58.37 cB -2.85 dB -14.20 dB -14.83 dB 6.000 MHz 15.000 MHz 25.000 MHz 15.000 MHz 25.000 MHz 1.000 MHz 1.000 MHz .70102 GHz .71006 GHz -16.12 dBm -48.63 dBm -46.66 cB -79.18 cB -3.12 dB -23.63 dB 200.000 MHz 1.000 MHz .76670 GHz -50.68 dBm -81.22 cB -10.68 dB

20 MHz BW


Lowest Channel (3560 MHz)

Ref Level 30.00 dBm Offset 20.28 dB Mode Auto Sweep Input 1 DC STOP PS O1Rm Viev Limit Check PASS 20 dBm200 10 dBm-0 dBm -10 dBm -20 dBm L -30 dBm 40 dBm -50. dBr -60 dBm Span 400.0 MHz CF 3.56 GHz 10000 pts Spectrum Emission Mask Standard: None Tx Power 30.45 dBm Tx Bandwidth 20.000 MHz RBW 200.000 kHz Power Abs -50.38 dBm -42.76 dBm Range Up -30.000 MHz Frequency 3.40154 GHz Range Low RBW Power Re ∆Limit 1.000 MHz 1.000 MHz -10.38 dB -17.76 dB -19.28 dB -80.83 cB -73.21 cB -62.74 cB -69.29 cB -69.56 cB -64.77 cB -200.000 MHz -30.000 MHz 3.53986 GHz 3.54894 GHz 3.54998 GHz -20.000 MHz 1.000 MHz 1.000 MHz 200.000 kHz 200.000 kHz 1.000 MHz 1.000 MHz 1.000 MHz -20.000 MHz -11.000 MHz -11.000 MHz -10.000 MHz -32.28 dBm -19,28 dB -25.84 dB -26.11 dB -21.31 dB -9.53 dB -11.05 dB -38.84 dBm .57002 GHz .57110 GHz 10.000 MHz 11.000 MHz 11.000 MHz 20.000 MHz -39.11 dBm -34.31 dBm 20.000 MHz 160.000 MHz 160.000 MHz 200.000 MHz 3.58130 GHz 3.75550 GHz 34.53 dBm 51.05 dBm -64.98 cB -81.50 cB

		TESTED S	AMPLES:		S	/01	
	TESTED CONDITIONS MODES: TC#0 ⁻						
		TEST RE	SULTS:		P/	ASS	
2x2 MI	<u>NO</u>						
IO MHz	BW						
Port 1 a	<u>nd 2</u>						
Γ	Lowest 3	555 MHz	Middle 362	5 MHz	Highest 369	5 MHz	
_	Spurious	Emission		Emission	J	Emission	
	Frequency (MHz)	Level (dBm/MHz)	Spurious Frequency (MHz)	Level (dBm/MHz)	Spurious Frequency (MHz)	Level (dBm/MHz)	
			7246.18	-48.23	7389.68	-47.65	
	No Sp	urious	7248.68	-48.11	7390.18	-48.54	
					7389.68/7390.18	-45.06(*)	
		Ν	leasurement uncerta	inty (dB)		<± 2.03	
<u>Port 3 a</u>	Lowest 3	555 MHz	Middle 362	5 MHz	Highest 369	95 MHz]
F	Spurious	Emission		Emission	Spurious	Emission	
	Frequency	Level	Spurious Frequency (MHz)	Level	Frequency	Level	
	(MHz)	(dBm/MHz)		(dBm/MHz)	(MHz)	(dBm/MHz)	_
			7250.68	-45.29	7386.68	-46.79	_
	No Sp	urious	7249.18	-45.90	7390.68	-47.39	_
			7249.18/7250.68	-42.57(*)			-
			leasurement uncertai			<± 2.03	
	nission levels 2, 3 and 4	s from two dif	ferent ports were s	ummed due to	the frequency sepa	aration within 1	1 MH:
Γ	Lowest 3	555 MHz	Middle 362	5 MHz	Highest 369	5 MHz	
F	Spurious	Emission	Spurious	Emission		Emission	1
	Frequency	Level	Frequency (MHz)	Level	Spurious	Level	
┝	(MHz)	(dBm/MHz)	,	(dBm/MHz)	Frequency (MHz)	(dBm/MHz)	-
			7246.18	-48.23	7386.68	-46.79	-
	No Sp	urious	7248.68	-48.11	7390.68	-47.39	-
	N0 0p		7249.18/7250.68 7248.68/7249.18/ 7250.68	-42.57 -41.50(*)	7389.68/7390.18 7389.68/7390.18/ 7390.68	-45.06 -43.06(*)	
		Ν	leasurement uncerta	inty (dB)		<± 2.03	1
				• 、 /			1
t: En	nission levels	s from two dif	ferent ports were s	ummed due to	the frequency separate		1 MH

20 MHz BW

Port 1 and 2:

Lowest 356	60 MHz	Middle 362	25 MHz	Highest 3690 MHz			
Spurious Frequency (MHz)	Emission Level (dBm/MHz)	Spurious Frequency (MHz)	Emission Level (dBm/MHz)	Spurious Frequency (MHz)	Emission Level (dBm/MHz)		
7119.5	-50.68	7246.49	-49.28	7377.99	-50.20		
		7250.18	-50.21	7370.99	-50.25		
	Measurement uncertainty (dB)						

Port 3 and 4:

Lowest 35	Lowest 3560 MHz		25 MHz	Highest 3690 MHz				
Spurious Frequency (MHz)	Emission Level (dBm/MHz)	Spurious Frequency (MHz)	Emission Level (dBm/MHz)	Spurious Frequency (MHz)	Emission Level (dBm/MHz)			
7119.50	-52.24	7250.18	-48.01	7384.99	-49.14			
		7247.49	-48.28	7382.99	-50.29			
	Measurement uncertainty (dB)							

Port 1, 2, 3 and 4:

Lowest 356	60 MHz	Middle 362	25 MHz	Highest 3690 MHz					
Spurious	Emission	Spurious	Emission	Spurious	Emission				
Frequency	Level	Frequency	Level	Frequency	Level				
(MHz)	(dBm/MHz)	(MHz)	(dBm/MHz)	(MHz)	(dBm/MHz)				
7119.50	-50.68	7246.49	-49.28	7370.99	-50.25				
7119.50	-52.24	7247.49	-48.28	7377.99	-50.20				
7119.50/7119.50	-48.38(*)	7246.49/7247.49	-45.74(*)	7382.99	-50.29				
		7250.18	-48.01	7384.99	-49.14				
		7250.18	-50.21						
		7250.18/7250.18	-45.96(*)						
	Measurement uncertainty (dB)								

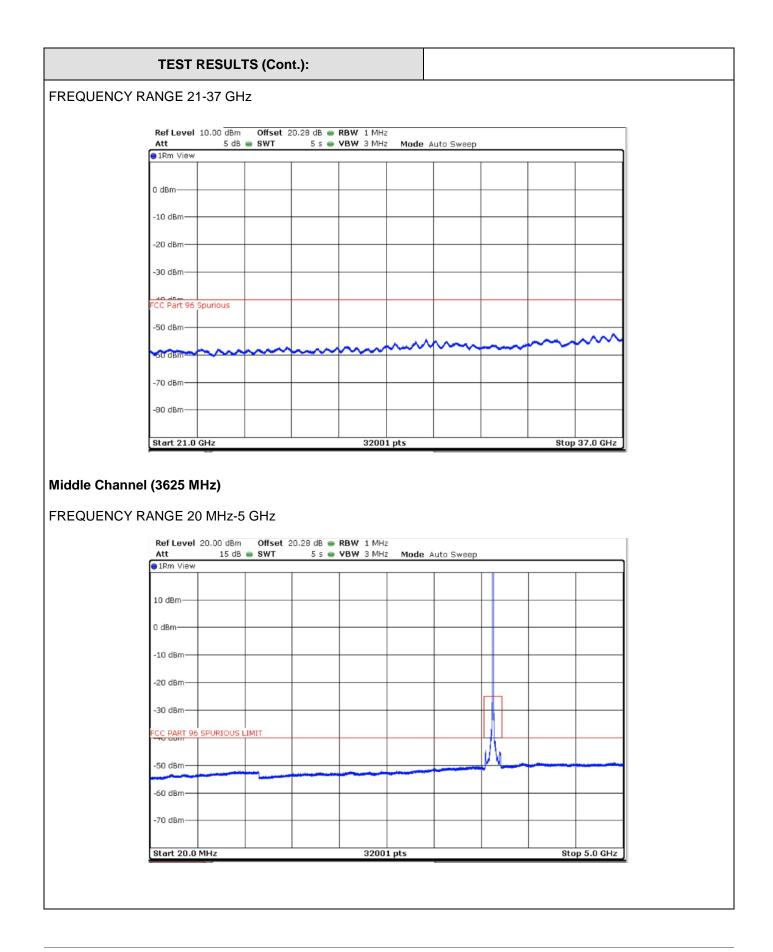
*: Emission levels from two different ports were summed due to the frequency separation within 1 MHz

(See next plots)

<u>Port 1</u>

<u>10MHz BW</u>

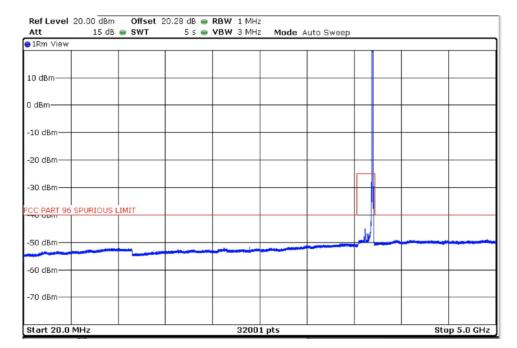
Lowest Channel (3555 MHz)

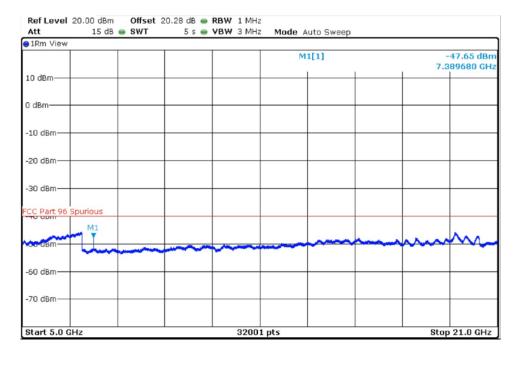

FREQUENCY RANGE 20 MHz-5 GHz

Att	15 dB	SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep		
1Rm View								
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
CC PART 96	SPURIOUS L	IMIT						
-50 dBm							here and	
-60 dBm								
-70 dBm								

FREQUENCY RANGE 5-21 GHz

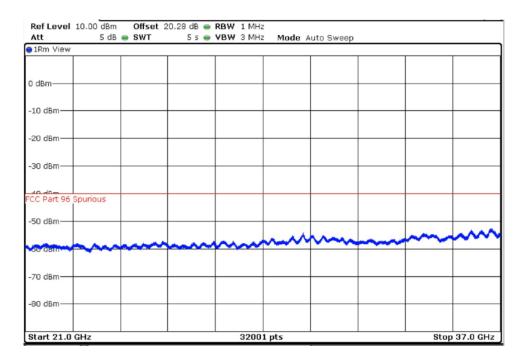
Att	15 dB	SWT	5 s 👄	VBW 3 MH	z Mode A	uto Sweep		
∋1Rm View								
10 dBm								
0 dBm								
-10 dBm							 	
00 40								
-20 dBm								
-30 dBm							 	
CC Part 96 S	purious							
-10 0011								
-	-							A
CO dBm	1.0			-			~~~~	
-60 dBm								
00 0.0111								
-70 dBm								
	łz)1 pts			21.0 GH



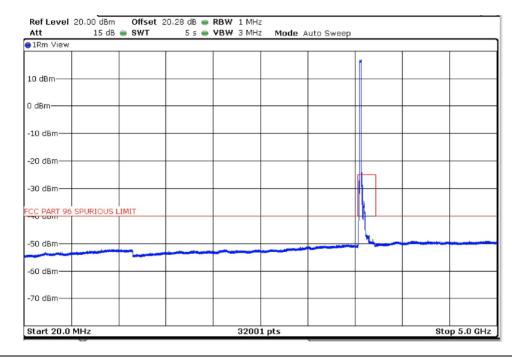


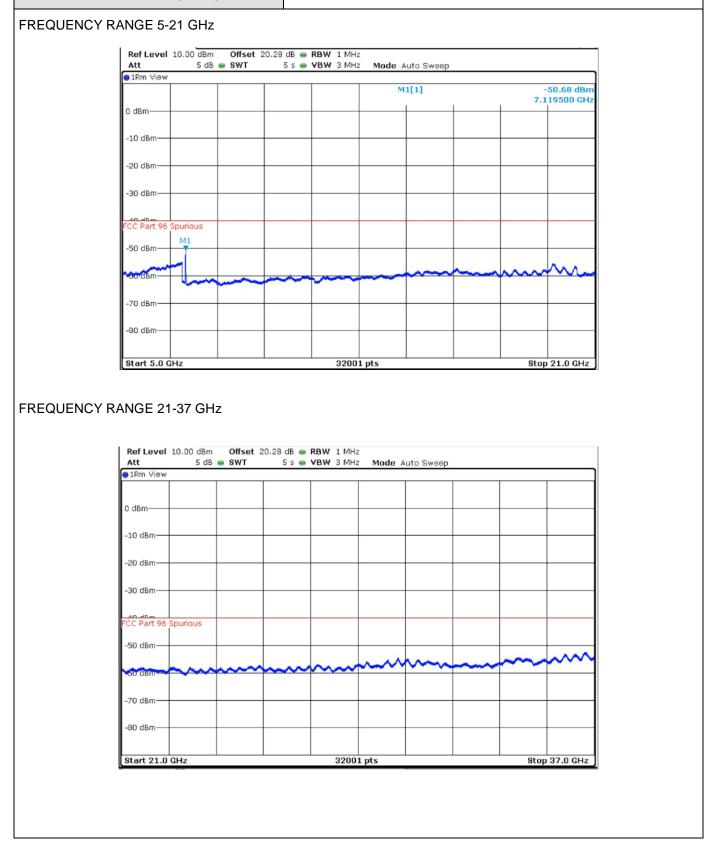
Highest Channel (3695 MHz)

FREQUENCY RANGE 20 MHz-5 GHz



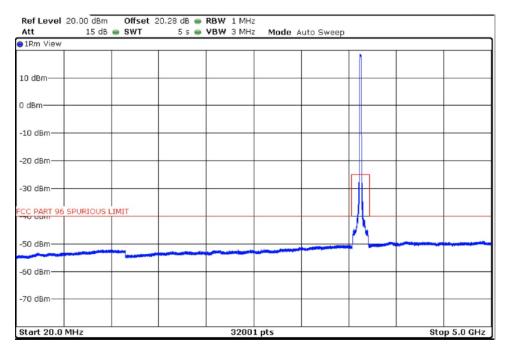
FREQUENCY RANGE 5-21 GHz

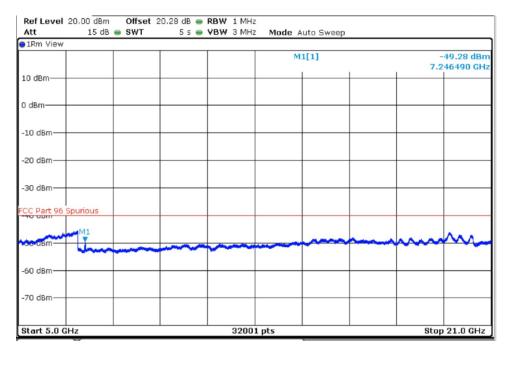

FREQUENCY RANGE 21-37 GHz


<u>20 MHz BW</u>

Lowest Channel (3560 MHz)

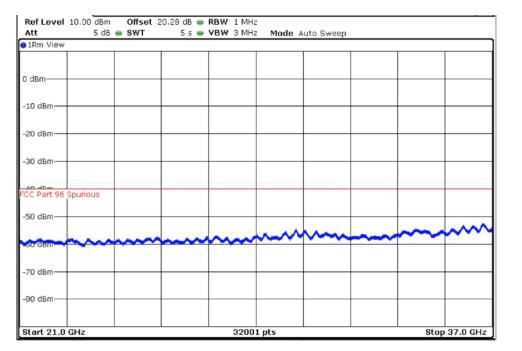
FREQUENCY RANGE 20 MHz-5 GHz



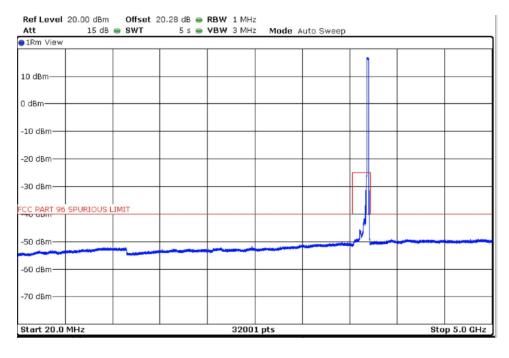


Middle Channel (3625 MHz)

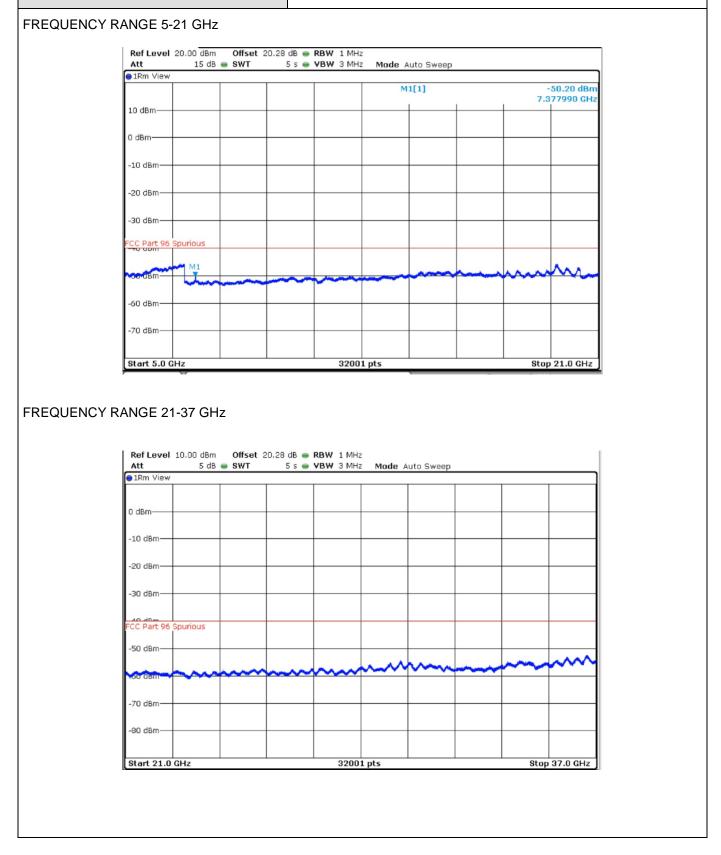
FREQUENCY RANGE 20 MHz-5 GHz



FREQUENCY RANGE 5-21 GHz



FREQUENCY RANGE 21-37 GHz


Highest Channel (3690 MHz)

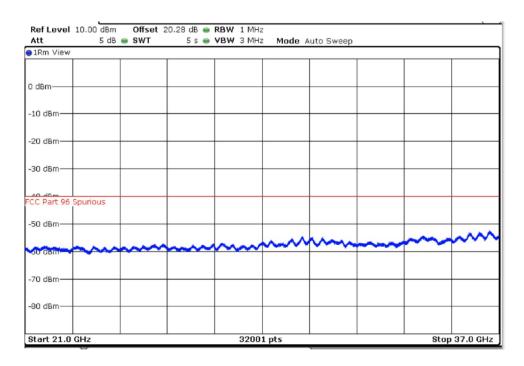
FREQUENCY RANGE 20 MHz-5 GHz

Port 2

<u>10MHz BW</u>

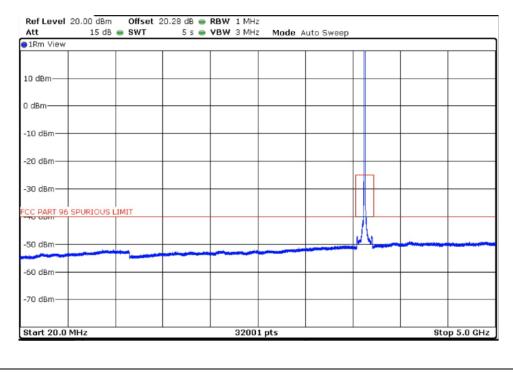
Lowest Channel (3555 MHz)

FREQUENCY RANGE 20 MHz-5 GHz

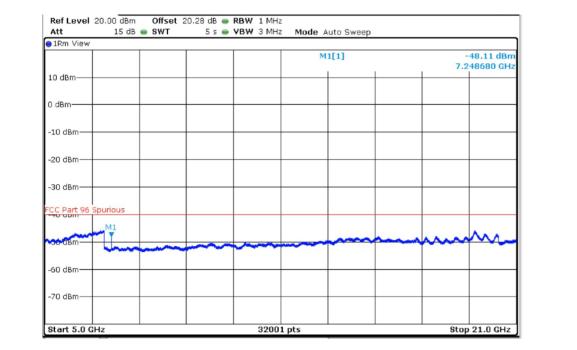

	20.00 dBm		20.28 dB 👄						
Att	15 dB	● SWT	5 s 👄	VBW 3 MHz	: Mode A	auto Sweep			
●1Rm View				1					
10 dBm									
10 00111									
0 dBm									
U UBIII									
10 10									
-10 dBm									
-20 dBm-									
-30 dBm									
FCC PART 96	SPURIOUS L	.IMIT							
-50 dBm							14		
		and the second s	-		the state of the s				
-60 dBm									
-70 dBm									
Start 20.0	MHz			3200	1 pts			Sto	p 5.0 GHz

FREQUENCY RANGE 5-21 GHz

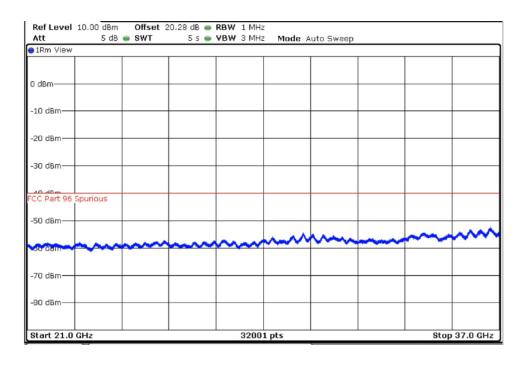
	dB 😑 SWT	5 s 👄	VBW 3 MHz	Mode A	uto Sweep		
●1Rm View							
10 dBm							
0 dBm							
-10 dBm							
-20 dBm							
-30 dBm							
CC Part 96 Spurious							
SO OBM			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			 ~~~~	m
-60 dBm							
-70 dBm							
Start 5.0 GHz			3200	Inte		Ptor	21.0 GH

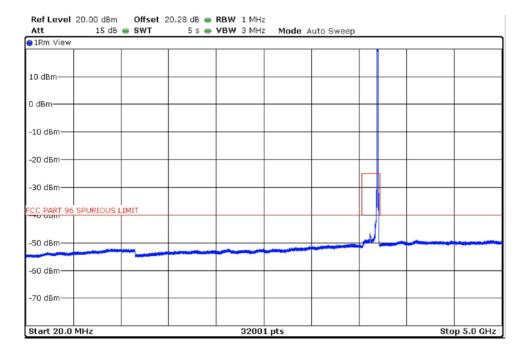


FREQUENCY RANGE 21-37 GHz


Middle Channel (3625 MHz)

FREQUENCY RANGE 20 MHz-5 GHz




FREQUENCY RANGE 21-37 GHz

Highest Channel (3695 MHz)

FREQUENCY RANGE 20 MHz-5 GHz

FREQUENCY RANGE 5-21 GHz

Ref Level 20.00 dBm Offset 20.28 dB 👄 RBW 1 MHz Att 15 dB 😑 SWT 5 s 👄 VBW 3 MHz Mode Auto Sweep ●1Rm View -48.54 dBm 7.390180 GHz M1[1] 10 dBm-0 dBm -10 dBm· -20 dBm--30 dBm-Part 96 Spurious М1 -60 dBm--70 dBm 32001 pts Stop 21.0 GHz Start 5.0 GHz