

FCC RF Test Report

APPLICANT	:	Xiaomi Communications Co., Ltd.
EQUIPMENT	:	Mobile Phone
BRAND NAME	:	Xiaomi
MODEL NAME	:	23078PND5G
FCC ID	:	2AFZZND5G
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DTS) Digital Transmission System
TEST DATE(S)	:	May 22, 2023

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	
SUI	MMAR	<pre>XY OF TEST RESULT</pre>	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	7
	1.7	Test Software	7
	1.8	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB and 99% Bandwidth Measurement	12
	3.2	Output Power Measurement	13
	3.3	Power Spectral Density Measurement	14
	3.4	Conducted Band Edges and Spurious Emission Measurement	15
	3.5	Radiated Band Edges and Spurious Emission Measurement	16
	3.6	AC Conducted Emission Measurement	20
	3.7	Antenna Requirements	22
4	LIST	OF MEASURING EQUIPMENT	23
5	MEAS	SUREMENT UNCERTAINTY	24
API	PENDI	IX A. CONDUCTED TEST RESULTS	
API	PENDI	IX B. AC CONDUCTED EMISSION TEST RESULT	
API	PENDI	IX C. RADIATED SPURIOUS EMISSION	
API	PEND	IX D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR351205B	Rev. 01	Initial issue of report	Jun. 26, 2023

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Report only	-
0	15.247(b)(3)	Peak Output Power ≤ 30dBm Pass		-	
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 4.98 dB at 2483.54 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 16.40 dB at 1.00 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Xiaomi Communications Co., Ltd.

#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085

1.2 Manufacturer

Xiaomi Communications Co., Ltd.

#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Phone			
Brand Name	Xiaomi			
Model Name	23078PND5G			
FCC ID 2AFZZND5G				
IMEI Code Conducted: 861585060041561/8615850600415 IMEI Code Conduction: 861585060055702/8615850600557 Radiation: 861585060047220/86158506004723				
HW Version	P2.0			
SW Version MIUI 14				
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Ant. 17> BLE 1Mbps: 7.46 dBm (0.0056 W) BLE 125kbps: 7.53 dBm (0.0057 W) BLE 500kbps: 7.47 dBm (0.0056 W) BLE 2Mbps: 7.49 dBm (0.0056 W) BLE 2Mbps: 7.49 dBm (0.0056 W) BLE 11Mbps: 8.32 dBm (0.0068 W) BLE 125kbps: 8.31 dBm (0.0068 W) BLE 2Mbps: 8.35 dBm (0.0068 W) BLE 2Mbps: 8.35 dBm (0.0068 W)				
99% Occupied Bandwidth	<ant.17> BLE 2Mbps: 2.066 MHz BLE 125kbps: 1.055 MHz <ant.6> BLE 2Mbps: 2.062 MHz BLE 125kbps: 1.055 MHz</ant.6></ant.17>			
Antenna Type / Gain	<ant.17> Fixed Internal Antenna with gain -2.62 dBi <ant.6> Fixed Internal Antenna with gain -1.72 dBi</ant.6></ant.17>			
Type of Modulation	Bluetooth LE : GFSK			

Note:

- 1. For BLE 1Mbps / BLE 125 kbps / BLE 500 kbps mode, because they are all 1MHz bandwidth, the whole testing have assessed only BLE 125 kbps by referring to the higher output power.
- 2. BLE only support SISO mode.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (ShenZhen)					
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
Test Offe Ne	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
Test Site No.	CO01-SZ TH01-SZ	CN1256	421272			
Test Firm	Sporton International Inc.	. (ShenZhen)				
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	03CH04-SZ	CN1256	421272			

1.7 Test Software

lte	em Site		Manufacturer	Name	Version
	1.	03CH04-SZ	AUDIX	E3	6.2009-8-24
	2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

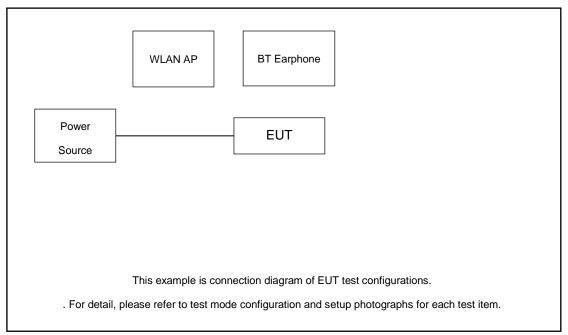
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

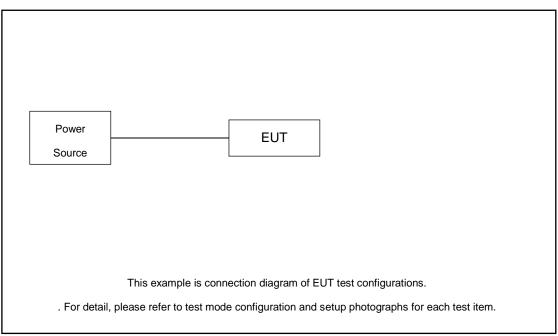
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following europerts to	shla ia ahawina all taat m	odes to demonstrate in com	plionoo with the standard
The following summary la			

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
Test item	Bluetooth – LE / GFSK					
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz					
	Mode 2: Bluetooth Tx CH19_2440 MHz					
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz					
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz					
	Mode 2: Bluetooth Tx CH19_2440 MHz					
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz					
AC	Made 1, CSM 850 Idle + Divetesth Link + W/ AN Link (2.4C) + Adepter + LISP Cable +					
Conducted	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + Adapter + USB Cable +					
Emission	Battery					


Co-location BLE CH 39 2482MHz TX + LTE Band48_ Link

Remark: For Radiated Test Cases, The tests were performance with Adapter and USB Cable.



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station(LTE)	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Base Station	Anritsu	MT8821C	N/A	N/A	Unshielded,1.8m
3.	Bluetooth Earphone	Samsung	EO-MG900	PYAHS-107W	N/A	N/A
4.	WLAN AP	Dlink	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 2.20 dB and 10dB attenuator.

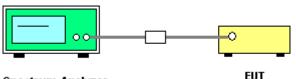
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 2.20 + 10 = 12.20 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 99% Bandwidth is reference only.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1% to 5% of the 99% OBW and the VBW is set to 3 times of the RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

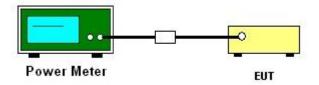
3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

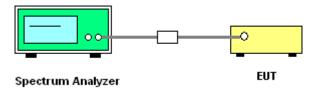
3.2.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- 1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

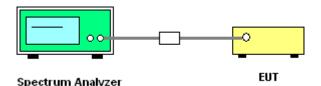
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

Please refer to Appendix A.

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2AFZZND5G

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

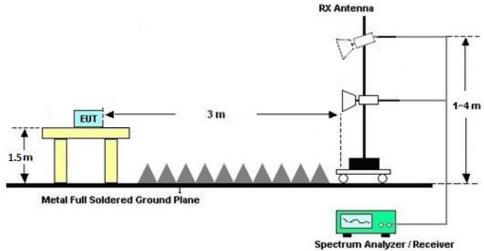
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.5.3 Test Procedures


- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated emissions below 30MHz

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2AFZZND5G

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C

3.6 AC Conducted Emission Measurement

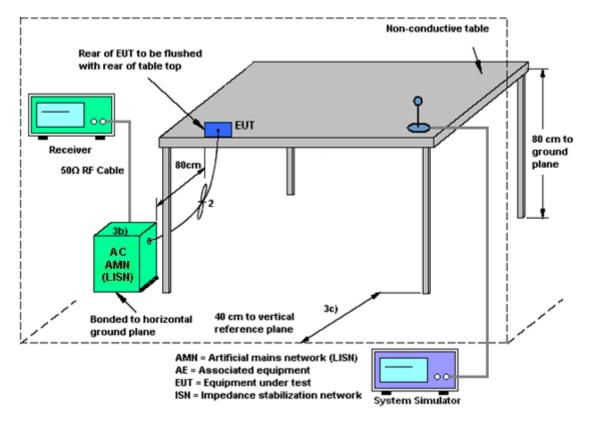
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	May 22, 2023	Apr. 05, 2024	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 27, 2022	May 22, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1542004	50MHz Bandwidth	Dec. 27, 2022	May 22, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 07, 2022	May 22, 2023	Jul. 06, 2023	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Sep. 15, 2022	May 22, 2023	Sep. 14, 2023	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 17, 2022	May 22, 2023	Oct. 16, 2023	Conduction (CO01-SZ)
AC Power Source	e Chroma 61602		616020000891	100Vac~250Vac	Jul. 07, 2022	May 22, 2023	Jul. 06, 2023	Conduction (CO01-SZ)
EMI Test Receiver	R&S ESR7		101404	9kHz~7GHz	Oct. 19, 2022	May 22, 2023	Oct. 18, 2023	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	KEYSIGHT N9010A		10Hz~44GHz	Jul. 07, 2022	May 22, 2023	Jul. 06, 2023	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 28, 2022	May 22, 2023	Jun. 27, 2024	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	May. 14, 2023	May 22, 2023	May. 13, 2024	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-1474	1GHz~18GHz	Jul. 07, 2022	May 22, 2023	Jul. 06, 2023	Radiation (03CH04-SZ)
Horn Antenna	SCHWARZBE CK	BBHA9170	9170#679	15GHz~40GHz	Jul. 07, 2022	May 22, 2023	Jul. 06, 2023	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 19, 2022	May 22, 2023	Oct. 18, 2023	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 19, 2022	May 22, 2023	Oct. 18, 2023	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 06, 2022	May 22, 2023	Jul. 05, 2023	Radiation (03CH04-SZ)
Amplifier	Agilent 83017A Technologies		MY57280136	500MHz~26.5G Hz	Sep. 30, 2022	May 22, 2023	Sep. 29, 2023	Radiation (03CH04-SZ)
AC Power Source	APC	AFV-S-600B	F119050019	N/A	Nov. 10, 2022	May 22, 2023	Nov. 10, 2023	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	May 22, 2023	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	May 22, 2023	NCR	Radiation (03CH04-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty				
Conducted Power	±1.34 dB				
Conducted Emissions	±1.34 dB				
Occupied Channel Bandwidth	±0.012 MHz				
Conducted Power Spectral Density	±1.32 dB				

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.70 dB
of 95% (U = 2Uc(y))	2.70 00

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5 10 JP
of 95% (U = 2Uc(y))	5.10 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.80 dB
of 95% (U = 2Uc(y))	4.00 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.10 dB
of 95% (U = 2Uc(y))	5.10 dB

----- THE END ------

Appendix A. Conducted Test Results

Test Engineer:	Zhang Xue Yi	Temperature:	21~25	°C
Test Date:	2023/5/22	Relative Humidity:	51~54	%

TEST RESULTS DATA Peak Power Table-Ant17 Peak Conducted EIRP EIRP Data Freq. Conducted Power DG Pass Power ANT CH. Mod. Power Rate (MHz) Power Limit (dBi) Limit /Fail (dBm) (dBm) (dBm) (dBm) BLE 1Mbps 17 0 2402 7.03 30.00 -2.62 4.41 36.00 Pass BLE 1Mbps 17 19 2440 7.46 30.00 -2.62 4.84 36.00 Pass BLE 1Mbps 17 39 2480 7.40 30.00 -2.62 4.78 36.00 Pass BLE 125kbps 17 0 2402 7.14 30.00 -2.62 4.52 36.00 Pass BLE 125kbps 17 19 2440 7.53 30.00 -2.62 4.91 36.00 Pass BLE 125kbps 17 39 2480 7.48 30.00 -2.62 4.86 36.00 Pass BLE 500kbps 17 0 2402 7.07 30.00 -2.62 4.45 36.00 Pass BLE 500kbps 17 19 2440 7.47 30.00 -2.62 4.85 36.00 Pass BLE 500kbps 17 39 2480 7.42 30.00 -2.62 4.80 36.00 Pass

	<u>TEST RESULTS DATA</u> <u>Average Power Table-Ant17</u> <u>(Reporting Only)</u>									
Mod.	Data Rate	ANT	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)				
BLE	1Mbps	17	0	2402	2.08	6.55				
BLE	1Mbps	17	19	2440	2.08	6.87				
BLE	1Mbps	17	39	2480	2.08	6.85				
BLE	125kbps	17	0	2402	0.83	6.61				
BLE	125kbps	17	19	2440	0.83	6.94				
BLE	125kbps	17	39	2480	0.83	6.88				
BLE	500kbps	17	0	2402	2.45	6.56				
BLE	500kbps	17	19	2440	2.45	6.89				
BLE	500kbps	17	39	2480	2.45	6.84				

	<u>TEST RESULTS DATA</u> <u>Peak Power Table-Ant17</u>										
Mod.	Data Rate	ANT	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	2Mbps	17	0	2402	7.05	30.00	-2.62	4.43	36.00	Pass	
BLE	2Mbps	17	19	2440	7.49	30.00	-2.62	4.87	36.00	Pass	
BLE	2Mbps	17	39	2480	7.45	30.00	-2.62	4.83	36.00	Pass	

	<u>TEST RESULTS DATA</u> <u>Average Power Table-Ant17</u> <u>(Reporting Only)</u>								
Mod.	Data Rate	ANT	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)			
BLE	2Mbps	17	0	2402	4.77	6.59			
BLE	2Mbps	17	19	2440	4.77	6.92			
BLE	2Mbps	17	39	2480	4.77	6.85			
BLE	2Mbps	17	39	2480	4.77	6.85			

	<u>TEST RESULTS DATA</u> <u>Peak Power Table-Ant6</u>												
Mod.	Data Rate	ANT	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail			
BLE	1Mbps	6	0	2402	8.03	30.00	-1.72	6.31	36.00	Pass			
BLE	1Mbps	6	19	2440	8.32	30.00	-1.72	6.60	36.00	Pass			
BLE	1Mbps	6	39	2480	7.74	30.00	-1.72	6.02	36.00	Pass			
BLE	125kbps	6	0	2402	8.09	30.00	-1.72	6.37	36.00	Pass			
BLE	125kbps	6	19	2440	8.41	30.00	-1.72	6.69	36.00	Pass			
BLE	125kbps	6	39	2480	7.82	30.00	-1.72	6.10	36.00	Pass			
BLE	500kbps	6	0	2402	8.03	30.00	-1.72	6.31	36.00	Pass			
BLE	500kbps	6	19	2440	8.31	30.00	-1.72	6.59	36.00	Pass			
BLE	500kbps	6	39	2480	7.76	30.00	-1.72	6.04	36.00	Pass			

<u>TEST RESULTS DATA</u> <u>Average Power Table-Ant6</u> <u>(Reporting Only)</u>

Mod.	Data Rate	ANT	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	
BLE	1Mbps	6	0	2402	2.08	7.18	
BLE	1Mbps	6	19	2440	2.08	7.60	
BLE	1Mbps	6	39	2480	2.08	7.11	
BLE	125kbps	6	0	2402	0.83	7.22	
BLE	125kbps	6	19	2440	0.83	7.67	
BLE	125kbps	6	39	2480	0.83	7.16	
BLE	500kbps	6	0	2402	2.45	7.21	
BLE	500kbps	6	19	2440	2.45	7.61	
BLE	500kbps	6	39	2480	2.45	7.06	

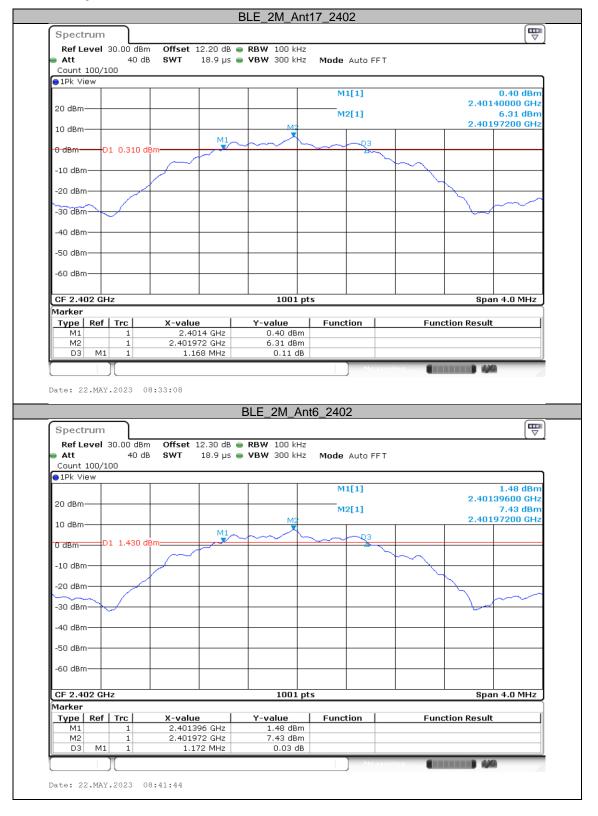
	TEST RESULTS DATA Peak Power Table-Ant6												
Mod.	Data Rate	ANT	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail			
BLE	2Mbps	6	0	2402	8.02	30.00	-1.72	6.30	36.00	Pass			
BLE	2Mbps	6	19	2440	8.35	30.00	-1.72	6.63	36.00	Pass			
BLE	2Mbps	6	39	2480	7.74	30.00	-1.72	6.02	36.00	Pass			

<u>TEST RESULTS DATA</u> <u>Average Power Table-Ant6</u> <u>(Reporting Only)</u>										
Mod.	Data Rate	ANT	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)				
BLE	2Mbps	6	0	2402	4.77	7.18				
BLE	2Mbps	6	19	2440	4.77	7.63				
BLE	2Mbps	6	39	2480	4.77	7.07				

Ambient Condition: <u>24~26</u> ℃, <u>45~55</u> %RH

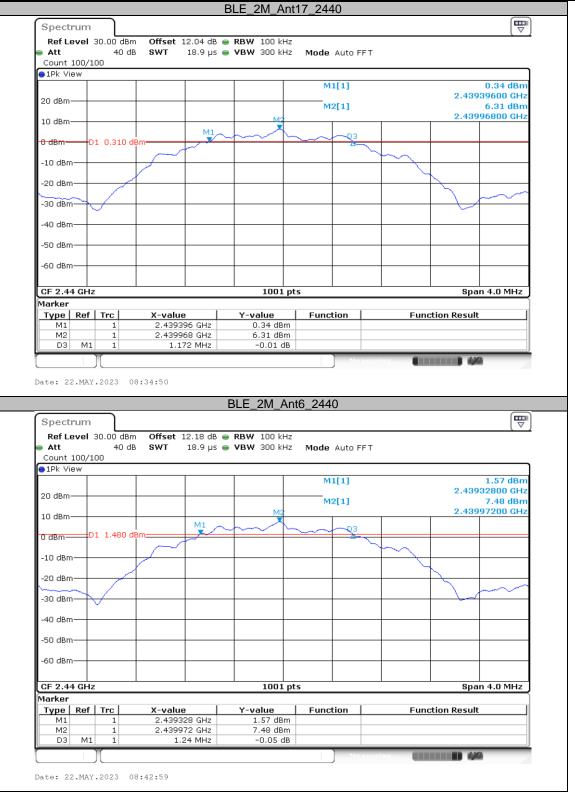
Test Date: 2023/5.22

Test Engineer: Zhang Xue Yi

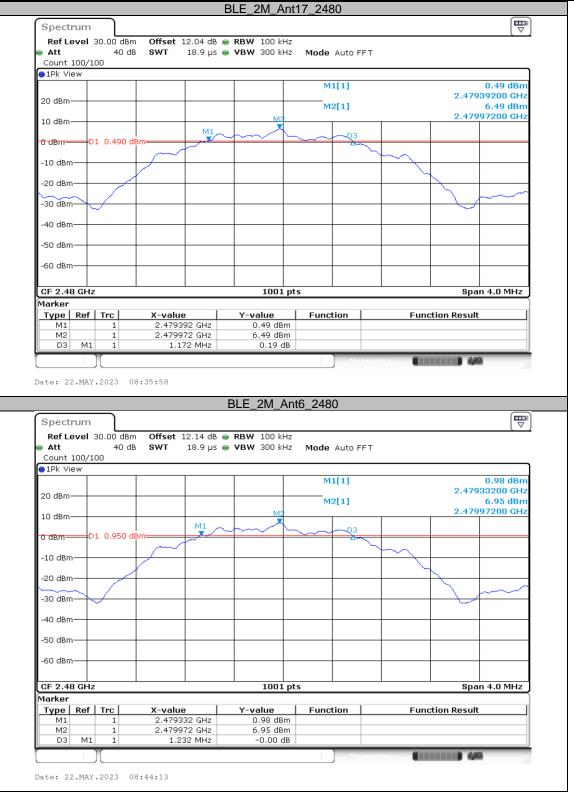

DTS Bandwidth

Test Result

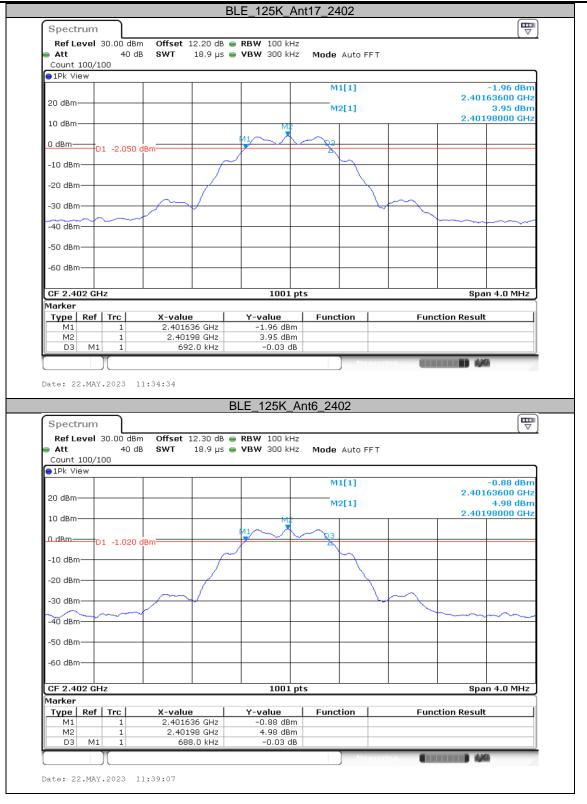
TestMode	Antenna	Freq(MHz)	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant17	2402	1.17	2401.40	2402.57	0.5	PASS
	Ant6	2402	1.17	2401.40	2402.57	0.5	PASS
	Ant17	2440	1.17	2439.40	2440.57	0.5	PASS
BLE_2M	Ant6	2440	1.24	2439.33	2440.57	0.5	PASS
	Ant17	2480	1.17	2479.39	2480.56	0.5	PASS
	Ant6	2480	1.23	2479.33	2480.56	0.5	PASS
	Ant17	2402	0.69	2401.64	2402.33	0.5	PASS
	Ant6	2402	0.69	2401.64	2402.32	0.5	PASS
BLE 125K	Ant17	2440	0.69	2439.64	2440.32	0.5	PASS
DLE_120K	Ant6	2440	0.68	2439.64	2440.32	0.5	PASS
	Ant17	2480	0.69	2479.63	2480.32	0.5	PASS
	Ant6	2480	0.69	2479.64	2480.32	0.5	PASS

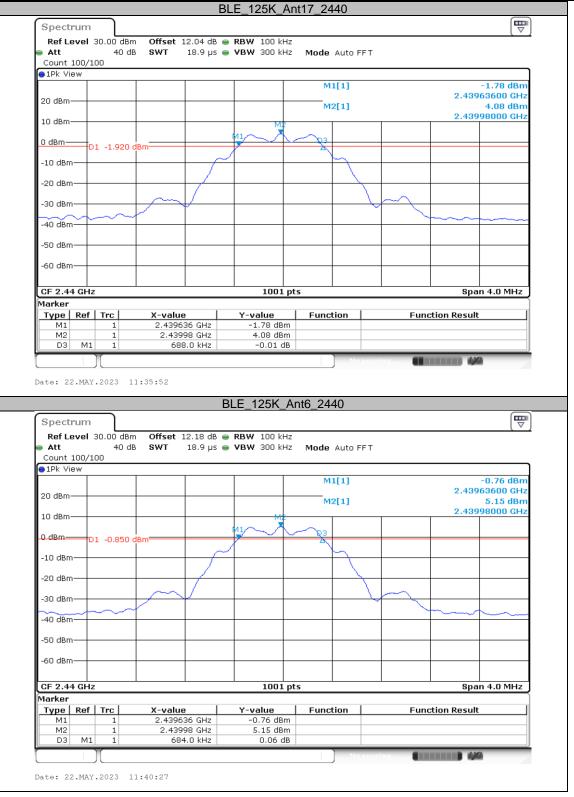


Test Graphs



Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2AFZZND5G



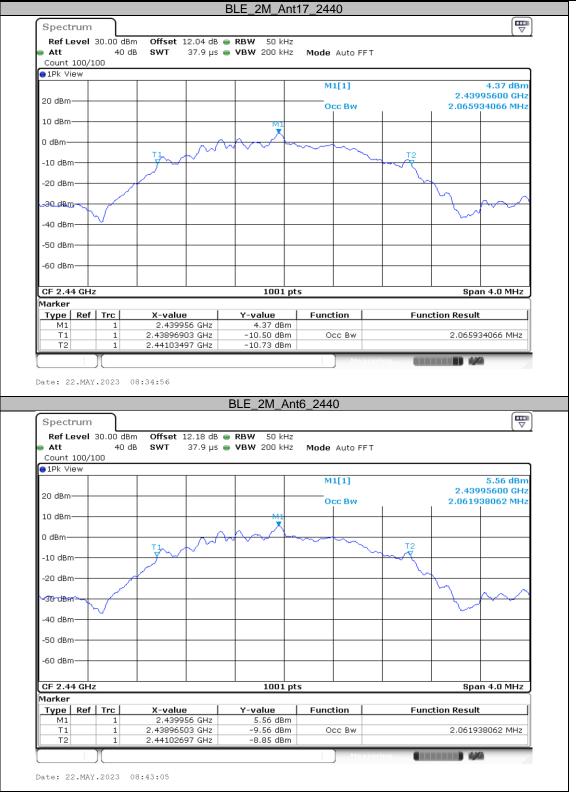


SPORTON LAB. FCC RF Test Report

Occupied Channel Bandwidth

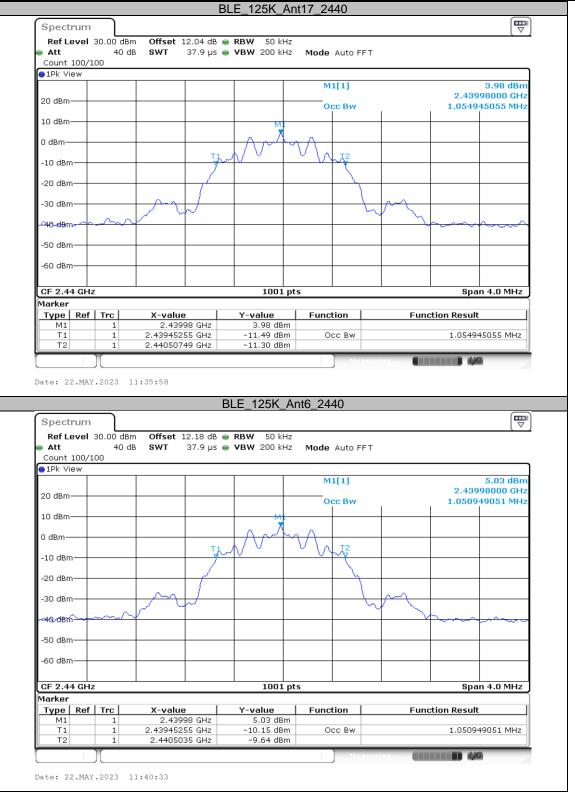
Test Result

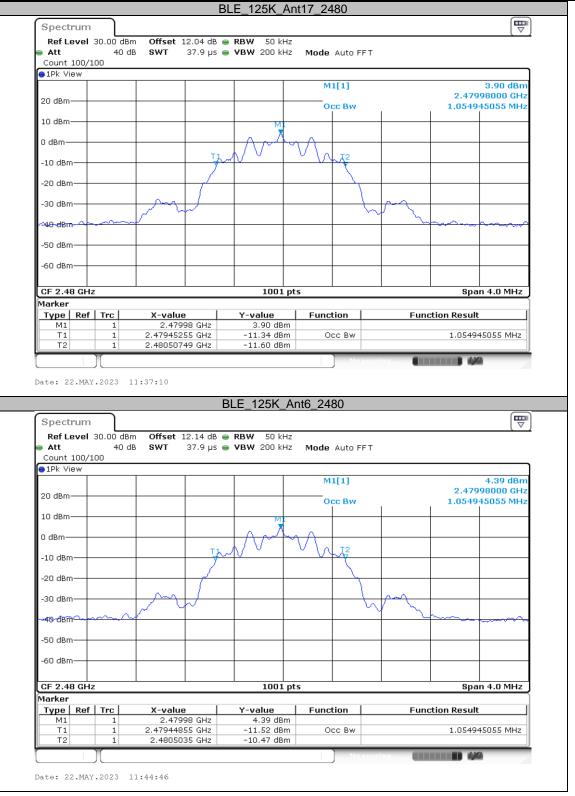
TestMode	Antenna	Freq(MHz)	OCB [MHz]	FL[MHz]	FH[MHz]
	Ant17	2402	2.066	2400.9690	2403.0350
	Ant6	2402	2.062	2400.9690	2403.0310
	Ant17	2440	2.066	2438.9690	2441.0350
BLE_2M	Ant6	2440	2.062	2438.9650	2441.0270
	Ant17	2480	2.066	2478.9650	2481.0310
	Ant6	2480	2.058	2478.9650	2481.0230
	Ant17	2402	1.055	2401.4525	2402.5075
	Ant6	2402	1.055	2401.4525	2402.5075
BLE 125K	Ant17	2440	1.055	2439.4525	2440.5075
BLE_125K	Ant6	2440	1.051	2439.4525	2440.5035
	Ant17	2480	1.055	2479.4525	2480.5075
	Ant6	2480	1.055	2479.4486	2480.5035

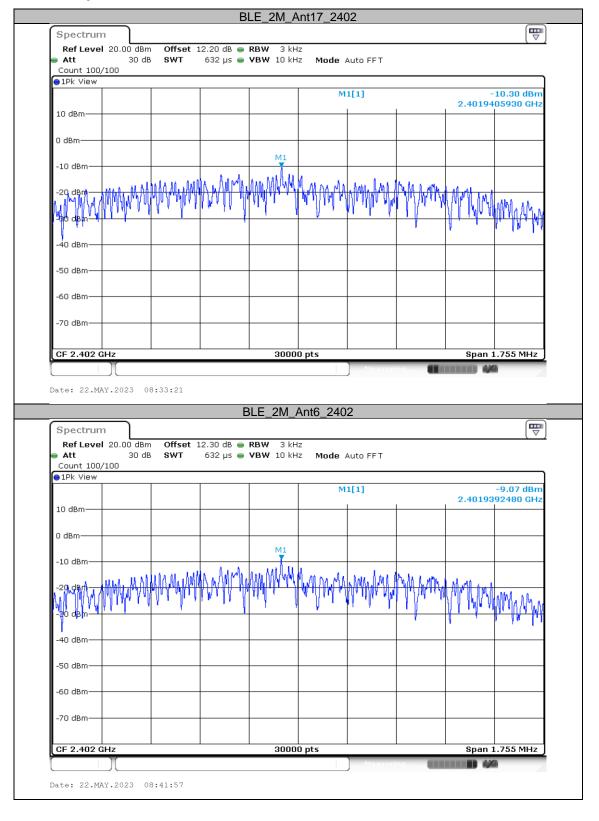


Test Graphs

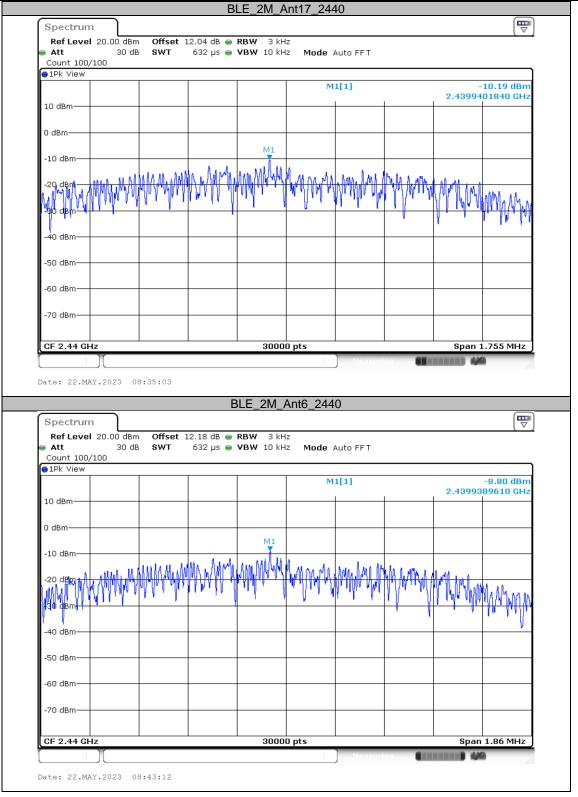
Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2AFZZND5G

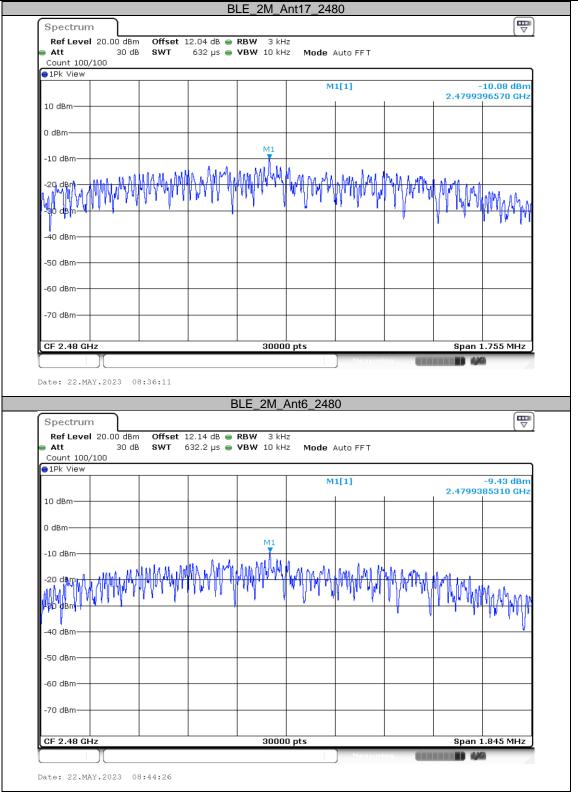


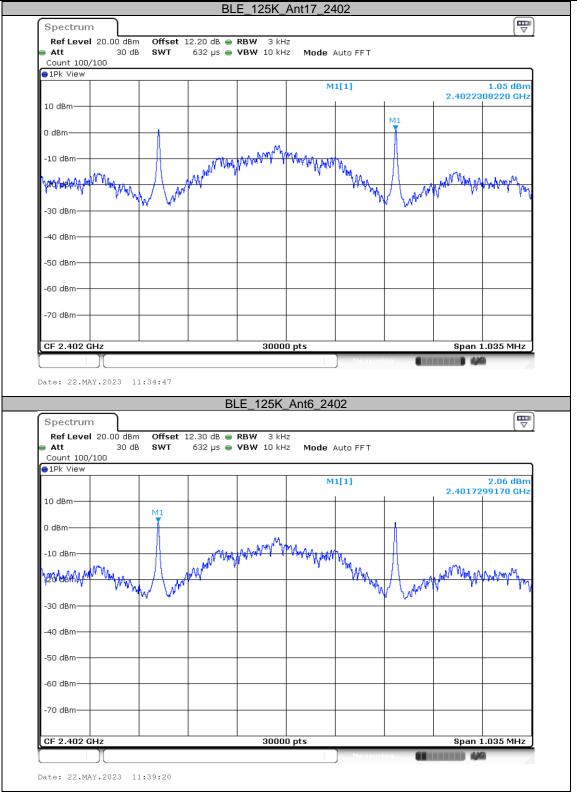


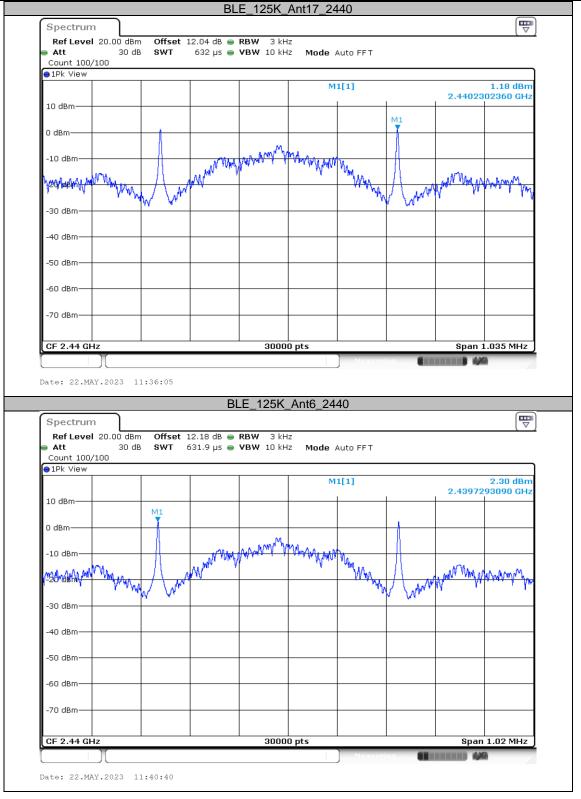

Maximum power spectral density

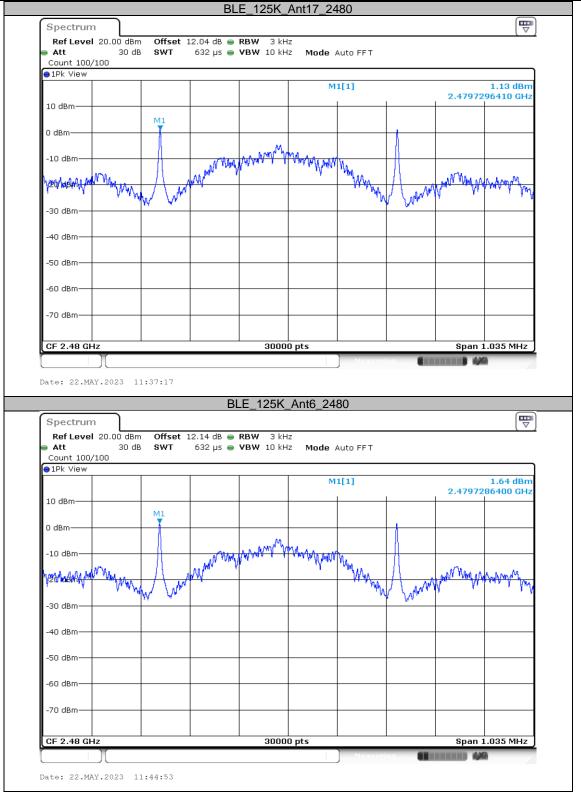
Test Result

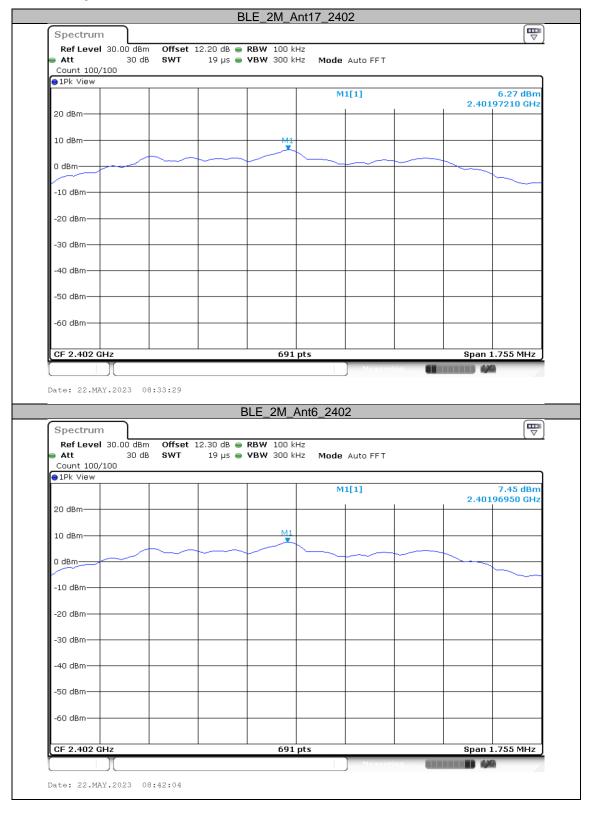

TestMode	Antenna	Freq(MHz)	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
	Ant17	2402	-10.3	≤8.00	PASS
	Ant6	2402	-9.07	≤8.00	PASS
BLE_2M	Ant17	2440	-10.19	≤8.00	PASS
DLC_2W	Ant6	2440	-8.8	≤8.00	PASS
	Ant17	2480	-10.08	≤8.00	PASS
	Ant6	2480	-9.43	≤8.00	PASS
	Ant17	2402	1.05	≤8.00	PASS
	Ant6	2402	2.06	≤8.00	PASS
	Ant17	2440	1.18	≤8.00	PASS
BLE_125K	Ant6	2440	2.3	≤8.00	PASS
	Ant17	2480	1.13	≤8.00	PASS
	Ant6	2480	1.64	≤8.00	PASS


Test Graphs

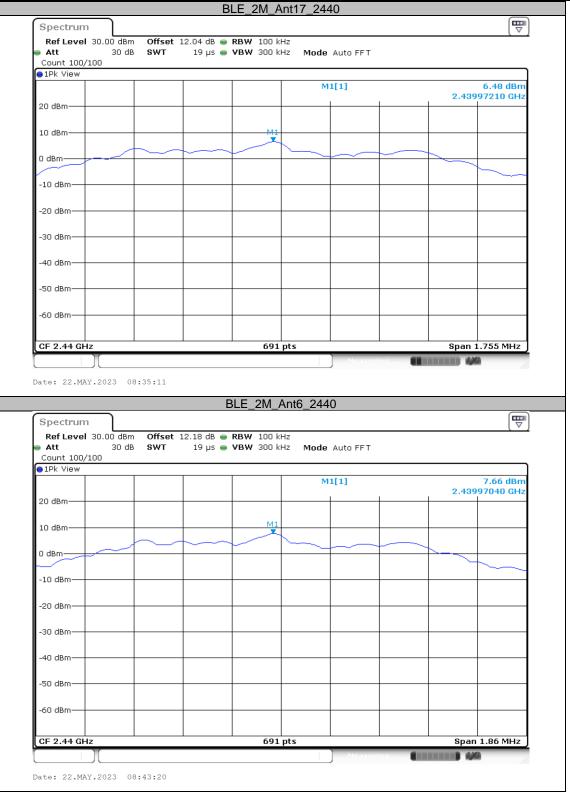


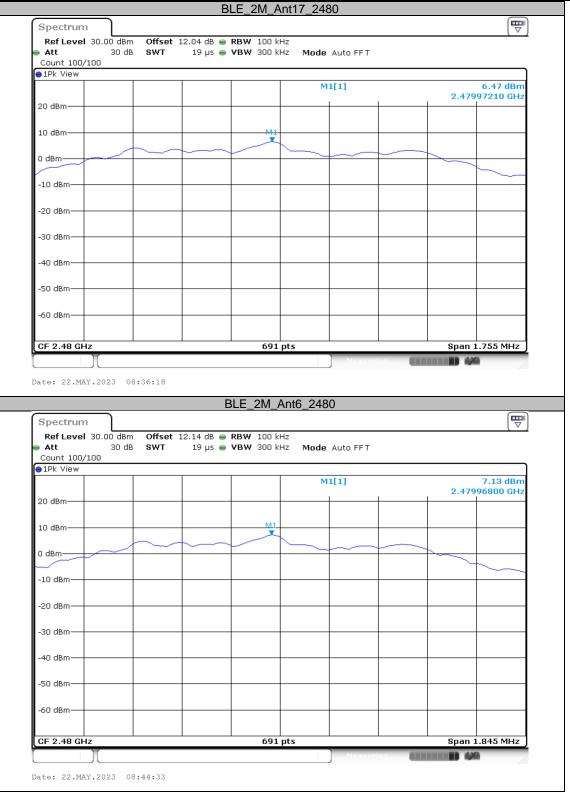





Reference level measurement

Test Result


TestMode	Antenna	Freq(MHz)	Max.Point[MHz]	Result[dBm/100KHz]
	Ant17	2402	2401.97	6.27
	Ant6	2402	2401.97	7.45
BLE_2M	Ant17	2440	2439.97	6.48
DLC_2IVI	Ant6	2440	2439.97	7.66
	Ant17	2480	2479.97	6.47
	Ant6	2480	2479.97	7.13
	Ant17	2402	2401.98	4.06
	Ant6	2402	2401.98	4.88
BLE_125K	Ant17	2440	2439.98	4.00
BLE_125K	Ant6	2440	2439.98	5.12
	Ant17	2480	2479.98	3.93
	Ant6	2480	2479.98	4.42


Test Graphs

Spectrum									
Ref Level Att	30.00 dBm 30 dB			RBW 100 k VBW 300 k		Auto FET			
Count 100/1		oni	10.0 µ0 🧉	1 5 1 000 k	ine mode	Autorn			
●1Pk View									
					м	1[1]		9 401	4.06 dBm 98050 GHz
20 dBm								2.401	98030 GHZ
10 dBm									
				M1					
0 dBm				-					
-10 dBm									
-20 dBm									
-20 ubiii									
-30 dBm									
-40 dBm									
-50 dBm			1						
-60 dBm									
CF 2.402 GI	Hz			691	pts			Span I	1.035 MHz
22.PA.	1.2023 1	1:34:56	B	LE_125K_	_Ant6_24	02			
	_	l:34:56	B	LE_125K_	_Ant6_24	02			E
Spectrum						02			
Spectrum Ref Level Att	30.00 dBm 30 dB	Offset	12.30 dB 👄	LE_125K_ RBW 100 k VBW 300 k	Hz	02	-		
Spectrum Ref Level Att Count 100/:	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k	Hz				
Spectrum Ref Level Att Count 100/:	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT			€.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode			2.401	
Spectrum Ref Level Att Count 100/:	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm 0 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm 0 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm -10 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/2 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/2 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/2 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	30.00 dBm 30 dB	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.401	4.88 dBm
Spectrum Ref Level Att Count 100/: 1Pk View 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	30.00 dBm 30 dB 100	Offset	12.30 dB 👄	RBW 100 k	Hz Mode	Auto FFT			4.88 dBm 98050 GHz
Spectrum Ref Level Att Count 100/2 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	30.00 dBm 30 dB 100	Offset	12.30 dB 👄	RBW 100 k VBW 300 k	Hz Mode	Auto FFT			4.88 dBm 98050 GHz

Spectrur	n								
	al 30.00 dBm		12.04 dB 😑						
Att Count 100	30 dB	SWT	18.9 µs 👄	VBW 300 k	Hz Mode	Auto FFT			
● 1Pk View	7100								
					м	1[1]			4.00 dBm
								2.439	97900 GHz
20 dBm—									
10 dBm				M1					
				I I					
0 dBm								<hr/>	
	1								
-10 dBm—									
-20 dBm—									
-30 dBm—									
-40 dBm—	1		1						
-50 dBm—	1		1						
-60 dBm—									
CF 2.44 G	Hz		·	691	pts	•	•	Span :	1.035 MHz
						Measuri	ng 🚺		A
	AY.2023 11	1:36:14	BI	LE_125K_	_Ant6_24	40			
Spectrur Ref Leve	n					40			
Ref Leve Att Count 100	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄		Hz				
Ref Leve Att Count 100	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT			
Ref Leve Att Count 100	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k	Hz Hz Mode			2,439	5.12 dBm
Ref Leve Att Count 100	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT		2.439	
Ref Leve Att Count 100 1Pk View	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm-	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm-	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm- 10 dBm- 0 dBm-	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm- 10 dBm- 0 dBm-	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm -10 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm- 10 dBm- 0 dBm-	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Level Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Level Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Level Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Level Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Level Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm -10 dBm	m 1 30.00 dBm 30 dB	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.439	5.12 dBm
Ref Level Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	n 30.00 dBm 30 dB 1/100	Offset	12.18 dB 👄	RBW 100 k VBW 300 k	Hz Mode	Auto FFT			5.12 dBm
Ref Leve Att Count 100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n 30.00 dBm 30 dB 1/100	Offset	12.18 dB 👄	RBW 100 k	Hz Mode	Auto FFT			5.12 dBm 97790 GHz

Spectrun	n L								
	I 30.00 dBm		12.04 dB 👄						
Att Count 100,	30 dB /100	SWT	18.9 µs 📟	VBW 300 k	HZ Mode	Auto FFT			
●1Pk View									
					м	1[1]		0.470	3.93 dBm 98050 GHz
20 dBm								2.479	98030 GHZ
10 dBm				M1					
				I I					
0 dBm									
-10 dBm-									
-10 ubiii									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
So abiii									
-60 dBm									
CF 2.48 GF	lz	I	1	691	pts	1		Span :	L.035 MHz
						Measuri	ng		1
	41.2023 1.	1:37:24	BI	LE_125K	_Ant6_24	80			
Spectrun	n					80			
Spectrun Ref Level Att Count 100,	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄		Hz	80 Auto FFT			
Spectrun Ref Level Att Count 100,	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT			
Spectrun Ref Level Att Count 100, 1Pk View	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k	Hz Hz Mode			2.479	€ 4.42 dBm
Spectrun Ref Level Att	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm-	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm-	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm- 10 dBm- 0 dBm-	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm- 10 dBm- -10 dBm-	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm- 10 dBm- -10 dBm-	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n I 30.00 dBm 30 dB	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT		2.479	4.42 dBm
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n	Offset	12.14 dB 👄	RBW 100 k	Hz Mode	Auto FFT			4.42 dBm 97900 GHz
Spectrun Ref Level Att Count 100, 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	n	Offset	12.14 dB 👄	RBW 100 k VBW 300 k	Hz Mode	Auto FFT			4.42 dBm 97900 GHz

Band edge measurements

Test Result

TestMode	Antenna	ChName	Freq(MHz)	RefLevel[dBm/100KHz]	Result[dBm/100KHz]	Limit[dBm/100KHz]	Verdict
	Ant17	Low	2402	6.27	-25.62	≤-13.73	PASS
	Ant6	Low	2402	7.45	-24.17	≤-12.55	PASS
BLE_2M	Ant17	High	2480	6.47	-53.93	≤-13.53	PASS
	Ant6	High	2480	7.13	-54.27	≤-12.87	PASS
	Ant17	Low	2402	4.06	-54.18	≤-15.94	PASS
	Ant6	Low	2402	4.88	-53.42	≤-15.12	PASS
BLE_125K	Ant17	High	2480	3.93	-53.25	≤-16.07	PASS
	Ant6	High	2480	4.42	-54.49	≤-15.58	PASS

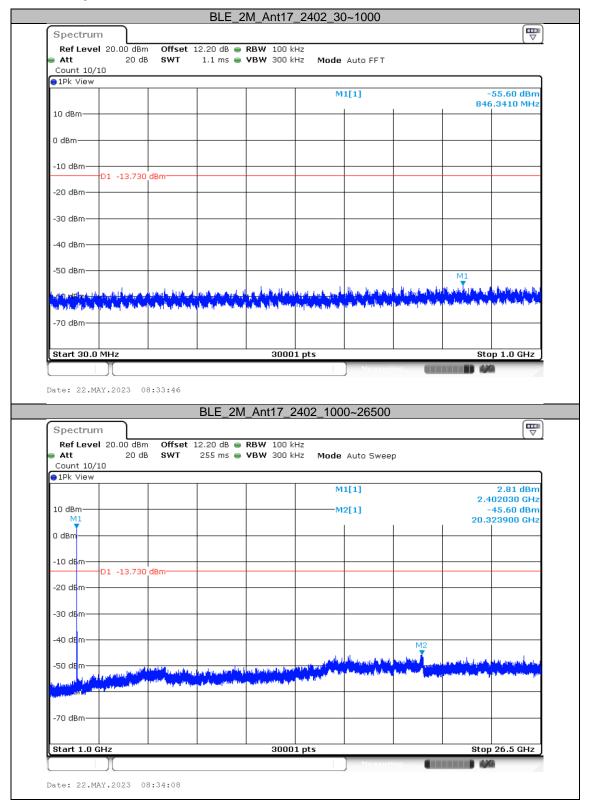
Test Graphs

0		\neg								Low_2							Ē
Spect		. u															₽
	evel	20.00						BW 100									
Att		2	20 dB	SWT	7.	5.8 µs	- VE	BW 300	kHz	Mode	Auto FF	Т					
∋1Pk Vi	ew								_	M	2[1]					25.90	dBm
											2[1]					00000	
10 dBm	-								1	M	3[1]					58.15	
0 dBm-															2.39	00080	GHz
o abiii																	l
-10 dBn							+		+								+
		01 -13	.730	dBm													
-20 dBn							-		1							M&	+
-30 dBn	<u> </u>															4	4
50 GDI	·															/*	"
-40 dBn	∩—+						+		+								\rightarrow
-50 dBn												M	3.		N		
-60 dBn	where	mil	run	nump	when	~uma	the man	mm	~~~	mulle	mon	more	a with	men	و مرسولا		
-70 dBn	י−+				-+		+		+					+			
Start 2		GHz						69	l pts						Stop :	2.405 (Ηz
Marker		1															
Type M2	Ref	<u>Trc</u>		X-Va		F GHz		<u>r-value</u> -25.90 d	Bm	Func	tion		Fun	ction I	kesult		
MЗ		1				GHz		-58.15 d	Bm								
M4		1		2.39	99783	3 GHz		-25.62 d	Bm								
											Meas						
ate: 2	2.MA	Y.2023	8 08	3:33:38		В	LE_	_2M_Ar	ıt6_l	_ow_2	402						
ate: 2		_	3 08	3:33:38		В	LE_	<u>2M_</u> Ar	it6_l	_ow_2	402						
Spect	rum	_						2M_Ar		_ow_2	402						
Spect Ref L Att	rum evel	20.00		Offse	et 12.	.30 dB	e Re		kHz		402 Auto FF	T					
Spect Ref L	rum evel	20.00	dBm	Offse	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF	T					
Spect Ref L Att	rum evel	20.00	dBm	Offse	et 12.	.30 dB	e Re	BW 100	kHz	Mode		T				24.50	dBm
Spect Ref L Att	rum evel ew	20.00	dBm	Offse	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF 2[1]	T			2.40	24.50 00000 57.60	dBn GHa
Spect RefL Att 1Pk Vi 10 dBm	rum evel ew	20.00	dBm	Offse	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF	T			2.40	00000	dBn GHa dBn
Spect Ref L Att	rum evel ew	20.00	dBm	Offse	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF 2[1]	T			2.40	00000 57.60	dBm GHz dBm
Spect RefL Att 1Pk Vi 10 dBm	ew	20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF 2[1]	T			2.40	00000 57.60	dBn GHa dBn
Spect Ref L Att 1Pk Vi 10 dBm 0 dBm- -10 dBn	ew	20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF 2[1]	T			2.40	00000 57.60	dBn GHa dBn
Spect Ref L Att 1Pk Vi 10 dBm 0 dBm-	ew	20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF 2[1]	T			2.40	00000 57.60	dBn GHa dBn
Spect Ref L Att 10 dBm 0 dBm- -10 dBm	ew	20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF 2[1]	T			2.40	00000 57.60	dBm GHz dBm
Spect Ref L Att 1Pk Vi 10 dBm 0 dBm- -10 dBn	ew	20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF 2[1]	T			2.40	00000 57.60	dBm GHz dBm
Spect Ref L Att 10 dBm 0 dBm- -10 dBm	ew	20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF 2[1]	T			2.40	00000 57.60	dBm GHz dBm
Spect Ref L Att 10 dBm 0 dBm- -10 dBm -20 dBn -30 dBn -40 dBn	ew	20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB	e Re	BW 100	kHz	Mode	Auto FF 2[1]	T			2.40	00000 57.60	dBm GHz dBm
Spect Ref L Att 10 dBm 0 dBm- -10 dBm -20 dBn -30 dBn -40 dBn -50 dBn		20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB 5.8 μs		BW 100	kHz kHz	Mode M: M:	Auto FF 2[1] 3[1]				2.40 	00000 57.60	dBn GHa dBn
Spect Ref L Att 10 dBm 0 dBm- -10 dBm -20 dBn -30 dBn -40 dBn -50 dBn		20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB		BW 100	kHz kHz	Mode	Auto FF 2[1] 3[1]				2.40 	00000 57.60	GHz dBm
Spect Ref L Att 10 dBm 0 dBm- -10 dBm -20 dBn -30 dBn -40 dBn -50 dBn		20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB 5.8 μs		BW 100 BW 300	kHz kHz	Mode M: M:	Auto FF 2[1] 3[1]				2.40 	00000 57.60	dBm GHz dBm
Spect Ref L Att 10 dBm 0 dBm- -10 dBm -20 dBn -30 dBn -40 dBn -50 dBn		20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB 5.8 μs		BW 100 BW 300	kHz kHz	Mode M: M:	Auto FF 2[1] 3[1]				2.40 	00000 57.60	dBm GHz dBm
Spect Ref L 10 dBm 10 dBm -10 dBm -20 dBn -30 dBn -30 dBn -50 dBn -60 dBn		20.00	dBm :0 dB	Offse SWT	et 12.	.30 dB 5.8 μs		BW 100 BW 300	kHz kHz	Mode M: M:	Auto FF 2[1] 3[1]				2.40 - 2.39	00000	dBm GHz GHz
Spect Ref L Att 10 dBm -10 dBm -20 dBm -20 dBn -30 dBn -40 dBn -50 dBn -60 dBn -70 dBn -70 dBn		20.00 2 20.00 2 2 2 2 2 2 2 2 2 2 2 2 2	dBm :0 dB	Offse SWT	et 12.	.30 dB 5.8 μs		BW 100 BW 300	kHz kHz	Mode M: M:	Auto FF 2[1] 3[1]				2.40 - 2.39	00000 57.60	dBm GHz GHz
Spect Ref L Att 1Pk Vi 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2 Marker	rum evel ew	20.00 2 D1 -12	dBm :0 dB	dBm	et 1277	.30 dB 5.8 μs		BW 100 BW 300	kHz kHz	Mode M: M:	Auto FF 2[1] 3[1]		he was the second s		2.40 - 2.39 	2.405 C	dBm GHz GHz
Spect Ref L Att 1Pk Vi 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2 Marker Type	rum evel ew	20.00 2 D1 -12	.550	Offse SWT	et 12 7	.30 dB 5.8 μs		BW 100 BW 300	kHz kHz	Mode M: M:	Auto FF 2[1] 3[1]		he was the second s		2.40 - 2.39 	2.405 C	dBm GHz GHz
Spect Ref L Att 1Pk Vi 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2 Marker	rum evel ew	20.00 2 D1 -12	.550	Offse SWT	et 12 7	.30 dB 5.8 µs		BW 100 BW 300 	kHz kHz L pts Bm Bm	Mode M: M:	Auto FF 2[1] 3[1]		he was the second s		2.40 - 2.39 	2.405 C	dBm GHz GHz
Spect Ref L Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm Start 2 Warker Type M2	rum evel ew	20.00 2 D1 -12	.550	Offse SWT	et 12 7	.30 dB 5.8 µs		BW 100 BW 300	kHz kHz L pts Bm Bm	Mode M: M:	Auto FF 2[1] 3[1]		he was the second s		2.40 - 2.39 	2.405 C	dBm GHz GHz
Spect Ref L Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2 Marker Type M3	rum evel ew	20.00 20.00 20 20 20 20 20 20 20 20 20 20 20 20 2	.550	Offse SWT	et 12 7	.30 dB 5.8 µs		BW 100 BW 300 	kHz kHz L pts Bm Bm	Mode M: M:	Auto FF 2[1] 3[1]		Fun		2.40 2.39 www.V Stop 3	2.405 C	dBm GHz GHz

Spectrum									
Ref Level				RBW 100 k					
Att 1Pk View	20 dB	SWT	94.8 µs 👄	VBW 300 k	Hz Mode	Auto FFT			
UTEK VIEW					M	2[1]			52.95 dBm
									83500 GHz
10 dBm					M	3[1]		-	55.54 dBm
0 dBm	M.							2.5	00000 GHz
0 ubiii	Λ								
-10 dBm	\square								
	91 <mark>-13.530</mark>	dBm							
-20 dBm									
	l N -								
-30 dBm									
-40 dBm									
-50 dBm	<u>12</u>		M3	M4					
unin	Upra	personance	mound	oburbourner	man	monum	murrily	monor	hu wan ha
-60 dBm									
-70 dBm									
Start 2.47 (3Hz			691	nts			Stor	2.55 GHz
Marker				091	P13			atup	2100 0112
Type Ref	Trc	X-value		Y-value	Func	tion	Fund	tion Result	1
M2	1	2.483	35 GHz	-52.95 dB	m				
M3	1		.5 GHz	-55.54 dB					
M4	1	2.50478	os GHZ ∣	-53.93 dB	111				
ate: 22.MAN	Y.2023 0	8:36:27	BLE	_2M_Ant	6_High_2	2480			_
Spectrum						2480			
Spectrum Ref Level	20.00 dBm	Offset 1	l2.14 dB 👄	RBW 100 k	Hz				
Spectrum Ref Level Att		Offset 1	l2.14 dB 👄		Hz	2480 Auto FFT			
Spectrum Ref Level Att	20.00 dBm	Offset 1	l2.14 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT			
Spectrum Ref Level Att 1Pk View	20.00 dBm	Offset 1	l2.14 dB 👄	RBW 100 k	Hz Hz Mode				53.57 dBm 83500 GHz
Spectrum Ref Level Att	20.00 dBm	Offset 1	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT		2.4	53.57 dBm 83500 GHz 57.77 dBm
Spectrum Ref Level Att 1Pk View	20.00 dBm	Offset 1	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT 2[1]		2.4	53.57 dBm 83500 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm	20.00 dBm	Offset 1	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT 2[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm	20.00 dBm 20 dB	Offset 1 SWT	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT 2[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm	20.00 dBm	Offset 1 SWT	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT 2[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm
Spectrum Ref Level Att 10 dBm 0 dBm	20.00 dBm 20 dB	Offset 1 SWT	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT 2[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm	20.00 dBm 20 dB	Offset 1 SWT	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT 2[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB	Offset 1 SWT	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT 2[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm
Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm	20.00 dBm 20 dB	Offset 1 SWT	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT 2[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 20 dB	Offset 1 SWT	l2.14 dB 👄	RBW 100 k	Hz Hz Mode M:	Auto FFT 2[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB	dBm	.2.14 dB 94.8 μs 	RBW 100 k	Hz Hz Mode M: M:	Auto FF T 2[1] 3[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 20 dB	Offset 1 SWT	.2.14 dB 94.8 μs 9	RBW 100 k	Hz Hz Mode M: M:	Auto FF T 2[1] 3[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 20 dB	dBm	.2.14 dB 94.8 μs 	RBW 100 k	Hz Hz Mode M: M:	Auto FF T 2[1] 3[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 20 dB	dBm	.2.14 dB 94.8 μs 	RBW 100 k	Hz Hz Mode M: M:	Auto FF T 2[1] 3[1]		2.4	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	20.00 dBm 20 dB	dBm	.2.14 dB 94.8 μs 	RBW 100 k	Hz Hz Mode M: M:	Auto FF T 2[1] 3[1]	Wulderster	2.4	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	20.00 dBm 20 dP 20 dP	dBm	.2.14 dB 94.8 μs 	RBW 100 k	Hz Hz Mode Mi	Auto FF T 2[1] 3[1]		2.4 - 2.5	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 20 dP 20 dP	dBm	.2.14 dB 94.8 μs 	RBW 100 k	Hz Hz Mode Mi	Auto FF T 2[1] 3[1]		2.4 - 2.5	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.47 C Marker Type	20.00 dBm 20 dP 20 dP	dBm	2.14 dB • 94.8 µs •	RBW 100 k VBW 300 k	Hz Hz Mode M: M: The second se	Auto FFT 2[1] 3[1]		2.4 - 2.5	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Type Ref M2	20.00 dBm 20 dP 20	dBm M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	2.14 dB ● 94.8 µs ●	RBW 100 k VBW 300 k 	Hz Hz Mode Mi Mi Mi Pts Funct	Auto FFT 2[1] 3[1]		2.4 - 2.5 بریاریانی میں میں میں میں میں میں میں میں میں می	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm	20.00 dBm 20 dP 20	dBm 	.2.14 dB ● 94.8 µs ●	RBW 100 k VBW 300 k 	Hz Hz Mode Mi Mi Mi Mi Mi Funct m m	Auto FFT 2[1] 3[1]		2.4 - 2.5 بریاریانی میں میں میں میں میں میں میں میں میں می	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Type Ref Type Ref	20.00 dBm 20 dP 20	dBm M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	.2.14 dB ● 94.8 µs ●	RBW 100 k VBW 300 k 	Hz Hz Mode Mi Mi Mi Mi Mi Funct m m	Auto FFT 2[1] 3[1]	Func	2.4 - 2.5 بریاریانی میں میں میں میں میں میں میں میں میں می	53.57 dBm 83500 GHz 57.77 dBm 00000 GHz

Spectrum										♥
Ref Level Att	20.00 dBm 20 dB			RBW 100 kH VBW 300 kH		Auto FFT				
●1Pk View										
					M	2[1]			54.61 d	
10 dBm					M	3[1]			58.49 d	
0 dBm								2.39	00090	GHz
o abiii										
-10 dBm									+	_
-20 dBm	D1 -15.940	dBm								
-20 00111										
-30 dBm									- ¹	
-40 dBm										
									,	
-50 dBm							MB		4	h
-60 dBm	wallothathe	mount	Manner	muthing	mound	medno	M3 Uw	muturely	r"	9
-70 dBm										
Diant C. C.C.	011-				nte			0	405.5	
Start 2.35 Marker	GHZ			691	prs			stop :	2.405 G	HZ
	Trc	X-value		Y-value	Funct	tion	Func	tion Result		
M2	1		2.4 GHz	-54.61 dB						
M3 M4	1	2.2	39 GHz 83 GHz	-58.49 dB -54.18 dB						$- \ $
)(Measuri			2	
ate: 22.MA	_	1:35:05	BLE	_125K_Ar	t6_Low_	2402	-		(
	_			_125K_Ar		2402				
Spectrum Ref Level Att	·	Offset :	12.30 dB 👄		Ηz	2402				
Spectrum Ref Level	20.00 dBm	Offset :	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode	Auto FFT				
Spectrum Ref Level Att 1Pk View	20.00 dBm	Offset :	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode				53.42 d	IBm
Spectrum Ref Level Att	20.00 dBm	Offset :	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT	_	2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 1Pk View	20.00 dBm	Offset :	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT 2[1]		2.40	53.42 d	IBm GHz IBm
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm	20.00 dBm	Offset :	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT 2[1]		2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm	20.00 dBm	Offset : SWT	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT 2[1]		2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm	20.00 dBm 20 dB	Offset : SWT	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT 2[1]		2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 20 dB	Offset : SWT	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT 2[1]		2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm	20.00 dBm 20 dB	Offset : SWT	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT 2[1]		2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 20 dB	Offset : SWT	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT 2[1]		2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB	Offset : SWT	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT 2[1]		2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 20 dP 20 dP	dBm	12.30 dB 👄	• RBW 100 kH	Hz Hz Mode M:	Auto FFT 2[1]	M3	2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 20 dB	dBm	12.30 dB 75.8 µs	RBW 100 kH VBW 300 kH	Hz Hz Mode M:	Auto FFT 2[1]	Ma	2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 20 dP 20 dP	dBm	12.30 dB 75.8 µs	RBW 100 kH VBW 300 kH	Hz Hz Mode M:	Auto FFT 2[1]	M3	2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 20 dP 20 dP	dBm	12.30 dB 75.8 µs	RBW 100 kH VBW 300 kH	Hz Hz Mode M:	Auto FFT 2[1]	Ma	2.40	53.42 d 00000 (56.52 d	IBm GHz IBm
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 20 dP 20 dP	dBm	12.30 dB 75.8 µs	RBW 100 kH VBW 300 kH	Hz Hz Mode M: M:	Auto FFT 2[1]	M3	2.40 - 2.39	53.42 d 00000 (56.52 d	IBM GHz IBM GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.35 Marker	20.00 dBm 20 dP 20 dP	dBm	12.30 dB = 75.8 µs =	• RBW 100 kł • VBW 300 kł	iz Mode M: M: M: M: pts	Auto FFT 2[1] 3[1]	un ture and	2.40 - 2.39 	53.42 d 00000 (56.52 d 00000 (56.52 d 00000 (6 00000 (6 00000 (6 00000 (6 0000 (6 000 (6 000 (6 000 (6 000 (6 000 (6 000 (6 0 0 (6 0 (6 0) (6 0 (6 0 (6 0 (6 0 (6 0) (6 0 (6 0) (6 0) (6 0 (6 0 (6 0) (6 0 (6 0)) (6 0 (6 0) (6 0 (6 0) (6) (6)) ()) ()) ()) ()) ()) ()) ()) ()) ())	IBM GHz IBM GHz
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.35 Marker	20.00 dBm 20 dP 20	dBm-	12.30 dB 75.8 μs	• RBW 100 kH • VBW 300 kH • VBW 300 kH	Hz Hz M: M: M: M: M: M: M: M: M: M: M: M: M:	Auto FFT 2[1] 3[1]	un ture and	2.40 - 2.39	53.42 d 00000 (56.52 d 00000 (56.52 d 00000 (6 00000 (6 00000 (6 00000 (6 0000 (6 000 (6 000 (6 000 (6 000 (6 000 (6 000 (6 0 0 (6 0 (6 0) (6 0 (6 0 (6 0 (6 0 (6 0) (6 0 (6 0) (6 0) (6 0 (6 0 (6 0) (6 0 (6 0)) (6 0 (6 0) (6 0 (6 0) (6) (6)) ()) ()) ()) ()) ()) ()) ()) ()) ())	IBM GHz IBM GHz
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm Start 2.35 Marker Type Ref M3	20.00 dBm 20 dP 20	dBm x-value 2	12.30 dB 75.8 µs 75.8 µs 75.8 µs 2.4 GHz 39 GHz	• RBW 100 kł • VBW 300 kł • VBW 300 kł • • • • • • • • • • • • • • • • • • •	12 12 M: M: M: M: M: M: M: M: M: M:	Auto FFT 2[1] 3[1]	un ture and	2.40 - 2.39 	53.42 d 00000 (56.52 d 00000 (56.52 d 00000 (6 00000 (6 00000 (6 00000 (6 0000 (6 000 (6 000 (6 000 (6 000 (6 000 (6 000 (6 0 0 (6 0 (6 0) (6 0 (6 0 (6 0 (6 0 (6 0) (6 0 (6 0) (6 0) (6 0 (6 0 (6 0) (6 0 (6 0)) (6 0 (6 0) (6 0 (6 0) (6) (6)) ()) ()) ()) ()) ()) ()) ()) ()) ())	IBM GHz IBM GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Type Ref Marker Type Mark	20.00 dBm 20 d2 20	dBm	12.30 dB 75.8 µs 75.8 µs 75.8 µs 2.4 GHz 39 GHz	RBW 100 kH VBW 300 kH VBW 300 kH O	12 12 M: M: M: M: M: M: M: M: M: M:	Auto FFT 2[1] 3[1]	un ture and	2.40 - 2.39 	53.42 d 00000 (56.52 d 00000 (56.52 d 00000 (6 00000 (6 00000 (6 00000 (6 0000 (6 000 (6 000 (6 000 (6 000 (6 000 (6 000 (6 0 0 (6 0 (6 0) (6 0 (6 0 (6 0 (6 0 (6 0) (6 0 (6 0) (6 0) (6 0 (6 0 (6 0) (6 0 (6 0)) (6 0 (6 0) (6 0 (6 0) (6) (6)) ()) ()) ()) ()) ()) ()) ()) ()) ())	IBM GHz IBM GHz

Spectrum									
Ref Level			.2.04 dB 😑	RBW 100 kH	Ηz				
Att	20 dB	SWT	94.8 µs 😑	VBW 300 kH	Hz Mode	Auto FFT			
●1Pk View									
					M	2[1]			56.22 dBm
10 dBm						3[1]			83500 GHz
	AL.					9[1]			00000 GHz
0 dBm	1							210	
	Л								
-10 dBm									
	1 -16.070	dBm							
-20 dBm									
-30 dBm									
-50 dbm									
-40 dBm									
کم									
-50 dBm	4 M2		MO			M4			
between when a	man	remanen	M3	munerous	man	Muror	mount	mound	methodrina
-60 dBm									
70 dB									
-70 dBm									
Start 2.47 G	Hz			691	pts			Stop	2.55 GHz
Marker	1 - 1				1 =		_		
	Trc	X-value		Y-value	Func	tion	Func	tion Result	
M2 M3	1		35 GHz .5 GHz	-56.22 dB -57.47 dB					
M4	1	2.5192		-53.25 dB					
· · ·)(1	1			56
spectrum	.2023 1	1:37:33	BLE_	_125K_An	t6_High_	_2480			
						_2480			
		n Offset 1	.2.14 dB 👄	RBW 100 kł	Hz				
Spectrum Ref Level	20.00 dBm	n Offset 1	.2.14 dB 👄		Hz	2480 Auto FFT			
Spectrum Ref Level Att	20.00 dBm	n Offset 1	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode				57.78 dBm
Spectrum Ref Level Att 1Pk View	20.00 dBm	n Offset 1	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz
Spectrum Ref Level Att	20.00 dBm	n Offset 1	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 1Pk View	20.00 dBm	n Offset 1	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz
Spectrum Ref Level Att 1Pk View	20.00 dBm	n Offset 1	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 1Pk View	20.00 dBm	n Offset 1	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm	20.00 dBm	Offset 1 SWT	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm	20.00 dBm 20 dB	Offset 1 SWT	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 20 dB	Offset 1 SWT	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm	20.00 dBm 20 dB	Offset 1 SWT	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 20 dB	Offset 1 SWT	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB	Offset 1 SWT	.2.14 dB 👄	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB	Offset 1 SWT	2.14 dB 94.8 μs 94.8 μs	RBW 100 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 20 dB	Offset 1 SWT	.2.14 dB 👄	RBW 100 kł VBW 300 kł	Hz Hz Mode M	Auto FFT		2.4	57.78 dBm 83500 GHz 57.20 dBm
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 20 dB	Offset 1 SWT	2.14 dB • 94.8 μs •	RBW 100 kł VBW 300 kł	Hz Hz Mode M	Auto FF T 2[1] 3[1]	without market	2.4	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 20 dP	Offset 1 SWT	2.14 dB • 94.8 μs •	RBW 100 kł VBW 300 kł	Hz Hz Mode M	Auto FF T 2[1] 3[1]	willower	2.4	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 20 dP	Offset 1 SWT	2.14 dB • 94.8 μs •	RBW 100 kł VBW 300 kł	Hz Hz Mode M	Auto FF T 2[1] 3[1]		2.4	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	20.00 dBm 20 dP 1 -15.580	Offset 1 SWT	2.14 dB • 94.8 μs •	RBW 100 kł VBW 300 kł	Hz Hz Mode M	Auto FF T 2[1] 3[1]		2.4 - 2.5	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 20 dP 1 -15.580	Offset 1 SWT	2.14 dB • 94.8 μs •	RBW 100 kł VBW 300 kł	Hz Hz <u>Mode</u> M 	Auto FFT 2[1] 3[1]		2.4 - 2.5	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 20 dE	dBm	2.14 dB • 94.8 µs •	RBW 100 kł VBW 300 kł	Hz Hz Mode M M	Auto FFT 2[1] 3[1]		2.4 - 2.5 	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm Start 2.47 G Marker Type	20.00 dBm 20 dB 20 dP	dBm	2.14 dB • 94.8 µs •	RBW 100 kł VBW 300 kł	Hz Hz Mode M	Auto FFT 2[1] 3[1]		2.4 - 2.5	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.47 G Marker Type Ref M2	20.00 dBm 20 dB 20 dP 1 -15.580	Offset 1 SWT dBm dBm M X-value 2.483	2.14 dB • 94.8 µs •	RBW 100 kH	Hz Hz M M M M Pts pts	Auto FFT 2[1] 3[1]		2.4 - 2.5 	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -60 dBm -70 dBm -7	20.00 dBm 20 dP 20 dP 1 -15.580	dBm 	2.14 dB • 94.8 µs • 	RBW 100 kł VBW 300 kł 	Hz Hz M M M M Pts Func m m	Auto FFT 2[1] 3[1]		2.4 - 2.5 	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.47 G Marker Type Ref	20.00 dBm 20 dB 20 dP 1 -15.580	Offset 1 SWT dBm dBm M X-value 2.483	2.14 dB • 94.8 µs • 	RBW 100 kH	Hz Hz M M M M Pts Func m m	Auto FFT 2[1] 3[1]	Func	2.4 - 2.5 	57.78 dBm 83500 GHz 57.20 dBm 00000 GHz


Conducted Spurious Emission

Test Result

TeetMede	Antonno		FreqRange	RefLevel	Result	Limit	Verdict
TestMode	Antenna	Freq(MHz)	[MHz]	[dBm/100KHz]	[dBm/100KHz]	[dBm/100KHz]	Verdict
	Ant17	2402	30~1000	6.27	-55.6	≤-13.73	PASS
	Anti 7	2402	1000~26500	6.27	-45.6	≤-13.73	PASS
	Ant6	2402	30~1000	7.45	-55.44	≤-12.55	PASS
	Anto	2402	1000~26500	7.45	-46.31	≤-12.55	PASS
	Ant17	2440	30~1000	6.48	-55.42	≤-13.52	PASS
BLE_2M	AILT7	2440	1000~26500	6.48	-45.76	≤-13.52	PASS
	Ant6	2440	30~1000	7.66	-55.85	≤-12.34	PASS
	Anto	2440	1000~26500	7.66	-45.62	≤-12.34	PASS
	Ant17	2480	30~1000	6.47	-55.15	≤-13.53	PASS
	AILT7	2400	1000~26500	6.47	-46.58	≤-13.53	PASS
	Ant6	2480	30~1000	7.13	-55.47	≤-12.87	PASS
	Anto	2400	1000~26500	7.13	-45.48	≤-12.87	PASS
	Ant17	2402	30~1000	4.06	-55.52	≤-15.94	PASS
	Antr	2402	1000~26500	4.06	-46.31	≤-15.94	PASS
	Ant6	2402	30~1000	4.88	-55.02	≤-15.12	PASS
	Anto	2402	1000~26500	4.88	-46.14	≤-15.12	PASS
	Ant17	2440	30~1000	4.00	-55.23	≤-16	PASS
BLE 125K	AILT7	2440	1000~26500	4.00	-45.6	≤-16	PASS
DLE_120K	Ant6	2440	30~1000	5.12	-54.84	≤-14.88	PASS
	Anto	2440	1000~26500	5.12	-45.91	≤-14.88	PASS
	Apt17	2490	30~1000	3.93	-54.92	≤-16.07	PASS
	Ant17	2480	1000~26500	3.93	-45.87	≤-16.07	PASS
	Ant6	2480	30~1000	4.42	-56.24	≤-15.58	PASS
	Anto	2400	1000~26500	4.42	-45	≤-15.58	PASS

Test Graphs

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2AFZZND5G

Spectrur									
Ref Leve Att	20.00 dBm 20 dB		12.30 dB	RBW 100 k VBW 300 k		Auto FFT			
Count 10/		5 3941	1.1 IIIS 🖶	YDW JUUK	nz Moue	AULU FF I			
●1Pk View									
					M	1[1]			55.44 dBm
10 dBm						1	1	886	.2710 MHz
10 UBIII									
0 dBm									
0 ubiii									
-10 dBm									
10 000	D1 -12.550	dBm							
-20 dBm									
-30 dBm									
-40 dBm—									
-50 dBm—								M1	
			L. L. M. C. A.			المراجع العرب الم	شاير و و	a. Land and a	. In h , Massier
en die		اليوليون المراجعة الماليونية. المراجعة المراجعة الماليونية المراجعة المراجعة المراجعة المراجعة المراجعة المراجع	an da serie de la contra da serie da s Na serie da s	- N 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	المراجعة مادينة المراجعة. ومحمد محمد المراجعة		na ngengena na marin Na harakan katak	a second a second s	
hadres has the base	اور منه لط اللہ میں ط	प्रधा विकाश का हि	يظرفن هن لك رول أب	وي إن من إن أمار عن ا	و وارور بالي بليط يعلق	رهر سر على العل من الم	a contraction of the second		
-70 dBm—									
Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz
						Measur	ing 🔳		1
ace: ZZ.M	AY.2023 0	8:42:21	BLE_2N	/I_Ant6_2	402_1000)~26500			
	_	8:42:21	BLE_2N	//_Ant6_2	402_1000)~26500			
Spectrur	_		BLE_2N)~26500		-	
Spectrur Ref Leve Att	m 1 20.00 dBm 20 dB	n Offset	12.30 dB 👄		Hz)~26500	p		
Spectrur Ref Leve Att Count 10/	m 1 20.00 dBm 20 dB	n Offset	12.30 dB 👄	RBW 100 k	Hz		p		V
Spectrur Ref Leve Att Count 10/	m 1 20.00 dBm 20 dB	n Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode	Auto Swee	р		
Spectrur Ref Leve Att Count 10/	m 1 20.00 dBm 20 dB	n Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode		p	2.4	2.72 dBm 02030 GHz
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm—	m 1 20.00 dBm 20 dB	n Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm M1	m 1 20.00 dBm 20 dB	n Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	2.72 dBm 02030 GHz
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm M1	m 1 20.00 dBm 20 dB	n Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm	m 1 20.00 dBm 20 dB	n Offset	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm M1	m 1 20.00 dBm 20 dB	o Offset SWT	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm- 0 dBm- -10 dBm-	n 20.00 dBm 20 dE '10	o Offset SWT	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm	n 20.00 dBm 20 dE '10	o Offset SWT	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	P	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm- -10 dBm- -20 dBm-	m 20.00 dBm 20 dE (10	o Offset SWT	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm- 0 dBm- -10 dBm-	m 20.00 dBm 20 dE (10	o Offset SWT	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	P	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm	m 20.00 dBm 20 dE (10	o Offset SWT	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	P	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm- -10 dBm- -20 dBm- -30 dBm-	m 20.00 dBm 20 dE (10	o Offset SWT	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm	m 20.00 dBm 20 dE (10	o Offset SWT	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm- -10 dBm- -20 dBm-	n 20 dBm 20 dBm 20 dE 10	dBm	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm	m 20.00 dBm 20 dE (10	o Offset SWT	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dEm -50 dEm	n 20 dBm 20 dBm 20 dE 10	dBm	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dEm -50 dEm	n 20 dBm 20 dBm 20 dE 10	dBm	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm	n 20 dBm 20 dBm 20 dE 10	dBm	12.30 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	2.72 dBm 02030 GHz 46.31 dBm
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm	n 20.00 dBm 20 dE 10	dBm	12.30 dB 👄	RBW 100 k	Hz Mode	Auto Swee			2.72 dBm 02030 GHz 46.31 dBm 00550 GHz
Spectrur Ref Leve Att Count 10/ 1Pk View 10 dBm	n 20.00 dBm 20 dE 10	dBm	12.30 dB 👄	RBW 100 k	Hz Mode	Auto Swee			2.72 dBm 02030 GHz 46.31 dBm 00550 GHz

Spectru									
	el 20.00 dBm		12.04 dB 👄						
Att Count 10,	20 dE	SWT	1.1 ms 👄	VBW 300 k	Hz Mode	Auto FFT			
1Pk View									
1 I K 110 W					м	1[1]		-	55.42 dBm
						-[-]			.1050 MHz
10 dBm—									
0 dBm									
-10 dBm—									
	D1 -13.520	dBm							
-20 dBm—									
20 40									
-30 dBm—									
-30 ubiii—									
40.45									
-40 dBm—									
-50 dBm—						M1			
	ي ال	a day a s	here beckerers	وي باستان		L.L. WILL	المريق المريق الم	يديرون الفريافي إلا	and a second second
<u>ቀዋ ዋይ አ</u>		an a					In Anna Station (Sec. 1).	dia kaominina	a far be merting bee
	יים לקר אור איזי אוריי	ر بلي الله ب يد على ال	1977 - 1971 - 1977 - 1971 - 1977 - 1971 1977 - 1971 - 197	وسريف ويراد معراطه	an de de la compañía	1	a at second		
-70 dBm—									
Start 30.0	 0 МН2			3000	1 nts			Sto	p 1.0 GHz
otart oo.				0000	I pts		-		p 110 GH2
ate: 22.N	MAY.2023 0	8:35:18	BLE_2M	_Ant17_2	2440_100	0~26500			
	_	8:35:18	BLE_2M	_Ant17_2	2440_100	0~26500			
Spectru	m					0~26500			
Spectru	_	n Offset	12.04 dB 👄		Hz		p		
Spectrue Ref Leve Att Count 10/	m el 20.00 dBm 20 dE /10	n Offset	12.04 dB 👄	RBW 100 k	Hz	0~26500 Auto Swee	p		
Spectrue Ref Leve Att Count 10/	m el 20.00 dBm 20 dE /10	n Offset	12.04 dB 👄	RBW 100 k	Hz		p		
Spectrue Ref Leve Att Count 10/	m el 20.00 dBm 20 dE /10	n Offset	12.04 dB 👄	RBW 100 k	Hz Hz Mode		p		4.68 dBm
Spectrue Ref Leve Att Count 10, 1Pk View	m el 20.00 dBm 20 dE /10	n Offset	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p		4.68 dBm 40280 GHz
Spectru Ref Levo Att Count 10, 1Pk View	m el 20.00 dBm 20 dE /10	n Offset	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm
Spectru Ref Leve Att Count 10, 1Pk View 10 dBm	m el 20.00 dBm 20 dE /10	n Offset	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz
Spectru Ref Levo Att Count 10, 1Pk View	m el 20.00 dBm 20 dE /10	n Offset	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm
Spectru Ref Levo Att Count 10, 1Pk View 10 dBm 0 dBm	m el 20.00 dBm 20 dE /10	n Offset	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm
Spectru Ref Leve Att Count 10, 1Pk View 10 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm
Spectrum Ref Levo Att Count 10, 1Pk View 10 dBm 0 dBm -10 dBm	m el 20.00 dBm 20 dE /10	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm
Spectru Ref Levo Att Count 10, 1Pk View 10 dBm 0 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm
Spectrum Ref Levo Att Count 10, 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm
Spectru Ref Levo Att Count 10, 1Pk View 10 dBm 0 dBm -10 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm
Spectrum Ref Levo Att Count 10, 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm
Spectrum Ref Levo Att Count 10, 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	4.68 dBm 40280 GHz 45.76 dBm 66250 GHz
Spectrui Ref Leva Att Count 10, 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	4.68 dBm 40280 GHz 45.76 dBm
Spectrui Ref Leva Att Count 10, 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	p	-	4.68 dBm 40280 GHz 45.76 dBm 66250 GHz
Spectrum Ref Leve Att Count 10, 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee	P	-	4.68 dBm 40280 GHz 45.76 dBm 66250 GHz
Spectrum Ref Leve Att Count 10, 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	4.68 dBm 40280 GHz 45.76 dBm 66250 GHz
Spectrum Ref Leve Att Count 10, 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	4.68 dBm 40280 GHz 45.76 dBm 66250 GHz
Spectru Ref Leve Att Count 10, 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	4.68 dBm 40280 GHz 45.76 dBm 66250 GHz
Spectrum Ref Leve Att Count 10, 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Hz Mode M	Auto Swee		-	4.68 dBm 40280 GHz 45.76 dBm 66250 GHz
Spectrum Ref Leve Att Count 10, 1Pk View 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Mode	Auto Swee			4.68 dBm 40280 GHz 45.76 dBm 66250 GHz
Spectru Ref Leve Att Count 10, 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Mode	Auto Swee			4.68 dBm 40280 GHz 45.76 dBm 66250 GHz
Spectrum Ref Leve Att Count 10, 1Pk View 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	m	Offset SWT	12.04 dB 👄	RBW 100 k	Hz Mode	Auto Swee			4.68 dBm 40280 GHz 45.76 dBm 66250 GHz