

VARIANT RADIO TEST REPORT

(FCC Part 15 Subpart C)

Applicant:	Xiaomi Communications Co., Ltd.
Address:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China,
	100085

Manufacturer:	Xiaomi Communications Co., Ltd.
Address:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Product:	Mobile Phone
Brand Name:	POCO
Model Name:	2410FPCC5G
FCC ID:	2AFZZPCC5G
Date of tests:	May. 11, 2024 ~ Jul. 11, 2024 Oct. 16, 2024 ~ Nov.15, 2024

The tests have been carried out according to the requirements of the following standard:

- □ Part 15 Subpart C §15. 225
- RSS-Gen Issue 5, Amendment 2 (February 2021)
- **ANSI C63.10-2020**

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

Prepared by Simon Wang	Approved by Luke Lu		
Engineer / Mobile Department	Manager / Mobile Department		
Simon Wang	luke lu		
Date: Nov.15, 2024	Date: Nov.15, 2024		

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for consolidation of the tests requested to provide upon request for production to the story of the production of the production of the production of the production of the permitted by the production of the productio accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report. the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

1	GENER	AL DESCRIPTION	6
	1.1 G	ENERAL DESCRIPTION OF EUT	6
	1.2 M	IODIFICATION OF EUT	6
	1.3 A	PPLICABLE STANDARDS	6
2	TEST C	ONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1 D	ESCRIPTIONS OF TEST MODE	7
		EST CONFIGURATIONS	
		UPPORT EQUIPMENT	_
		EST SETUP	
		IEASUREMENT RESULTS EXPLANATION EXAMPLE	
3	TEST R	ESULT	12
	3.1 20	0DB AND 99% BANDWIDTH MEASUREMENT	12
	3.1	.1 LIMIT OF 20DB AND 99% BANDWIDTH	12
	3.1	.2 TEST PROCEDURES	12
	3.1	.3 TEST RESULT OF 20DB AND 99% BANDWIDTH	13
	3.2 F	REQUENCY STABILITY MEASUREMENT	14
	3.2	.1 LIMIT OF FREQUENCY STABILITY	14
	3.2	.2 TEST PROCEDURES	14
	3.2	.3 TEST RESULT OF FREQUENCY STABILITY	14
	3.3 F	IELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK MEASUREMENT	16
	3.3	.1 LIMIT OF FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK	16
	3.3	.2 TEST PROCEDURES	16
	3.3	.3 TEST RESULTS OF FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND N	//ASK
	(1.7	705 MHZ ~ 30 MHZ)	17
	3.4 R	ADIATED EMISSIONS MEASUREMENT	19
	3.4	.1 LIMIT	19
	3.4	.2 MEASURING INSTRUMENT SETTING	19
	3.4	.3 TEST PROCEDURES	19
	3.4	.4 TEST RESULTS OF RADIATED EMISSIONS (9 KHZ ~ 30 MHZ)	21
	3.4	.5 TEST RESULT OF RADIATED SPURIOUS EMISSION (30MHZ ~ 1GHZ)	23
	3.5 A	C CONDUCTED EMISSION MEASUREMENT	25
	3.5	.1 LIMIT OF AC CONDUCTED EMISSION	25
	3.5	.2 TEST PROCEDURES	25
	3.5	.3 TEST RESULT OF AC CONDUCTED EMISSION	26
	3.6 A	NTENNA REQUIREMENTS	28
	3.6	.1 STANDARD APPLICABLE	28
	3.6	.2 ANTENNA CONNECTED CONSTRUCTION	28

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

	3.6.3	ANTENNA GAIN	28
4	LIST OF MEASI	URING EQUIPMENT	29
5	UNCERTAINTY	OF EVALUATION	30

REPORT REVISE RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
W7L-P24050016RF09	Original release	Jul. 11, 2024
	Based on the original product add 2 nd materials, 5 th and 6 th	
W7L-P24100005RF09	screens. This report only verify RSE worst case, So this	Nov.15, 2024
	report only replaces the RSE worse case	

SUMMARY OF TEST RESULT

FCC Rule	Description	Limit	Result	Remark
-	99% Bandwidth	-	Pass	-
15.225(a)(b)(c)	Field Strength of Fundamental Emissions	15.225(a)(b)(c)	Pass	-
20dB Spectrum 15.215 Bandwidth		15.215	Pass	-
15.225(d) 15.209	Radiated Emission	15.225(d) & 15.209	Pass	
15.207	AC Conducted Emission	15.207(a)	Pass	
15.225(e)	Frequency Stability	< ±100 ppm	Pass	-
15.203 Antenna Requirement		N/A	Pass	-

Lab A:

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

Lab Address:

Room B37, Warehouse A5, No.3 Chiwan 4th Road, Zhaoshang Street, Nanshan District Shenzhen, Guangdong, People's Republic of China

Accredited Test Lab Cert 3939.01

The FCC Site Registration No. is 525120; The Designation No. is CN1171.

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

1 GENERAL DESCRIPTION

1.1 GENERAL DESCRIPTION OF EUT

Items	Description
Tx/Rx Frequency Range	13.553MHz ~ 13.567MHz
Channel Number	1
20dBW	2.699 kHz
99%OBW	2.328 kHz
Antenna Type	FPC Antenna
Type of Modulation	ASK

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

NOTE: Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.

1.2 MODIFICATION OF EUT

No modifications are made to the EUT during all test items.

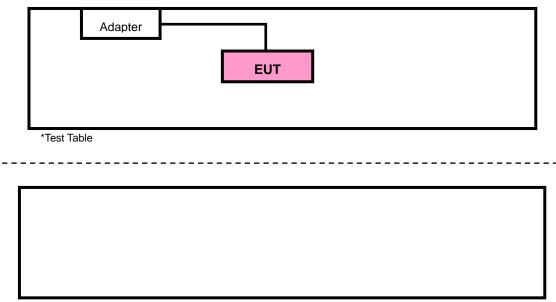
1.3 APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.225
- ANSI C63.10-2020

2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

2.1 DESCRIPTIONS OF TEST MODE


Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

101	collowing table is a list of the test modes shown in this test report.					
	Test Items					
AC Power Line Conducted Emissions		Field Strength of Fundamental Emissions				
2	0dB Spectrum Bandwidth	Frequency Stability				
R	adiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz				
No	ote:					
1.	The EUT was programmed to be in continuous	ly transmitting mode.				
2.	The ancillary equipment, NFC card, is used	to make the EUT (NFC) continuously transmit at				
	13.56MHz and is placed around 3 cm gap to th	e EUT.				
3.	Pre-Scan has been conducted to determine the	ne worst-case mode from all possible combinations				
	between available modulations, work in modes	s and data rates. Selected for the final test as listed				
	below.					

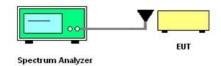
Frequency	Work in Modes	Туре	Data Rate (Kbps)			
13.56 MHz	Польти	\Box_{A}	□ 106			
	Card Emulation Reader/Writer Peer-to-Peer	□в	☑ 212			
		F	□ 424			
		\Box_{V}	□ 848			
Remark:	Remark:					
The mark"						
The mark" means is not chosen for testing.						

2.2 TEST CONFIGURATIONS

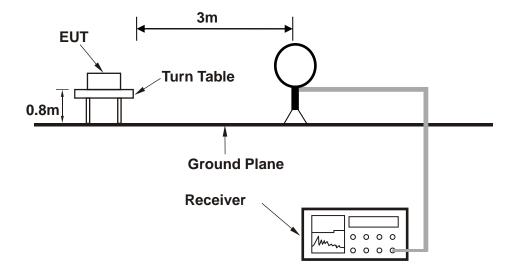
< For Fundamental Emissions and Mask and Radiated Emissions Measurement >

^{*} Kept in a remote area

2.3 SUPPORT EQUIPMENT

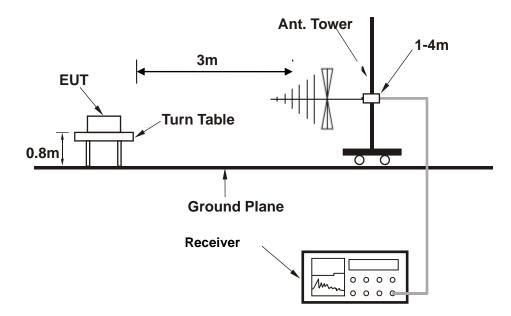

NO.	PRODUCT	BRAND	MODEL NO. SERIAL NO.		FCC ID
1	N/A	N/A	N/A	N/A	N/A

2.4 TEST SETUP


The EUT is continuously communicating during the tests.

EUT was set in the Hidden menu mode to enable NFC communications.

Setup diagram for Conducted Test



Setup diagram for Radiation(9KHz~30MHz) Test

Setup diagram for Radiation(Below 1G) Test

2.5 MEASUREMENT RESULTS EXPLANATION EXAMPLE

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$5 + 10 = 15$$
 (dB)

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

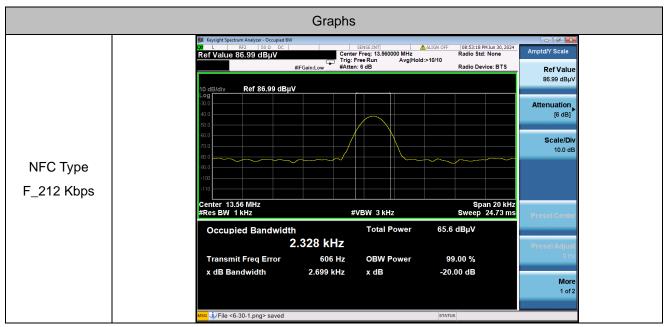
3 TEST RESULT

3.1 20DB AND 99% BANDWIDTH MEASUREMENT

3.1.1 LIMIT OF 20DB AND 99% BANDWIDTH

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.

3.1.2 TEST PROCEDURES


- The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used. (Since the signal being measured is CW or CW-like, it is impractical to adjust RBW according to C63.10 because the bandwidth measured will always follow RBW and the result will be approximately twice as large as RBW.)
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.1.3 TEST RESULT OF 20DB AND 99% BANDWIDTH

Test Mode :	NFC		Temperature :		23℃	
Test Engineer :	Jace hu		Relative Humidity :		50%	
Mode	Frequency	20dB Ban	dwidth [kHz]	99	% OBW[kHz]	Verdict
NFC Type F_212 Kbps	13.56MHz	2	.699		2.328	PASS

20dB Bandwidth & 99% Bandwidth Plot

3.2 FREQUENCY STABILITY MEASUREMENT

3.2.1 LIMIT OF FREQUENCY STABILITY

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

3.2.2 TEST PROCEDURES

- The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- Set the spectrum analyzer span to view the entire emissions bandwidth. 3.
- Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- The fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 10⁶ ppm and the limit is less than ±100ppm.
- The extreme temperature rule is -20°C~50°C.

3.2.3 TEST RESULT OF FREQUENCY STABILITY

The NFC Type F_212 Kbps is the worst case, Only report worst mode data

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

NFC Type F_212 Kbps

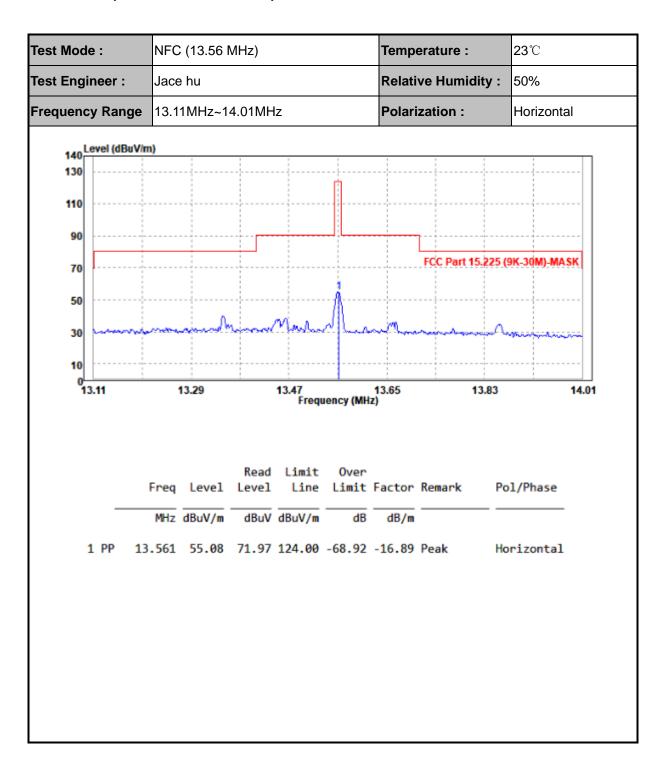
Voltage (Vdc)	Temperature (°C)	Measurement Frequency (MHz)	Frequency Tolerance(ppm)	Limit(ppm)	Result
3.6	20	13.56002	1.47		Pass
4.4	20	13.56021	15.49		Pass
	-20	13.56012	8.85		Pass
	-10	13.56018	13.27		Pass
	0	13.55979	-15.49	±100	Pass
2.04	10	13.55992	-5.90	1 100	Pass
3.84	20	13.56008	5.90		Pass
	30	13.56007	5.16		Pass
	40	13.55984	-11.80		Pass
	60	13.56031	22.86		Pass

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

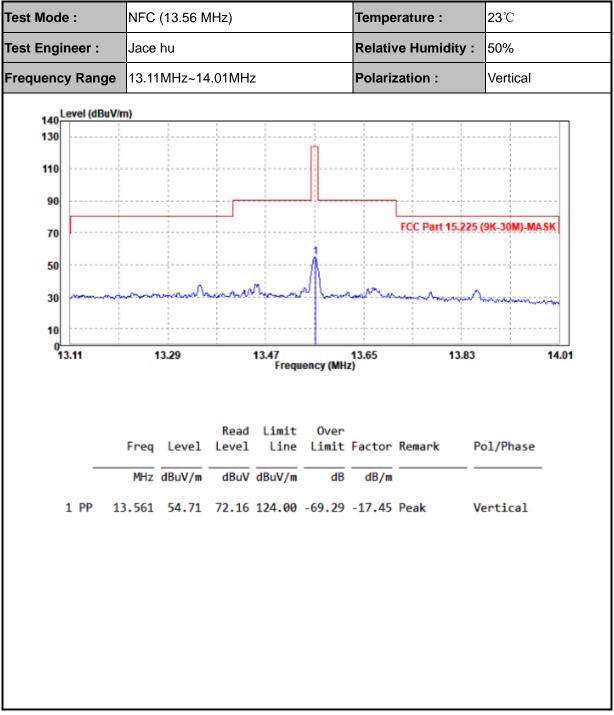
3.3 FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK MEASUREMENT


3.3.1 LIMIT OF FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK

Rules and specifications	FCC CFR 47 Part 15 section 15.225						
	IC RSS-210 B.6						
Description	Compliance with th	e spectrum mask is t	ested with RBW set t	o 9kHz.			
From of Emission (MUT)	Field Strength	Field Strength	Field Strength	Field Strength			
Freq. of Emission (MHz)	(μV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m			
1.705~13.110	30	29.5	48.58	69.5			
13.110~13.410	106	40.5	59.58	80.5			
13.410~13.553	334	50.5	69.58	90.5			
13.553~13.567	15848	84.0	103.08	124.0			
13.567~13.710	334	50.5	69.58	90.5			
13.710~14.010	106	40.5	59.58	80.5			
14.010~30.000	30	29.5	48.58	69.5			

3.3.2 TEST PROCEDURES

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level ($dB\mu V/m$) = 20 log Emission level ($\mu V/m$).


3.3.3 TEST RESULTS OF FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK (1.705 MHZ ~ 30 MHZ)

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577 Email: customerservice.sw@bureauveritas.com

3.4 RADIATED EMISSIONS MEASUREMENT

3.4.1 LIMIT

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.4.2 MEASURING INSTRUMENT SETTING

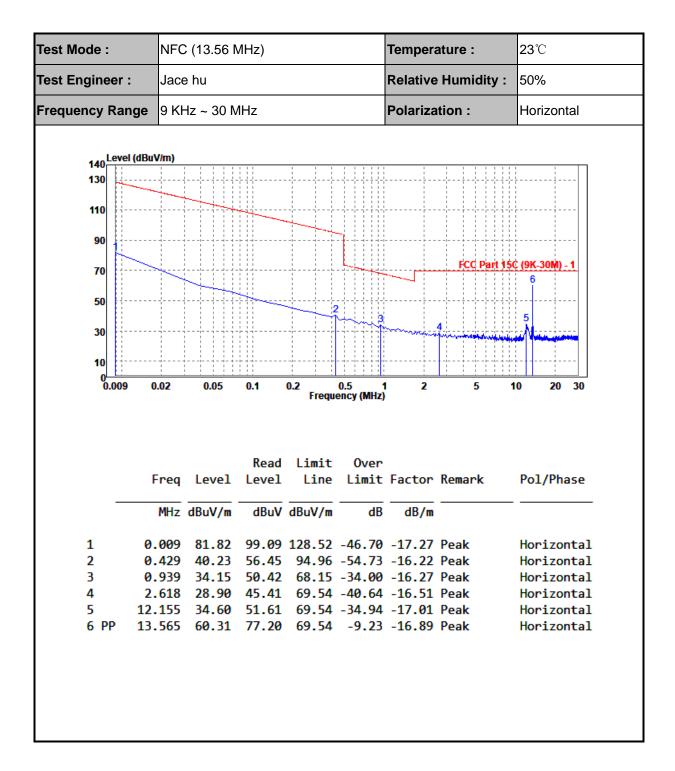
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

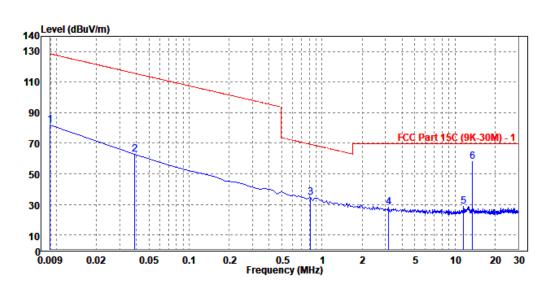
3.4.3 TEST PROCEDURES

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the



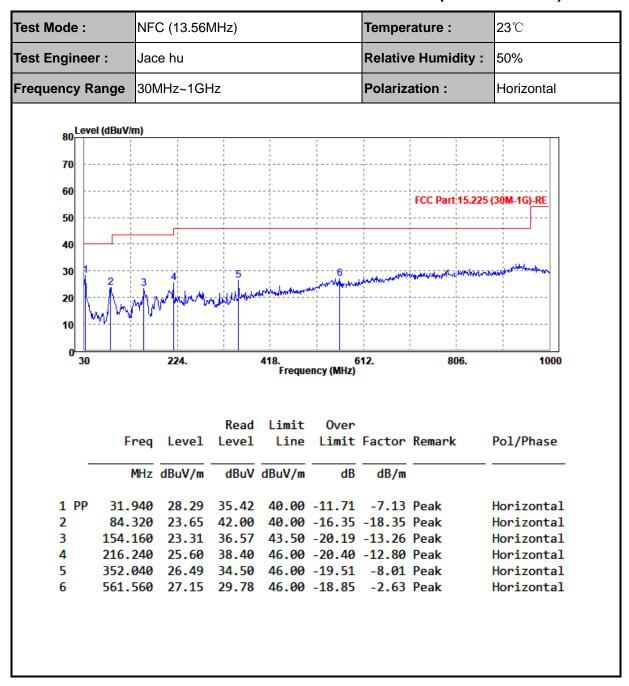
turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.

- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.


Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

3.4.4 TEST RESULTS OF RADIATED EMISSIONS (9 KHZ ~ 30 MHZ)

Test Mode :	NFC (13.56 MHz)	Temperature :	23 ℃
Test Engineer :	Jace hu	Relative Humidity :	50%
Frequency Range	9 KHz ~ 30 MHz	Polarization :	Vertical



		Read	Limit	0ver			
Freq	Level	Level	Line	Limit	Factor	Remark	Pol/Phase
MHz	dBuV/m	dBuV	dBuV/m	dB	dB/m		
					,		
0.009	82.01	99.48	128.52	-46.51	-17.47	Peak	Vertical
0.039	63.04	80.43	115.79	-52.75	-17.39	Peak	Vertical
0.819	34.39	51.41	69.34	-34.95	-17.02	Peak	Vertical
3.158	28.27	45.51	69.54	-41.27	-17.24	Peak	Vertical
11.646	28.71	46.14	69.54	-40.83	-17.43	Peak	Vertical
P 13.565	58.01	75.46	69.54	-11.53	-17.45	Peak	Vertical
	0.009 0.039 0.819 3.158 11.646	MHz dBuV/m 0.009 82.01 0.039 63.04 0.819 34.39 3.158 28.27 11.646 28.71	Freq Level Level MHz dBuV/m dBuV 0.009 82.01 99.48 0.039 63.04 80.43 0.819 34.39 51.41 3.158 28.27 45.51 11.646 28.71 46.14	Freq Level Level Line MHz dBuV/m dBuV dBuV/m 0.009 82.01 99.48 128.52 0.039 63.04 80.43 115.79 0.819 34.39 51.41 69.34 3.158 28.27 45.51 69.54 11.646 28.71 46.14 69.54	Freq Level Level Line Limit MHz dBuV/m dBuV dBuV/m dB 0.009 82.01 99.48 128.52 -46.51 0.039 63.04 80.43 115.79 -52.75 0.819 34.39 51.41 69.34 -34.95 3.158 28.27 45.51 69.54 -41.27 11.646 28.71 46.14 69.54 -40.83	Freq Level Level Line Limit Factor MHz dBuV/m dBuV dBuV/m dB dB/m 0.009 82.01 99.48 128.52 -46.51 -17.47 0.039 63.04 80.43 115.79 -52.75 -17.39 0.819 34.39 51.41 69.34 -34.95 -17.02 3.158 28.27 45.51 69.54 -41.27 -17.24 11.646 28.71 46.14 69.54 -40.83 -17.43	Freq Level Level Line Limit Factor Remark MHz dBuV/m dBuV dBuV/m dB dB/m 0.009 82.01 99.48 128.52 -46.51 -17.47 Peak 0.039 63.04 80.43 115.79 -52.75 -17.39 Peak 0.819 34.39 51.41 69.34 -34.95 -17.02 Peak 3.158 28.27 45.51 69.54 -41.27 -17.24 Peak 11.646 28.71 46.14 69.54 -40.83 -17.43 Peak

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577 Email: <u>customerservice.sw@bureauveritas.com</u>

BV 7Layers Communications Technology (Shenzhen) Co., Ltd

3.4.5 TEST RESULT OF RADIATED SPURIOUS EMISSION (30MHZ ~ 1GHZ)

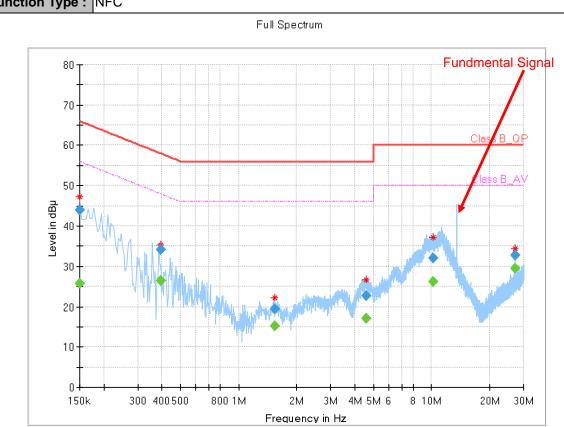
Test Mode :		NFC (13.56MHz)				Tempe	Temperature :		23℃
		Jace hu			Relativ	e Humid	lity :	50%	
quency Rai	nge 30N	∕lHz~1G⊦	Ηz			Polariz	ation :		Vertical
Level	(dBuV/m)								
80	(ubu viiii)	!	1	1		!			!
70								-	
60									
							FCC Par	t 15.225	(30M-1G)-RE
50	 								
40							6	ļ	
30	2-3			5 	A STATE OF THE PARTY OF THE PAR	de la constitue de la constitu	nedetronombre bereder	cerk/h/h/wahk/h	
	M 1	hart white	ويتواسي فيلم والمساول ومدوانيان	International Constitution	**				
20 - 7	1 1 100	4						-	
10									
0									
		224.		418. Frequ	iency (MHz	612. ')	8	06.	100
0		224.		418. Frequ	uency (MHz	612. !)	8	306.	100
0		224.	Read	Frequ		612. 2)	8	306.	100
0	Freq	224.	Read Level	Frequ Limit	0ver	2)	8 Remark		100 Pol/Phase
0		Level	Level	Frequ Limit Line	Over Limit	Factor			
0			Level	Frequ Limit	0ver	2)			
0		Level	Level dBuV	Limit Line dBuV/m	Over Limit	Factor dB/m	Remark	F	
0 30	MHz 32.910 66.860	Level dBuV/m 34.52 28.25	dBuV 42.03 45.71	Limit Line dBuV/m 40.00	Over Limit dB -5.48 -11.75	Factor dB/m -7.51 -17.46	Remark ————————————————————————————————————	 	Pol/Phase
1 PP 2 3	MHz 32.910 66.860 93.050	Level dBuV/m 34.52 28.25 28.25	dBuV 42.03 45.71 45.44	Limit Line dBuV/m 40.00 40.00 43.50	Over Limit dB -5.48 -11.75 -15.25	Factor dB/m -7.51 -17.46 -17.19	Remark Peak Peak Peak Peak		Pol/Phase /ertical /ertical /ertical
1 PP 2 3 4	MHz 32.910 66.860 93.050 269.590	Level dBuV/m 34.52 28.25 28.25 25.01	dBuV 42.03 45.71 45.44 35.16	Limit Line dBuV/m 40.00 40.00 43.50 46.00	Over Limit dB -5.48 -11.75 -15.25 -20.99	Factor dB/m -7.51 -17.46 -17.19 -10.15	Remark Peak Peak Peak Peak Peak		Pol/Phase Vertical Vertical Vertical
1 PP 2 3 4 5	MHz 32.910 66.860 93.050	Level dBuV/m 34.52 28.25 28.25 28.25 25.01 32.32	dBuV 42.03 45.71 45.44 35.16 38.50	Limit Line dBuV/m 40.00 40.00 43.50	Over Limit dB -5.48 -11.75 -15.25 -20.99 -13.68	Factor dB/m -7.51 -17.46 -17.19 -10.15 -6.18	Remark Peak Peak Peak Peak Peak	F	Pol/Phase /ertical /ertical /ertical

3.5AC CONDUCTED EMISSION MEASUREMENT

3.5.1 LIMIT OF AC CONDUCTED EMISSION

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

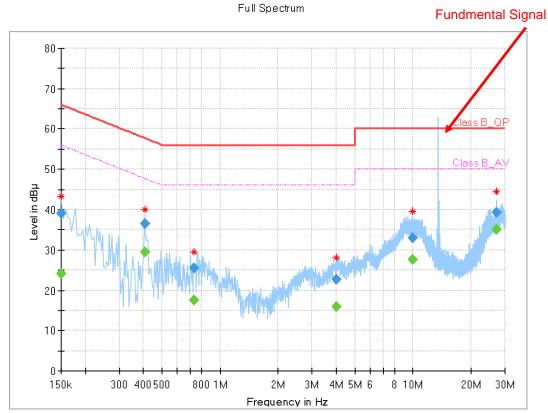
Frequency of Emission	Conducted Limit (dBμV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		


^{*}Decreases with the logarithm of the frequency.

3.5.2 TEST PROCEDURES

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.5.3 TEST RESULT OF AC CONDUCTED EMISSION


Test Mode :	NFC	Temperature :	26℃
Test Engineer :	Carl xie	Relative Humidity :	51%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Function Type :	NFC:		

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)	Lille	riilei	(dB)
0.150000		25.66	56.00	30.34	L1	ON	9.8
0.150000	44.08		66.00	21.92	L1	ON	9.8
0.396000		26.32	47.94	21.62	L1	ON	9.8
0.396000	34.21		57.94	23.73	L1	ON	9.8
1.532000		15.23	46.00	30.77	L1	ON	9.8
1.532000	19.53		56.00	36.47	L1	ON	9.8
4.564000		17.16	46.00	28.84	L1	ON	9.7
4.564000	22.69		56.00	33.31	L1	ON	9.7
10.200000		26.29	50.00	23.71	L1	ON	10.5
10.200000	32.12		60.00	27.88	L1	ON	10.5
27.120000		29.38	50.00	20.62	L1	ON	11.3
27.120000	32.64		60.00	27.36	L1	ON	11.3

Test Mode :	NFC	Temperature :	26℃
Test Engineer :	Carl xie	Relative Humidity :	51%
Test Voltage :	AC 120V/60Hz	Phase :	Neutral
Function Type :	NFC		

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)	Line	riiter	(dB)
0.150000		24.19	56.00	31.81	N	ON	9.7
0.150000	39.13		66.00	26.87	N	ON	9.7
0.408000		29.44	47.69	18.25	N	ON	9.6
0.408000	36.40		57.69	21.29	N	ON	9.6
0.732000		17.59	46.00	28.41	N	ON	9.7
0.732000	25.47		56.00	30.53	N	ON	9.7
4.016000		15.84	46.00	30.16	N	ON	9.7
4.016000	22.63		56.00	33.37	N	ON	9.7
10.000000		27.49	50.00	22.51	N	ON	10.4
10.000000	33.08		60.00	26.92	N	ON	10.4
27.120000		35.12	50.00	14.88	N	ON	11.4
27.120000	39.26		60.00	20.74	N	ON	11.4

Email: customerservice.sw@bureauveritas.com

3.6 ANTENNA REQUIREMENTS

3.6.1 STANDARD APPLICABLE

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The

manufacturer may design the unit so that the user can replace a broken antenna, but the use of a

standard antenna jack or electrical connector is prohibited.

3.6.2 ANTENNA CONNECTED CONSTRUCTION

An FPC Antenna design is used.

3.6.3 ANTENNA GAIN

The antenna peak gain of EUT is less than 6 dBi.

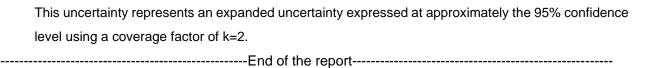
LIST OF MEASURING EQUIPMENT

#1

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
3m Semi-anechoic	ETS-LINDGREN	9m*6m*6m	Euroshieldpn-	Nov. 14,23	Nov. 13,26
Chamber			CT0001143-1216		
Bilog Antenna	ETS-LINDGREN	3143B	00161965	Feb. 18,24	Feb. 17,25
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Mar. 28,24	Mar. 27,25
Signal Pre-Amplifier	EMSI	EMC 9135	980249	May. 06,24	May. 05,25
E3 Test Software	E3	V 9.160323	N/A	N/A	N/A
Loop Antenna	Schwarzbeck	FMZB	00173	Sep.02,23	Sep.01,24
		1519B			

#2

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
3m Semi-anechoic	ETS-LINDGREN	9m*6m*6m	Euroshieldpn-	Nov. 14,23	Nov. 13,26
Chamber			CT0001143-1216		
Bilog Antenna	ETS-LINDGREN	3143B	00161965	Feb. 18,24	Feb. 17,25
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Mar. 28,24	Mar. 27,25
Signal Pre-Amplifier	EMSI	EMC 9135	980249	May. 06,24	May. 05,25
E3 Test Software	E3	V 9.160323	N/A	N/A	N/A
Loop Antenna	Schwarzbeck	FMZB	00173	Sep.01,24	Aug.31,25
		1519B			


- NOTE: 1. The calibration interval of the above test instruments is 12 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
 - 2. The test was performed in 3m Chamber.
 - 3. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

5 UNCERTAINTY OF EVALUATION

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY		
AC Power Conducted emissions	±2.70dB		
Radiated emissions (9KHz~30MHz)	±2.68dB		
Radiated emissions (30MHz~1GHz)	±4.98dB		
Occupied Channel Bandwidth	±43.58KHz		
Frequency Stability	±76.97Hz		

