

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	Xiaomi Communications Co., Ltd.
Address:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085

Manufacturer or	Xiaomi Communications Co., Ltd.			
Supplier:	, , , , , , , , , , , , , , , , , , ,			
Address:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085			
Product:	Mobile Phone			
Brand Name:	Redmi			
Model Name:	23053RN02A			
FCC ID:	2AFZZRN02A			
Date of tests:	Mar. 06, 2023 ~ Mar. 29, 2023			

The tests have been carried out according to the requirements of the following standard:

FCC Part 15, Subpart C, Section 15.247

ANSI C63.10-2013

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

Prepared by Simon Wang	Approved by Luke Lu
Engineer / Mobile Department	Manager / Mobile Department
Simon Wang	luke lu
Date: Mar. 29, 2023	Date: Mar. 29, 2023

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/temps-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

R	ELE/	ASE C	CONTROL RECORD	5
1	S	UMM	ARY OF TEST RESULTS	6
	1.1	ME	ASUREMENT UNCERTAINTY	8
2	G	ENE	RAL INFORMATION	9
	2.1	GEN	NERAL DESCRIPTION OF EUT	9
	2.2	DES	SCRIPTION OF TEST MODES	10
	2	.2.1	CONFIGURATION OF SYSTEM UNDER TEST	11
	2	.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	11
	2.3	GEN	NERAL DESCRIPTION OF APPLIED STANDARDS	13
	2.4	DES	SCRIPTION OF SUPPORT UNITS	13
3	Т	EST	TYPES AND RESULTS	14
	3.1	CON	NDUCTED EMISSION MEASUREMENT	14
	3	.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	14
	3	.1.2	TEST INSTRUMENTS	14
	3	.1.3	TEST PROCEDURES	14
	3	.1.4	DEVIATION FROM TEST STANDARD	15
	3	.1.5	TEST SETUP	15
	3	.1.6	EUT OPERATING CONDITIONS	15
	3	.1.7	TEST RESULTS	16
	3.2	RAD	DIATED EMISSION AND BANDEDGE MEASUREMENT	18
	3	.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	18
	3	.2.2	TEST INSTRUMENTS	19
	3	.2.3	TEST PROCEDURES	20
	3	.2.4	DEVIATION FROM TEST STANDARD	20
	3	.2.5	TEST SETUP	21
	3	.2.6	EUT OPERATING CONDITIONS	22
	3	.2.7	TEST RESULTS	23
	3.3	NUN	MBER OF HOPPING FREQUENCY USED	30
	3	.3.1	LIMIT OF HOPPING FREQUENCY USED	30
	3	.3.2	TEST SETUP	30
	3	.3.3	TEST INSTRUMENTS	30
	3	.3.4	TEST PROCEDURES	31
	3	.3.5	DEVIATION FROM TEST STANDARD	31
	3	.3.6	TEST RESULTS	31
	3.4	DW	ELL TIME ON EACH CHANNEL	32

3.4.1	LIMIT OF DWELL TIME USED	32
3.4.2	TEST SETUP	32
3.4.3	TEST INSTRUMENTS	32
3.4.4	TEST PROCEDURES	32
3.4.5	DEVIATION FROM TEST STANDARD	33
3.4.6	TEST RESULTS	33
3.5 CHA	ANNEL BANDWIDTH	34
3.5.1	LIMITS OF CHANNEL BANDWIDTH	34
3.5.2	TEST SETUP	34
3.5.3	TEST INSTRUMENTS	34
3.5.4	TEST PROCEDURE	34
3.5.5	DEVIATION FROM TEST STANDARD	34
3.5.6	EUT OPERATING CONDITION	35
3.5.7	TEST RESULTS	35
3.6 HOF	PPING CHANNEL SEPARATION	36
3.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	36
3.6.2	TEST SETUP	36
3.6.3	TEST INSTRUMENTS	36
3.6.4	TEST PROCEDURES	36
3.6.5	DEVIATION FROM TEST STANDARD	36
3.6.6	TEST RESULTS	37
3.7 MAX	XIMUM OUTPUT POWER	37
3.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	37
3.7.2	TEST SETUP	37
3.7.3	TEST INSTRUMENTS	37
3.7.4	TEST PROCEDURES	37
3.7.5	DEVIATION FROM TEST STANDARD	38
3.7.6	EUT OPERATING CONDITION	38
3.7.7	TEST RESULTS	39
3.7.7.1	MAXIMUM PEAK OUTPUT POWER	39
3.7.7.2	AVERAGE OUTPUT POWER (FOR REFERENCE)	40
3.8 OUT	Γ OF BAND MEASUREMENT	41
3.8.1	LIMITS OF OUT OF BAND MEASUREMENT	41
3.8.2	TEST INSTRUMENTS	41
3.8.3	TEST PROCEDURE	41
3.8.4	DEVIATION FROM TEST STANDARD	41

BV 7Layers Communications Technology (Shenzhen) Co., Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

	3.8.5	EUT OPERATING CONDITION	41
	3.8.6	TEST RESULTS	41
4	PHO	OTOGRAPHS OF THE TEST CONFIGURATION	42
5	МО	DIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY TH	E LAB
	43		
6	API	PENDIX	44

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
W7L-P23030005RF01	Original release	Mar. 29, 2023

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C					
STANDARD	TEST TYPE AND LIMIT	RESULT			
15.207	AC Power Conducted Emission	Compliance			
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Compliance			
15.247(a)(1) (iii)	Dwell Time on Each Channel	Compliance			
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	Compliance			
15.247(b)	Maximum Peak Output Power	Compliance			
15.247(d)& 15.209	Transmitter Radiated Emissions	Compliance			
15.247(d)	Out of band Measurement	Compliance			
15.203	Antenna Requirement	Compliance			

NOTE:

- If the Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.
- 2. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- 3. This report refers to the data of W7L-P23030003RF01 (FCC ID: 2AFZZRN02L, model: 23053RN02L), the difference between23053RN02L and 23053RN02A is model, FCC ID and supporting bands. 23053RN02A remove WCDMA B2& LTE B2& LTE B4& LTE B12& LTE B13& LTE B17& LTE B26& LTE B66, The new sample only Spot-Check the worst case of RSE and conducted power, and the Spot-Check results of conducted power are similar or lower. This report only updates the spot-check data of RSE (GFSK CH 78), add the Spot-Check data of conducted power.

Test Lab Information Reference:

BV 7Layers Communications Technology (Shenzhen) Co., Ltd

Lab Address:

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Accredited Test Lab Cert 3939.01

BV 7Layers Communications Technology

(Shenzhen) Co., Ltd

Test Report No.: W7L-P23030005RF01

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Mobile Phone			
BRAND NAME	Redmi			
MODEL NAME	23053RN02A			
NOMINAL VOLTAGE	5V/9V/10V/12Vdc(adapter or host equipment) 3.8Vdc (Li-ion, battery)			
MODULATION TECHNOLOGY	FHSS			
MODULATION TYPE	GFSK, 8DPSK, π/4 DQPSK			
OPERATING FREQUENCY	2402MHz~2480MHz			
NUMBER OF CHANNEL	79			
MAX. OUTPUT POWER	10.99mW (Max. Measured)			
	10.99mW (Max. Measured) IFA Antenna with -3.7dBi gain			
MAX. OUTPUT POWER				
MAX. OUTPUT POWER ANTENNA TYPE	IFA Antenna with -3.7dBi gain			
MAX. OUTPUT POWER ANTENNA TYPE HW VERSION	IFA Antenna with -3.7dBi gain P1.1			
MAX. OUTPUT POWER ANTENNA TYPE HW VERSION SW VERSION	IFA Antenna with -3.7dBi gain P1.1 MIUI14 861065060020543 861065060023927			

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photograph of the test configuration for reference.

TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL 222

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna

The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE		APPLICA	ABLE TO		DESCRIPTION			
MODE	RE<1G	RE≥1G	PLC	APCM	DESCRIPTION			
-	√	V	V	V	-			

Where

RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission

RE≥1G: Radiated Emission above 1GHz **APCM:** Antenna Port Conducted Measurement

RADIATED EMISSION TEST (BELOW 1 GHz):

 \boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0 to 78	78	FHSS	GFSK	

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0 to 78	78	FHSS	GFSK	DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH1/DH3/DH5
0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH1/2DH3/2DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH1/3DH3/3DH5

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY
RE<1G	23deg. C, 70%RH	DC 5V/9V/10V/12V By Adapter	Jace Hu
RE≥1G	23deg. C, 70%RH	DC 5V/9V/10V/12V By Adapter	Jace Hu
PLC	25deg. C, 52%RH	DC 5V/9V/10V/12V By Adapter	Carl Xie
APCM	25deg. C, 60%RH	DC 3.8 By Battery	James Fu

Email: <u>customerservice.sw@bureauveritas.com</u>

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. Section 15.247 **ANSI C63.10-2013**

NOTE: 1. All test items have been performed and recorded as per the above standards.

2. The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Desktop	Lenovo	M73 SFF	PC04GRQV	N/A
2	Desktop	Lenovo	M73 SFF	PC06CS27	N/A
3	Laptop	Lenovo	Thinkpad L440	R90FTFKN	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS				
1	AC Line: Unshielded, Detachable 1.5m				
2	AC Line: Unshielded, Detachable 1.5m				
3	AC Line: Unshielded, Detachable 1.5m				

TEST TYPES AND RESULTS

CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBμV)
0.15 ~ 0.5	Quasi-peak	Average
0.5 ~ 5	66 to 56	56 to 46
5 ~ 30	56	46
	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	101900	Feb. 14,23	Feb. 13,24
EMC32 test software	Rohde&Schwarz	EMC32	NA	NA	NA
LISN network	Rohde&Schwarz	ENV216	101922	Mar. 03,23	Mar. 02,24

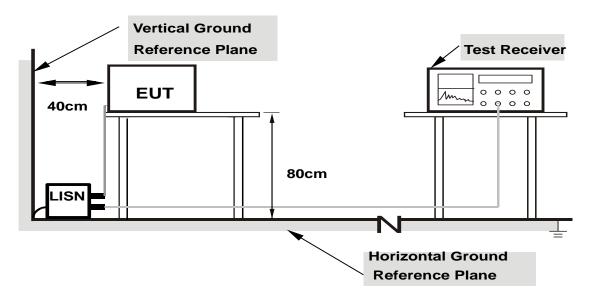
NOTE: 1. The test was performed in CE shielded room.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 **TEST PROCEDURES**

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.


Email: customerservice.sw@bureauveritas.com

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

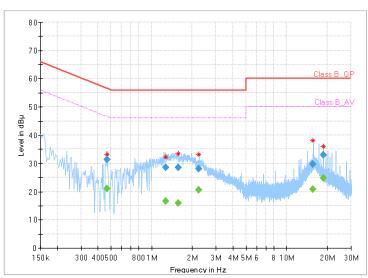
For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

3.1.7 TEST RESULTS

CONDUCTED WORST-CASE DATA:

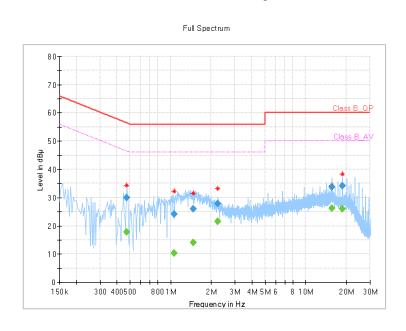

Frequency Range	1160KH7 - 30N/H7	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Carl xie		

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.468000		21.13	46.55	25.42	L1	ON	9.7
0.468000	31.33		56.55	25.22	L1	ON	9.7
1.276000		16.59	46.00	29.41	L1	ON	9.7
1.276000	28.52		56.00	27.48	L1	ON	9.7
1.576000		15.88	46.00	30.12	L1	ON	9.7
1.576000	28.65		56.00	27.35	L1	ON	9.7
2.244000		20.64	46.00	25.36	L1	ON	9.7
2.244000	27.97		56.00	28.03	L1	ON	9.7
15.708000		20.82	50.00	29.18	L1	ON	9.8
15.708000	29.66		60.00	30.34	L1	ON	9.8
18.704000		24.76	50.00	25.24	L1	ON	9.8
18.704000	32.88		60.00	27.12	L1	ON	9.8

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Email: <u>customerservice.sw@bureauveritas.com</u>



Frequency Range	150KHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Carl xie		

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.472000		17.87	46.48	28.61	N	ON	9.7
0.472000	29.98		56.48	26.50	N	ON	9.7
1.064000		10.21	46.00	35.79	N	ON	9.8
1.064000	24.19		56.00	31.81	N	ON	9.8
1.470000		14.01	46.00	31.99	N	ON	9.8
1.470000	25.87		56.00	30.13	N	ON	9.8
2.244000		21.49	46.00	24.51	N	ON	9.8
2.244000	27.86		56.00	28.14	N	ON	9.8
15.708000		26.17	50.00	23.83	N	ON	9.8
15.708000	33.72		60.00	26.28	N	ON	9.8
18.708000		26.01	50.00	23.99	N	ON	9.9
18.708000	34.09		60.00	25.91	N	ON	9.9

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

3.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)	
0.009 ~ 0.490	2400/F(kHz)	300	
0.490 ~ 1.705	24000/F(kHz)	30	
1.705 ~ 30.0	30	30	
30 ~ 88	100	3	
88 ~ 216	150	3	
216 ~ 960	200	3	
Above 960	500	3	

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Tel: +86 755 8869 6566

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	May. 19,20	May. 18,23
Bilog Antenna	ETS-LINDGREN	3143B	00161965	Mar. 05,23	Mar. 04,24
Horn Antenna	ETS-LINDGREN	3117	00168692	Mar. 05,23	Mar. 04,24
Horn Antenna (18GHz-40GHz)	N/A	QWH-SL-18-40- K-SG/QMS-003 61	15433	Sep.04, 22	Sep.03, 23
Test Software	E3	V 9.160323	N/A	N/A	N/A
Test Software	JS1120-3	3.2.06	N/A	N/A	N/A
10dB Attenuator	JFW/USA	50HF-010-SMA	N/A	May. 12,22	May. 11,23
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Feb. 20,23	Feb. 19,24
Signal Pre-Amplifier	EMSI	EMC 9135	980249	May.12,22	May.11,23
Signal Pre-Amplifier	EMSI	EMC 012645B	980257	May.12,22	May.11,23
Signal Pre-Amplifier	EMSI	EMC 184045B	980259	Feb. 17,23	Feb. 16,24
DC Source	Kikusui/JP	PMX18-5A	0000001	Aug. 12,22	Aug. 11,23
Power Meter	Anritsu	ML2495A	1506002	Feb. 14,23	Feb. 13,24
Power Sensor	Anritsu	MA2411B	1339352	Feb. 14,23	Feb. 13,24
Loop Antenna	Schwarzbeck	FMZB 1519B	00173	Sep.03,22	Sep.02,23

NOTE: 1. The calibration interval of the above test instruments is 12 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

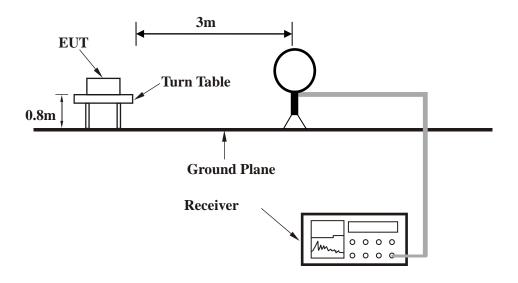
Email: customerservice.sw@bureauveritas.com

3.2.3 TEST PROCEDURES

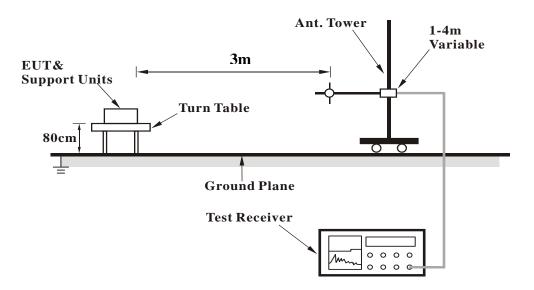
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

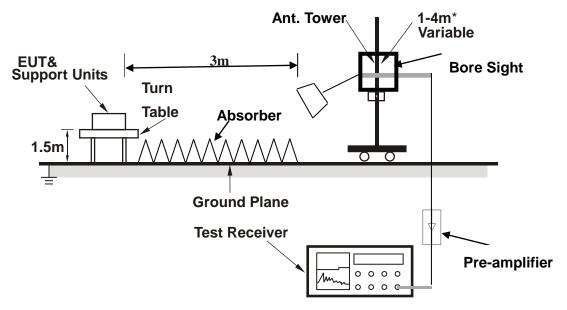

3.2.4 DEVIATION FROM TEST STANDARD

No deviation.



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

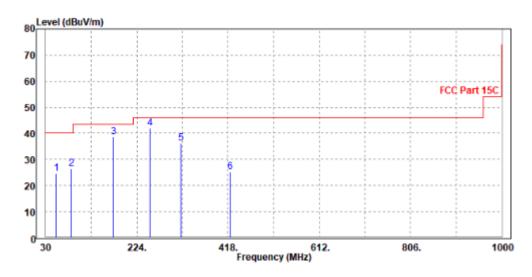
- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA:

30 MHz - 1GHz data:

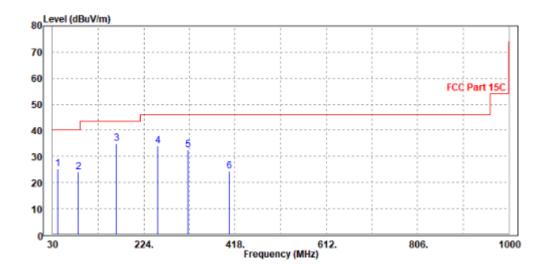

BT_GFSK

CHANNEL	Channel 78	DETECTOR FUNCTION	Ougsi Dook (OD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

	A	NTENN	A POLAF	RITY & TE	ST DISTA	NCE: HO	DRIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
52.31	24.76	51.37	40	-15.24	9.97	0.41	36.99	118	18	QP
84.32	26.56	54.79	40	-13.44	8.22	0.5	36.95	152	303	QP
174.53	38.63	63.1	43.5	-4.87	11.26	0.7	36.43	154	70	QP
251.16	42.03	63.95	46	-3.97	13.51	0.84	36.27	144	208	QP
318.09	36.22	57.17	46	-9.78	14.4	0.94	36.29	189	317	QP
422.85	25.37	44.1	46	-20.63	16.63	1.11	36.47	147	234	QP

REMARKS:

- 1. Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value


Email: <u>customerservice.sw@bureauveritas.com</u>

CHANNEL	Channel 78	DETECTOR FUNCTION	Ouggi Book (OD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

		ANTEN	INA POL	ARITY & 1	TEST DIST	ANCE: \	VERTICA	L AT 3 M		
FREQ.	EMISSION	READ	LIMIT	LIMIT MARGIN	ANTENNA	CABLE	PREAMP	ANTENNA	TABLE	
(MHz)	LEVEL	LEVEL	(dBuV/m)		FACTOR	LOSS	FACTOR	HEIGHT	ANGLE	REMARK
(IVIFIZ)	(dBuV/m)	(dBuV)	(dbuv/iii)	(dB)	(dB /m)	(dB)	(dB)	(cm)	(Degree)	
41.64	25.31	50.15	40	-14.69	11.97	0.37	37.18	152	193	QP
84.32	24.1	52.52	40	-15.9	8.03	0.5	36.95	176	151	QP
165.8	35.03	59.83	43.5	-8.47	10.99	0.68	36.47	184	305	QP
253.1	33.96	56.7	46	-12.04	12.69	0.84	36.27	184	310	QP
318.09	32.42	53.35	46	-13.58	14.42	0.94	36.29	130	213	QP
405.39	24.35	43.33	46	-21.65	16.37	1.08	36.43	170	278	QP

- 1. Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

ABOVE 1GHz WORST-CASE DATA:

Note: 1. For radiated emissions testing ,the full testing range of different modes have been scanned , only the worst case harmonic data is reported in the sheet.

2. All other emissions were greater than 20dB below the limit is not recorded

1GHz – 25GHz: (Scan with GFSK, π/4-DQPSK, 8DPSK mode, the worst case is GFSK Mode)

BT_GFSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	Д	NTENN	A POLAF	RITY & TE	ST DISTA	NCE: H	ORIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	49.89	57.93	74	-24.11	31.75	6.18	45.97	150	190	Peak
2390	41.83	49.87	54	-12.17	31.75	6.18	45.97	150	190	Average
2402	103.52	111.51	1	1	31.79	6.19	45.97	150	190	Peak
2402	103.31	111.3	1	1	31.79	6.19	45.97	150	190	Average
2483.5	49.63	57.2	74	-24.37	32.05	6.31	45.93	150	190	Peak
2483.5	41.51	49.08	54	-12.49	32.05	6.31	45.93	150	190	Average
		ANTEN	NA POL	ARITY & 1	EST DIST	ANCE: \	VERTICA	L AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	50.3	57.95	74	-23.7	32.14	6.18	45.97	100	150	Peak
2390	41.84	49.49	54	-12.16	32.14	6.18	45.97	100	150	Average
2402	100.38	108	1	1	32.16	6.19	45.97	100	150	Peak
2402	100.05	107.67	1	1	32.16	6.19	45.97	100	150	Average
2483.5	51.67	58.93	74	-22.33	32.36	6.31	45.93	100	150	Peak
2483.5	41.92	49.18	54	-12.08	32.36	6.31	45.93	100	150	Average

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level – Limit value.
- 2. 2402MHz: Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

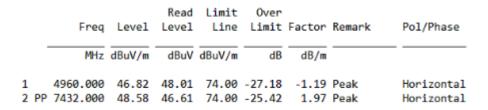
	Д	NTENN	IA POLAF	RITY & TE	ST DISTA	NCE: H	ORIZONT	AL AT 3 M		
FREQ.	EMISSION	READ	LIMIT	MARGIN	ANTENNA	CABLE		ANTENNA	TABLE	
(MHz)	LEVEL	LEVEL	(dBuV/m)	(dB)	FACTOR	LOSS	FACTOR	HEIGHT	ANGLE	REMARK
,	(dBuV/m)	(dBuV)	,	()	(dB /m)	(dB)	(dB)	(cm)	(Degree)	
2390	49.55	57.59	74	-24.45	31.75	6.18	45.97	150	190	Peak
2390	42.24	50.28	54	-11.76	31.75	6.18	45.97	150	190	Average
2441	104.48	112.27	/	1	31.91	6.25	45.95	150	190	Peak
2441	104.38	112.17	1	1	31.91	6.25	45.95	150	190	Average
2483.5	49.43	57	74	-24.57	32.05	6.31	45.93	150	190	Peak
2483.5	42.08	49.65	54	-11.92	32.05	6.31	45.93	150	190	Average
		ANTEN	NA POL	ARITY & 1	EST DIST	ANCE: \	VERTICA	L AT 3 M		
FREQ.	EMISSION	READ	LIMIT	MARGIN	ANTENNA	CABLE	PREAMP	ANTENNA	TABLE	
	LEVEL	LEVEL			FACTOR	LOSS	FACTOR	HEIGHT	ANGLE	REMARK
(MHz)	(dBuV/m)	(dBuV)	(dBuV/m)	(dB)	(dB /m)	(dB)	(dB)	(cm)	(Degree)	
2390	49.75	57.4	74	-24.25	32.14	6.18	45.97	110	150	Peak
2390	41.91	49.56	54	-12.09	32.14	6.18	45.97	110	150	Average
2441	103.8	111.24	1	1	32.26	6.25	45.95	110	150	Peak
2441	103.67	111.11	1	1	32.26	6.25	45.95	110	150	Average
2483.5	50.09	57.35	74	-23.91	32.36	6.31	45.93	110	150	Peak
2483.5	42.26	49.52	54	-11.74	32.36	6.31	45.93	110	150	Average

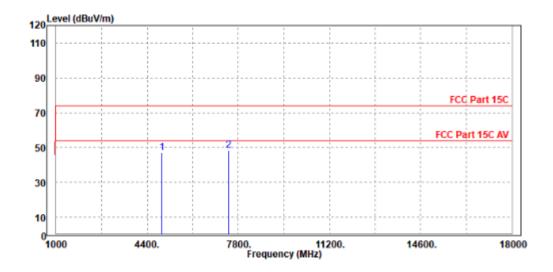
- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level – Limit value.
- 2. 2441MHz: Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	50.44	58.48	74	-23.56	31.75	6.18	45.97	100	203	Peak
2390	42.34	50.38	54	-11.66	31.75	6.18	45.97	100	203	Average
2480	101.74	109.33	1	1	32.04	6.3	45.93	100	203	Peak
2480	101.53	109.12	1	1	32.04	6.3	45.93	100	203	Average
2483.5	50.55	58.12	74	-23.45	32.05	6.31	45.93	100	203	Peak
2483.5	43	50.57	54	-11	32.05	6.31	45.93	100	203	Average
		ANTEN	NA POL	ARITY & T	TEST DIST	ANCE: \	VERTICA	L AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	50.02	57.67	74	-23.98	32.14	6.18	45.97	100	170	Peak
2390	42.41	50.06	54	-11.59	32.14	6.18	45.97	100	170	Average
2480	98.52	105.8	1	1	32.35	6.3	45.93	100	170	Peak
2480	98.33	105.61	1	1	32.35	6.3	45.93	100	170	Average
2483.5	50.76	58.02	74	-23.24	32.36	6.31	45.93	100	170	Peak
2483.5	43.3	50.56	54	-10.7	32.36	6.31	45.93	100	170	Average

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level – Limit value.
- 2. 2480MHz: Fundamental frequency.

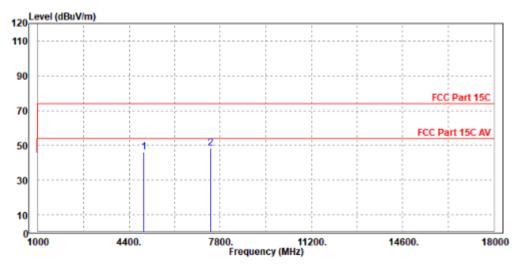



Worst case harmonic:

BT_GFSK

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)	
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)	

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

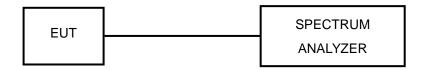


ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Freq	Level		Limit Line		Factor	Remark	Pol/Phase
MHz	dBuV/m	dBuV	dBuV/m	dB	dB/m		
1 4960.000 2 PP 7440.000							Vertical Vertical

REMARKS:

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level – Limit value.
- 2. 2480MHz: Fundamental frequency.
- 3. For frequency above 18GHz, the emission was tested 20db below the limit so the data not recorded in the sheet.



3.3 NUMBER OF HOPPING FREQUENCY USED

3.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

3.3.2 TEST SETUP

3.3.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Power Meter	ANRITSU	ML2495A	1506002	Feb. 14,23	Feb. 13,24
EXA Signal Analyzer	KEYSIGHT	N9010A-526	MY54510322	Feb. 17,23	Feb. 16,24
EXA Signal Analyzer	KEYSIGHT	N9010A-544	MY54510355	May.14,22	May.13,23
Power Sensor	ANRITSU	MA2411B	1339352	Feb. 14,23	Feb. 13,24

NOTE:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in RF Oven room.

3.3.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.

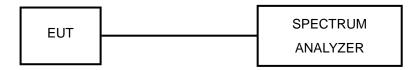
3.3.5 DEVIATION FROM TEST STANDARD

No deviation.

3.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

Please Refer to Appendix Of this test report.



3.4 DWELL TIME ON EACH CHANNEL

3.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.4.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.