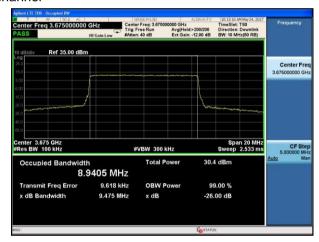
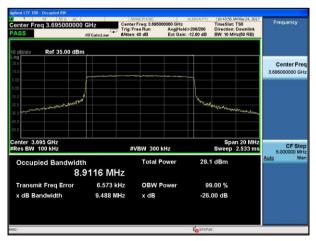


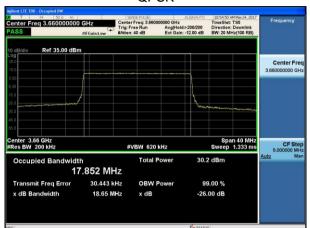

Chain 0:

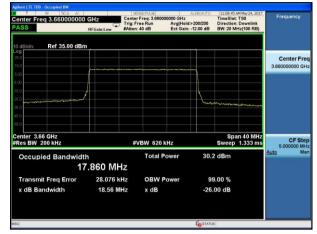

10MHz

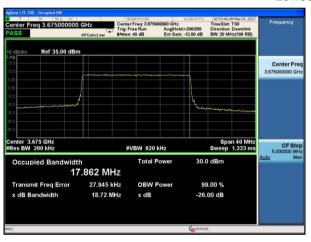


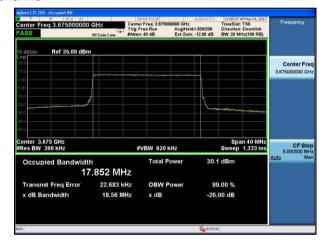

Lowest channel

Middle channel

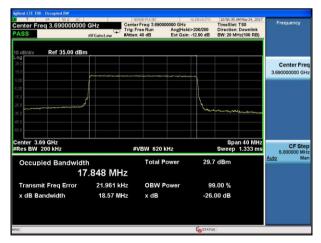


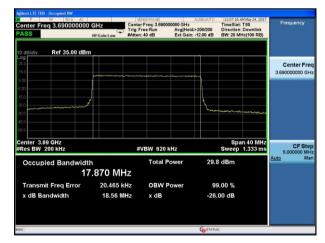

Highest channel


QPSK

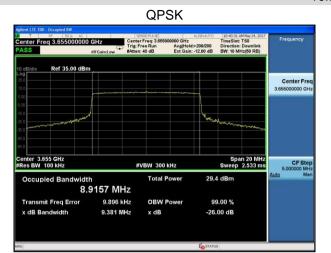


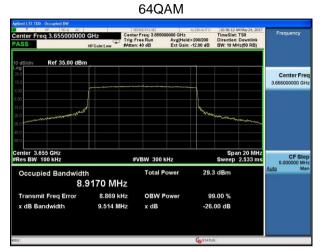
64QAM



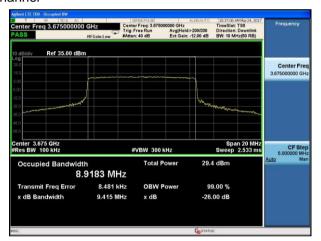

Lowest channel

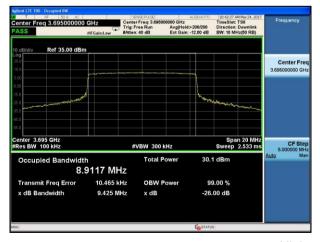
Middle channel

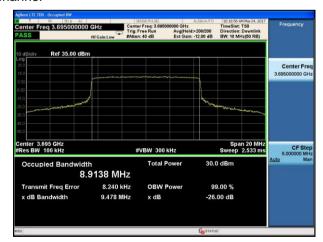



Highest channel

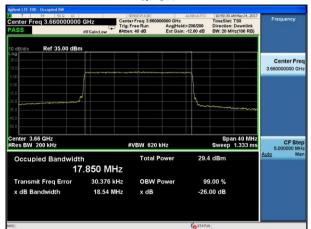
Chain 1:

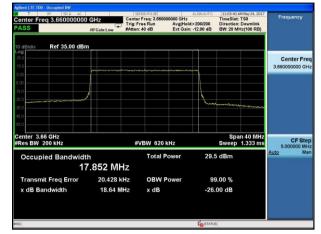

10MHz




Lowest channel

Middle channel

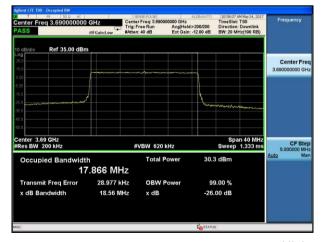


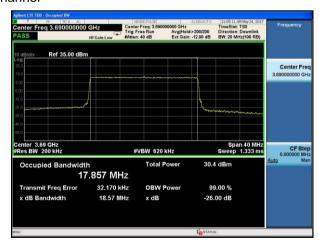

Highest channel

QPSK



64QAM




Lowest channel

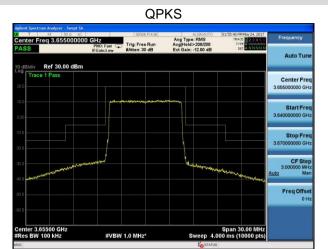
Middle channel

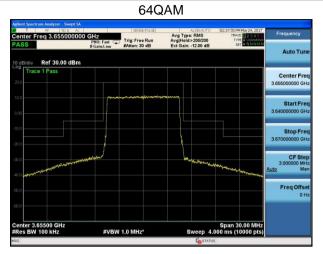
Highest channel

6.7 Emission Mask

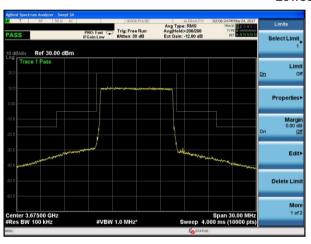
Test Requirement:	FCC part 90.210(b)	
Limit:	Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows: (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB. (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB. (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB	
Test Procedure:	 The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. RBW=100kHz, VBW=1MHz, Detector mode= RMS, Trace mode: Power averaging over 100 sweeps 	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

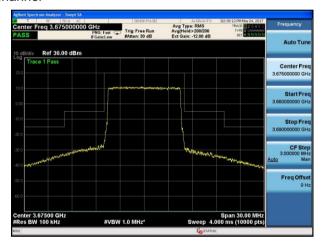
Measurement Data:

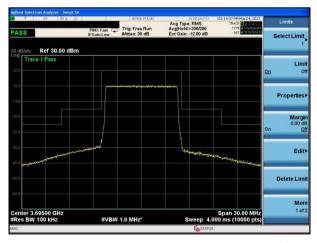




Test plots as below:

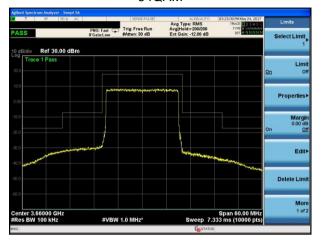

Chain 0:

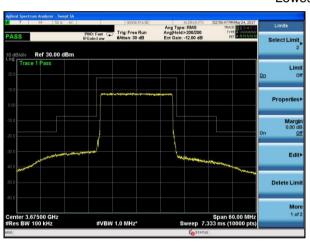

10MHz

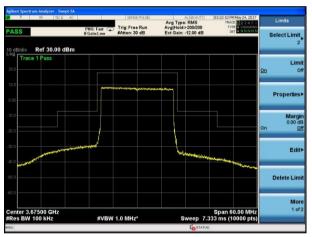


Lowest channel

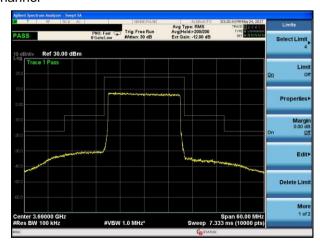
Middle channel


Highest channel

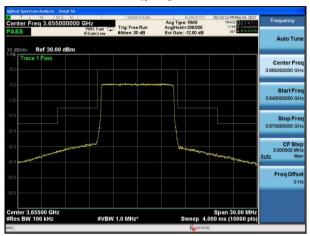

QPKS

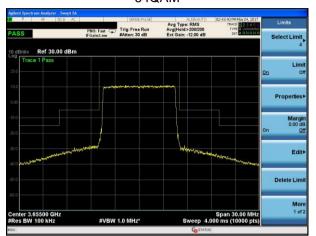


64QAM

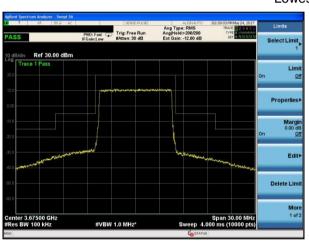

Lowest channel

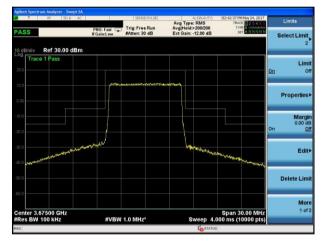
Middle channel


Highest channel

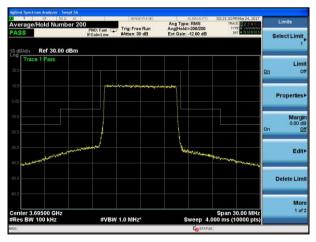

Chain 1:

10MHz


QPKS

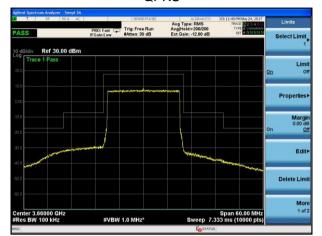


64QAM

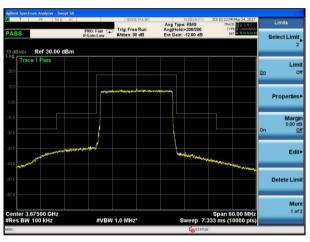


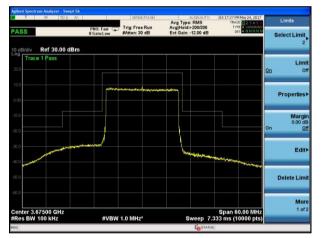

Lowest channel

Middle channel

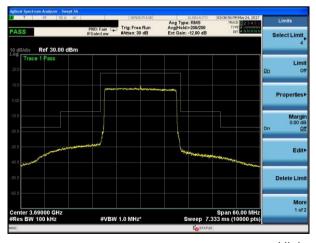


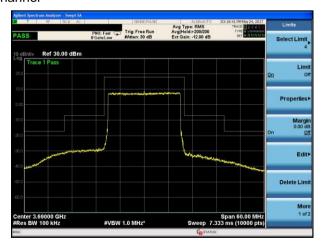
Highest channel


QPKS



64QAM




Lowest channel

Middle channel

Highest channel

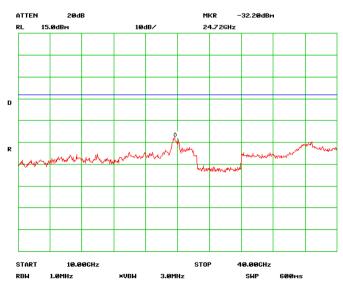
6.8 Out of band emission at antenna terminals

Test Requirement:	FCC part90.1323 and RSS-197 Clause 5.7		
Test Method:	FCC part2.1051 and RSS Gen Section 6.13		
Limit:	-13dBm		
Test Procedure:	 The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz when below 1GHz, 1MHz when above 1 GHz; sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic. For the out of band: Set the RBW=100 kHz, VBW=300 kHz when below 1 GHz, RBW =1 MHz, VBW=3 MHz when above 1 GHz, Start=30MHz, Stop= 10th harmonic. Band Edge Requirements: In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. 		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	During the test, pre-scan the QPSK, 64QAM modulation, and found the QPSK modulation(10MHz/20MHz middle channel) is the worst case.		

Test plots as follows (worst case):

Spurious emission

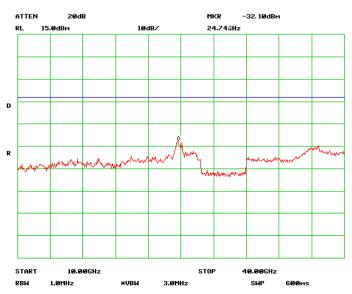
Chain 0:


10MHz(Middle channel)

30MHz~1GHz

1GHz~10GHz

10GHz~40GHz


20MHz(Middle channel)

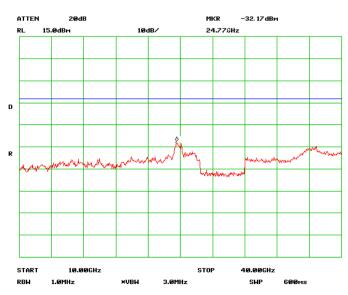
30MHz~1GHz

1GHz~10GHz

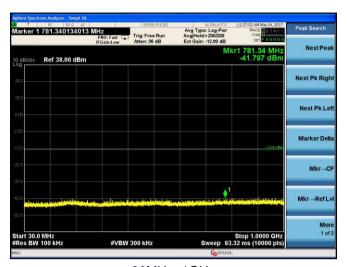
10GHz~40GHz

Page 32 of 53

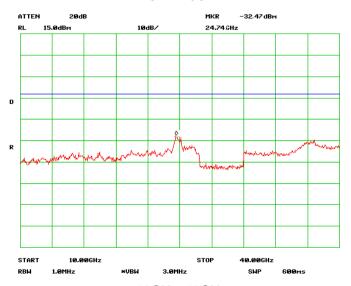
Chain 1:


10MHz(Middle channel)

30MHz~1GHz

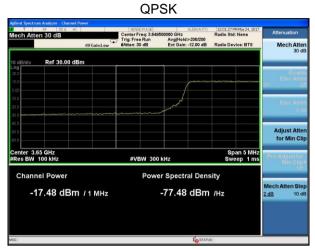

1GHz~10GHz

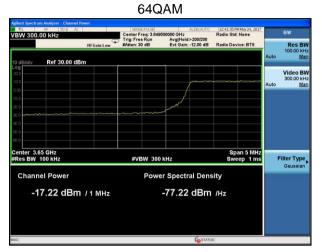
10GHz~40GHz


20MHz(Middle channel)

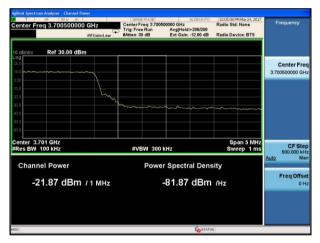
30MHz~1GHz

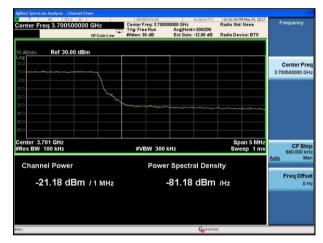
1GHz~10GHz




Band edge emission:

Chain 0:

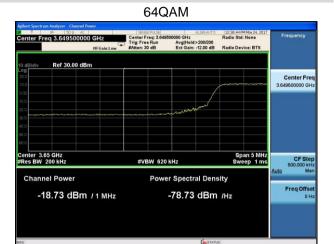

10MHz


Lowest channel

Lowest channel

Highest channel

Highest channel

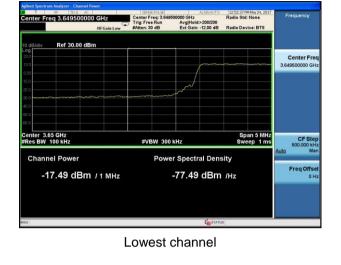



Lowest channel

Highest channel

Lowest channel

Highest channel



Chain 1:

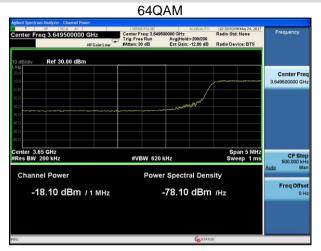
10MHz

| Agency | Content | Conte

Lowest channel

64QAM

Highest channel



Highest channel

Lowest channel

Lowest channel

Highest channel

Highest channel

6.9 Field strength of spurious radiation measurement

Test Requirement:	Part 90.1323 and RSS 197 section 5.7
Test Method:	FCC part2.1053 and RSS Gen section 6.13
Limit:	-13dBm
Test setup:	Below 1GHz
	Search Antenna RF Test Receiver Turn Table 0.8m Im A
	Above 1GHz
	EUT 4m Spectrum Analyzer Turn Table A A A A A A A A A A A A A
	Substituted method:
	Ground plane d: distance in meters d:3 meter 1-4 meter Substituted Dipole or Horn Antenna Bi-Log Antenna or Horn Antenna
Test Procedure:	1. The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.
	 During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations. The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission was identified, the power of the emission was determined using the substitution method.

	4. The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency. ERP / EIRP = S.G. output (dBm) + Antenna Gain(dB/dBi) – Cable Loss (dB)
Test Uncertainty:	± 4.88 dB
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details.
Test results:	Passed
Remark:	During the test, pre-scan the QPSK, 64QAM modulation, and found the QPSK modulation is the worst case.

Measurement Data (worst case):

10MHz for QPSK						
Frequency (MHz)	Spurious Emission		Limit (dBm)	Result		
1 requericy (Wir 12)	Polarization	Level (dBm)	Liiiii (ubiii)	Nesuit		
		Lowest				
7310.00	Vertical	-41.17				
10965.00	V	-42.25	-13	Pass		
7310.00	Horizontal	-41.44	-13	F d 5 5		
10965.00	Н	-40.48				
		Middle				
7350.00	Vertical	-42.08		Pass		
11025.00	V	-41.69	-13			
7350.00	Horizontal	-42.39	-13			
11025.00	Н	-40.85				
	Highest					
7390.00	Vertical	-42.04				
11085.00	V	-41.26	-13	Door		
7390.00	Horizontal	-42.12		Pass		
11085.00	Н	-40.58				

Remark:

1. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

20MHz for QPSK					
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Result	
Frequency (IVII 12)	Polarization	Level (dBm)	Lilliit (dbill)	Result	
		Lowest			
7320.00	Vertical	-40.84			
1098.00	V	-40.14	-13	Pass	
7320.00	Horizontal	-40.95	-13	FdSS	
1098.00	Н	-39.84			
		Middle			
7350.00	Vertical	-41.41			
11025.00	V	-40.06	-13	Pass	
7350.00	Horizontal	-41.32	-13		
11025.00	Н	-40.78			
	Highest				
7380.00	Vertical	-42.02			
11070.00	V	-41.14	-13	Pass	
7380.00	Horizontal	-40.36		F 055	
11070.00	Н	-40.11			

Remark:

1. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

6.10 Frequency stability V.S. Temperature measurement

Test Requirement:	FCC Part90.213(a) and RSS 197 section 5.3				
Test Method:	FCC Part2.1055(a)(1)(b) and RSS Gen section 6.1.1				
	FCC:				
	Frequency range (MHz)	Fixed and base stations (±ppm)	Mobile statio Over 2 watts output power	ons (±ppm) 2 watts or less output power	
	Below 25	100	100	200	
	25-50 72-76	20 5	20	50 50	
	150-174 216-220	5 1.0	5	50 1.0	
	220–222	0.1	1.5	1.5	
	421-512 806-809	2.5 1.0	5 1.5	5 1.5	
	809-824	1.5	2.5	2.5	
	851-854 854-869	1.0 1.5	1.5 2.5	1.5 2.5	
	896-901 902-928	0.1 2.5	1.5 2.5	1.5 2.5	
	902-928	2.5	2.5	2.5	
Limit:	929–930 935–940	1.5 0.1	1.5	1.5	
Littie.	1427–1435 Above 2450	300	300	300	
	IC: The transmitter frequency stability limit shall be determined as follows: (a) The frequency offset shall be measured according to the procedure described Gen and recorded; (b) Using a resolution bandwidth of 1% of the occupied bandwidth, a reference unwanted emission level specified in Section 5.7 on the emission mask of highest channel shall be selected, and the frequency at these points shall be as fL and fH respectively. The applicant shall ensure frequency stability by showing that fL minus the frequency at the section of the procedure described in the procedure describe				
	and fH plus the frequer	ncy offset shall be within	the 3650-3700 MHz ba	nd.	
Test setup:			Temperature Chamber		
	Note: N	Spectrum analyzer Att. Measurement setup for testing on A	Variable Power S	upply	
Test procedure:	supply and in	nt under test was oput rated voltage. vas connected to		·	
	analyzer via f	eed through attenua	ators.	•	
		•	•		
		trum analyzer RBW olution and measur quency.			
	5. Turn EUT off temperature strequency.	and set the chamb stabilized for appro	oximately 30 minu	tes recorded the	
	·	measure with 10℃ i of +50℃ reached	ncreased per stage	e until the highest	
Test Instruments:	Refer to section 5.	8 for details			
Test mode:	Refer to section 5.	3 for details			
Test results:	Passed				
Remark:	All three channels of all modulations have been tested, but only the worst channel and the worst modulation show in this test item.				

Measurement Data (the worst channel):

Chain 0:

1.0.0.0.00	Frequency: Lowest channel=3	0095101112 (101011112 101 0	RESIX)
Power supplied (Vdc)	Temperature (°C)	Frequency error	
r ower supplied (vdc)	remperature (C)	Hz	ppm
	-40	199	0.054446
	-25	187	0.051163
	-10	155	0.042408
	0	163	0.044596
48.00	10	132	0.036115
	20	144	0.039398
	30	171	0.046785
	40	108	0.029549
	55	128	0.035021
Reference	Frequency: Lowest channel=3	660MHz(20MHz for C	QPSK)
Device eventied ()/de)	Temperature (℃)	Frequency error	
Power supplied (Vdc)		Hz	ppm
	-40	196	0.053552
	-20	123	0.033607
	-10	166	0.045355
	0	188	0.051366
48.00	10	172	0.046995
	20	144	0.039344
	30	150	0.040984
	40	108	0.029508
	55	116	0.031694

Chain 1:

Chain 1:			
Reference	Frequency: Lowest channel=	:3655MHz(10MHz for	QPSK)
Power supplied (Vdc)	Temperature (°C)	Fre	quency error
1 Ower supplied (vde)	remperature (c)	Hz	ppm
	-40	196	0.053625
	-20	123	0.033653
	-10	188	0.051436
	0	166	0.045417
48.00	10	174	0.047606
	20	120	0.032832
	30	146	0.039945
	40	138	0.037756
	55	109	0.029822
Reference	Frequency: Lowest channel=	3660MHz(20MHz for	QPSK)
Dawer avanlied (\/da)	Temperature (℃)	Frequency error	
Power supplied (Vdc)		Hz	ppm
	-40	197	0.053825
	-20	181	0.049454
	-10	169	0.046175
	0	171	0.046721
48.00	10	148	0.040437
	20	126	0.034426
	30	133	0.036339
	40	150	0.040984
	55	107	0.029235

6.11 Frequency stability V.S. Voltage measurement

Test Requirement:	FCC Part 90.213(a) and R	FCC Part 90.213(a) and RSS 197 section 5.3			
Test Method:	FCC Part 2.1055(a)(1)(b) and RSS Gen section 6.1.1				
	FCC:				
	Frequency range (MHz) Fixed and ba	ase stations (±ppm) Over 2 watts outpu	Mobile stations (±ppm) t power 2 watts or less output power		
	Below 25	100 100	200		
	25-50 72-76	20 20 5	50 50		
	150-174	5 5	50		
	216-220 220-222	1.0 0.1 1.5	1.0 1.5		
	421-512	2.5 5	5		
	806-809	1.0 1.5	1.5		
	809-824 851-854	1.5 2.5 1.0 1.5	2.5 1.5		
	854-869	1.5 2.5	2.5		
	896-901 902-928	0.1 1.5 2.5 2.5	1.5 2.5		
	902-928	2.5 2.5	2.5		
Limit:	929–930	1.5			
LIIIII.	935–940 1427–1435	0.1 1.5 300 300	1.5 300		
	Above 2450				
	Gen andrecorded; (b) Using a resolution bandwidth of unwantedemission level specific highest channel shallbe select fL and fH respectively. The applicant shall ensure freque and fH plusthe frequency offset sl	fied in Section 5.7 on the em ted, and the frequency at the ency stability by showing that	ission mask of the lowest and se points shall be recorded as fL minus the frequency offset		
Test setup:		Temperature	Chamber		
Test procedure:	Note: Measurement setup for test 1. Set chamber tempera	Variable ting on Antenna connector	e Power Supply uriable DC power source d voltage.		
	2. Set the spectrum and frequency resolution a3. Reduce the input vol	frequency resolution and recorded the frequency.			
Test Instruments:	Refer to section 5.8 for det	Refer to section 5.8 for details			
Test mode:		Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.			
Test results:	Passed	Passed			
Remark:	All three channels of all modulations have been tested, but only the worst channel and the worst modulation show in this test item.				

Measurement Data (the worst channel):

Chain 0:

Chain 0.					
Reference Frequency: Lowest channel=3655MHz(10MHz for QPSK)					
Tamana ratura (°C)	Power supplied (Vdc)	Fred	luency error		
Temperature (°C)	Fower supplied (vdc)	Hz	ppm		
	42	98	0.026813		
25	48	76	0.020793		
	58	90	0.024624		
Reference	Frequency: Lowest channel=3	8660MHz(20MHz for C	QPSK)		
Tomporature (°C)	Power supplied (\/ds)	Frequency error			
Temperature (°C)	Power supplied (Vdc)	Hz	ppm		
	42	87	0.023770		
25	48	90	0.024590		
	58	74	0.020219		

Chain 1:

Reference	e Frequency: Lowest channel=	3655MHz(10MHz for C	QPSK)
Tomporoture (°C)	Power supplied (\/de)	Fred	quency error
Temperature (°C)	Power supplied (Vdc)	Hz	ppm
	42	99	0.027086
25	48	81	0.022161
	58	63	0.017237
Reference	e Frequency: Lowest channel=	3660MHz(20MHz for C	QPSK)
Temperature (°C)	Power supplied (Vdc)	Fred	quency error
remperature (C)	Fower supplied (vdc)	Hz	ppm
	42	80	0.021858
25	48	72	0.019672
	58	57	0.015574