

FCC Radio Test Report

FCC ID: 2AFZZR4AC

This report concerns: Original Grant

Project No.	:	2103C213
Equipment	:	Mi Router 4A
Brand Name	:	MI
Test Model	:	R4AC
Series Model	:	N/A
Applicant	:	Xiaomi Communications Co.,Ltd
Address	:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China
Manufacturer	:	Xiaomi Communications Co.,Ltd
Address	:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China
Factory	:	Huizhou MTN WEIYE Technology Development Co.,Ltd
Address	:	No.2 Huitai Road,Huinan High-tech Industrial Park,Huiao
		Avenue,Huizhou City,Guangdong Province,China. 516000
Date of Receipt	:	Mar. 31, 2021
Date of Test	:	Apr. 06, 2021 ~ Jul. 17, 2021
Issued Date	:	Jul. 23, 2021
Report Version	:	R00
Test Sample	:	Engineering Sample No.: DG2021062350 for conducted, DG2021062351 for radiated.
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

heldon. Uu

Prepared by : Sheldon Ou

Chan Ma

Approved by : Ethan Ma

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents					
REPORT ISSUED HISTORY	6				
1. SUMMARY OF TEST RESULTS	7				
1.1 TEST FACILITY	8				
1.2 MEASUREMENT UNCERTAINTY	8				
1.3 TEST ENVIRONMENT CONDITIONS	9				
2 . GENERAL INFORMATION	10				
2.1 GENERAL DESCRIPTION OF EUT	10				
2.2 DESCRIPTION OF TEST MODES	12				
2.3 PARAMETERS OF TEST SOFTWARE	13				
2.4 DUTY CYCLE	14				
2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	16				
2.6 SUPPORT UNITS	16				
3 . AC POWER LINE CONDUCTED EMISSIONS	17				
3.1 LIMIT	17				
3.2 TEST PROCEDURE	17				
3.3 DEVIATION FROM TEST STANDARD	17				
3.4 TEST SETUP	18				
3.5 EUT OPERATION CONDITIONS	18				
3.6 TEST RESULTS	18				
4. RADIATED EMISSIONS	19				
4.1 LIMIT	19				
4.2 TEST PROCEDURE	20				
4.3 DEVIATION FROM TEST STANDARD	21				
4.4 TEST SETUP	21				
4.5 EUT OPERATION CONDITIONS	22				
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	22				
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	22				
4.8 TEST RESULTS - ABOVE 1000 MHZ	22				
5.BANDWIDTH	23				
5.1 LIMIT	23				
5.2 TEST PROCEDURE	23				
5.3 DEVIATION FROM STANDARD	23				
5.4 TEST SETUP	23				

Table of Contents	Page
5.5 EUT OPERATION CONDITIONS	23
5.6 TEST RESULTS	23
6 . MAXIMUM OUTPUT POWER	24
6.1 LIMIT	24
6.2 TEST PROCEDURE	24
6.3 DEVIATION FROM STANDARD	24
6.4 TEST SETUP	24
6.5 EUT OPERATION CONDITIONS	24
6.6 TEST RESULTS	24
7 . CONDUCTED SPURIOUS EMISSIONS	25
7.1 LIMIT	25
7.2 TEST PROCEDURE	25
7.3 DEVIATION FROM STANDARD	25
7.4 TEST SETUP	25
7.5 EUT OPERATION CONDITIONS	25
7.6 TEST RESULTS	25
8 . POWER SPECTRAL DENSITY	26
8.1 LIMIT	26
8.2 TEST PROCEDURE	26
8.3 DEVIATION FROM STANDARD	26
8.4 TEST SETUP	26
8.5 EUT OPERATION CONDITIONS	26
8.6 TEST RESULTS	26
9 . MEASUREMENT INSTRUMENTS LIST	27
10 . EUT TEST PHOTO	29
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	34
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	37
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	42
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ	45
APPENDIX E - BANDWIDTH	94
APPENDIX F - MAXIMUM OUTPUT POWER	99
APPENDIX G - CONDUCTED SPURIOUS EMISSIONS	106

Table of Contents Page **APPENDIX H - POWER SPECTRAL DENSITY** 113

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Jul. 23, 2021

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C							
Standard(s) Section	Test Item	Test Result	Judgment	Remark			
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS				
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS				
15.247(a)(2)	Bandwidth	APPENDIX E	PASS				
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS				
15.247(d)	Conducted Spurious Emissions	APPENDIX G	PASS				
15.247(e)	Power Spectral Density	APPENDIX H	PASS				
15.203	Antenna Requirement		PASS	Note(2)			

Note:

(1) "N/A" denotes test is not applicable in this test report.(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China. BTL's Test Firm Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.68

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		9kHz ~ 30MHz	-	3.02
	CISPR	30MHz ~ 200MHz	V	4.26
		30MHz ~ 200MHz	Н	3.38
		200MHz ~ 1,000MHz	V	3.98
DG-CB03		200MHz ~ 1,000MHz	Н	3.94
		1GHz ~ 6GHz	-	3.96
		6GHz ~ 18GHz	-	5.24
		18GHz ~ 26.5GHz	-	3.62
		26.5GHz ~ 40GHz	-	4.00

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	±3.8 %
Maximum Output Power	±0.95 dB
Conducted Spurious Emission	±2.71 dB
Power Spectral Density	±0.86 dB
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	25°C	53%	AC 120V/60Hz	Laughing Zhang
Radiated Emissions-9kHz to 30 MHz	25°C	60%	AC 120V/60Hz	Laughing Zhang
Radiated Emissions-30MHz to 1000MHz	26°C	52%	AC 120V/60Hz	Jakyri Wen
Radiated Emissions-Above 1000MHz	26°C	52%	AC 120V/60Hz	Jakyri Wen
Bandwidth	21°C	46%	DC 12V	Jesse Wang
Maximum Output Power	20°C	60%	DC 12V	Hand Huang
Conducted Spurious Emissions	21°C	46%	DC 12V	Jesse Wang
Power Spectral Density	21°C	46%	DC 12V	Jesse Wang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mi Router 4A					
Brand Name	MI					
Test Model	R4AC					
Series Model	N/A					
Model Difference(s)	N/A					
Power Source	DC voltage supplied from AC adapter. Model: CYXT18-120100U					
Power Rating	I/P: 100-240V~ 50/60Hz 0.3A O/P: 12.0V === 1.0A					
Operation Frequency	2412 MHz ~ 2462 MHz					
Modulation Type	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM					
Bit Rate of Transmitter	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 300 Mbps					
Maximum Peak Output Power	IEEE 802.11n(HT20): 26.49 dBm (0.4457 W)					
Maximum Average Output Power	Maximum Average Output Power IEEE 802.11n(HT20): 19.82 dBm (0.0959 W)					

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20) CH03 - CH09 for IEEE 802.11n(HT40)								
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz) Channel (MHz)						Frequency (MHz)		
01	2412	04	2427	07	2442	10	2457	
02	2417	05	2432	08	2447	11	2462	
03	2422	06	2437	09	2452			

3. Antenna Specification:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	South star	N12-7460-R0A	Dipole	N/A	6.06
2	South star	N12-7461-R0A	Dipole	N/A	6.05

Note:

This EUT supports CDD, and all antenna gains are not equal. Then, Directional gain=10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})²/N]dBi, that is Directional gain=10log[(10^{6.06/20}+10^{6.05/20})²/2]dBi =9.07. So, the output power limit is 30-(9.07-6)=26.93, the power spectral density limit is 8-(9.07-6)=4.93.

2) The antenna gain is provided by the manufacturer.

4. Table for Antenna Configuration:

Operating Mode TX Mode	1TX	2ТХ
IEEE 802.11b	V (Ant. 1)	-
IEEE 802.11g	V (Ant. 1)	-
IEEE 802.11n(HT20)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11n(HT40)	-	V(Ant. 1 + Ant. 2)

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description	
Mode 1	TX B Mode Channel 01/06/11	
Mode 2	TX G Mode Channel 01/06/11	
Mode 3	TX N(HT20) Mode Channel 01/06/11	
Mode 4	TX N(HT40) Mode Channel 03/06/09	
Mode 5	TX N(HT20) Mode Channel 06	

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test	
Final Test Mode Description	
Mode 5 TX N(HT20) Mode Channel 06	

Radiated emissions test - Below 1GHz	
Final Test Mode Description	
Mode 5 TX N(HT20) Mode Channel 06	

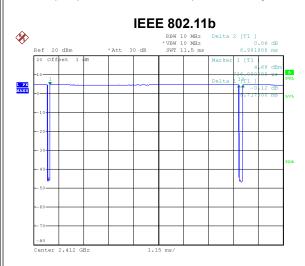
Radiated emissions test- Above 1GHz	
Final Test Mode Description	
Mode 1	TX B Mode Channel 01/06/11
Mode 2	TX G Mode Channel 01/06/11
Mode 3 TX N(HT20) Mode Channel 01/06/11	
Mode 4	TX N(HT40) Mode Channel 03/06/09

Conducted test	
Final Test Mode Description	
Mode 1	TX B Mode Channel 01/06/11
Mode 2	TX G Mode Channel 01/06/11
Mode 3 TX N(HT20) Mode Channel 01/06/11	
Mode 4	TX N(HT40) Mode Channel 03/06/09

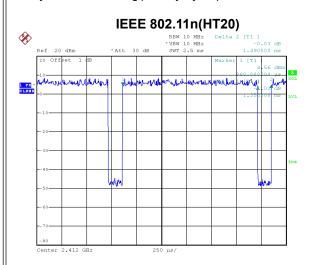
NOTE:

- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX N(HT20) Mode Channel 06 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.

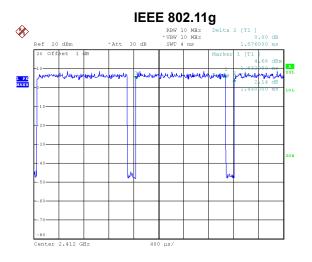
2.3 PARAMETERS OF TEST SOFTWARE


Test Software Version

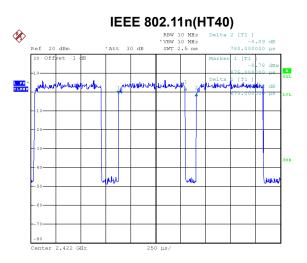
N/A


2.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.


Date: 6.APR.2021 16:41:55

Duty cycle = 8.717 ms / 8.901 ms = 97.93% Duty Factor = 10 log(1/Duty cycle) = 0.09


Date: 6.APR.2021 16:43:27

Duty cycle = 1.355 ms / 1.490 ms = 90.94% Duty Factor = 10 log(1/Duty cycle) = 0.41

Date: 6.APR.2021 16:42:51

Duty cycle = 1.440 ms / 1.576 ms = 91.37% Duty Factor = 10 log(1/Duty cycle) = 0.39

Date: 6.APR.2021 16:44:11

Duty cycle = 0.670 ms / 0.780 ms = 85.90% Duty Factor = 10 log(1/Duty cycle) = 0.66

NOTE:

For IEEE 802.11b:

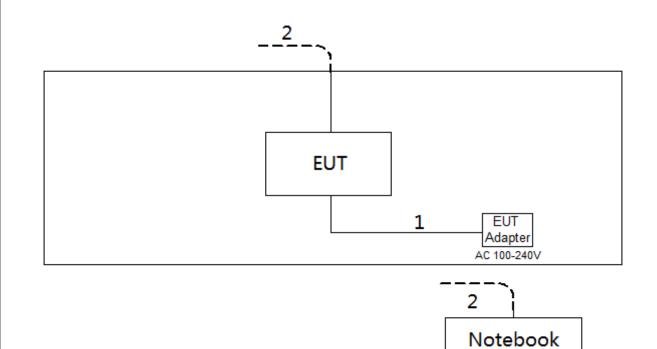
For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 115 Hz.

For IEEE 802.11g:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 694 Hz.

For IEEE 802.11n(HT20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 738 Hz.


For IEEE 802.11n(HT40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1493 Hz.

А

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
A	Notebook	Dell	Inspiron 15-7559	N/A
Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.5m
2	RJ45 Cable	NO	NO	10m

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Frequency of Emission (MHz)	Limit (d	BμV)
	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

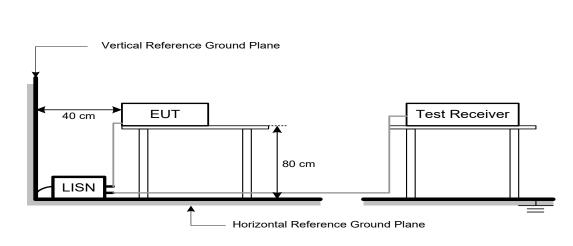
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

	(dBuV/m at 3 m)		
	Frequency (MHz)	Peak	Average
	Above 1000	74	54

NOTE:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

(2) The tighter limit applies at the band edges.

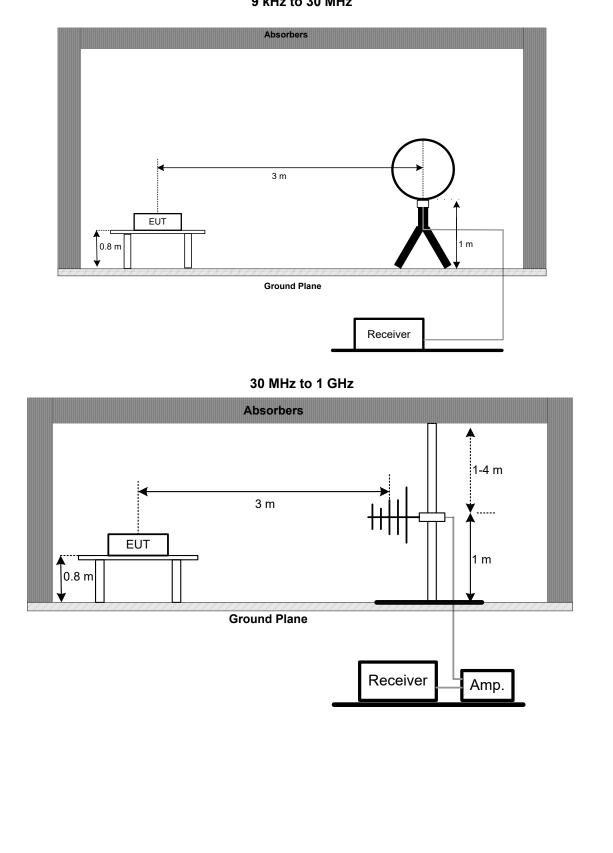
(3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

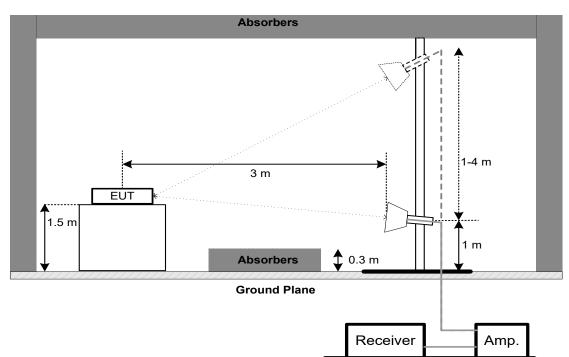
The following table is the setting of the receiver:

Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz
Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value
Receiver Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency 30 MHz~1000 MHz for QP detector	
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector



4.3 DEVIATION FROM TEST STANDARD

No deviation.


4.4 TEST SETUP

9 kHz to 30 MHz

Above 1 GHz

4.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

4.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH

5.1 LIMIT

Section	Test Item	Limit	
FCC 15.247(a)(2)	6 dB Bandwidth	Minimum 500 kHz	
	99% Emission Bandwidth	-	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Setting	
> Measurement Bandwidth	
100 kHz	
300 kHz	
Peak	
Max Hold	
Auto	

For 99% Emission Bandwidth:

Spectrum Parameters	Setting			
Span Frequency	Between 1.5 times and 5.0 times the OBW			
RBW	300 kHz For 20MHz 1 MHz For 40MHz			
VBW	1 MHz For 20MHz 3 MHz For 40MHz			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Sweep Time Auto			

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

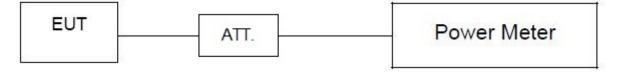
5.6 TEST RESULTS

Please refer to the APPENDIX E.

6. MAXIMUM OUTPUT POWER

6.1 LIMIT

Section	Test Item	Limit	
FCC 15.247(b)(3)	Maximum Output Power	1.0000 Watt or 30.00 dBm	


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.1.3 and 11.9.2.3.1 of ANSI C63.10-2013 and FCC KDB 662911 D01 v02r01 Multiple Transmitter Output.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

7. CONDUCTED SPURIOUS EMISSIONS

7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting			
Start Frequency	30 MHz			
Stop Frequency	26.5 GHz			
RBW	100 kHz			
VBW	300 kHz			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

8. POWER SPECTRAL DENSITY

8.1 LIMIT

Section	Test Item	Limit	
	Power Spectral Density	8 dBm	
FCC 15.247(e)	Power Spectral Density	(in any 3 kHz)	

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting	
Span Frequency	25 MHz (20 MHz) / 60 MHz (40 MHz)	
RBW	3 kHz	
VBW	10 kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EMI Test Receiver	R&S	ESCI	100382	Feb. 28, 2022	
2	LISN	EMCO	3816/2	52765	Feb. 27, 2022	
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Feb. 27, 2022	
4	50Ω Terminator	SHX	TF5-3	15041305	Feb. 27, 2022	
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
6	Cable	N/A	RG223	12m	Mar. 09, 2022	
7	643 Shield Room	ETS	6*4*3m	N/A	N/A	

	Radiated Emissions - 9 kHz to 30 MHz				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Loop Antenna	EM	EM-6876-1	230	Apr. 28, 2022
2	Cable	N/A	RG 213/U	N/A	May 27, 2022
3	EMI Test Receiver	R&S	ESCI	100895	Feb. 27, 2022
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
5	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2021

	Radiated Emissions - 30 MHz to 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 15, 2022	
2	Amplifier	HP	8447D	2944A08742	Feb. 28, 2022	
3	Receiver	Agilent	N9038A	MY52130039	Jul. 25, 2021	
4	Cable	emci	LMR-400(30MHz-1 GHz)(8m+5m)	N/A	May 20, 2022	
5	Controller	СТ	SC100	N/A	N/A	
6	Controller	MF	MF-7802	MF780208416	N/A	
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
8	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2021	

	Radiated Emissions - Above 1 GHz				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Double Ridged Guide Antenna	ETS	3115	75789	May 10, 2022
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 30, 2022
3	Amplifier	Agilent	8449B	3008A02584	Jul. 25, 2021
4	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Feb. 28, 2022
5	Receiver	Agilent	N9038A	MY52130039	Jul. 25, 2021
6	Controller	СТ	SC100	N/A	N/A
7	Controller	MF	MF-7802	MF780208416	N/A
8	Cable	N/A	EMC104-SM-SM-6 000	N/A	Oct. 16, 2021
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
10	Filter	STI	STI15-9912	N/A	Jul. 25, 2021
11	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2021

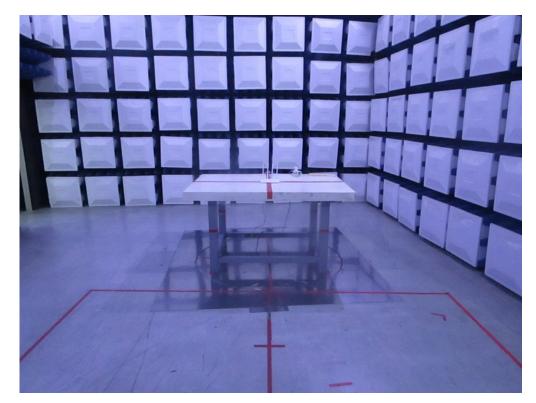
Bandwidth & Conducted Spurious Emissions & Power Spectral Density					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP40	100185	Jul. 25, 2021
2	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022
3	3 RF Cable Tongkaichuan N/A N/A N/A				
4	DC Block	Mini	N/A	N/A	N/A

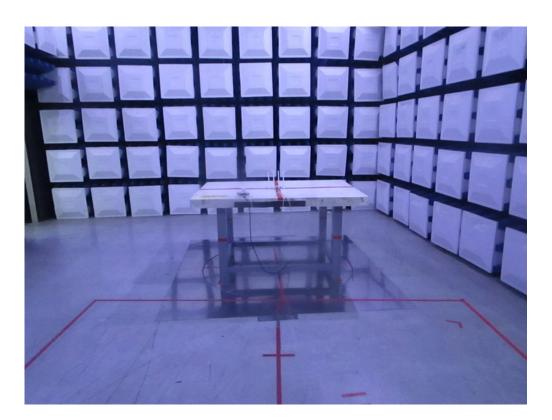
Maximum Output Power								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Peak Power Analyzer	Keysight	8990B	MY51000506	Aug. 07, 2021			
2	Wideband power sensor	Keysight	N1923A	MY58310004	Jul. 25, 2021			
3	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022			
4	RF Cable Tongkaichuan		N/A	N/A	N/A			

Remark: "N/A" denotes no model name, serial no. or calibration specified.

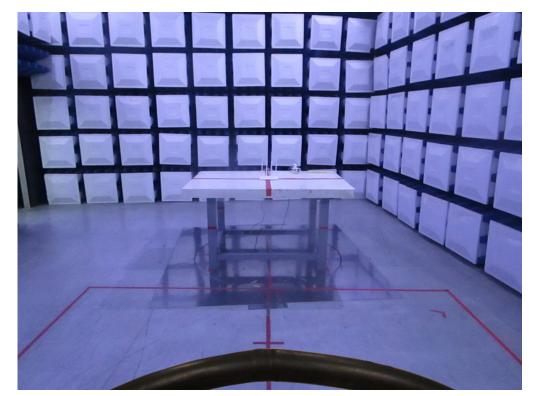
All calibration period of equipment list is one year.

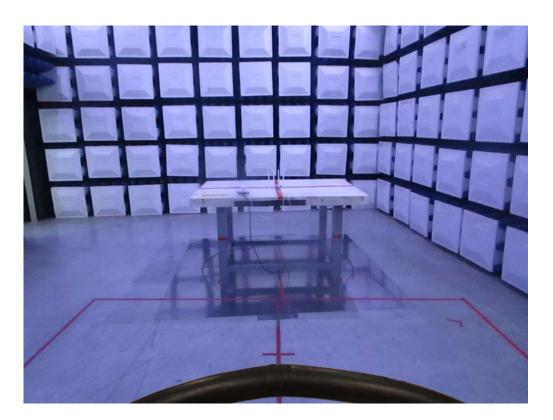
AC Power Line Conducted Emissions Test Photos



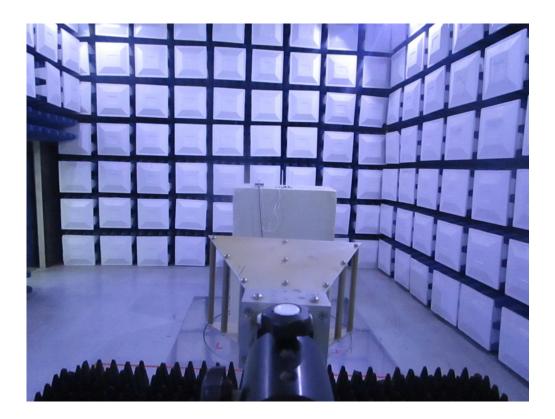


Radiated Emissions Test Photos


9 kHz to 30 MHz



Radiated Emissions Test Photos 30 MHz to 1 GHz

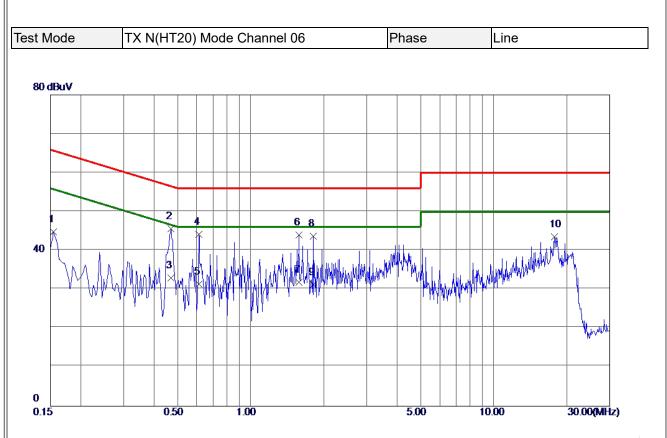


Radiated Emissions Test Photos

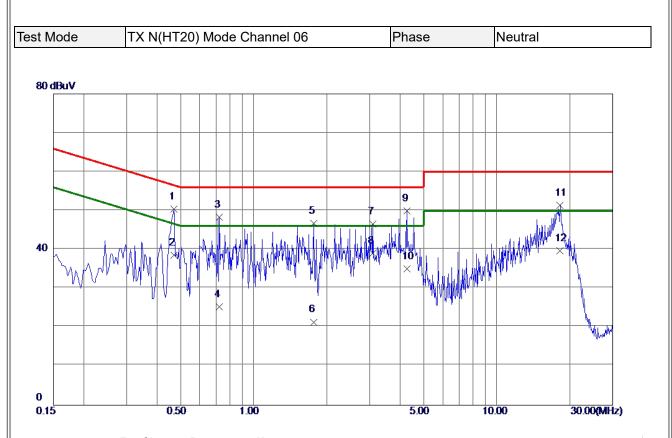
Above 1 GHz

<u>3ĩL</u>

Conducted Test Photos



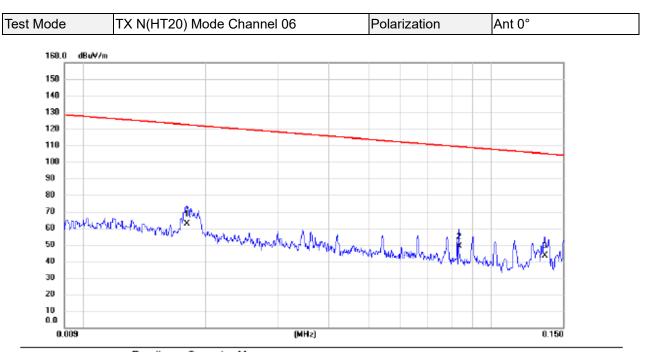
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1544	35. 03	9.78	44.81	65.76	-20.95	Peak	
2 *	0.4695	35. 54	10.10	45.64	56. 52	-10.88	Peak	
3	0.4695	22.81	10.10	32.91	46.52	-13.61	AVG	
4	0.6134	33.96	10.16	44.12	56.00	-11.88	Peak	
5	0.6134	21.22	10.16	31. 38	46.00	-14.62	AVG	
6	1.5804	33.67	10.34	44.0 1	56.00	-11. 99	Peak	
7	1. 5809	21. 49	10.34	31.83	46.00	-14.17	AVG	
8	1.8044	33. 35	10.36	43.71	56.00	-12.29	Peak	
9	1.8044	20.80	10.36	31.16	46.00	-14.84	AVG	
10	17.7225	32.34	11.13	43. 47	60.00	-16.53	Peak	

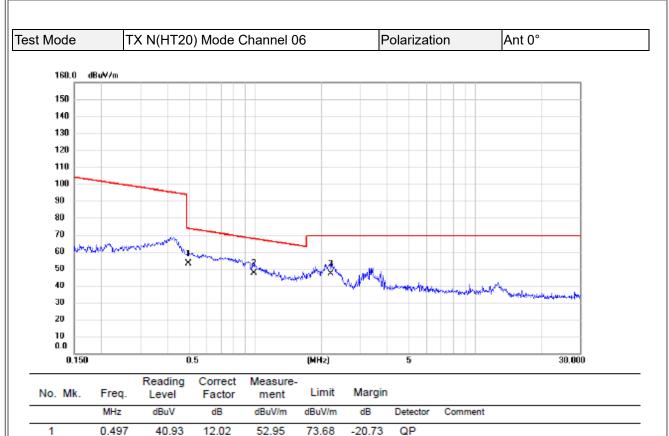
REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.4695	40.29	10.10	50.39	56. 52	-6.13	Peak	
2	0.4695	28.41	10.10	38. 51	46.52	-8.01	AVG	
3	0.7214	38.14	10.12	48.26	56. 00	-7.74	Peak	
4	0.7214	15.20	10.12	25.32	46.00	-2 0. 6 8	AVG	
5	1.7700	36.43	10.36	46.79	56.00	-9.21	Peak	
6	1.7700	11.00	10.36	21.36	46.00	-24.64	AVG	
7	3. 0930	36.03	10. 49	46. 52	56.00	-9.48	Peak	
8	3. 0930	28.49	10. 49	38.98	46.00	-7.02	AVG	
9 *	4. 2855	39. 37	10.56	49.93	56.00	-6.07	Peak	
10	4.2855	24. 50	10.56	35. 0 6	46.00	-1 0. 94	AVG	
11	18. 2354	40.17	11.14	51.31	60.00	-8. 69	Peak	
12	18.2354	28.59	11.14	39.73	50.00	-10.27	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

No. Mk.	Freq.	Reading Level		Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	0.018	48.89	13.84	62.73	122.50	-59.77	AVG	
2	0.083	36.37	12.62	48.99	109.19	-60.20	AVG	
3	0.135	30.59	12.73	43.32	104.99	-61.67	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

2 *

3

0.989

2.201

35.72

35.61

11.80

11.20

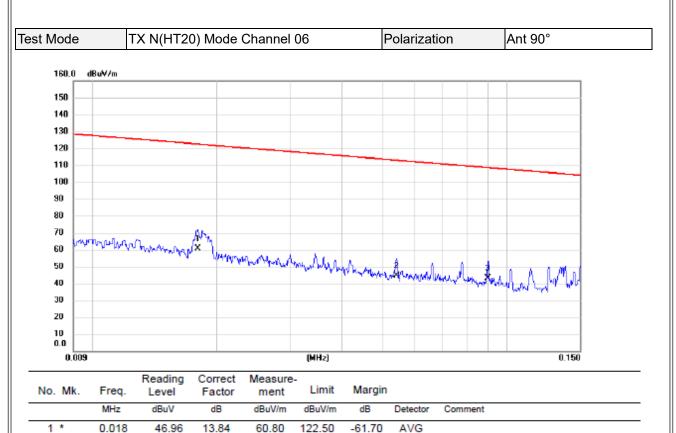
47.52

46.81

67.70

69.54

-20.18


-22.73

QP

QP

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

2

3

0.054

0.090

32.28

30.51

12.45

12.66

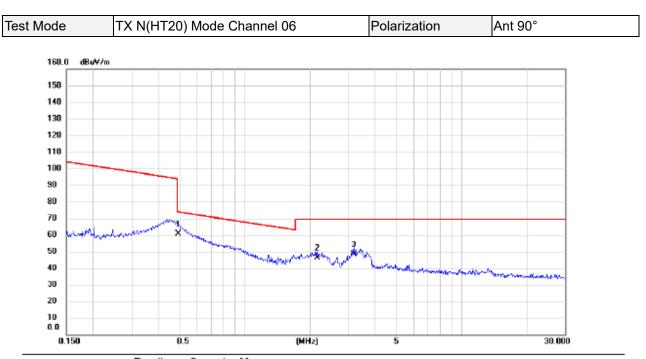
44.73

43.17

112.92

108.52

AVG


AVG

-68.19

-65.35

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

No. Mk.	Freq.	Reading Level		Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	0.494	48.74	12.03	60.77	73.73	-12.96	QP	
2	2.155	35.11	11.23	46.34	69.54	-23.20	QP	
3	3.190	37.43	10.83	48.26	69.54	-21.28	QP	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

Test N	Node	TX N(HT	20) Mode C	hannel 06		Polarizati	on	Vertical
80 d	lBuV/m							
40								
					5		6	
		2	3	4	X		X	
×	<	×	×	×	<			
0								
30.0	0 127.00	224.00	321.00	418.00 51	5.00 612	.00 709.	00 806.00	1000.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 2	31. 4550 178. 4100	39.61	-15. 40 -13. 47	24. 21 25. 30	40.00 43.50	-15. 79 -18. 20	Peak Peak	
: }	343. 3100		-13. 47	25. 30	43. 50	-20. 82	Peak	
	480. 0800		-6. 89	25. 96	46.00	-20. 02	Peak	
5	575. 1400		-5. 22	31.17	46.00	-14.83	Peak	
с .	750 2250		1.04	01.01	40.00	14 70	Deele	

-14. 79

Peak

46.00

REMARKS:

6 *

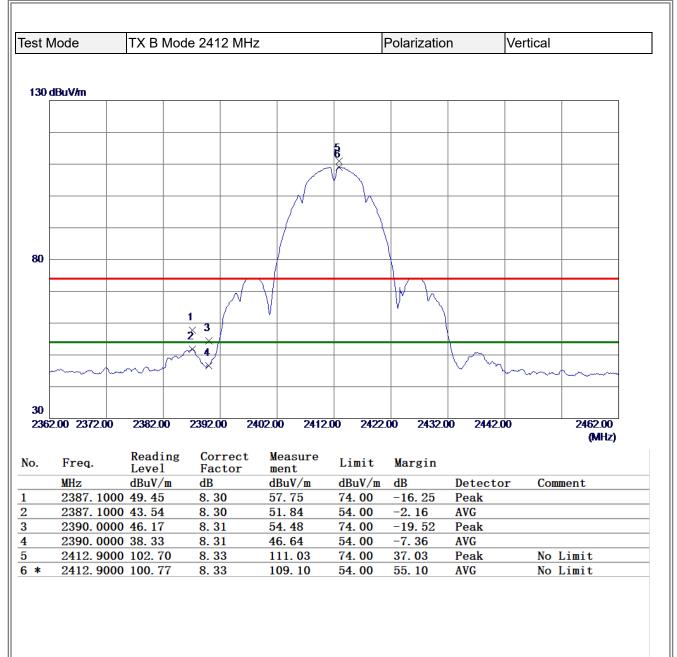
750. 2250 33. 15

(1) Measurement Value = Reading Level + Correct Factor.

-1.94

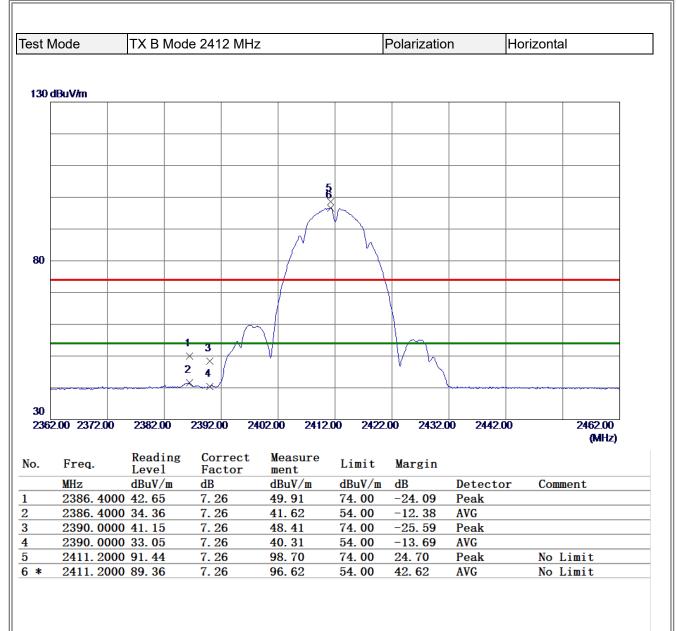
31.21

(2) Margin Level = Measurement Value - Limit Value.

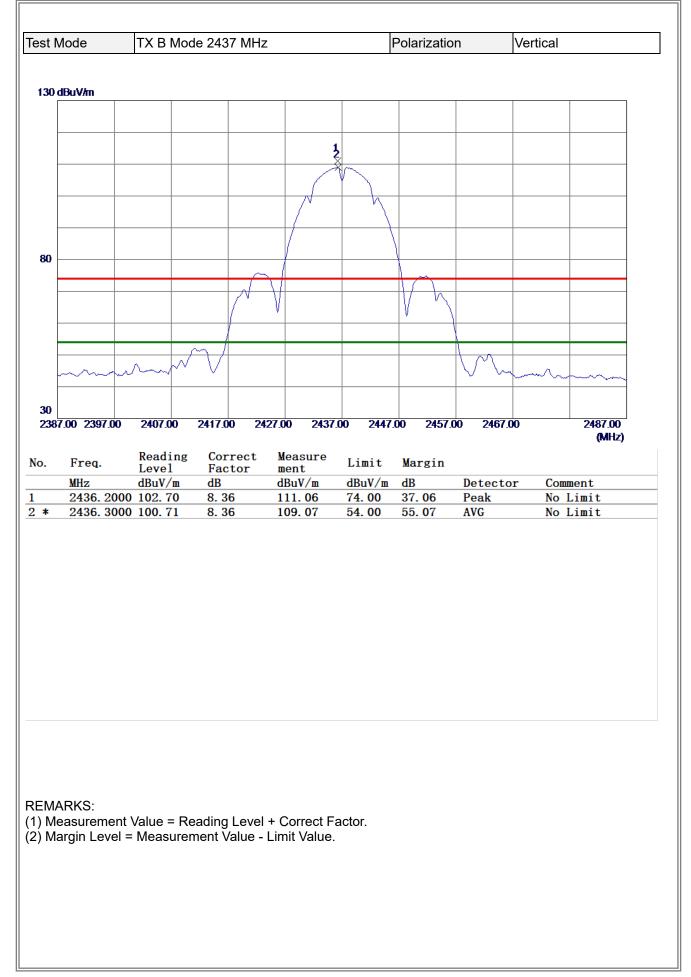


st N	lode	TX N(HT	20) Mode	Channel 06		Polarizati	on	Horizontal	
80 di	BuV/m								_
-									_
									_
0									_
			2 X X		4 5	6			_
		1 ×			× ×	×			
-									_
).0	0 127.00	224.00	321.00	418.00 5	15.00 612	.00 709.0	00 806.00	1000.00 (MHz)	
	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
	184. 7150		-14. 25	25.19	43. 50	-18. 31	Peak		
	292.8700		-11.13	31.32	46.00	-14.68	Peak		
	332.1550		-10.29	30.05	46.00	-15.95	Peak		
	480.0800		-6.89	28.55	46.00	-17.45	Peak		_
	575.1400	33.88 31.48	-5. 22	28.66 28.08	46.00	-17. 34 -17. 92	Peak Peak		

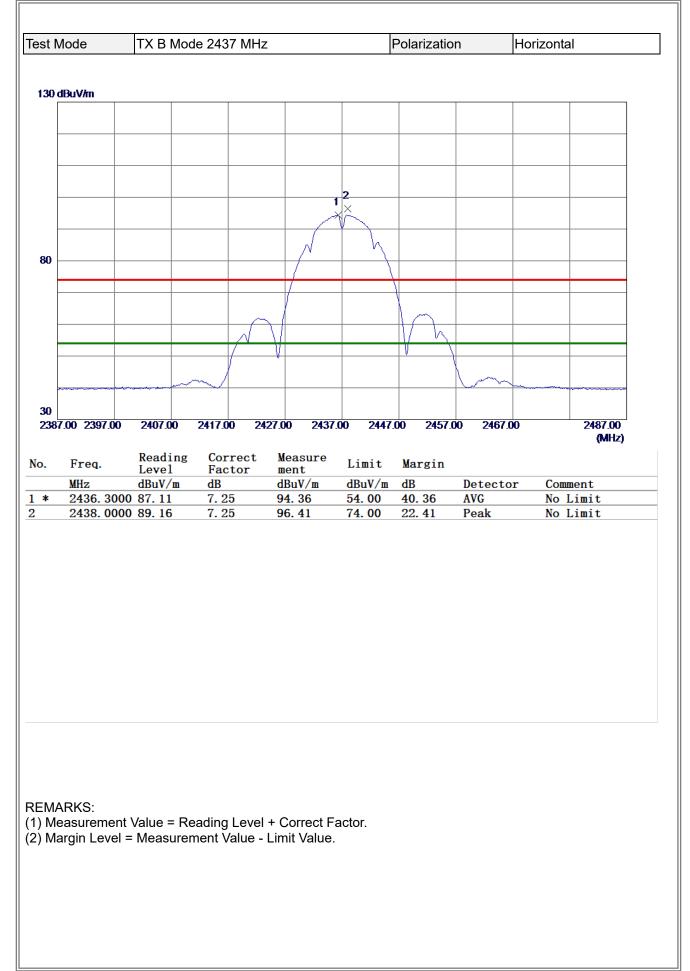
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ

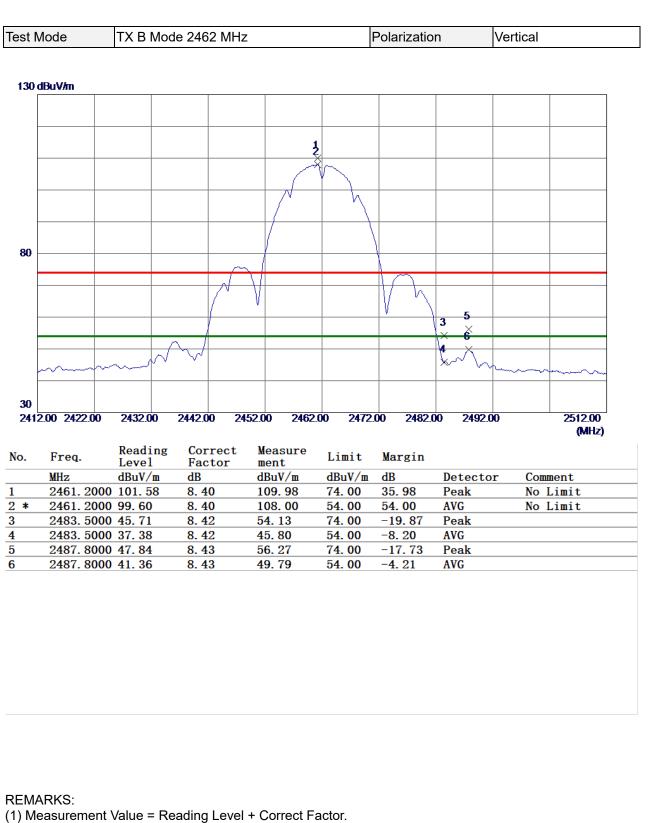
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

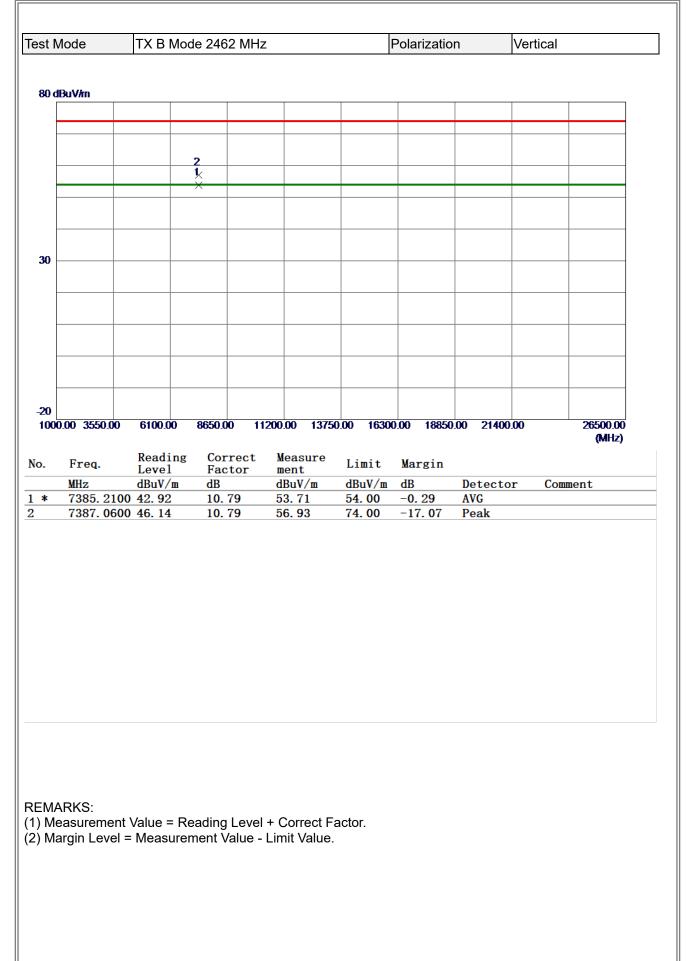

	TX B Mo	de 2412 MH	Z		Polarizatio	n	Vertical	
dBuV/m								
		2						
		ĸ						
		×						
00.00 3550	.00 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	.00 21400	00_0	26500.00 (MHz)
	Reading	Correct	Measure					(init iz)
Freq.	Level	Factor	ment	Limit	Margin			
MHz 7235 2	dBuV/m 2200 43.00	dB 10. 60	dBuV/m 53.60	dBuV/m 54.00	dB -0. 40	Detecto AVG	or Com	ment
	9100 46.81	10.60	57.41	74.00	-16. 59	Peak		

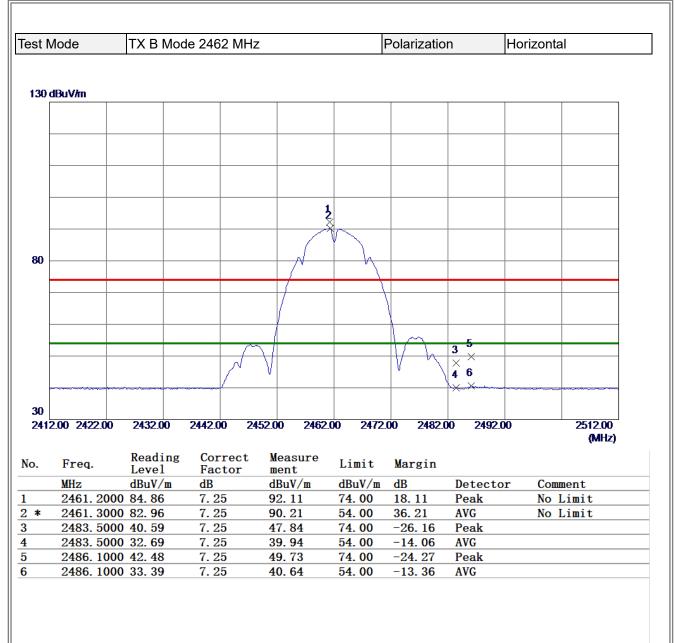

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


3TL

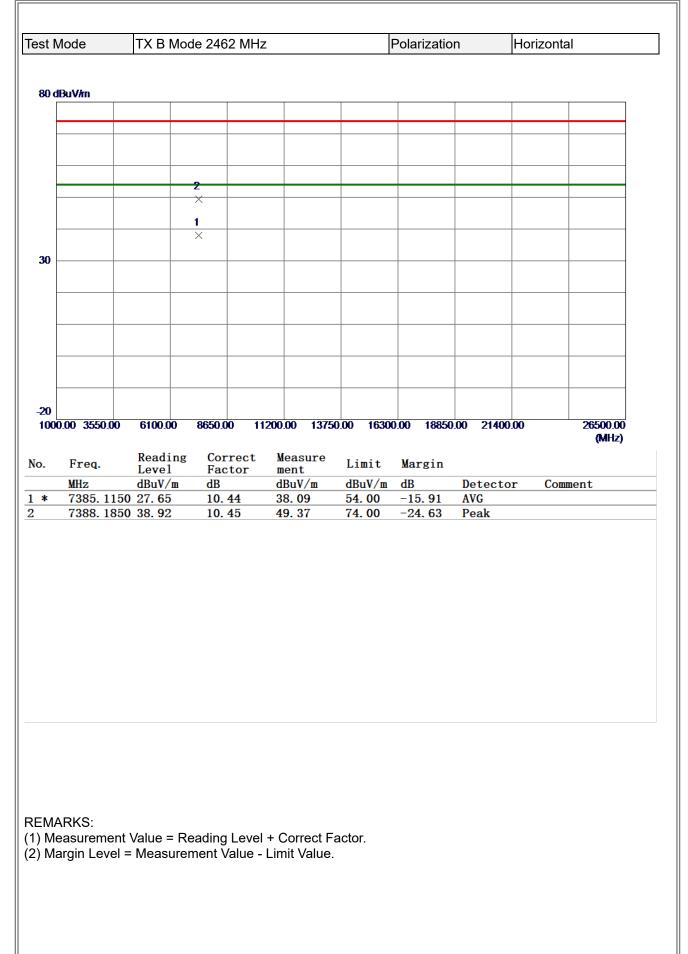
011	Node	TX B Moo	de 2412 M⊦	łz		Polarizatic	n	Horizonta	I
0 d	lBuV/m								
			1						
			×						
			2 ×						
0									
20									
	0.00 3550.00) 6100.00	8650.00	11200.00 13750	0.00 16300	0.00 18850	0.00 21400).00	26500.00 (MHz)
	Freq.	Reading Level	Correct Factor		Limit	Margin			
		10101	1 40 001	ment					
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detecto	or Com	nent
*	7233. 56						Detecto Peak AVG	or Com	nent
*	7233. 56	dBuV/m 50 39.51	dB 10. 19	dBuV/m 49. 70	dBuV/m 74. 00	dB -24. 30	Peak	or Com	

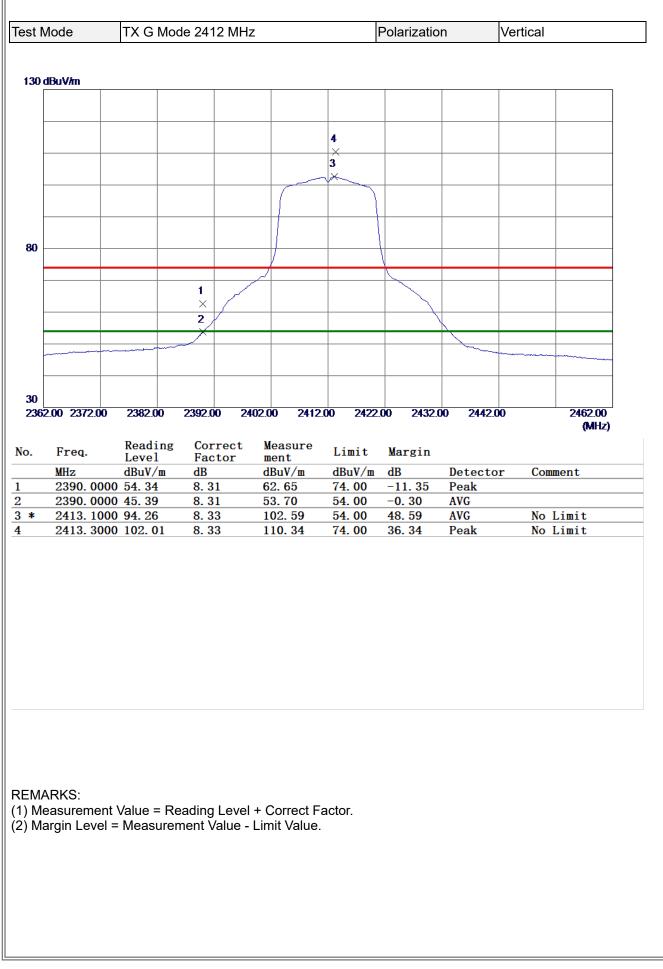

BL


3TL


SUN	/lode	TX B Moo	le 2437 MH	Z	ŀ	Polarizatio	n	Horizont	al
80 A	BuV/m								
[
			0						
-			2 ×						
			1						
			×						
30									
-									
ŀ									
ŀ									
-20									
	0.00 3550.00	6100.00	8650.00 11	1200.00 13750).00 16300	0.00 18850	.00 21400).00	26500.00 (MHz)
		Reading	_						
0.	Freq.	Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB	Detecto	or Con	ment
*		Leve1 dBuV/m 0 26.88	Factor	ment			Detecto AVG Peak	or Con	ment
¥	MHz 7306.080	Leve1 dBuV/m 0 26.88	Factor dB 10.31	ment dBuV/m 37.19	dBuV/m 54.00	dB -16. 81	AVG	or Con	ment

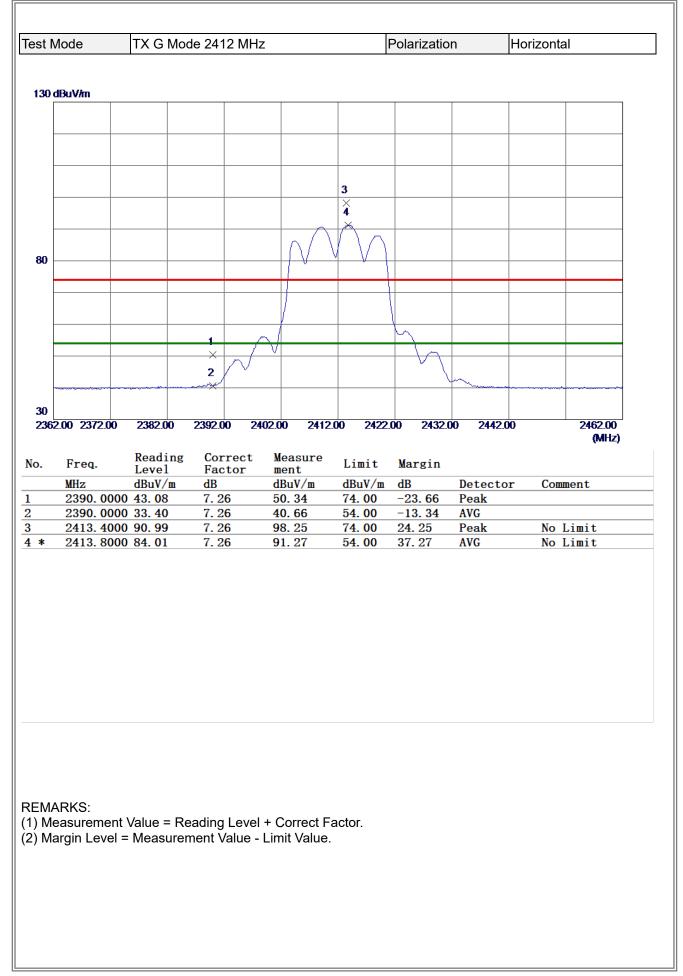
(2) Margin Level = Measurement Value - Limit Value.


BL

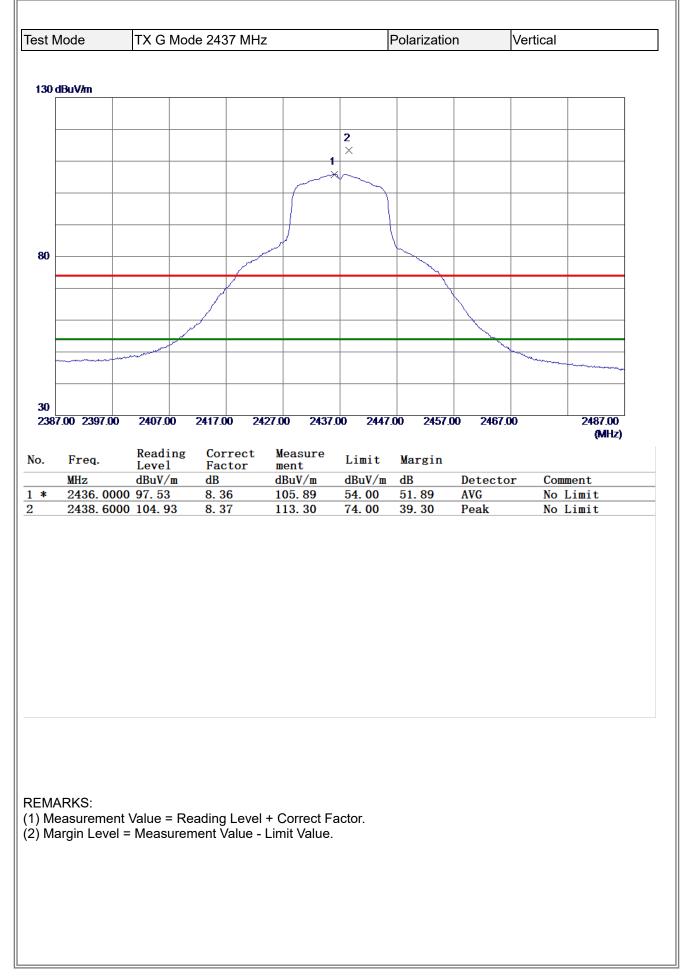


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

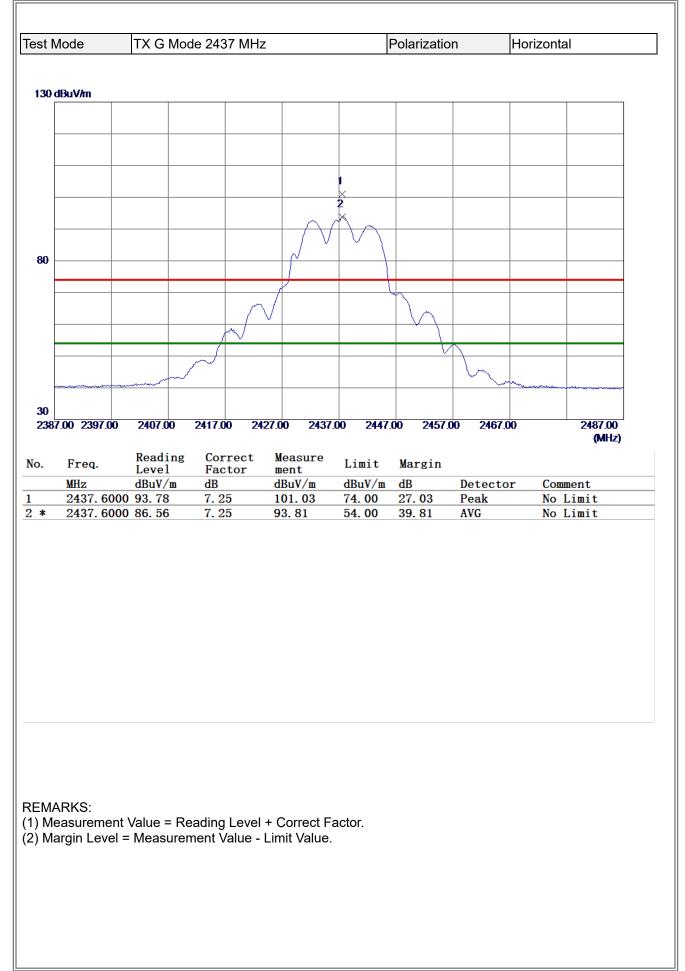
BL



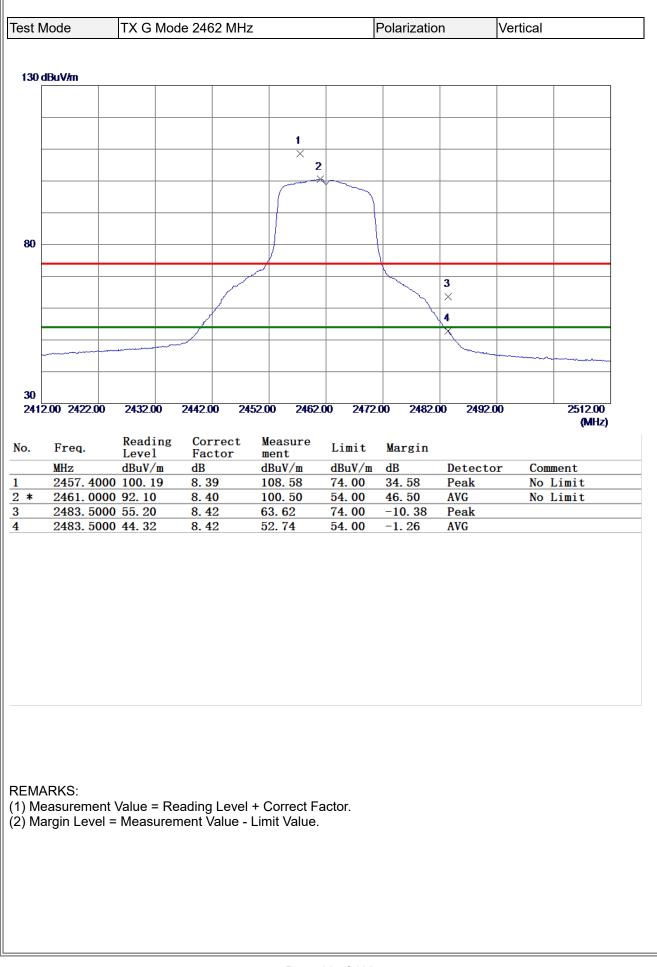
BL



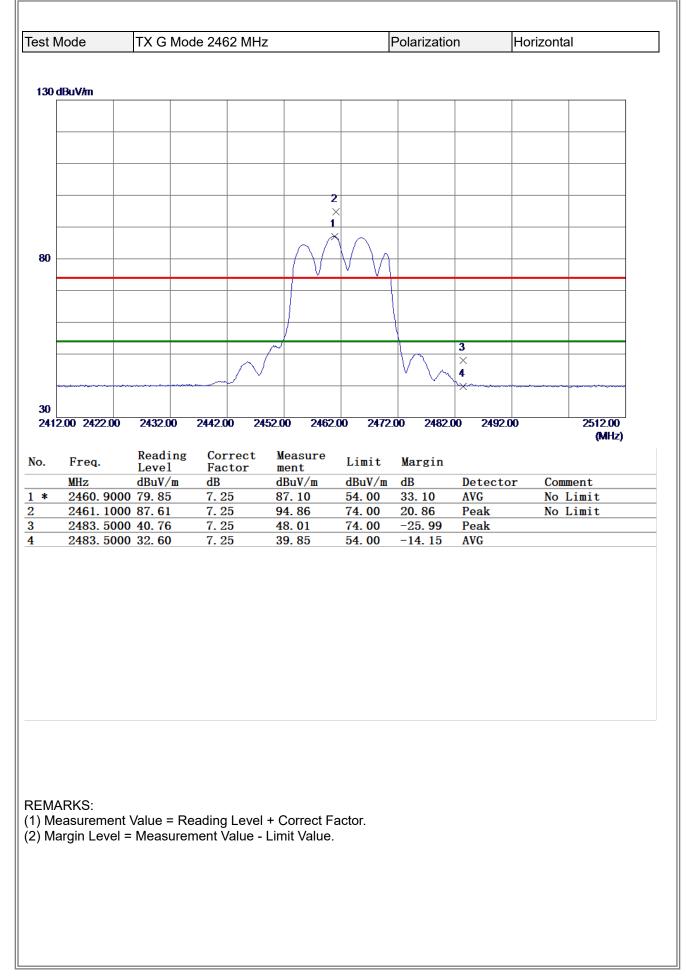
		de 2412 MH	Z		Polarizatio	n	Vertical	
dBuV/m						1		
		2						
		×						
		1						
		X						
1								
00.00 3550.00) 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 2140).00	26500.00
	Reading	Correct	Measure					(MHz)
Freq.	Level	Factor	ment	Limit	Margin	.		
MHz 7235, 62	dBuV/m 50 40.37	dB 10. 60	dBuV/m 50.97	dBuV/m 54.00	dB -3. 03	Detecto AVG	or Com	ment
7235.62		10.60	62.42	74.00	-11. 58	Peak		
	00 01.82							
	30 31.82							


3TL

Mode	TX G	Mode 24	412 MHz			Polarizatio	n	Horizontal	
dBuV/m									
		2 ×							
		1							
		×							
0.00 3550.0						0.00 40050	0.00 21400	100 M	1500.00
0.00 20001	0 6100.0	0 8650).00 112	00.00 1375	0.00 1630	0.00 18850	1.00 Z1400	J.UU Z	6500.00
1,000 2001					0.00 1630	0.00 18850	21400	J.UU Z	(MHz)
Freq.	Readi	ng Co	orrect	Measure	0.00 1630 Limit	Margin	1.00 21400	1.00 2	
		ng Co Fa	orrect actor		Limit	Margin	Detecto		(MHz)
Freq. MHz 7235.2	Readi Level dBuV/ 750 31.95	ng Co Fa m dE	orrect actor 3). 19	Measure ment dBuV/m 42.14	Limit dBuV/m 54.00	Margin dB -11.86	Detecto AVG		(MHz)
Freq. MHz 7235.2	Readi Level dBuV/	ng Co Fa m dE	orrect actor	Measure ment dBuV/m	Limit dBuV/m	Margin dB	Detecto		(MHz)
Freq. MHz 7235.2	Readi Level dBuV/ 750 31.95	ng Co Fa m dE	orrect actor 3). 19	Measure ment dBuV/m 42.14	Limit dBuV/m 54.00	Margin dB -11.86	Detecto AVG		(MHz)

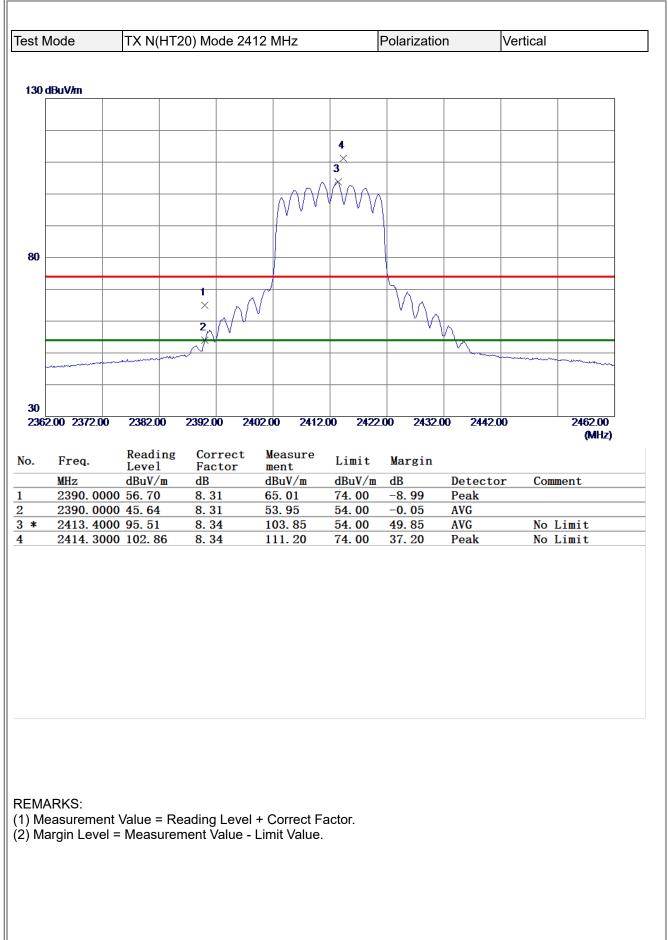


	TX G M	ode 2437	7 MHz		F	Polarizatio	n	Vertical	
dBuV/m									
		2 ×							
		1							
		~							
0.00 3550.0	0 6100.00	8650.00	1120	0.00 12750	0.00 16300	00 19950	00 21400		26500.00
10.00 3550.0	0 0100.00	0000.00	1120	0.00 1010	1000	10000	.00 2140		(MHz)
Freq.	Reading	g Corr	ect 1	Measure					
		D 4			Limit	Margin			
	Level dBuV/m	Fact dB	or i	ment	Limit dBuV/m	Margin dB	Detecto	or Com	ment
MHz 7310.82	dBuV/m 250 43.01	dB 10.6	or 1 0 9	ment dBuV/m 53.70	dBuV/m 54.00	dB -0. 30	Detecto AVG	or Com	ment
MHz 7310.82	dBuV/m	dB	or 1 0 9	ment dBuV/m	dBuV/m	dB		or Com	ment
MHz 7310.82	dBuV/m 250 43.01	dB 10.6	or 1 0 9	ment dBuV/m 53.70	dBuV/m 54.00	dB -0. 30	AVG	or Com	ment
MHz 7310. 82 7314. 62	dBuV/m 250 43. 01 250 55. 47	<u>dB</u> 10. 6 10. 7	Level +	ment dBuV/m 53. 70 56. 17 Correct Fa	dBuV/m 54.00 74.00	dB -0. 30	AVG	or Com	ment
MHz 7310. 82 7314. 62	dBuV/m 250 43.01 250 55.47	<u>dB</u> 10. 6 10. 7	Level +	ment dBuV/m 53. 70 56. 17 Correct Fa	dBuV/m 54.00 74.00	dB -0. 30	AVG	or Com	ment
MHz 7310. 82 7314. 62	dBuV/m 250 43. 01 250 55. 47	<u>dB</u> 10. 6 10. 7	Level +	ment dBuV/m 53. 70 56. 17 Correct Fa	dBuV/m 54.00 74.00	dB -0. 30	AVG	or Com	ment


3TL

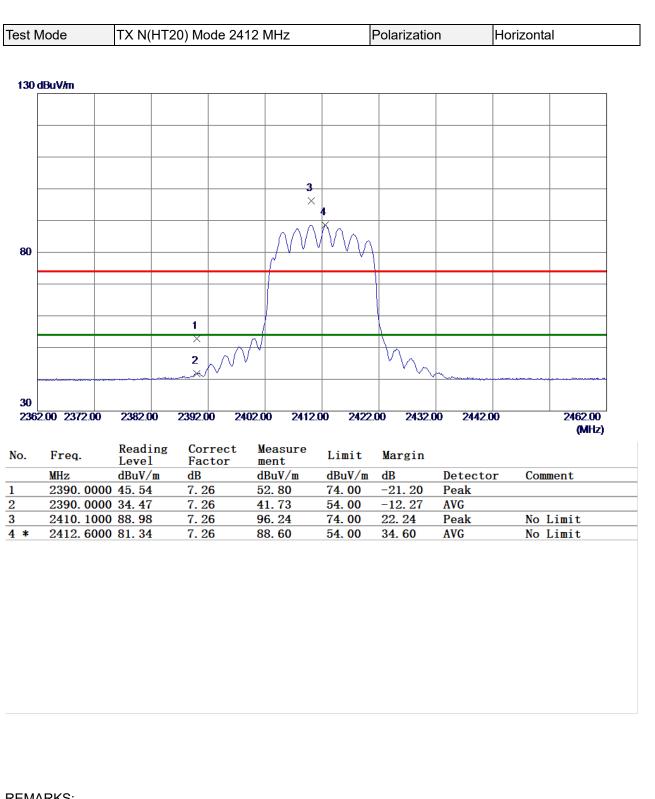
st Mo	ode	TX G M	ode 2437 MH	łz		Polarizatio	n	Horizontal	
0 dB	uV/m								
			2						
			×						
			1						
			×						
o -									
b									
	00 3550.00	6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	.00 2140	0.00 2	6500.00
									(MHz)
									(
	Freq.	Reading Level	g Correct Factor		Limit	Margin			ç
	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB	Detect	or Commen	
•	MHz 7310.32	Level dBuV/m 50 31.76	Factor dB 10.32	ment dBuV/m 42.08	dBuV/m 54.00	dB -11. 92	AVG	or Commen	
k	MHz 7310.32	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB		or Commen	
*	MHz 7310.32	Level dBuV/m 50 31.76	Factor dB 10.32	ment dBuV/m 42.08	dBuV/m 54.00	dB -11. 92	AVG	or Commen	

3TL

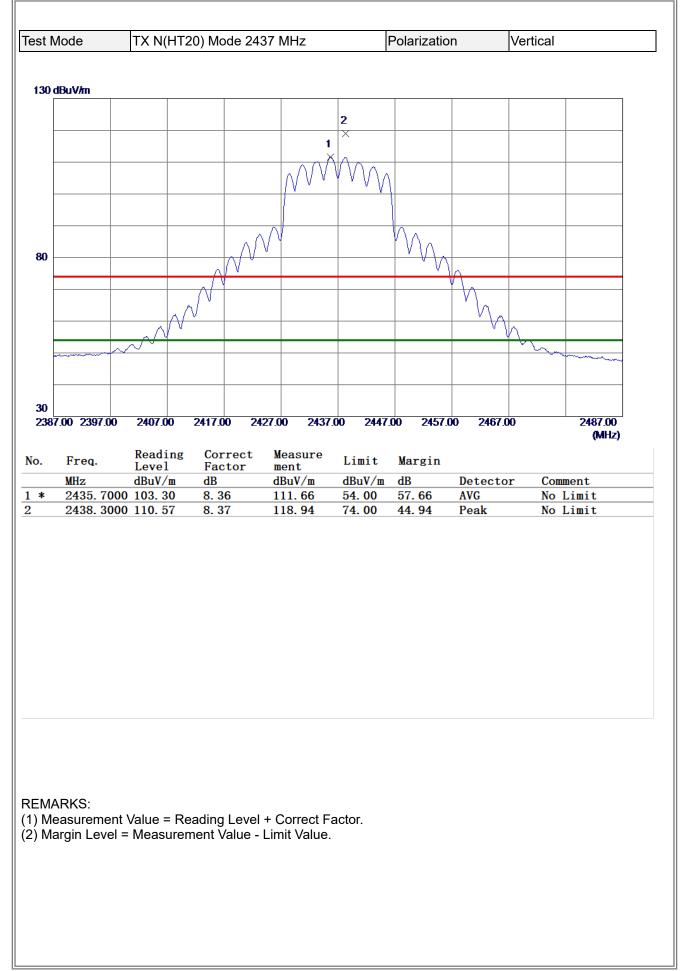

	TX G Mo	de 2462 MH	Z		Polarizatio	n	Vertical	
dBuV/m					1	1	1	
		2						
		×						
		1						
		X						
	0.000.00		4000.00 4075		100	00 01 10		
00.00 3550.0	0 6100.00	8650.00 1	1200.00 13750	0.00 1630	00381 00.0	.00 21400	00.00	26500.00 (MHz)
Freq.	Reading	Correct	Measure	Limit	Margin			
MHz	Level dBuV/m	Factor dB	 dBuV/m	dBuV/m		Detecto	or Com	ment
	750 41.89	10. 79	52.68	54.00	-1. 32	AVG		
	750 52.71	10. 79	63. 50	74.00	-10. 50	Peak		

BTL

	TX G Mo	ode 2462 Mł	lz		Polarizatio	n	Horizonta	al
dBuV/m								
		2						
		1						
		×						
00.00 3550.0	00 6100.00	8650.00 1	1200.00 1375	0.00 1630	0 00 18850	.00 21400	00	26500.00
								(MHz)
Freq.	Reading Level	g Correct Factor	Measure ment	Limit	Margin			
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detecto	or Com	nent
	000 31.43	10.44	41.87	54.00	-12.13	AVG		
7389.92	250 44. 18	10. 45	54.63	74.00	-19. 37	Peak		
IARKS: /leasureme /largin Leve	nt Value = F ∋l = Measure	Reading Leve ement Value	el + Correct F - Limit Value.	actor.				

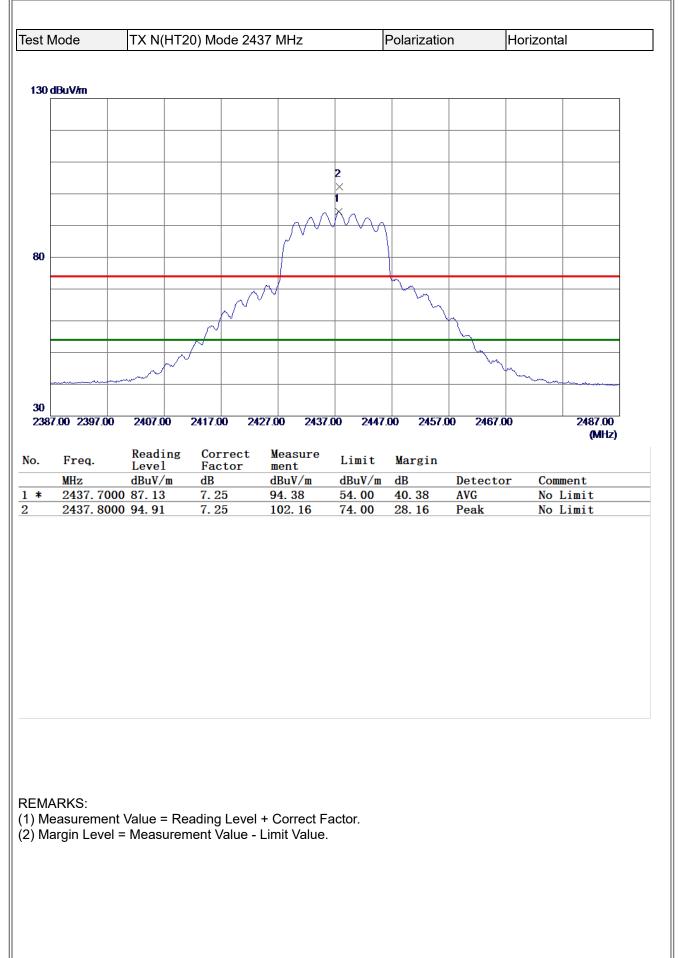


	Mode TX N(HT20) Mode 2412 MHz					Polarizatio	n	Vertical		
0 dBu\	V/m			1		-	1	1	1	
			2							
			X							
			1							
			×							
30										
20 1000.00	3550.00	6100.00	8650.0	0 112	00.00 1375	0.00 1630	0.00 18850	.00 2140	00	26500.00
		0100.00								(MHz)
о. F	req.	Readiı Level	ng Cor	rect tor	Measure ment	Limit	Margin			
M	Hz	dBuV/n		.01	dBuV/m	dBuV/m	dB	Detecto	or Com	nent
	235. 7000		10.		46.85	54.00	-7.15	AVG		
(240. 8750	40.24	10.	00	58.84	74.00	-15. 16	Peak		

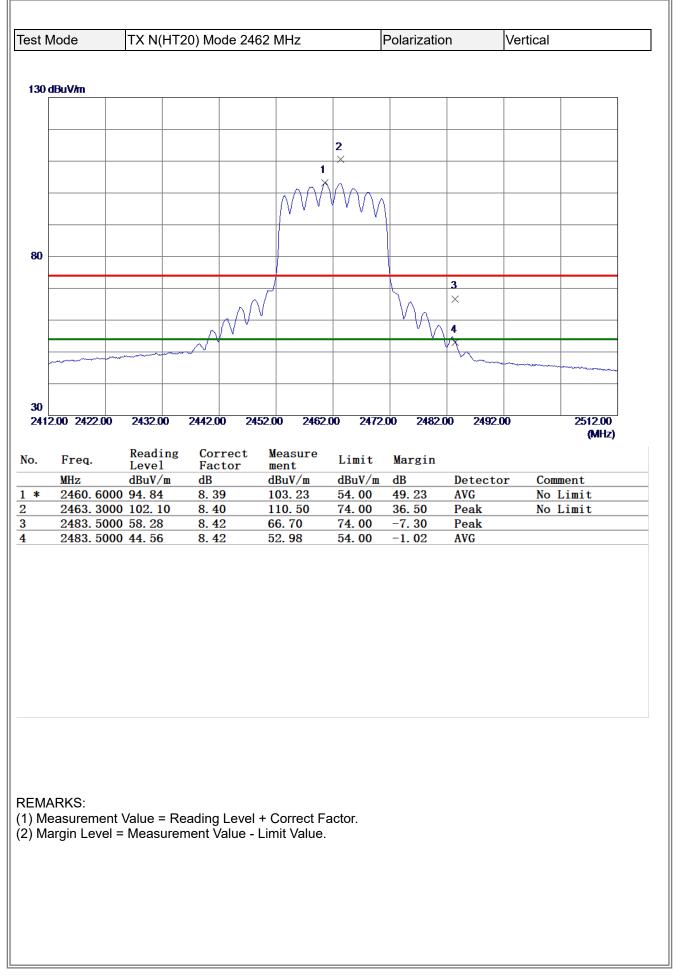


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

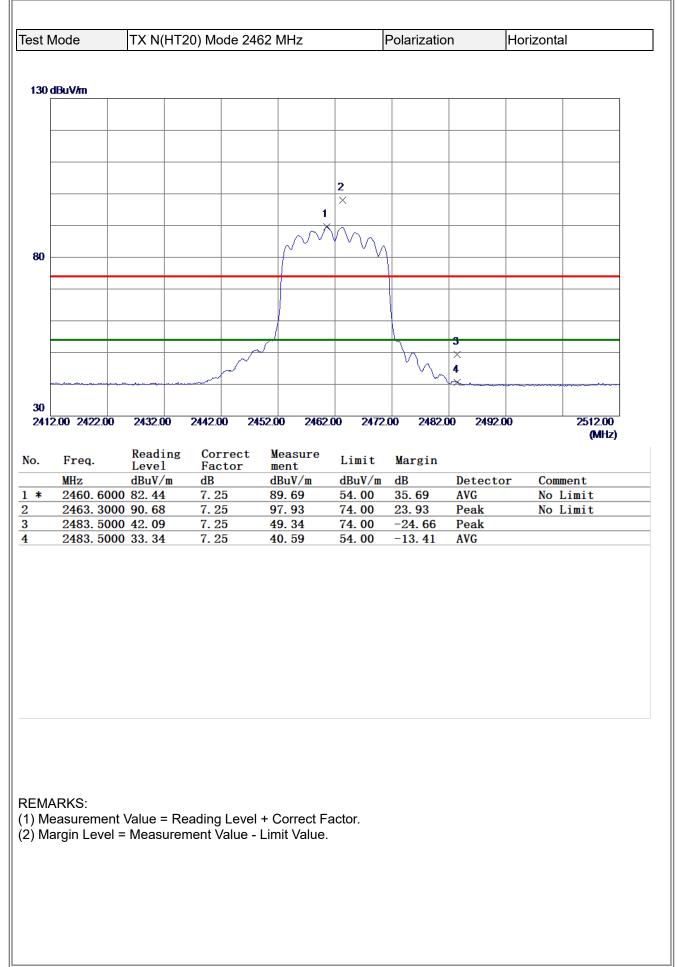
1 1 1 2	2 2 30 2 30 <th></th> <th>lode</th> <th></th> <th>20) Mode 24</th> <th>12 MHz</th> <th></th> <th>Polarizatio</th> <th>on</th> <th>Horizontal</th>		lode		20) Mode 24	12 MHz		Polarizatio	on	Horizontal
1 1 1 2	1 1 2									
30 2	30 2	80 dl	BuV/m					1		
2 2	30 2	-								
30 2	2 2 30 2 30 <td>ŀ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ŀ								
30 2	30 2									
30 2	2 2 30 2 30 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1						
30 ×	30 ×	-			×					
30	30									
20	20	Ē			×					
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	ю								
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak									
IOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	IOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	ŀ								
MHz Buv/m B	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak									
MHz Buv/m B	MHz dBuV/m dB dBuV/m dB UV/m dB UV/m dB Description Comment Comment <thcomment< th=""> Comment Co</thcomment<>									
MHz Buv/m B	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	╞								
MHz Buv/m B	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak									
MHz Buv/m B	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak									
MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak		0.00 3550.00	6100 00	8650.00 11	200.00 1375	0.00 1630	0.00 18850	00 21400	00 26500.00
MHz BuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	MHz BuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	+ +								
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7233.3500 40.25 10.19 50.44 74.00 -23.56 Peak).	Freq.	Reading	Correct	Measure	Limit	Margin		
			MHz					dB	Detector	r Comment
* 7235.6750 29.29 10.19 39.48 54.00 -14.52 AVG	* 7235.6750 29.29 10.19 39.48 54.00 -14.52 AVG	-								
				t Value = Re	ading Level	+ Correct F	actor			
Measurement Value = Reading Level + Correct Factor.	EMARKS:) Measurement Value = Reading Level + Correct Factor.) Margin Level = Measurement Value - Limit Value.) Me	easurement	t Value = Re = Measuren	eading Level	+ Correct Fi Limit Value.	actor.			
Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.) Me	easurement	t Value = Re = Measuren	eading Level nent Value -	+ Correct Fa Limit Value.	actor.			
Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.) Me	easurement	t Value = Re = Measuren	eading Level nent Value -	+ Correct Fa Limit Value.	actor.			
Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.) Me	easurement	t Value = Re = Measuren	eading Level nent Value -	+ Correct Fa Limit Value.	actor.			
Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.) Me	easurement	t Value = Re = Measuren	eading Level nent Value -	+ Correct Fa Limit Value.	actor.			



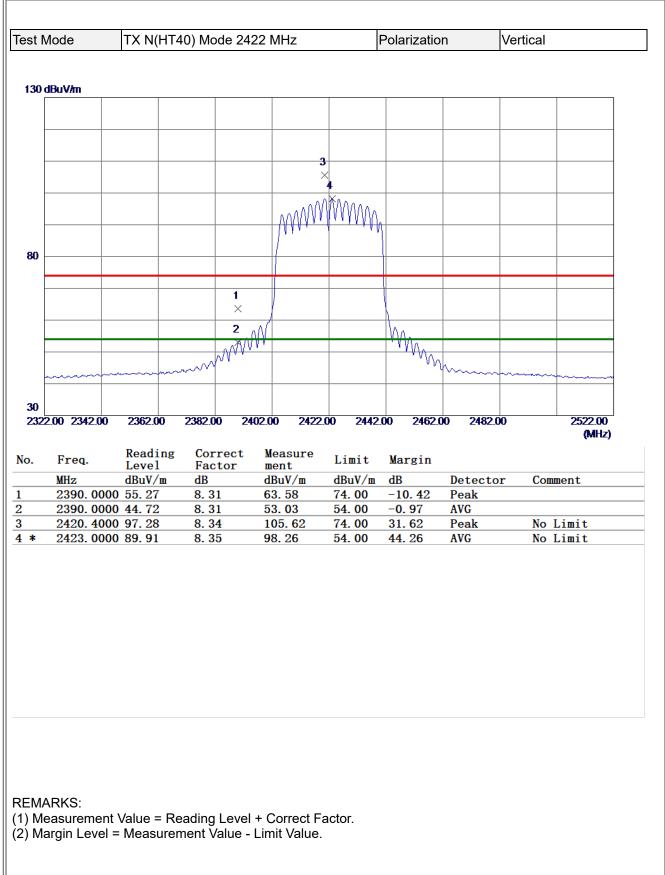
	/lode	TX N(H1	20) Mode 2	437 MHz		Polarizatio	n	Vertical	
b C]	BuV/m								
ł			1 ×						
			2						
			~						
ł									
30									
								ļ	
ŀ									
ŀ									
20									
1000	0.00 3550.0	0 6100.00	8650.00	11200.00 1375	60.00 1630	0.00 18850	.00 21400	00.00	26500.00 (MHz)
).	Freq.	Reading	Correct		Limit	Margin			
	MHz	Level	Factor	ment					
			AD .		dDuV/m	4D	Dotooto	vr Com	
		dBuV/m 500 55.08	dB 10.69	dBuV/m 65.77	dBuV/m 74.00		Detecto Peak	or Com	ment
*	7308.3	<u>dBuv/m</u> 500 55.08 000 43.21	dB 10. 69 10. 70	dBuV/m 65. 77 53. 91	dBuV/m 74.00 54.00	dB -8. 23 -0. 09	Detecto Peak AVG	or Com	ment
*	7308.3	500 55. 08	10.69	65.77	74.00	-8.23	Peak	or Com	



	de	TX N(HT	20) Mod	e 2437 N	1Hz		Polarizatio	n	Horizonta	al
dBu\	V <i>I</i> m						1	1	1	
			_							
			1 ×							
			0							
			2 ×							
<u> </u>										
00.00	3550.00	6100.00	8650.00	11200.0	0 13750	.00 16300	0.00 18850	00 21400	.00	26500.00 (MHz)
Б		Reading	Corr	ect Me	asure	Limit	Manada			
	req.	Level	Fact	or me	ent	Limit	Margin	Detecto	n Cam	
	Hz	dBuV/m	dB		uV/m	dBuV/m	dB	Detecto	r com	ment
- (308. 3000) 44. 58	10.3	1 54	. 89	74.00	-19.11	Peak		
	308. 3000 310. 6500		10. 3 10. 3		. 89 . 06	74.00 54.00	-19. 11 -10. 94	Peak AVG		



	TX N(HT	20) Mode 24	l62 MHz		Polarizatio	n	Vertical	
dBuV/m							1	
		2						
		×						
	<u> </u>	1						
		×						
	ļ							
	+							
00.00 3550.0	00 6100.00	8650.00 1	1200.00 1375	50.00 1630	0.00 18850	.00 2140).00	26500.00
								(MHz)
Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detecto	or Com	ment
	500 35. 17	10.79	45.96	54.00	-8.04	AVG		
1300.0	500 47.35	10.79	58.14	74.00	-15.86	Peak		



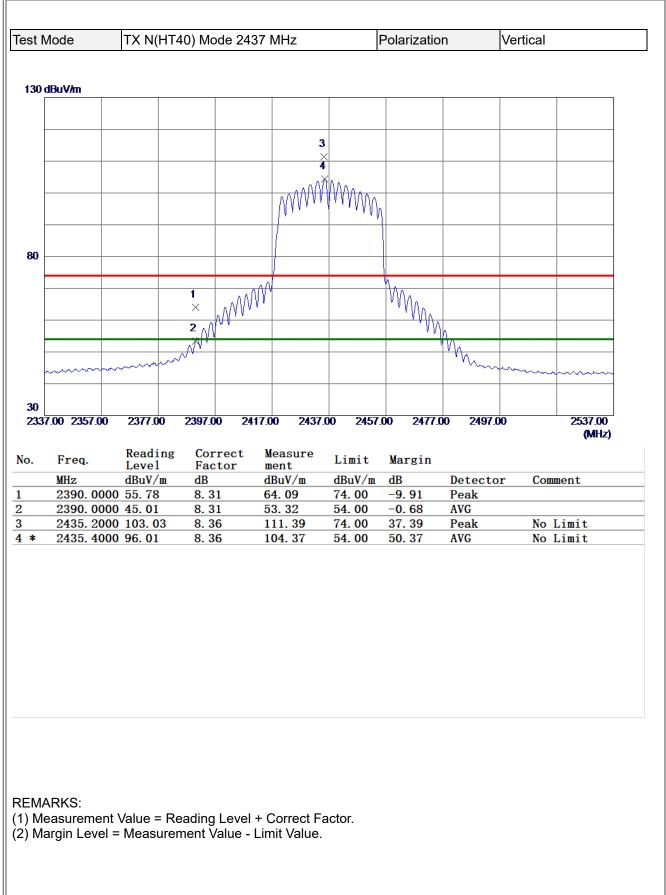
	TX N(H1	۲20) Mode 24	462 MHz		Polarizatio	n	Horizont	al
dBuV/m								
		2						
		X						
		1						
		X						
				_				
0.00 3550.	00 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	00 21400		26500.00
,	00 0100.00	0000	1200.00 1010		0.00 10000	2140	1.00	(MHz)
Freq.	Reading	g Correct	Measure	Limit	Margin			
MHz	Level dBuV/m	Factor dB	 dBuV/m	dBuV/m		Detecto	or Con	ment
	750 31.41	10. 45	41.86	54.00	-12.14	AVG		
7392.9	750 44.33	10.46	54.79	74.00	-19.21	Peak		

1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak	1 1 2			×2						
1 1 1 2	1 1 2			×2						
30 ×	30 ×			×2						
30 ×	2 2 2 30 ×			×2						
30 ×	30 ×			×2						
30 ×	30 ×			×2						
30 ×	30 ×									
30 ×	30 ×									
20	20									
MHz Buv/m B	MHz dBuV/m dB dBuV/m dB UV/m dB V/m V/m <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
MHz dBuV/m dB dBuV/m dB UV/m dB V/m V/m <td>MHz dBuV/m dB dBuV/m dB Muv/m dB Detector Comment 7258.900 39.95 10.63 50.58 74.00 -23.42 Peak</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MHz dBuV/m dB dBuV/m dB Muv/m dB Detector Comment 7258.900 39.95 10.63 50.58 74.00 -23.42 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak	MHz dBuV/m dB dBuV/m dB Duv/m Duv/m dB Duv/m									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak	MHz dBuV/m dB dBuV/m dB Duv/m Duv/m dB Duv/m									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) io. Freq. Reading Correct Measure Limit Margin Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) io. Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak									
MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak	MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak									
Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment7258.900039.9510.6350.5874.00-23.42Peak	Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment7258.900039.9510.6350.5874.00-23.42Peak	00 3550.00	6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	.00 21400	.00	
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak	D. Freq. Level Factor ment Effect Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak		Reading	Correc	t Measure	.	. .			(wii tz.)
7258. 9000 39. 95 10. 63 50. 58 74. 00 -23. 42 Peak	7258. 9000 39. 95 10. 63 50. 58 74. 00 -23. 42 Peak		Level	Factor	ment			Datate		
									or Cor	ment
			–							
		asurement	Value = Re	eading Lev	/el + Correct F	actor.				
) Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.				- Linni value.					
EMARKS:) Measurement Value = Reading Level + Correct Factor. 2) Margin Level = Measurement Value - Limit Value.) Measurement Value = Reading Level + Correct Factor.									
) Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.									
) Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.									
) Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.									
			MHz 7258. 900 7267. 900	RKS: RKS:	Freq. Level Factor MHz dBuV/m dB 7258. 9000 39. 95 10. 63 7267. 9000 28. 63 10. 64	Freq. Level Factor ment MHz dBuV/m dB dBuV/m 7258.9000 39.95 10.63 50.58 7267.9000 28.63 10.64 39.27	Freq. Level Factor ment Limit MHz dBuV/m dB dBuV/m dBuV/m 7258.9000 39.95 10.63 50.58 74.00 7267.9000 28.63 10.64 39.27 54.00	Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB dBuV/m dB 7258.9000 39.95 10.63 50.58 74.00 -23.42 7267.9000 28.63 10.64 39.27 54.00 -14.73	Pried. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak 7267.9000 28.63 10.64 39.27 54.00 -14.73 AVG	Pried. Level Factor ment Finite Margin MHz dBuV/m dB dBuV/m dB Detector Cor 7258.9000 39.95 10.63 50.58 74.00 -23.42 Peak 7267.9000 28.63 10.64 39.27 54.00 -14.73 AVG

<u>3īL</u>

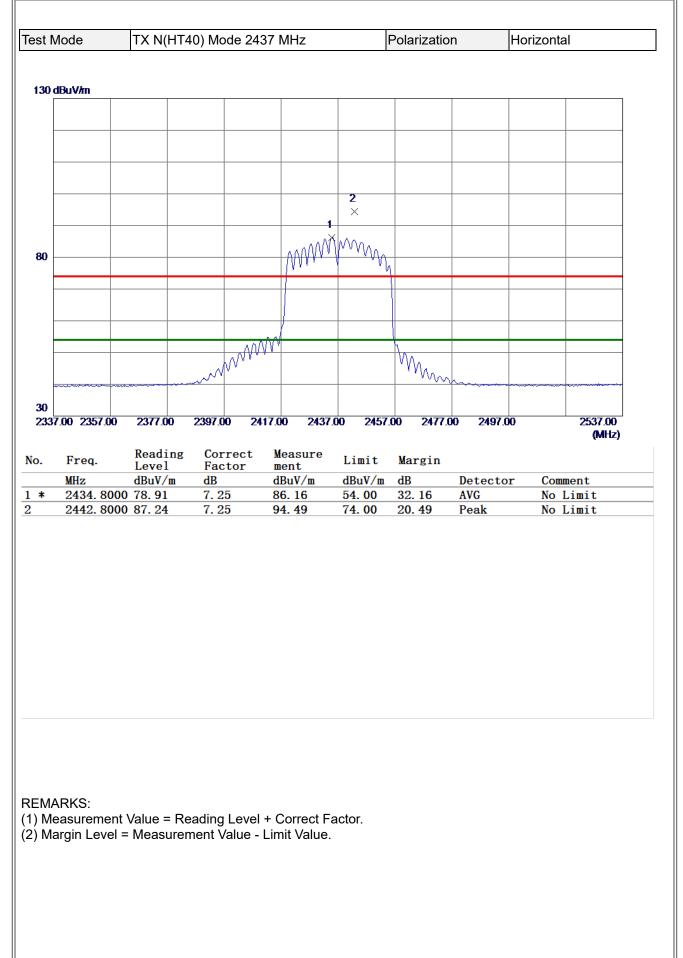
est I	Node	TX N(HT4	0) Mode 24	22 MHz		Polarizatio	n ŀ	Iorizontal
130	dBuV/m							
80					6 5 ×			

30	200 2342.00	2202.00	2382.00 2		2.00 2442	00 2462		2522.00
Z32	2.00 2342.00	2362.00	2382.00 2	402.00 2422	2.00 2442	.00 2462.	00 2482.00	(MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	2388.800		7.26	50.03	74.00	-23.97	Peak	
2	2388.800		7.26	40.65	54.00	-13.35	AVG	
3 1	2390.000		7.26	48.83 40.36	74.00 54.00	-25. 17 -13. 64	Peak AVG	
± 5 *	2390.000		7.26	83. 29	54.00	29.29	AVG	No Limit
5 * 6		0 82.38	7.25	89.63	74.00	15.63	Peak	No Limit


REMARKS:

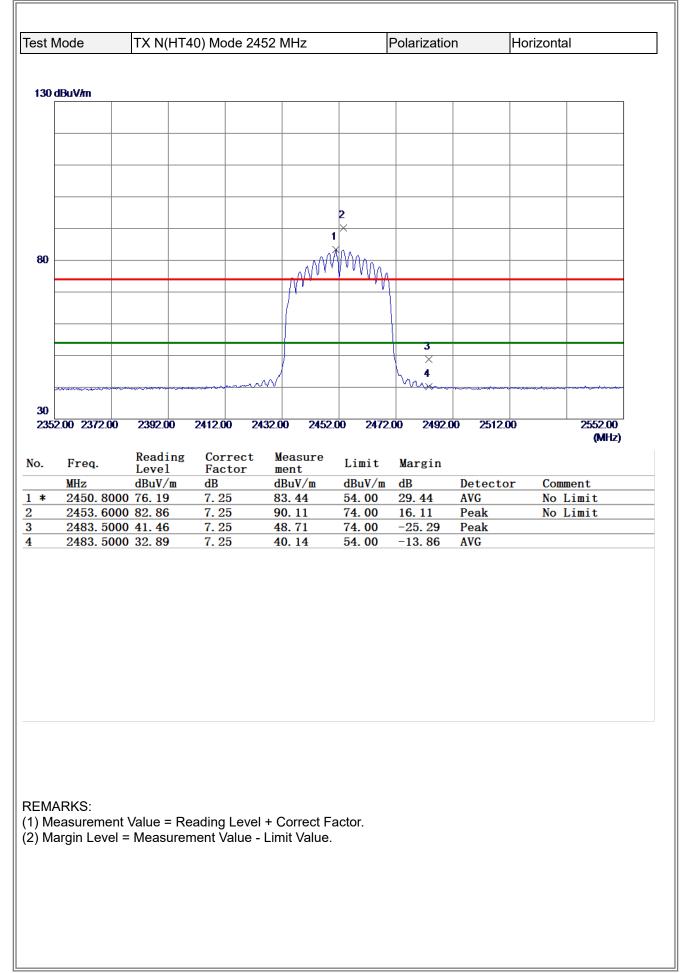
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		40) Mode 24	22 MHz		Polarizatio	n	Horizont	al
dBuV/m							_	
		1						
		×						
		2						
		×						
0.00 3550.0	00 6100.00	8650.00 11	1200.00 1375	0.00 1630	0.00 18850	0.00 21400	0.00	26500.00
								(MHz)
Freq.	Reading	Correct	Measure	Limit	Margin			
MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m		Detecto	or Com	ment
		10. 21	48.37				001	ment
7244. Z	200 38.16	10.21	40. 37	74.00	-25. 63	Peak		
	250 38.16 750 27.05	10. 21	37. 30	74.00 54.00	-25.63 -16.70	Peak AVG		
7273. 1	750 27. 05	10. 25	37. 30	54.00				
7273. 1 IARKS: //easureme	750 27. 05 ent Value = R	10. 25 eading Level	37. 30 + Correct Fa	54. 00				
7273. 1 MARKS: Measureme	750 27. 05	10. 25 eading Level	37. 30 + Correct Fa	54. 00				
MARKS: Measureme	750 27. 05 ent Value = R	10. 25 eading Level	37. 30 + Correct Fa	54. 00				
7273. 1 //ARKS: //easureme	750 27. 05 ent Value = R	10. 25 eading Level	37. 30 + Correct Fa	54. 00				
7273. 1 //ARKS: //easureme	750 27. 05 ent Value = R	10. 25 eading Level	37. 30 + Correct Fa	54. 00				
7273. 1 IARKS: Aeasureme	750 27. 05 ent Value = R	10. 25 eading Level	37. 30 + Correct Fa	54. 00				



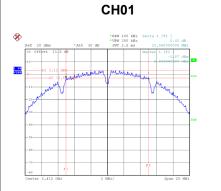
	/lode	IX N(HI4	0) Mode 24	37 MHz		Polarizatio	n	Vertical	
di T	BuV/m						1	1	1
-			2 ×						
+			1						
			×						
-									
0									
'[
+									
0 000	0.00 3550.00) 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 21400).00	26500.00
									(MHz)
	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detecto	or Com	ment
•		50 37.42	10.70	48.12	54.00	-5.88	AVG		
	1010.10	00 48.32	10. 70	59. 02	74.00	-14. 98	Peak		
		00 48.32	10. 70	59.02	74.00		Peak		

t Mode	TX N(H	IT40) Mo	de 2437	MHz		Polarizati	on	Horizo	ntal
) dBuV/m									
		1							
		X							
		2							
		X							
0									
0									
000.00 3550.0	0 6100.00	8650.00) 11200	0.00 1375	0.00 1630	0.00 1883	<u>50.00</u> 2140	0.00	26500.00 (MHz)
Freq.	Readir	ig Cori	rect l	leasure					
	T 1				Limit	Margin			
	Level	Fact	tor i	nent	Limit	Margin		or C	ommont
MHz	Level dBuV/m	Fact dB	tor i	nent 1BuV/m	dBuV/m	dB	Detect	or C	omment
MHz 7303.4	Level	Fact	tor i 6 31 §	nent				or C	omment
MHz 7303.4	Level dBuV/m 500 40.76	Fact dB 10.3	tor i 6 31 §	nent 1BuV/m 51.07	dBuV/m 74.00	dB -22. 93	Detect Peak	cor C	omment

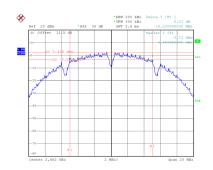


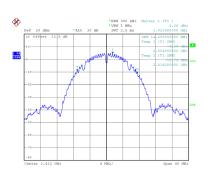
0 dBuV/m	2 × 1 ×							
	×							
	×							
	×							
	×							
	×							
) 	×							
	1							
0								
0								
0 000.00 3550.00	6100.00 865	0.00 112	200.00 13750	0.00 1630	0.00 18850	.00 21400	00	26500.00
	0100.00					21100		(MHz)
. Freq.	Reading C	orrect	Measure	Limit	Margin			
		actor	ment			D ()		
MHz o * 7350.1250 2	dBuV/m d 28.95 1	в 0.75	dBuV/m 39.70	dBuV/m 54.00	dB -14. 30	Detecto AVG	r Com	ment
7351. 2250 3		0.75	50. 27	74.00	-23. 73	Peak		

BL

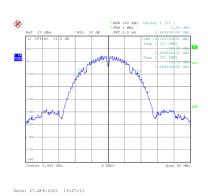

	TX N(HT	40) Mode 2	2452 MHz		Polarizatio	n	Horizon	tal
) dBuV/m								
		2						
		×						
		1 ×						
) 00.00_3550.0	00 6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	00 21400		26500.00
	00 0100.00		11200.00 1010			21100		(MHz)
Freq.	Reading	Correc		Limit	W!			
	Level				Margin			
MHz		Factor	ment dBuV/m	Limit dBuV/m	Margin	Detecto	or Co	mmont
MHz 7363.1	dBuV/m 500 27.68	dB 10. 41	ment dBuV/m 38.09	dBuV/m 54.00		Detecto AVG	or Co	mment
7363.1	dBuV/m	dB	dBuV/m	dBuV/m	dB		or Co	nment
7363.1	dBuV/m 500 27.68	dB 10. 41	dBuV/m 38. 09	dBuV/m 54.00	dB -15. 91	AVG	or Co	ment

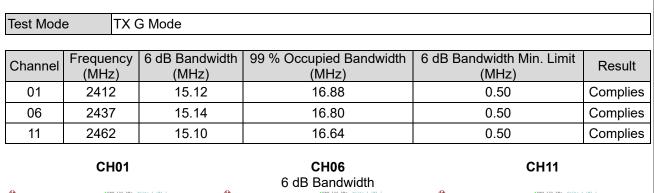
APPENDIX E - BANDWIDTH

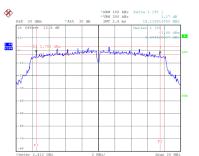

Test Mode TX B Mode							
Channel Frequency (MHz) 6 dB Bandwidth 99 % Occupied Bandwidth 6 dB Bandwidth Min. Limit (MHz) R				Result			
01	2412	10.06	14.40	0.50	Complies		
06	2437	10.08	14.32	0.50	Complies		
11	2462	10.02	14.32	0.50	Complies		

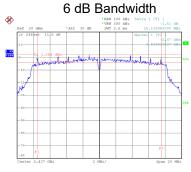


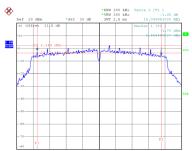
Date: 27.APR.2021 19:24:45

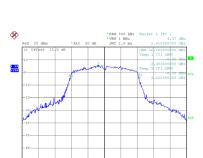

CH11

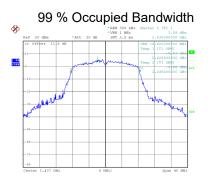


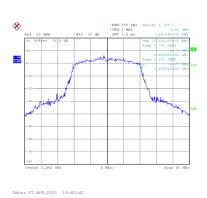

Date: 27.APR.2021 19:27:05



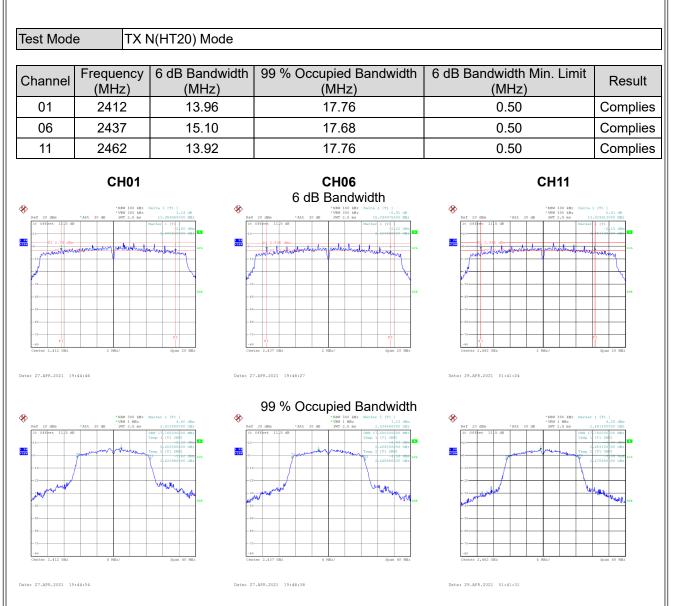

Date: 27.APR.2021 19:22:06





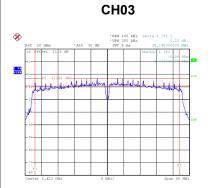


Date: 27.APR.2021 19:42:34


Date: 27.APR.2021 19:39:11

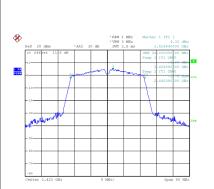
Date: 27.APR.2021 19:39:02

Date: 27.APR.2021 19:41:06


Date: 27.APR.2021 19:40:58



Test Mode TX N(HT40) Mode							
Channel	hannel Frequency 6 dB Bandwidth (MHz) (MHz)		99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result		
03	2422	35.24	36.00	0.50	Complies		
06	2437	35.24	36.32	0.50	Complies		
09	2452	35.16	36.16	0.50	Complies		

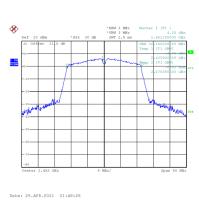


Date: 29.APR.2021 01:46:20

Date: 29.APR.2021 01:46:27

CH09

*RBW 100 kHz *VBW 300 kHz


99 % Occupied Bandwidth

1.3

Date: 29.APR.2021 01:48:21

8

1 PR

Date: 29.APR.2021 01:43:56

Date: 29.APR.2021 01:43:49

APPENDIX F - MAXIMUM OUTPUT POWER

Test Mode TX B Mode_Ant. 1							
Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result		
01	2412	17.93	30.00	1.0000	Complies		
06	2437	18.26	30.00	1.0000	Complies		
11	2462	17.62	30.00	1.0000	Complies		

Test Mode TX G Mode_Ant. 1

Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	22.91	30.00	1.0000	Complies
06	2437	23.57	30.00	1.0000	Complies
11	2462	23.32	30.00	1.0000	Complies
	01	Channel (MHz) 01 2412 06 2437	Channel (MHz) (dBm) 01 2412 22.91 06 2437 23.57	Channel (MHz) (dBm) (dBm) 01 2412 22.91 30.00 06 2437 23.57 30.00	Channel (MHz) (dBm) (W) 01 2412 22.91 30.00 1.0000 06 2437 23.57 30.00 1.0000

Test Mode	TX N(HT20) Mode Ant. 1

Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	21.68	26.93	0.4932	Complies
06	2437	23.47	26.93	0.4932	Complies
11	2462	21.75	26.93	0.4932	Complies

Test Mode TX N(HT20) Mode_Ant. 2

Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	21.83	26.93	0.4932	Complies
06	2437	23.49	26.93	0.4932	Complies
11	2462	21.67	26.93	0.4932	Complies

Test Mode TX N(HT20) Mode_Total

Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	24.77	26.93	0.4932	Complies
06	2437	26.49	26.93	0.4932	Complies
11	2462	24.72	26.93	0.4932	Complies

Test Mode	TX N(HT40) Mode Ant. 1	

Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	19.33	26.93	0.4932	Complies
06	2437	23.36	26.93	0.4932	Complies
09	2452	20.22	26.93	0.4932	Complies

Test Mode TX N(HT40) Mode_Ant. 2

Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	19.04	26.93	0.4932	Complies
06	2437	23.13	26.93	0.4932	Complies
09	2452	20.37	26.93	0.4932	Complies

Test Mode TX N(HT40) Mode_Total

Channel	Frequency (MHz)	Peak Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	22.20	26.93	0.4932	Complies
06	2437	26.26	26.93	0.4932	Complies
09	2452	23.31	26.93	0.4932	Complies

Test Mode	TX B M	ode_Ant. 1			
Channel	Frequency (MHz)	Average Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	15.72	30.00	1.0000	Complies
06	2437	15.75	30.00	1.0000	Complies
11	2462	15.17	30.00	1.0000	Complies

Test Mode TX G Mode_Ant. 1

Channel	Frequency (MHz)	Average Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	15.10	30.00	1.0000	Complies
06	2437	16.90	30.00	1.0000	Complies
11	2462	16.13	30.00	1.0000	Complies

Test Mode	TX N(H	T20) Mode_Ant. 1			
Channel	Frequency	Average Output Power + Duty Factor	Max. Limit	Max. Limit	Result
•	(MHz)	(dBm)	(dBm)	(W)	
01	2412	12.70	26.93	0.4932	Complies
06	2437	17.16	26.93	0.4932	Complies
11	2462	12.89	26.93	0.4932	Complies

Test Mode TX N(HT20) Mode_Ant. 2

Channel	Frequency (MHz)	Average Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	12.90	26.93	0.4932	Complies
06	2437	16.42	26.93	0.4932	Complies
11	2462	12.52	26.93	0.4932	Complies

Test Mode TX N(HT20) Mode_Total

Channel	Frequency (MHz)	Average Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	15.81	26.93	0.4932	Complies
06	2437	19.82	26.93	0.4932	Complies
11	2462	15.72	26.93	0.4932	Complies

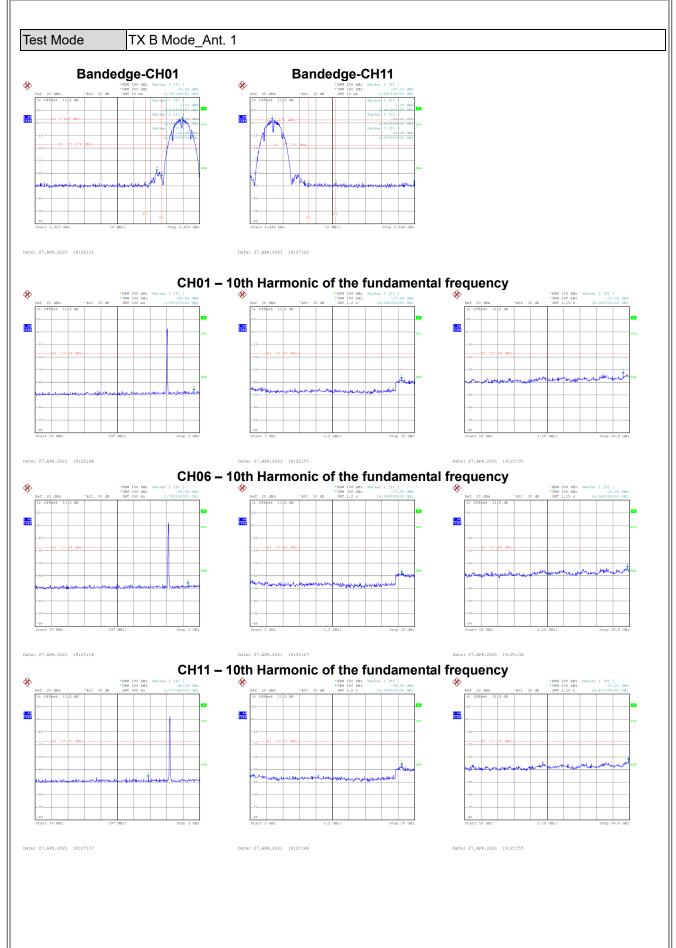
Test Mode	TX N(H	T40) Mode_Ant. 1			
Channel	Frequency	Average Output Power + Duty Factor	Max. Limit	Max. Limit	Result

06 2437 15.85 26.93 0.4932 Complie	Channel	(MHz)	(dBm)	(dBm)	(W)	Result
	03	2422	9.73	26.93	0.4932	Complies
00 2452 10.71 26.03 0.4032 Complia	06	2437	15.85	26.93	0.4932	Complies
09 2432 10.71 20.93 0.4932 Comple	09	2452	10.71	26.93	0.4932	Complies

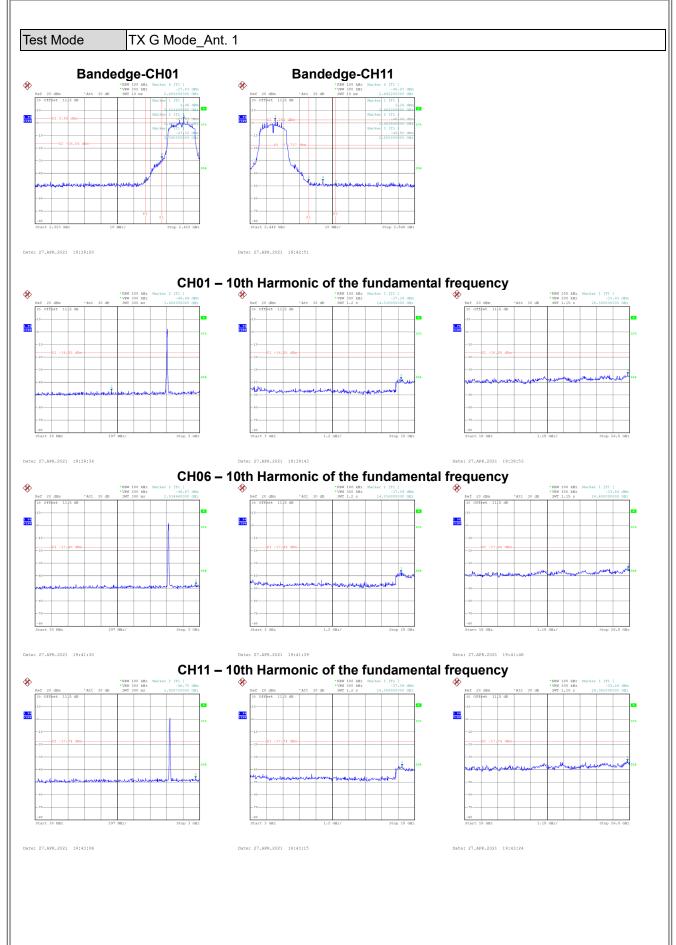
Test Mode TX N(HT40) Mode_Ant. 2

Channel	Frequency (MHz)	Average Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	9.68	26.93	0.4932	Complies
06	2437	14.78	26.93	0.4932	Complies
09	2452	10.79	26.93	0.4932	Complies

Test Mode TX N(HT40) Mode_Total


TX N(HT40) Mode_Total

Channel	Frequency (MHz)	Average Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	12.72	26.93	0.4932	Complies
06	2437	18.36	26.93	0.4932	Complies
09	2452	13.76	26.93	0.4932	Complies



APPENDIX G - CONDUCTED SPURIOUS EMISSIONS

