

FCC Radio Test Report

FCC ID: 2AFZZL09G

This report concerns: Original Grant

Project No.	:	2106C114
Equipment	:	Mi Smart Speaker
Brand Name	:	MI
Test Model	:	L09G
Series Model	:	N/A
Applicant	:	Xiaomi Communications Co.,Ltd
Address	:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District,
		Beijing, China
Manufacturer	:	Xiaomi Communications Co.,Ltd
Address	:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District,
		Beijing, China
Factory	:	Huizhou MTN WEIYE Technology Development Co.,Ltd
Address	:	No.2 Huitai Road,Huinan High-tech Industrial Park,Huiao
		Avenue,Huizhou City,Guangdong Province,China. 516000
Date of Receipt	:	Jun. 16, 2021
Date of Test	:	Jun. 16, 2021 ~ Aug. 05, 2021
Issued Date	:	Aug. 13, 2021
Report Version	:	R00
Test Sample	:	Engineering Sample No.:DG202106169
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart C
		FCC KDB 558074 D01 15.247 Meas Guidance v05r02
		ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Thena chell

Prepared by : Chella Zheng

here 1

Approved by : Ethan Ma

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
1.3 TEST ENVIRONMENT CONDITIONS	8
2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 DESCRIPTION OF TEST MODES	10
2.3 PARAMETERS OF TEST SOFTWARE	11
2.4 DUTY CYCLE	12
2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
2.6 SUPPORT UNITS	13
3 . AC POWER LINE CONDUCTED EMISSIONS	14
3.1 LIMIT	14
3.2 TEST PROCEDURE	14
3.3 DEVIATION FROM TEST STANDARD	14
3.4 TEST SETUP	15
3.5 EUT OPERATION CONDITIONS	15
3.6 TEST RESULTS	15
4. RADIATED EMISSIONS	16
4.1 LIMIT	16
4.2 TEST PROCEDURE	16
4.3 DEVIATION FROM TEST STANDARD	17
4.4 TEST SETUP	17
4.5 EUT OPERATION CONDITIONS	19
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	19
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	19
4.8 TEST RESULTS - ABOVE 1000 MHZ	19
5.BANDWIDTH	20
5.1 LIMIT	20
5.2 TEST PROCEDURE	20
5.3 DEVIATION FROM STANDARD	20
5.4 TEST SETUP	20

Table of Contents	Page
5.5 EUT OPERATION CONDITIONS	20
5.6 TEST RESULTS	20
6 . MAXIMUM OUTPUT POWER	21
6.1 LIMIT	21
6.2 TEST PROCEDURE	21
6.3 DEVIATION FROM STANDARD	21
6.4 TEST SETUP	21
6.5 EUT OPERATION CONDITIONS	21
6.6 TEST RESULTS	21
7 . CONDUCTED SPURIOUS EMISSIONS	22
7.1 LIMIT	22
7.2 TEST PROCEDURE	22
7.3 DEVIATION FROM STANDARD	22
7.4 TEST SETUP	22
7.5 EUT OPERATION CONDITIONS	22
7.6 TEST RESULTS	22
8 . POWER SPECTRAL DENSITY	23
8.1 LIMIT	23
8.2 TEST PROCEDURE	23
8.3 DEVIATION FROM STANDARD	23
8.4 TEST SETUP	23
8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS	23 23
9. MEASUREMENT INSTRUMENTS LIST	24
10 . EUT TEST PHOTO	26
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	31
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	34
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	39
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ	42
APPENDIX E - BANDWIDTH	91
APPENDIX F - MAXIMUM OUTPUT POWER	96
APPENDIX G - CONDUCTED SPURIOUS EMISSIONS	98

Table	of	Contents
	•••	

Page

APPENDIX H - POWER SPECTRAL DENSITY

103

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Aug. 13, 2021

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C						
Standard(s) Section	Test Item	Test Result	Judgment	Remark		
15.207	AC Power Line Conducted Emissions	APPENDIX A	N/A			
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS			
15.247(a)(2)	Bandwidth	APPENDIX E	PASS			
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS			
15.247(d)	Conducted Spurious Emissions	APPENDIX G	PASS			
15.247(e)	Power Spectral Density	APPENDIX H	PASS			
15.203	Antenna Requirement		PASS	Note(2)		

Note:

(1) "N/A" denotes test is not applicable in this test report.(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China. BTL's Test Firm Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.68

A. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		9kHz ~ 30MHz	-	3.02
		30MHz ~ 200MHz	V	4.26
DG-CB03	CISPR	30MHz ~ 200MHz		3.38
		200MHz ~ 1,000MHz	V	3.98
		200MHz ~ 1,000MHz	Н	3.94
		1GHz ~ 6GHz	-	3.96
		6GHz ~ 18GHz	-	5.24
		18GHz ~ 26.5GHz	-	3.62
		26.5GHz ~ 40GHz	-	4.00

B. Other Measurement:

Test Item	Uncertainty
Bandwidth	±3.8 %
Maximum Output Power	±0.95 dB
Conducted Spurious Emission	±2.71 dB
Power Spectral Density	±0.86 dB
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	25°C	60%	AC 120V/60Hz	Laughing Zhang
Radiated Emissions-9kHz to 30 MHz	25°C	60%	AC 120V/60Hz	Hayden Chen
Radiated Emissions-30MHz to 1000MHz	26°C	52%	AC 120V/60Hz	Hayden Chen
Radiated Emissions-Above 1000MHz	26°C	52%	AC 120V/60Hz	Hayden Chen
Bandwidth	23.3°C	62%	DC 12V	Jesse Wang
Maximum Output Power	23.3°C	62%	DC 12V	Jesse Wang
Conducted Spurious Emissions	23.3°C	62%	DC 12V	Jesse Wang
Power Spectral Density	23.3°C	62%	DC 12V	Jesse Wang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mi Smart Speaker			
Brand Name	Xiaomi			
Test Model	L09G			
Series Model	N/A			
Model Difference(s)	N/A			
Software Version	N/A			
Hardware Version	N/A			
Power Source	DC voltage supplied from AC adapter. Model: CYXT18-120150U			
Power Rating	I/P: 100-240V~ 50/60Hz 0.6A O/P: 12V === 1.5A			
Operation Frequency	2412 MHz ~ 2462 MHz			
Modulation Type	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM			
Bit Rate of Transmitter	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 150 Mbps			
Maximum Output Power	IEEE 802.11n(HT20): 25.91 dBm (0.3899 W)			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20) CH03 - CH09 for IEEE 802.11n(HT40)							
		CH03	- CHU9 for IE	EE 802.11	n(H140)		
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz)						Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Antenna Specification:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	South star	N12-6457-R04	FPC	N/A	2.36

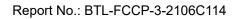
Note:

1) The antenna gain is provided by the manufacturer.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX B Mode Channel 01/06/11
Mode 2 TX G Mode Channel 01/06/11	
Mode 3	TX N(HT20) Mode Channel 01/06/11
Mode 4	TX N(HT40) Mode Channel 03/06/09
Mode 5	TX N(HT20) Mode Channel 06


Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

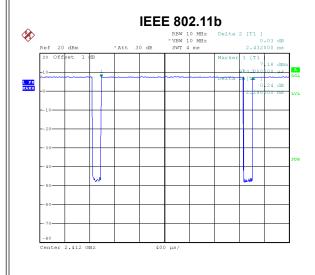
AC power line conducted emissions test			
Final Test Mode Description			
Mode 5 TX N(HT20) Mode Channel 06			

Radiated emissions test - Below 1GHz			
Final Test Mode	Description		
Mode 5 TX N(HT20) Mode Channel 06			

Radiated emissions test- Above 1GHz			
Final Test Mode Description			
Mode 1 TX B Mode Channel 01/06/11			
Mode 2 TX G Mode Channel 01/06/11			
Mode 3 TX N(HT20) Mode Channel 01/06/11			
Mode 4	TX N(HT40) Mode Channel 03/06/09		

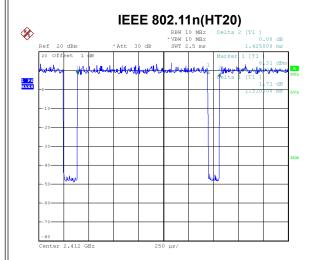
Conducted test				
Final Test Mode	Description			
Mode 1 TX B Mode Channel 01/06/11				
Mode 2 TX G Mode Channel 01/06/11				
Mode 3 TX N(HT20) Mode Channel 01/06/11				
Mode 4 TX N(HT40) Mode Channel 03/06/09				

NOTE:

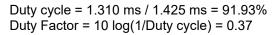

- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX N(HT20) Mode Channel 06 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.

2.3 PARAMETERS OF TEST SOFTWARE

Test Software Version	N/A		
Frequency (MHz)	2412	2437	2462
IEEE 802.11b	default	default	default
IEEE 802.11g	60	default	65
IEEE 802.11n(HT20)	60	default	61
Frequency (MHz)	2422	2437	2452
IEEE 802.11n(HT40)	64	default	6F


3โL

2.4 DUTY CYCLE

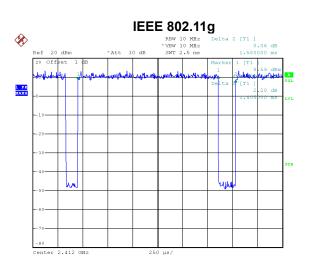


Date: 17.JUN.2021 11:27:56

Duty cycle = 2.280 ms / 2.432 ms = 93.75% Duty Factor = 10 log(1/Duty cycle) = 0.28

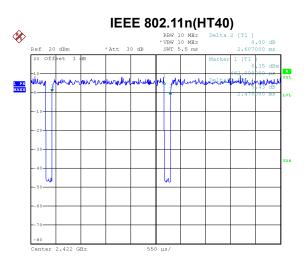
Date: 17.JUN.2021 11:30:26

NOTE:


For IEEE 802.11b:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 439 Hz.

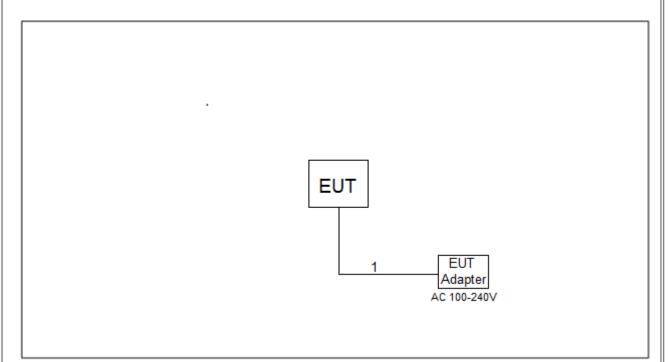
For IEEE 802.11g: For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 712 Hz.


For IEEE 802.11n(HT20): For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 763 Hz.

For IEEE 802.11n(HT40): For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 404 Hz.

Date: 17.JUN.2021 11:29:40

Duty cycle = 1.405 ms / 1.580 ms = 88.92% Duty Factor = 10 log(1/Duty cycle) = 0.51



Date: 17.JUN.2021 11:31:01

Duty cycle = 2.475 ms / 2.607 ms = 94.94% Duty Factor = 10 log(1/Duty cycle) = 0.23

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.6 SUPPORT UNITS

ltem	Equipment	Brand	Model No.	Series No.
-	-	-	-	-

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.2m

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Eroquonov of Emission (MHz)	Limit (dBµV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	

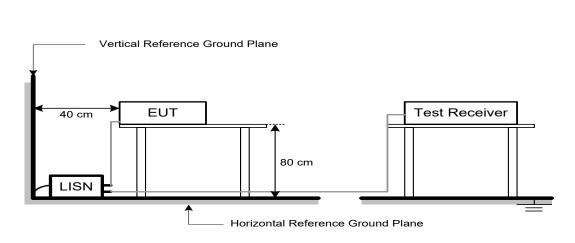
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

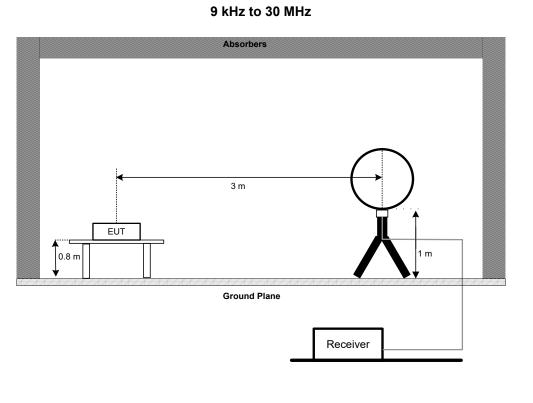
		(dBuV/m at 3 m)		
Frequency (MHz)		Peak	Average	
	Above 1000	74	54	

NOTE:

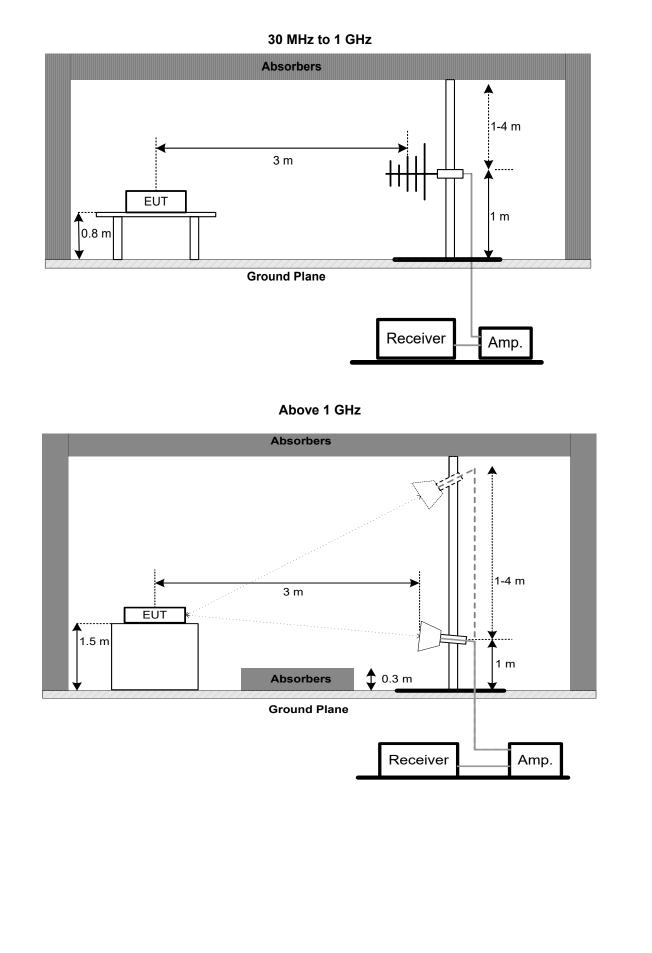
- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.



he following table is the setting of the receiver	:		
Spectrum Parameters	Setting		
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz		
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz		
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz		
Spectrum Parameters	Setting		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1 MHz / 3 MHz for PK value		
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value		
Receiver Parameters	Setting		
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector		
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector		
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector		
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector		
Start ~ Stop Frequency 30 MHz~1000 MHz for QP detector			
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector		


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

4.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH

5.1 LIMIT

Section	Test Item	Limit
Section	Iest item	LIIIIL
FCC 15.247(a)(2)	6 dB Bandwidth	Minimum 500 kHz
	99% Emission Bandwidth	-

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Setting				
> Measurement Bandwidth				
100 kHz				
300 kHz				
Peak				
Max Hold				
Auto				

For 99% Emission Bandwidth:

Spectrum Parameters	Setting
Span Frequency	Between 1.5 times and 5.0 times the OBW
RBW	300 kHz For 20MHz 1 MHz For 40MHz
VBW	1 MHz For 20MHz 3 MHz For 40MHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

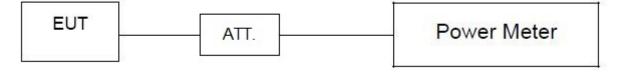
5.6 TEST RESULTS

Please refer to the APPENDIX E.

6. MAXIMUM OUTPUT POWER

6.1 LIMIT

Section	Test Item	Limit
FCC 15.247(b)(3)	Maximum Output Power	1.0000 Watt or 30.00 dBm


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.1.3 of ANSI C63.10-2013 .

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

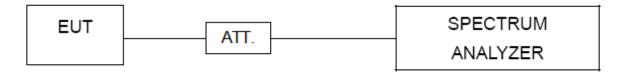
Please refer to the APPENDIX F.

7. CONDUCTED SPURIOUS EMISSIONS

7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

7.2 TEST PROCEDURE


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting	
Start Frequency	30 MHz	
Stop Frequency	26.5 GHz	
RBW	100 kHz	
VBW	300 kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

8. POWER SPECTRAL DENSITY

8.1 LIMIT

Section	Test Item	Limit
FCC 15.247(e)	Power Spectral Density	8 dBm
FCC 15.247(e)	Fower Spectral Density	(in any 3 kHz)

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	25 MHz (20 MHz) / 60 MHz (40 MHz)
RBW	3 kHz
VBW	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EMI Test Receiver	R&S	ESCI	100382	Feb. 28, 2022	
2	LISN	EMCO	3816/2	52765	Feb. 27, 2022	
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Feb. 27, 2022	
4	50Ω Terminator	SHX	TF5-3	15041305	Feb. 27, 2022	
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
6	Cable	N/A	RG223	12m	Mar. 09, 2022	
7	643 Shield Room	ETS	6*4*3m	N/A	N/A	

	Radiated Emissions - 9 kHz to 30 MHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Loop Antenna	EM	EM-6876-1	230	Apr. 28, 2022	
2	Cable	N/A	RG 213/U	N/A	May 27, 2022	
3	EMI Test Receiver	R&S	ESCI	100895	Feb. 27, 2022	
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
5	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2022	

	Radiated Emissions - 30 MHz to 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 15, 2022	
2	Amplifier	HP	8447D	2944A08742	Feb. 28, 2022	
3	Receiver	Agilent	N9038A	MY52130039	Mar. 19, 2022	
4	Cable	emci	LMR-400(30MHz-1 GHz)(8m+5m)	N/A	May 20, 2022	
5	Controller	СТ	SC100	N/A	N/A	
6	Controller	MF	MF-7802	MF780208416	N/A	
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
8	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2022	

	Radiated Emissions - Above 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Double Ridged Guide Antenna	ETS	3115	75789	May 10, 2022	
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 30, 2022	
3	Amplifier	Agilent	8449B	3008A02584	Jul. 10, 2022	
4	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Feb. 28, 2022	
5	Receiver	Agilent	N9038A	MY52130039	Jul. 10, 2022	
6	Controller	СТ	SC100	N/A	N/A	
7	Controller	MF	MF-7802	MF780208416	N/A	
8	Cable	N/A	EMC104-SM-SM-6 000	N/A	Oct. 16, 2021	
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
10	Filter	STI	STI15-9912	N/A	Jul. 10, 2022	
11	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2022	

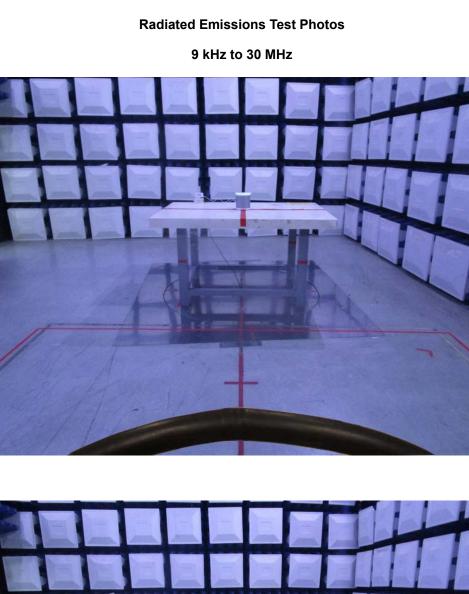


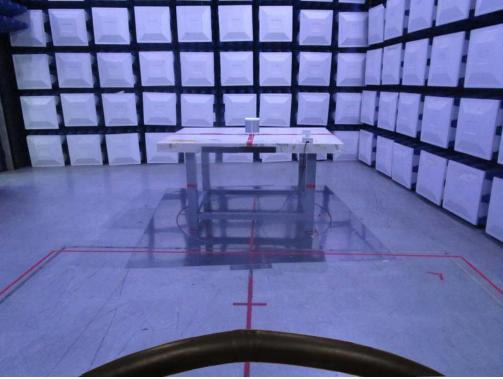
Bandwidth & Conducted Spurious Emissions & Power Spectral Density							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Spectrum Analyzer	R&S	FSP40	100185	Jul. 10, 2022		
2	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022		
3	RF Cable	Tongkaichuan	N/A	N/A	N/A		
4	DC Block	Mini	N/A	N/A	N/A		

Maximum Output Power						
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Peak Power Analyzer	Keysight	8990B	MY51000506	Aug. 07, 2021	
2	Wideband power sensor	Keysight	N1923A	MY58310004	Jul. 10, 2022	
3	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022	
4	RF Cable	Tongkaichuan	N/A	N/A	N/A	

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

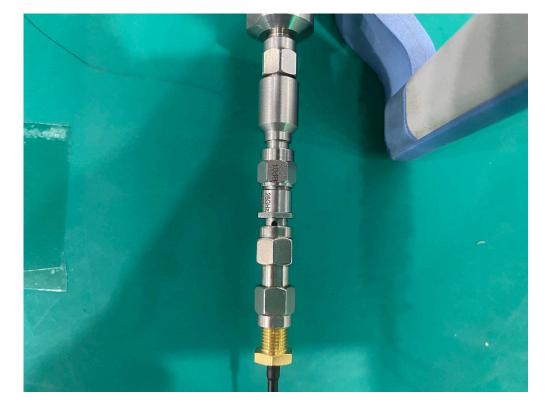

10. EUT TEST PHOTO


AC Power Line Conducted Emissions Test Photos

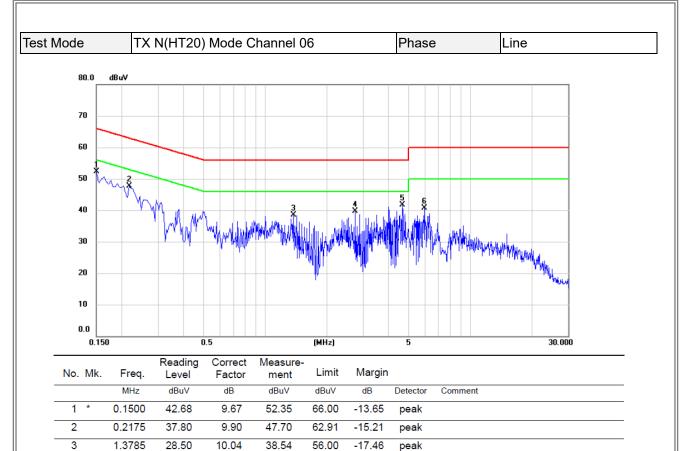
<section-header><section-header><section-header>



Radiated Emissions Test Photos


Above 1 GHz

Conducted Test Photos



APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

BIL

56.00

56.00

60.00

-16.32

-14.33

-19.33

peak

peak

peak

39.68

41.67

40.67

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

10.16

10.31

10.40

(2) Margin Level = Measurement Value - Limit Value.

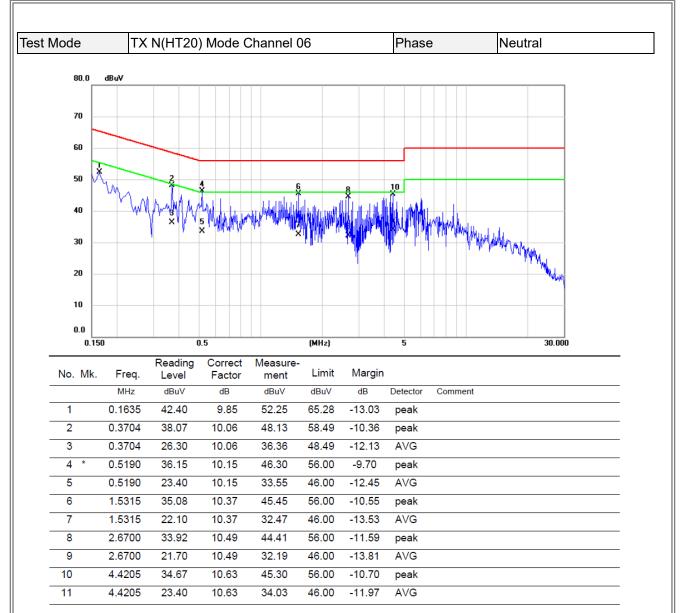
29.52

31.36

30.27

2.7510

4.6725

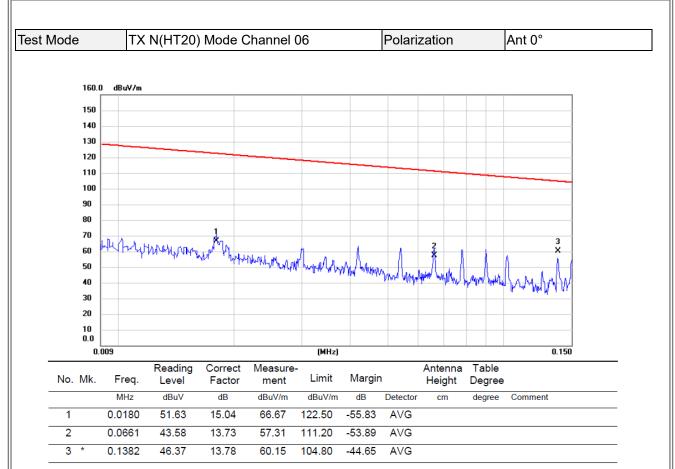

5.9550

4

5

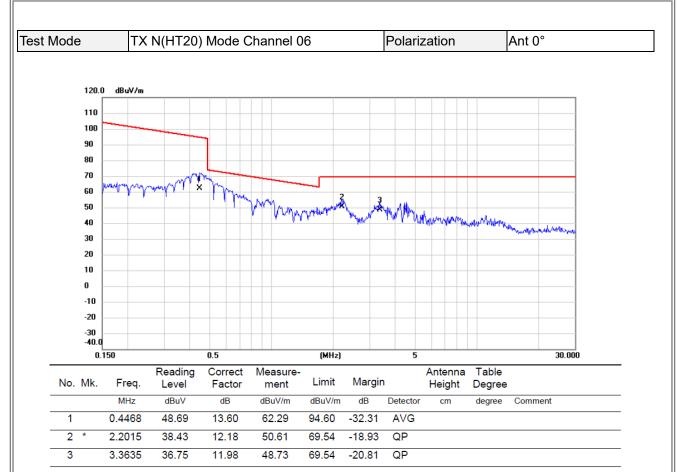
6

BIL


REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

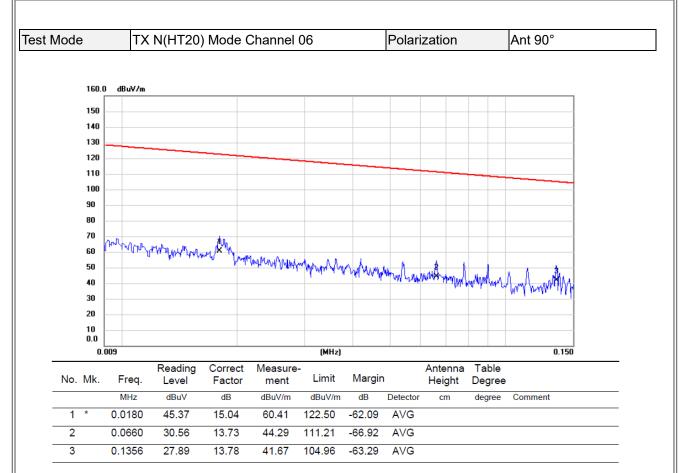
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ



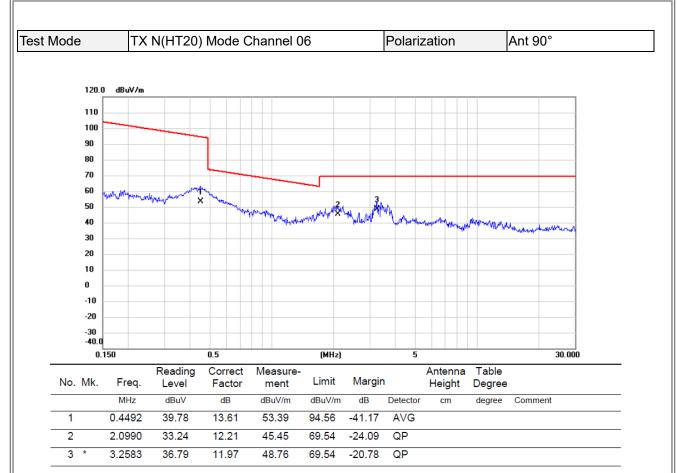
REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

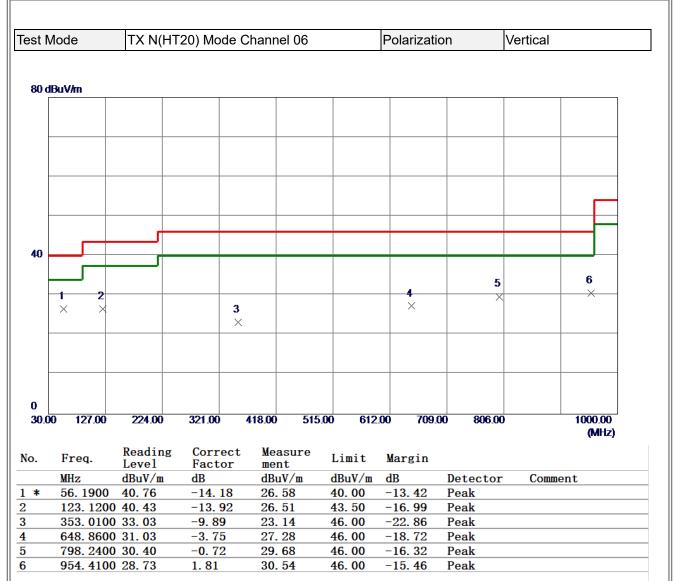
(2) Margin Level = Measurement Value - Limit Value.



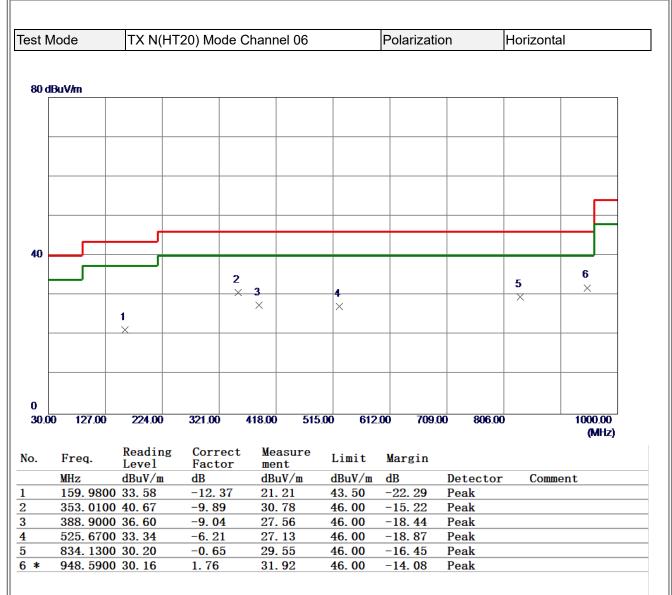
REMARKS:


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

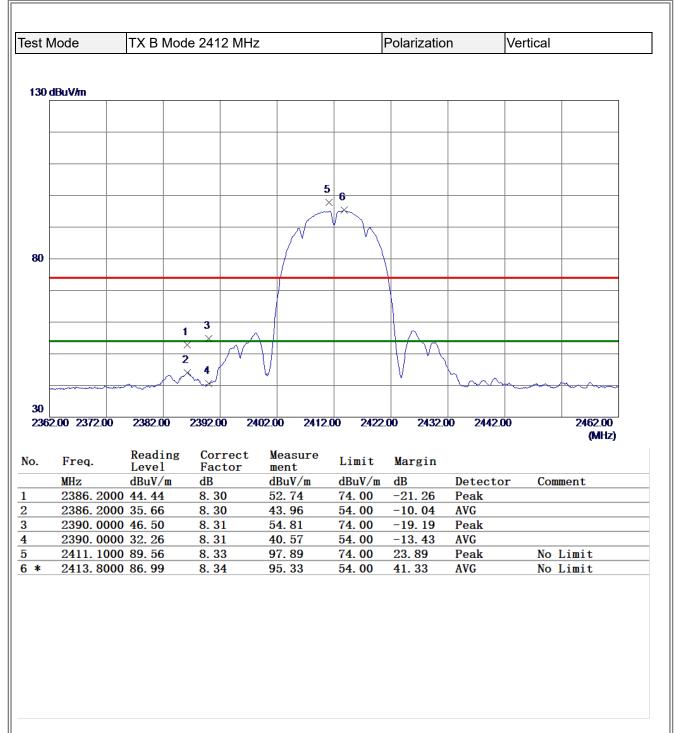
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



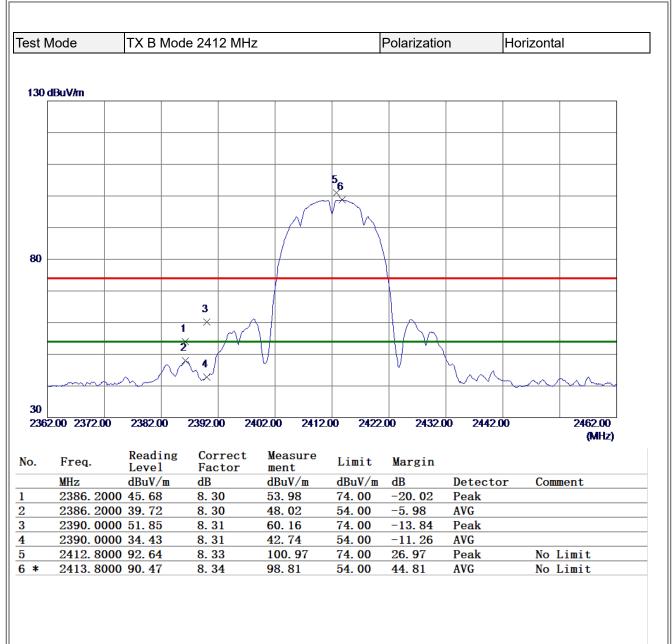
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



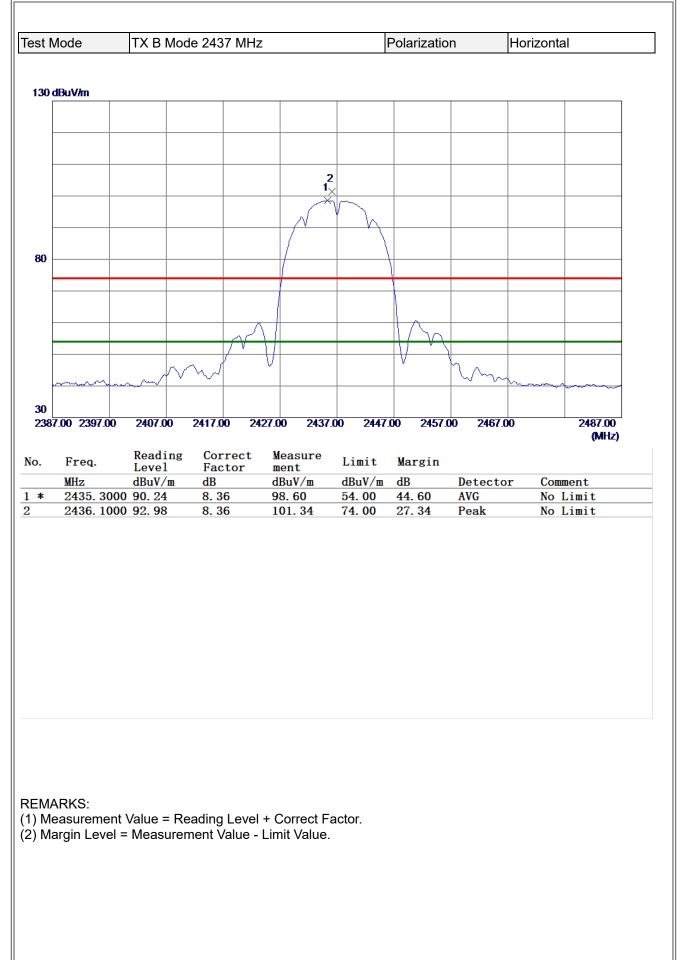
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

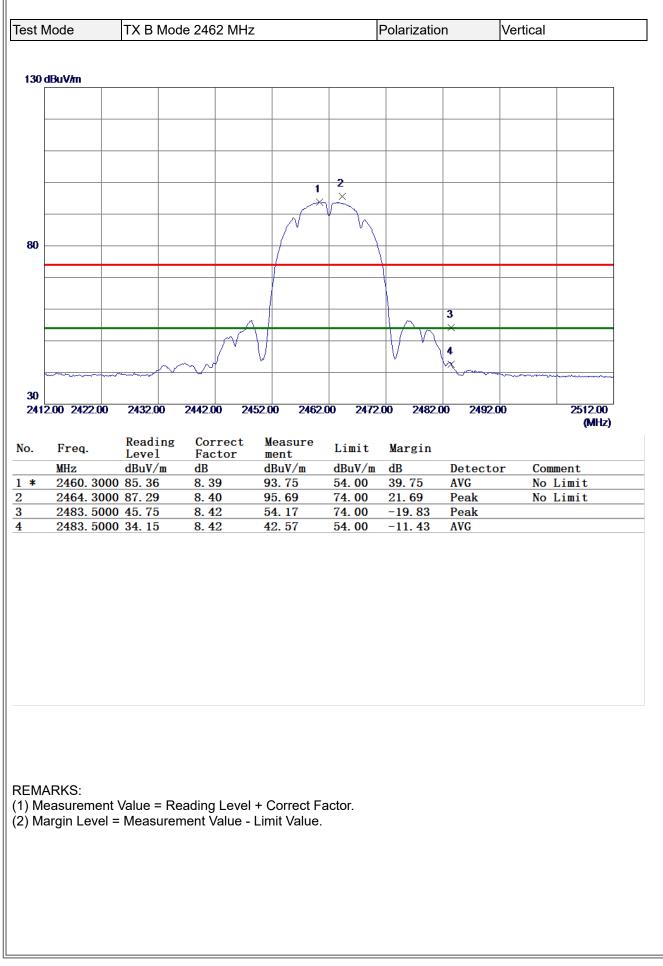
BLL

	lode	TX B Mo	ode 2412 I	MHz		F	Polarizatio	n	Vertic	cal
80 d	BuV/m									
ŀ										
		1								
		×								
		2 ×								
io										
ł										
20										
	0.00 3550.00	6100.00	8650.00	11200.00	13750.00) 16300	0.00 18850	0.00 214	00.00	26500.00
		Deading	g Corre							(MHz)
D.	Freq.	Reading Level	Facto	or ment	t I	.imit	Margin			
	MHz	Level dBuV/m	Facto dB	or ment dBuV	t I V/m d	BuV/m	dB	Detec	tor	Comment
		Level dBuV/m 0 39.64	Facto	or ment	t I 7/m d 86 7			Detec Peak AVG	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
	MHz 4823.297	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
*	MHz 4823.297 4823.912	Level dBuV/m 0 39.64	Facto dB 5. 22	or ment dBuV 44.8	t I 7/m d 86 7	BuV/m 4. 00	dB -29.14	Peak	tor	Comment
*	MHz 4823. 297 4823. 912	Level dBuV/m 0 39.64 0 28.49	Facto dB 5. 22 5. 23	or ment dBuV 44.8 33.7	t 1 7/m d 36 7 72 5	BuV/m 4.00 4.00	dB -29.14	Peak	tor	Comment
* EMA	MHz 4823. 297 4823. 912	Leve1 dBuV/m 0 39. 64 0 28. 49	Facto dB 5. 22 5. 23	evel + Corr	rect Fact	BuV/m 4.00 4.00	dB -29.14	Peak	tor	Comment
* ====================================	MHz 4823. 297 4823. 912	Leve1 dBuV/m 0 39. 64 0 28. 49	Facto dB 5. 22 5. 23	evel + Corr	rect Fact	BuV/m 4.00 4.00	dB -29.14	Peak	tor	Comment
) Me	MHz 4823. 297 4823. 912	Leve1 dBuV/m 0 39. 64 0 28. 49	Facto dB 5. 22 5. 23	evel + Corr	rect Fact	BuV/m 4.00 4.00	dB -29.14	Peak	tor	Comment
* ====================================	MHz 4823. 297 4823. 912	Leve1 dBuV/m 0 39. 64 0 28. 49	Facto dB 5. 22 5. 23	evel + Corr	rect Fact	BuV/m 4.00 4.00	dB -29.14	Peak	tor	Comment
* ====================================	MHz 4823. 297 4823. 912	Leve1 dBuV/m 0 39. 64 0 28. 49	Facto dB 5. 22 5. 23	evel + Corr	rect Fact	BuV/m 4.00 4.00	dB -29.14	Peak	tor	Comment
* ====================================	MHz 4823. 297 4823. 912	Leve1 dBuV/m 0 39. 64 0 28. 49	Facto dB 5. 22 5. 23	evel + Corr	rect Fact	BuV/m 4.00 4.00	dB -29.14	Peak	tor	Comment

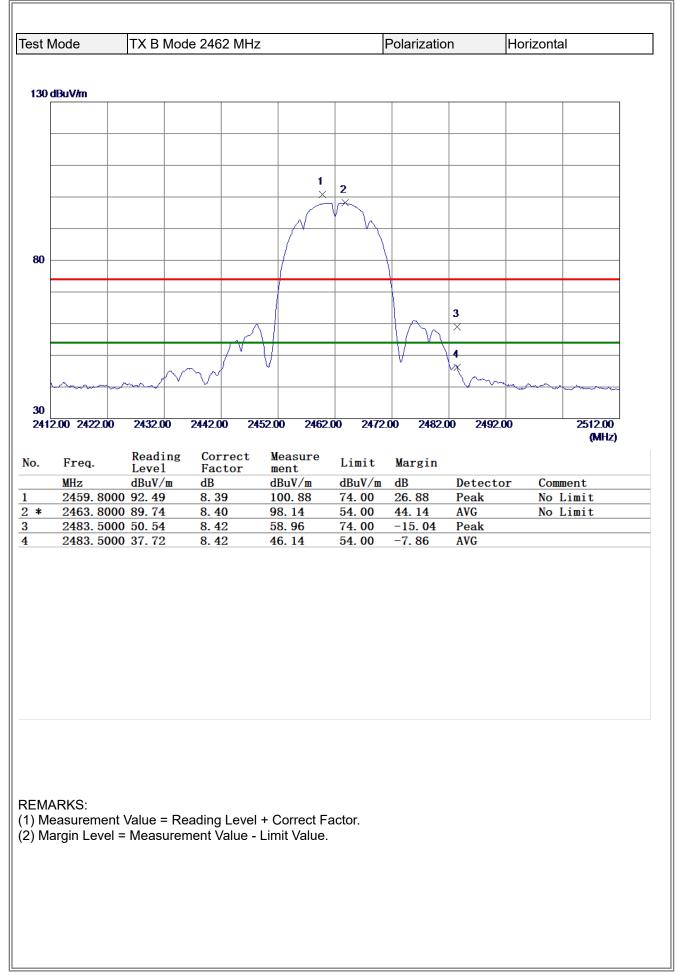

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BTL

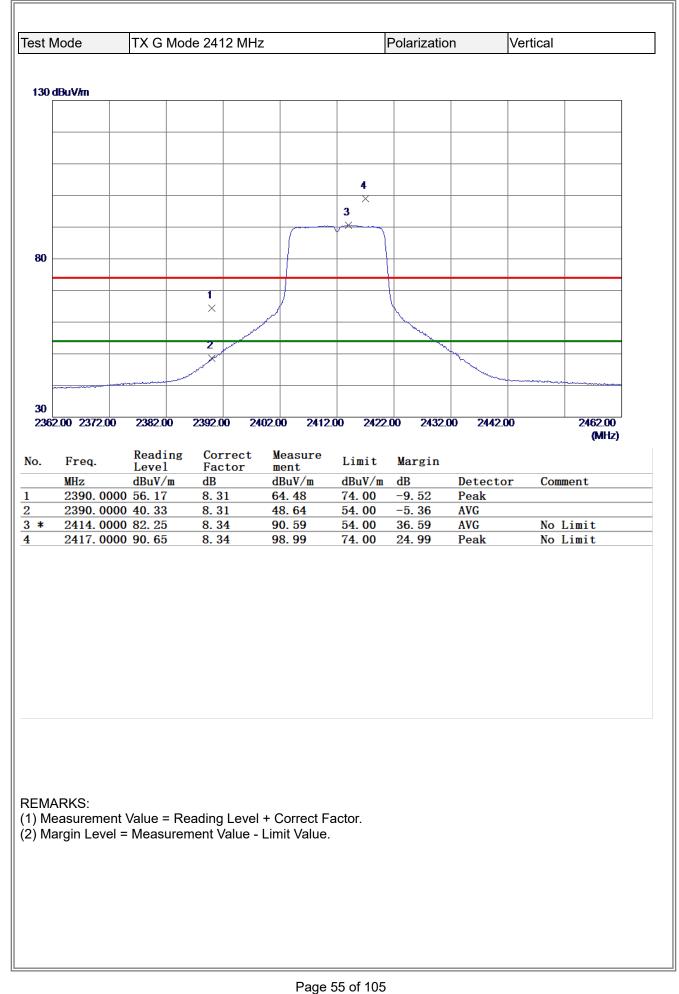
	IXBI	Mode 24	12 MHz	2		Polarizatio	n	Horizon	tal
dBuV/m									
			_						
	1								
	×								
	2								
	×								
			_						
00.00 355	0.00 6100.0	0 8650	0.00 11	200.00 13750	0.00 1630	0.00 18850	.00 21400).00	26500.00
									(MHz)
Freq.	Readi	ng Co	orrect	Measure	Limit	M			
II UQ.						Margin			
MUg	Level		actor	dBuV/m		Margin	Detect		mmont
MHz 4823	dBuV/	m dE	}	dBuV/m	dBuV/m	dB	Detecto	or Co	mment
4823.	Level	m dE 5.					Detecto Peak AVG	or Co	mment
4823.	dBuV/ 9240 40.83	m dE 5.	3 23	dBuV/m 46.06	dBuV/m 74. 00	dB −27. 94	Peak	or Co	mment



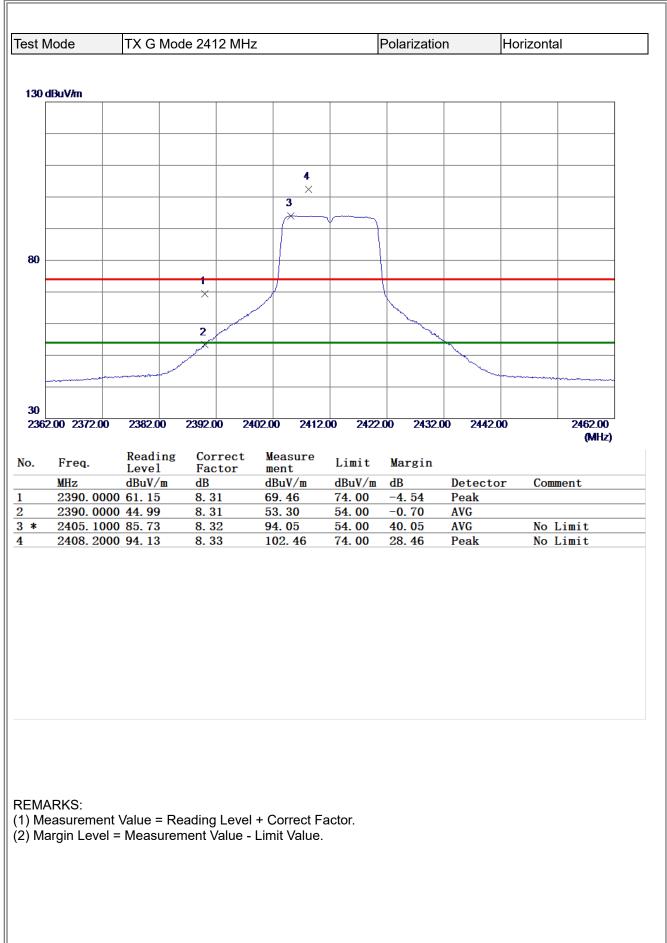
80 dBuVin a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a <th< th=""><th>t Mode</th><th>TX B N</th><th>lode 243</th><th>7 MHz</th><th></th><th>ł</th><th>Polarizatio</th><th>n</th><th>Vertical</th><th></th></th<>	t Mode	TX B N	lode 243	7 MHz		ł	Polarizatio	n	Vertical	
2 2										
× Image: Second sec	0 dBuV/m	1 1						1	1	
X I I I I 1 X I I I I X I I I I I I X I I I I I I I X I I I I I I I I X I I I I I I I I I X I <										
X I I I I 30 1 X I I I 30 X I I I I I I 30 I I I I I I I I Image: Im										
X I I I I 30 1 X I I I 30 X I I I I I I 30 I I I I I I I I Image: Im										
X I I I I 30 1 X I I I 30 X I I I I I I 30 I I I I I I I I I I I I I I I I I I 20 I <										
X I I I I I 30 1 X I I I I 30 X I I I I I I 30 X I I I I I I I 30 X I I I I I I I I 30 X I										
30 1 × 1 × 1										
30 × 30 ×										
30 30 <td< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		1								
MHz Buv/m B	0									
MHz dBuV/m dB dBuV/m dB V/m dB dB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
MHz dBuV/m dB dBuV/m dB dBuV/m dB Detector Comment * 4874.0890 27.91 5.48 33.39 54.00 -20.61 AVG										
MHz dBuV/m dB dBuV/m dB V/m dB dB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
MHz dBuV/m dB dBuV/m dB V/m dB dB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
MHz dBuV/m dB dBuV/m dB dBuV/m dB Detector Comment * 4874.0890 27.91 5.48 33.39 54.00 -20.61 AVG										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4874.0890 27.91 5.48 33.39 54.00 -20.61 AVG										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4874.0890 27.91 5.48 33.39 54.00 -20.61 AVG										
MHz dBuV/m dB dBuV/m dB Duv/m dB Duv/m dB Detector Comment * 4874.0890 27.91 5.48 33.39 54.00 -20.61 AVG	20									
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment*4874.089027.915.4833.3954.00-20.61AVG		00 6100 00					00 18850	00 21400	00	26500.00
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4874.0890 27.91 5.48 33.39 54.00 -20.61 AVG		00 0100.00) 8650.0	0 112	200.00 1375	0.00 16300				
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4874.0890 27.91 5.48 33.39 54.00 -20.61 AVG						0.00 16300				
* 4874.0890 27.91 5.48 33.39 54.00 -20.61 AVG	Freq.	Readin	ng Cor	rect	Measure					
4874. 0950 39. 70 5. 48 45. 18 74. 00 -28. 82 Peak		Readin Level	ng Cor Fac	rect	Measure ment	Limit	Margin			(MHz)
	MHz	Readin Level dBuV/1	ng Cor Fac 1 dB	rect tor	Measure ment dBuV/m	Limit dBuV/m	Margin dB	Detecto		(MHz)
	MHz ∗ 4874.0	Readin Level dBuV/m 890 27.91	ng Cor Fac 1 dB 5.4	rect tor 8	Measure ment dBuV/m 33.39	Limit dBuV/m 54.00	Margin dB -20.61	Detecto AVG		(MHz)



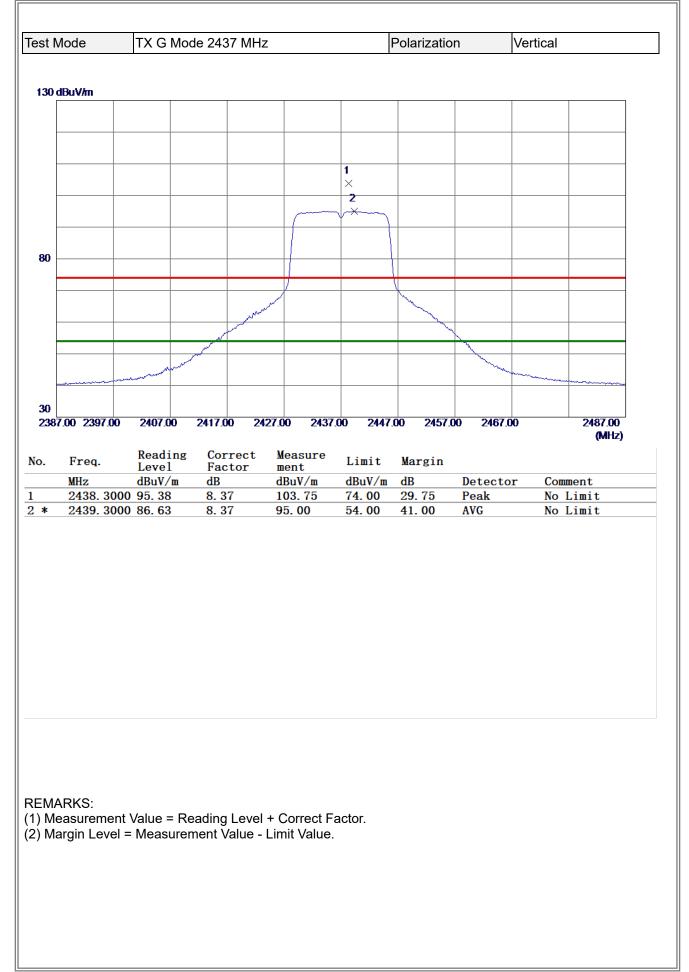
BTL


t Mode	TX B Mo	ode 2437 MH	Z	I	Polarizatio	n	Horizont	al
0 dBuV/m								
	2							
	X							
	1 ×							
ю								
~								
20 000.00 3550.0	00 6100.00	8650.00 1	1200.00 1375	0.00 1620	0.00 18850	00 2140	2.00	26500.00
000.00 5550.	00 0100.00	0000.00	1200.00 1313	0.00 1030	0.00 10000	2140	5.00	20500.00 (MHz)
P	Reading	g Correct	Measure		. .			
. Freq.								
	Level	Factor	ment	Limit	Margin	D ()		
MHz * 4874 0	dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB	Detecto	or Com	ment
* 4874.0		Factor	ment			Detecto AVG Peak	or Com	ment
* 4874.0	dBuV/m 339 30.86	Factor dB 5.48	ment dBuV/m 36.34	dBuV/m 54.00	dB −17. 66	AVG	or Con	ment

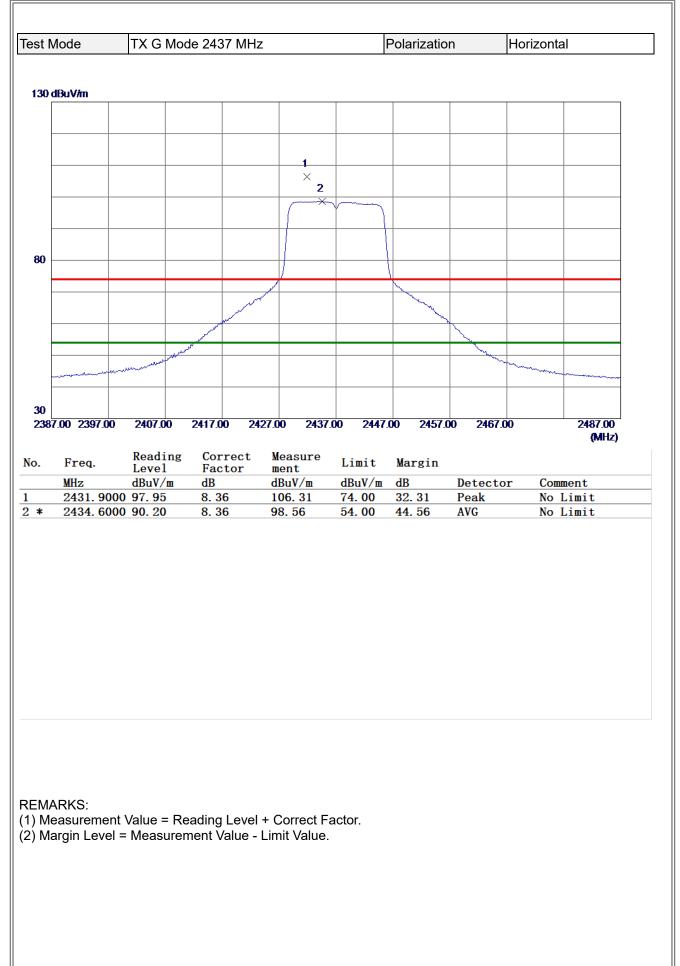
	Node	TX B N	/lode 24	62 MHz	Z	l	Polarizatio	n	Vertical	
30 d	lBuV/m									
		2								
		×								
		1 ×								
90		~								
20										
	0.00 3550.00	6100.00) 8650	.00 11	1200.00 1375	0.00 1630	0.00 18850	.00 21400	.00	26500.00
			_							(MHz)
	Freq.	Readi Level	ng Co	rrect	Measure	11-14				
		Level	Fa			Limit	Margin			
	MHz	dBuV/1	n dB	ctor	ment dBuV/m	dBuV/m	dB	Detecto	or Co	nment
*	MHz 4923.884 4924.596	dBuV/1 19 28. 19	n dB 5.	ctor	ment			Detecto AVG Peak	or Coi	nment
*	49 23. 884	dBuV/1 19 28. 19	n dB 5.	ctor 73	ment dBuV/m 33.92	dBuV/m 54. 00	dB -20. 08	AVG	or Cor	nment

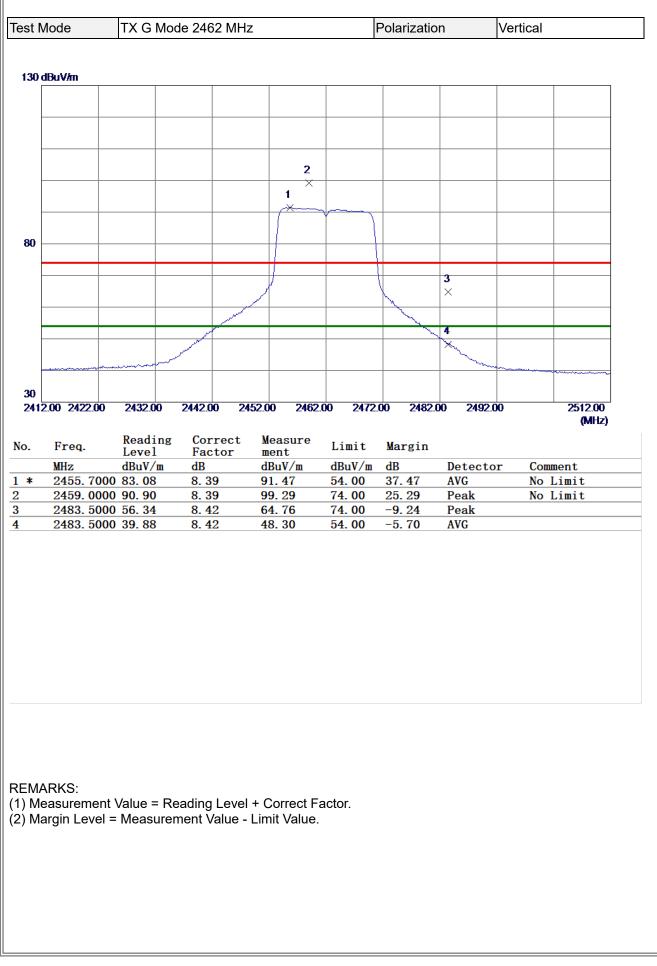


st Mode	TX B M	ode 2462 MH	lz		Polarizatio	n	Horizont	al
						_		
0 dBuV/m								
	2							
	1 ×							
30								
~								
20	00 0400 00	0050.00	1200.00 1375	0.00 4030	0.00 40050	00 04 404		00500.00
1000.00 3550.	.00 6100.00	8650.00 1		0.00 1630	0.00 18850	.00 21400	0.00	26500.00
			1200.00 1515					(MHZ)
	Readin				. ·			(MHz)
o. Freq.	Readin Level	g Correct Factor	Measure ment	Limit	Margin			
MHz	Level dBuV/m	g Correct Factor dB	Measure ment dBuV/m	Limit dBuV/m	dB	Detecto	or Con	(MHz) nment
MHz * 4923.9	Level	g Correct Factor	Measure ment	Limit		Detecto AVG Peak	or Con	
MHz * 4923.9	Level dBuV/m 0320 30.85	g Correct Factor dB 5.73	Measure ment dBuV/m 36.58	Limit dBuV/m 54.00	dB −17. 42	AVG	or Con	

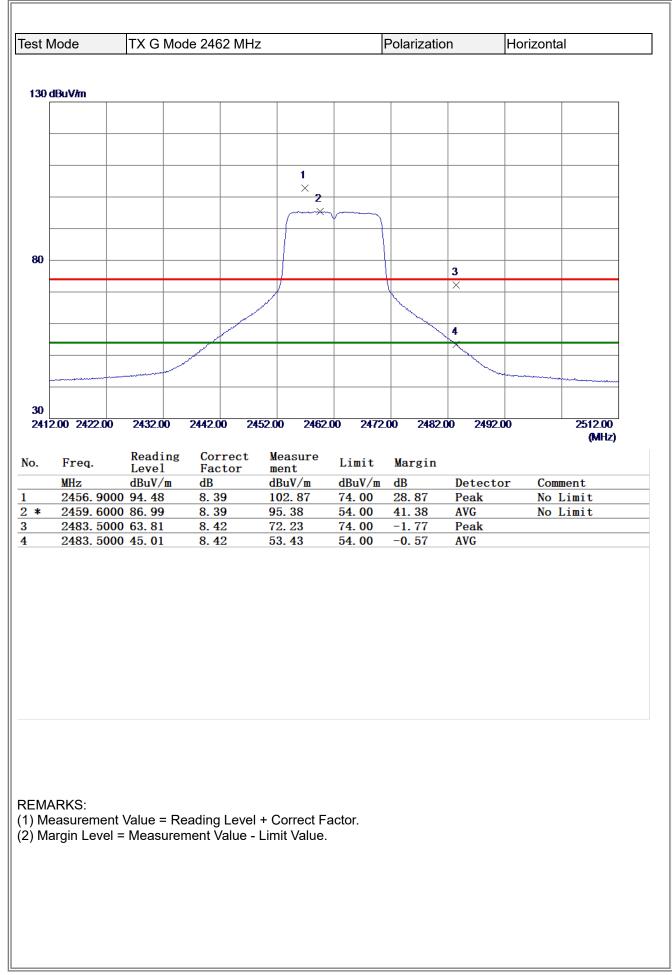


BLL

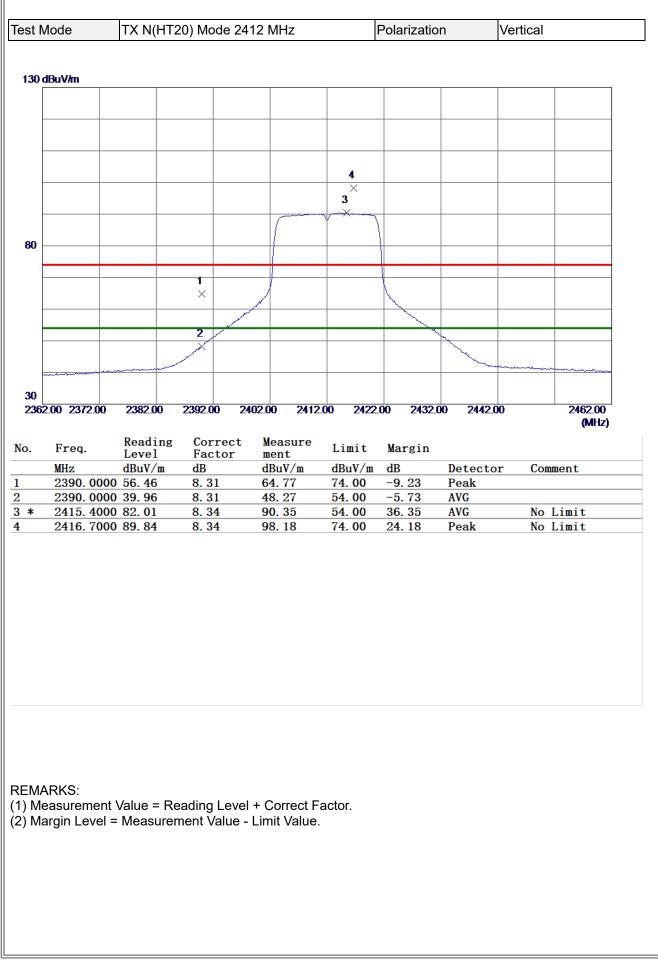

st M	lode	TX G M	ode 2412	MHz			Polarizatio	n	Vertical	
30 dE	3uV/m									
-										
-										
		1								
		×								
		2								
30		×								
\vdash										
									1	_
20	.00 3550.00) 6100.00	8650.00	11200	00 1375	0.00 1630	0.00 18850	00 2140	0.00	26500.00
000	.00 5550.00	0100.00	0000.00	11200.	00 1513	0.00 1000	0.00 10000	.00 2140	0.00	(MHz)
	Ener	Readin	g Corre	ect M	easure	1:-:+	Manada			
).	Freq.	Reading Level	Facto	or m	ent	Limit	Margin			
-	MHz	Level dBuV/m	Facto dB	or m dl	ent BuV/m	dBuV/m	dB	Detecto	or Co	mment
	MHz 4822.75	Level	Facto	or m dl 4	ent			Detecto Peak AVG	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
	MHz 4822.75	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
*	MHz 4822. 75 4823. 84	Level dBuV/m 70 40.18	Facto dB 5. 22	or m dl 4	ent BuV/m 5.40	dBuV/m 74. 00	dB -28. 60	Peak	or Co	mment
*	MHz 4822. 75 4823. 84	Level dBuV/m 70 40. 18 70 28. 98	Facto dB 5. 22 5. 23	or m dl 44 34	ent BuV/m 5.40 4.21	dBuV/m 74.00 54.00	dB -28. 60	Peak	or Co	mment
* EMA	MHz 4822. 75 4823. 84 88 84 84 84 84 84 84 84 84 84 84 84 8	Level dBuV/m 70 40. 18 70 28. 98	Facto dB 5. 22 5. 23	evel + 0	ent BuV/m 5. 40 4. 21 Correct F	dBuV/m 74.00 54.00	dB -28. 60	Peak	or Co	mment
* EMA	MHz 4822. 75 4823. 84 88 84 84 84 84 84 84 84 84 84 84 84 8	Level dBuV/m 70 40. 18 70 28. 98	Facto dB 5. 22 5. 23	evel + C	ent BuV/m 5. 40 4. 21 Correct F	dBuV/m 74.00 54.00	dB -28. 60	Peak	or Co	mment
) Me	MHz 4822. 75 4823. 84 88 84 84 84 84 84 84 84 84 84 84 84 8	Level dBuV/m 70 40. 18 70 28. 98	Facto dB 5. 22 5. 23	evel + C	ent BuV/m 5. 40 4. 21 Correct F	dBuV/m 74.00 54.00	dB -28. 60	Peak	or Co	mment
* EMA	MHz 4822. 75 4823. 84 88 84 84 84 84 84 84 84 84 84 84 84 8	Level dBuV/m 70 40. 18 70 28. 98	Facto dB 5. 22 5. 23	evel + C	ent BuV/m 5. 40 4. 21 Correct F	dBuV/m 74.00 54.00	dB -28. 60	Peak	or Co	mment
* EMA	MHz 4822. 75 4823. 84 88 84 84 84 84 84 84 84 84 84 84 84 8	Level dBuV/m 70 40. 18 70 28. 98	Facto dB 5. 22 5. 23	evel + C	ent BuV/m 5. 40 4. 21 Correct F	dBuV/m 74.00 54.00	dB -28. 60	Peak	or Co	mment
* EMA	MHz 4822. 75 4823. 84 88 84 84 84 84 84 84 84 84 84 84 84 8	Level dBuV/m 70 40. 18 70 28. 98	Facto dB 5. 22 5. 23	evel + C	ent BuV/m 5. 40 4. 21 Correct F	dBuV/m 74.00 54.00	dB -28. 60	Peak	or Co	mment
* MA Me	MHz 4822. 75 4823. 84 88 84 84 84 84 84 84 84 84 84 84 84 8	Level dBuV/m 70 40. 18 70 28. 98	Facto dB 5. 22 5. 23	evel + C	ent BuV/m 5. 40 4. 21 Correct F	dBuV/m 74.00 54.00	dB -28. 60	Peak	or Co	mment
⊧ MA Me	MHz 4822. 75 4823. 84 88 84 84 84 84 84 84 84 84 84 84 84 8	Level dBuV/m 70 40. 18 70 28. 98	Facto dB 5. 22 5. 23	evel + C	ent BuV/m 5. 40 4. 21 Correct F	dBuV/m 74.00 54.00	dB -28. 60	Peak	or Co	mment


est Mo	de	TX G Mo	ode 2412	MHz		I	Polarizatio	n	Horizon	al
80 dBu'	Vim									
-										
		2								
		X								
		1								
30										
-20										
1000.00	0 3550.00	6100.00	8650.00	11200	00 1375	0.00 16300	0.00 18850	.00 21400	0.00	26500.00 (MHz)
A 1	Frog	Reading	corre	ect M	leasure	Limit	Margin			
	Freq.	Level	Facto	or m	lent	Limit	Margin	Detecto		
M	Æ	Level dBuV/m	Facto dB	or m d	ent BuV/m	dBuV/m	dB		or Cor	ment
M * 4		Level dBuV/m 0 34.73	Facto	or m d 3	lent			Detecto AVG Peak	or Cor	ment
M * 4	4Hz 4823.908	Level dBuV/m 0 34.73	Facto dB 5.23	or m d 3	ent BuV/m 9.96	dBuV/m 54. 00	dB −14. 04	AVG	or Cor	ment

80 dBuV/m 2 1 1 1 1 1 1 1 30 1 1 1 1 1 1 1 1 30 1 <t< th=""><th></th></t<>	
2 2 <th2< th=""> <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<></th2<>	
X I I I 1 X I I I 1 X I I I 20 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 20 I I I I 10000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 I I I I I I I I 10000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 I I I I I I I 10000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00	
X I I I 30 I I I I 30 X I I I 30 I I I I Image: Ima	
X 1 X	
30 1 1 30 1 1 20 1 1 1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 1000.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 1000.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 1000.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 1000.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20	
30 1 1 1 30 X 1 1 1 30 X 1 1 1 30 X 1 1 1 20 1 1 1 1 1 1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 1 1 1 1 1 1 1 1 20 1 1 1 1 1 1 1 1 20 1 1 1 1 1 1 1 1 1 20 1	
30 1 × 1	
30 ×	
20 300000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 20 1	
MHz dBuV/m dB dBuV/m dB dBuV/m dB Detector Correct Correct Margin Correct	
MHz Buv/m B	
Number Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Correct * 4873.9950 29.79 5.48 35.27 54.00 -18.73 AVG	
Number Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Correct * 4873.9950 29.79 5.48 35.27 54.00 -18.73 AVG	
MHz dBuV/m dB dBuV/m dB dBuV/m dB Detector Correct Correct Margin Correct Correct Correct Margin Correct Correct<	
Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 p. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Correct * 4873.9950 29.79 5.48 35.27 54.00 -18.73 AVG	
MHz dBuV/m dB dBuV/m dB dBuV/m dB Detector Correct Correct Margin Correct Correct Correct Margin Correct Correct<	
MHz dBuV/m dB dBuV/m dB dBuV/m dB Detector Correct Correct Margin Correct Correct Correct Margin Correct Correct<	
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Co * 4873.9950 29.79 5.48 35.27 54.00 -18.73 AVG	26500.00
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Co * 4873.9950 29.79 5.48 35.27 54.00 -18.73 AVG	(MHz)
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Co * 4873.9950 29.79 5.48 35.27 54.00 -18.73 AVG	
	omment
1010. 1030 11. 13 0. 13 11. 20 11. 00 20. 12 Teak	

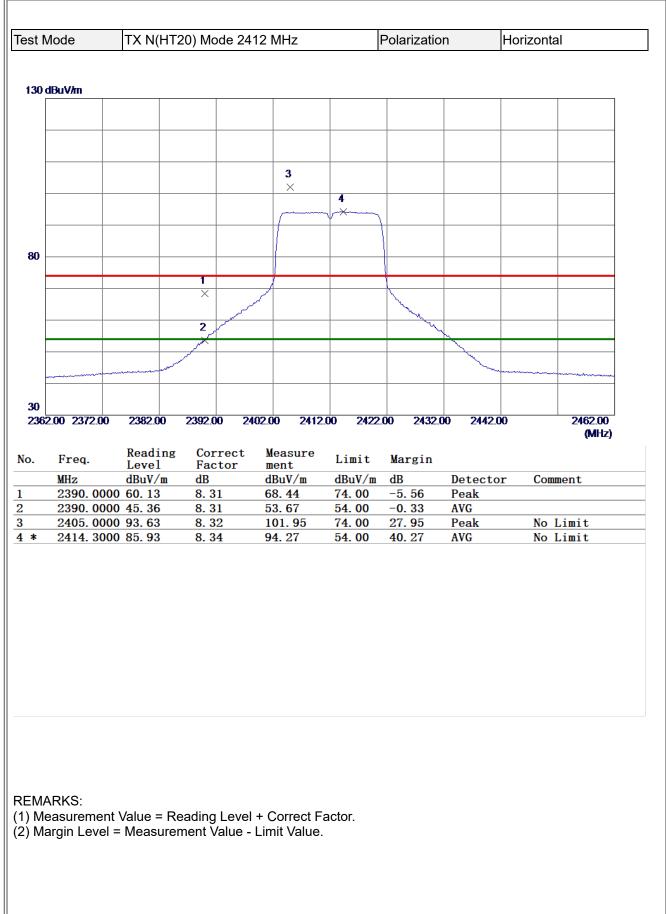


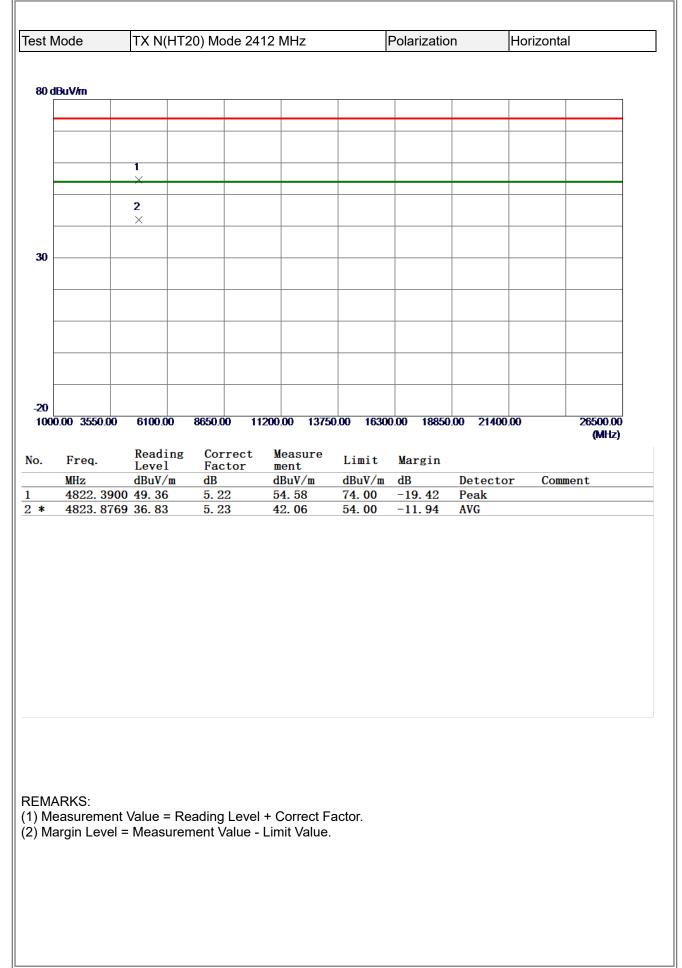
iest l	Node	TX G Mo	de 2437 N	1Hz		Polarizatio	n	Horizonta	ıl
80 c	lBuV <i>i</i> m								
		- 1 ×							
		2							
		×							
30									
-20									
	0.00 3550.00	6100.00	8650.00	11200.00 1375	60.00 1630	0.00 18850	.00 2140	0.00	26500.00 (MHz)
		Reading	Correc	t Measure					(MFLZ)
No.	Freq.	Level	Factor	ment	Limit	Margin			
1	MHz 4872.335	dBuV/m 50 50 01	dB 5. 47	dBuV/m 55.48	dBuV/m 74.00	dB -18. 52	Detecto Peak	or Com	nent
2 *	4873.807		5.48	43. 44	54.00	-10. 56	AVG		


BLL

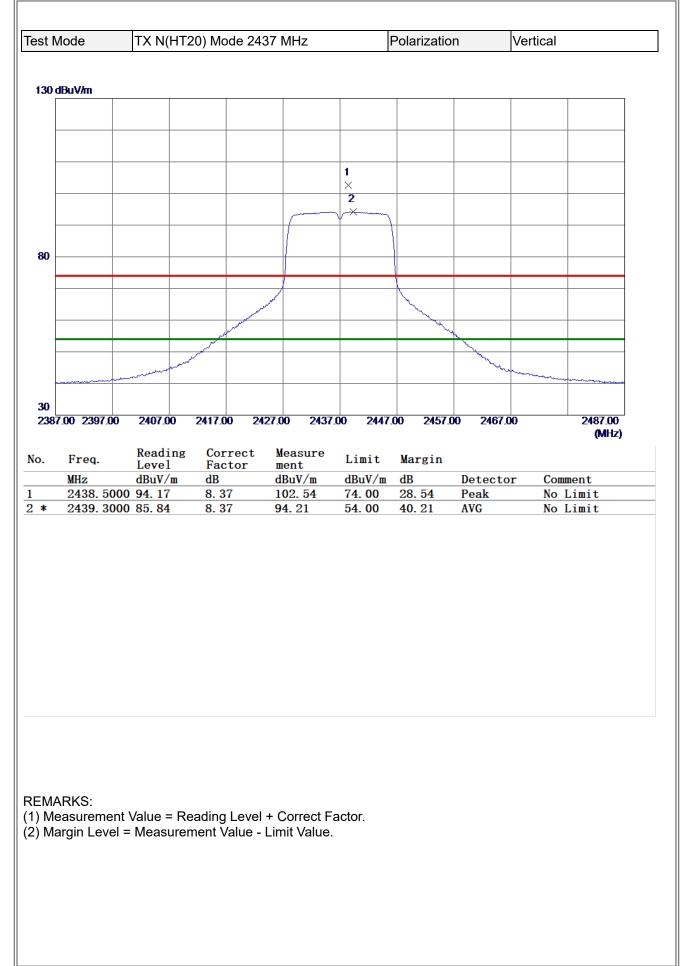
	lode	TX G Mo	de 2462 M	Hz	I	Polarizatio	n	Vertical	
2 2									
× 1 × × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × ×	BuV/m								
X I I I I 30 1 X I I I 30 X I I I I I I 30 I I I I I I I I 30 I <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
X I I I I 30 1 X I I I 30 X I I I I I 30 I I I I I I I 30 I I I I I I I I Image: I									
× 1 × 1 × 30 1 × 1 1 1 30 × 1 1 1 1 1 30 × 1 1 1 1 1 1 30 × 1 1 1 1 1 1 1 30 × 1									
X I I I I 30 1 X I I I 30 X I I I I I 30 I I I I I I I 30 I I I I I I I I Image: I									
30 1 × × 1 × ×		2							
30 ×		×							
30		1							
20		×							
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2654 (************************************									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4922.7950 28.31 5.73 34.04 54.00 -19.96 AVG									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4922.7950 28.31 5.73 34.04 54.00 -19.96 AVG									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2654 (************************************									
MHz dBuV/m dB dBuV/m dB Duv/m dB Duv/m dB Duv/m dB Aug * 4922.7950 28.31 5.73 34.04 54.00 -19.96 AVG									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2650 p. Freq. Reading Level Correct Factor ment Measure Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4922.7950 28.31 5.73 34.04 54.00 -19.96 AVG									
MHz dBuV/m dB dBuV/m dB Duv/m dB Duv/m dB Duv/m dB Aug * 4922.7950 28.31 5.73 34.04 54.00 -19.96 AVG									
Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4922.7950 28.31 5.73 34.04 54.00 -19.96 AVG									
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment*4922.795028.315.7334.0454.00-19.96AVG	00 3550.00	6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	0.00 21400	0.00	26500.00 (MHz)
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4922.7950 28.31 5.73 34.04 54.00 -19.96 AVG									(IAU IZ)
* 4922. 7950 28. 31 5. 73 34. 04 54. 00 -19. 96 AVG		Reading	Correct	Moasuro					
	Freq.	Level	Factor	ment					
	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB		or Co	mment
	MHz 4922.7950	Level dBuV/m 0 28.31	Factor dB 5.73	ment dBuV/m 34.04	dBuV/m 54. 00	dB -19. 96	AVG	or Co	mment

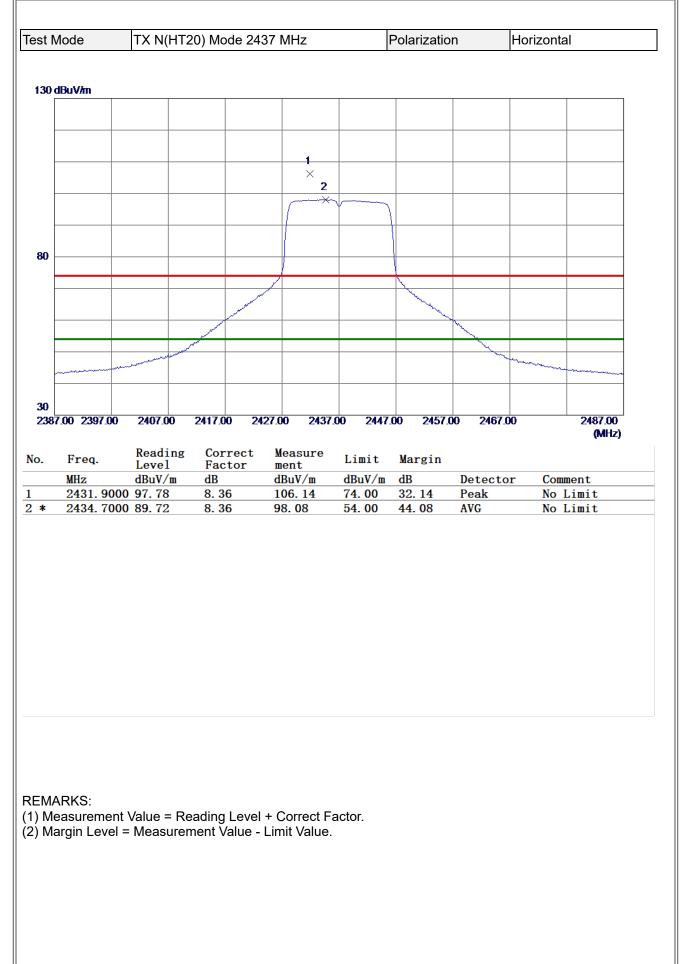
est N	Mode	TX G N	/lode 2462 l	MHz		Polarizatio	n	Horizor	ntal
0 d	1BuV/m								
		1							
		×							
		2							
		X							
30									
							1		
-20									
	0.00 3550.00	6100.00) 8650.00	11200.00	13750.00 1630	0.00 18850).00 21400).00	26500.00
									(MHz)
0.	Freq.	Readi Level	ng Corre Facto		re Limit	Margin			
0.	MHz	Level dBuV/1	Factor n dB	r ment dBuV/n	m dBuV/m	dB	Detecto	or Co	omment
0. *	MHz	Level dBuV/1 20 47.79	Facto	r ment	<u>m dBuV/m</u> 74.00		Detecto Peak AVG	or Co	omment
	MHz 4922.102	Level dBuV/1 20 47.79	Facto dB 5.73	r ment dBuV/r 53.52	<u>m dBuV/m</u> 74.00	dB -20. 48	Peak	or Co	omment

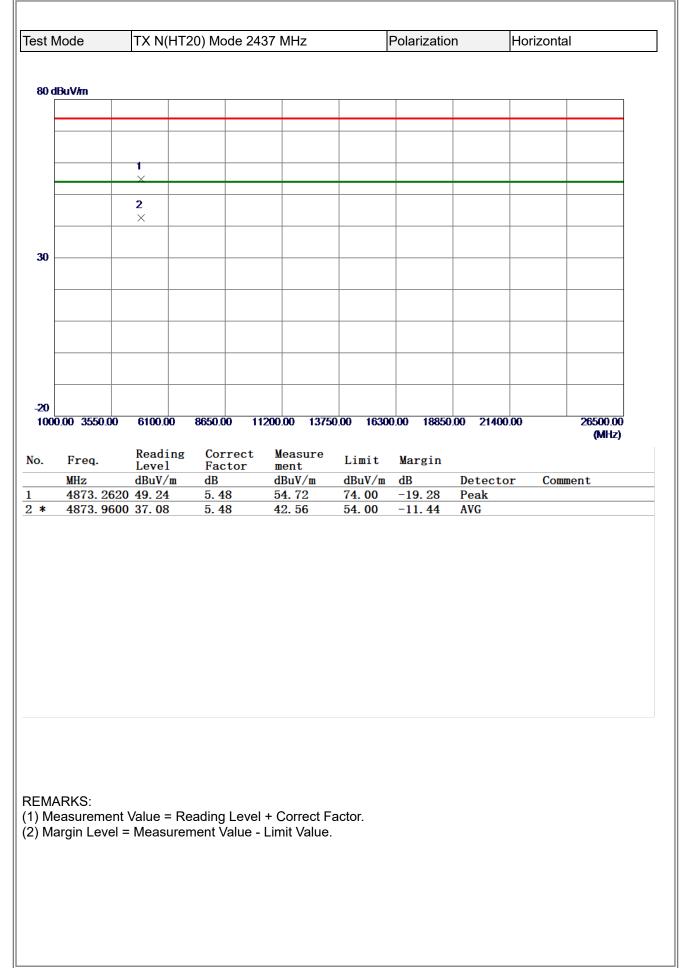




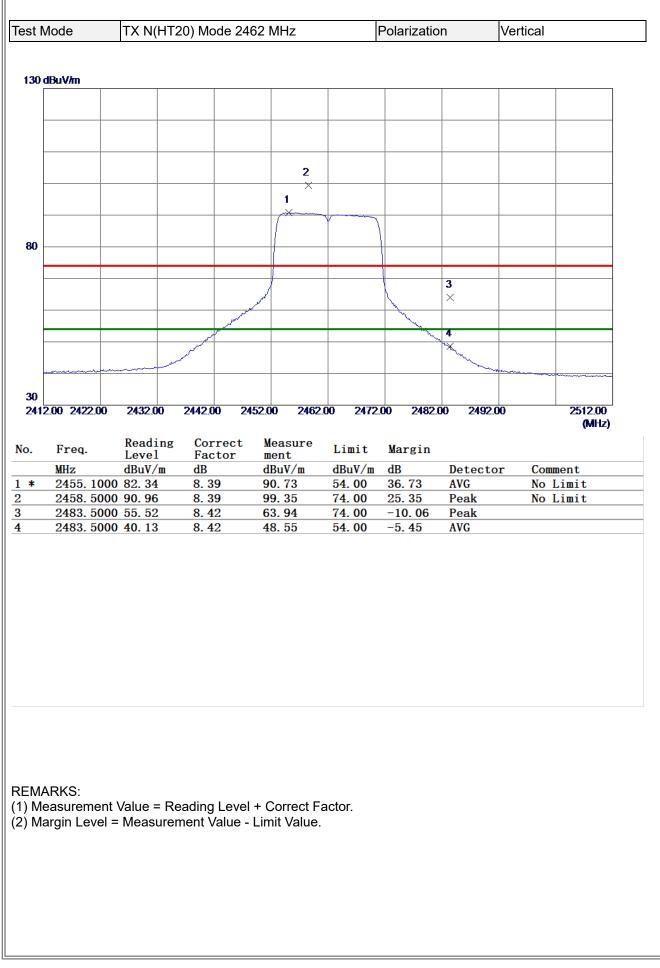
MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	Image: Contract of the state of th	Image: Contract of the state of th	st Iv	lode	TX N(H	T20) Mo	de 2412	MHz		Polarizatio	on	Vertica	1
Image: state of the s	Image: Contract Measure Limit Margin Image: Contract Measure Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	Image: Contract Measure Limit Margin Image: Contract Measure Measure Measure Level Limit Margin MHz dBuV/m											
× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × </th <th>× ×</th> <th>× ×</th> <th>0 d</th> <th>BuV/m</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th>	× ×	× ×	0 d	BuV/m							1		
× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × </td <td>× ×</td> <td>× ×</td> <td></td>	× ×	× ×											
× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × </td <td>× ×</td> <td>× ×</td> <td>╞</td> <td></td>	× ×	× ×	╞										
× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × </td <td>× ×</td> <td>× ×</td> <td></td>	× ×	× ×											
× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × </td <td>× ×</td> <td>× ×</td> <td></td>	× ×	× ×											
2 X Image: Contract of the state of the	2 X Image: Contract Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	2 X Image: Contract Measure Ment Limit Margin MHz dBuV/m dB dBuV/m dB dBuV/m dB Detector Comment	$\left \right $										
× ×	× ×	× ×											
0 0	Image: Second state of the second s	Image: Second state of the second s											
NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Comment Margin Detector Comment Comment <thcomment< th=""> Comment C</thcomment<>	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	۱ŀ										
NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Comment Margin Detector Comment Comment <thcomment< th=""> Comment C</thcomment<>	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak											
NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Comment Margin Detector Comment Comment <thcomment< th=""> Comment C</thcomment<>	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak											
NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Comment Margin Detector Comment Comment <thcomment< th=""> Comment C</thcomment<>	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	-										
NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Comment Margin Detector Comment Comment <thcomment< th=""> Comment C</thcomment<>	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak											
NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Comment Margin Detector Comment Comment <thcomment< th=""> Comment C</thcomment<>	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak											
NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Comment Margin Detector Comment Comment <thcomment< th=""> Comment C</thcomment<>	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak											
MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Margin Detector Comment Comment Comment Comment Detector Comment Comment <thcomment< th=""> Comment <thc< td=""><td>MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Comment Margin Detector Comment <thcomment< th=""> Comment C</thcomment<></td><td>NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thcomment<>	MHz Busyle Busyle Correct Measure ment Limit Margin Margin Cornect Cornect Measure ment Limit Margin Detector Comment Comment Comment Margin Detector Comment Comment Comment Margin Detector Comment Comment <thcomment< th=""> Comment C</thcomment<>	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak											
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4823.682040.965.2346.1974.00-27.81Peak	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4823.682040.965.2346.1974.00-27.81Peak	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4823.682040.965.2346.1974.00-27.81Peak		0.00 3550.00	6100.00	8650.0	0 1120	0.00 137	50.00 1630	0.00 18850	0.00 2140	0.00	
Here Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	Here Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak	Here Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4823.6820 40.96 5.23 46.19 74.00 -27.81 Peak											(MHZ)
4823. 6820 40. 96 5. 23 46. 19 74. 00 -27. 81 Peak	4823. 6820 40. 96 5. 23 46. 19 74. 00 -27. 81 Peak	4823. 6820 40. 96 5. 23 46. 19 74. 00 -27. 81 Peak			Poodin	a Com	root 1	Vacauma					
					Level	Fac	tor i	ment					
				MHz	Level dBuV/m	Fac dB	tor i	ment dBuV/m	dBuV/m	dB		or Co	omment
				MHz 4823.6820	Level dBuV/m 0 40.96	Fac dB 5. 23	tor 1 6 3 4	ment 1BuV/m 46.19	dBuV/m 74. 00	dB -27. 81	Peak	cor Co	omment
				MHz 4823.6820	Level dBuV/m 0 40.96	Fac dB 5. 23	tor 1 6 3 4	ment 1BuV/m 46.19	dBuV/m 74. 00	dB -27. 81	Peak	or Co	omment
				MHz 4823.6820	Level dBuV/m 0 40.96	Fac dB 5. 23	tor 1 6 3 4	ment 1BuV/m 46.19	dBuV/m 74. 00	dB -27. 81	Peak	or Co	omment
				MHz 4823.6820	Level dBuV/m 0 40.96	Fac dB 5. 23	tor 1 6 3 4	ment 1BuV/m 46.19	dBuV/m 74. 00	dB -27. 81	Peak	or Co	omment
				MHz 4823.682(4823.727(Level dBuV/m 0 40.96	Fac dB 5. 23	tor 1 6 3 4	ment 1BuV/m 46.19	dBuV/m 74. 00	dB -27. 81	Peak	or Co	omment
/ARKS:			ЛА	MHz 4823. 682(4823. 727(Level dBuV/m 0 40.96 0 29.86	Fac dB 5. 2: 5. 2:	tor 1 3 4 3 3	ment <u>iBuV/m</u> <u>46. 19</u> <u>35. 09</u>	dBuV/m 74.00 54.00	dB -27. 81	Peak	or Co	omment
/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	ЛА Ле	MHz 4823. 6820 4823. 7270	Leve1 dBuV/m 0 40.96 0 29.86	Fac dB 5. 2: 5. 2: 7. 2: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:	Level +	ment <u>BuV/m</u> <u>46. 19</u> <u>35. 09</u> Correct F	dBuV/m 74.00 54.00	dB -27. 81	Peak	or Co	omment
/ARKS: Measurement Value = Reading Level + Correct Factor. Margin Level = Measurement Value - Limit Value.	/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	Me	MHz 4823. 6820 4823. 7270	Leve1 dBuV/m 0 40.96 0 29.86	Fac dB 5. 2: 5. 2: 7. 2: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:	Level +	ment <u>BuV/m</u> <u>46. 19</u> <u>35. 09</u> Correct F	dBuV/m 74.00 54.00	dB -27. 81	Peak	or Co	omment
/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.		MHz 4823. 6820 4823. 7270	Leve1 dBuV/m 0 40.96 0 29.86	Fac dB 5. 2: 5. 2: 7. 2: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:	Level +	ment <u>BuV/m</u> <u>46. 19</u> <u>35. 09</u> Correct F	dBuV/m 74.00 54.00	dB -27. 81	Peak	or Co	omment
/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	ΛΑ Μe	MHz 4823. 6820 4823. 7270	Leve1 dBuV/m 0 40.96 0 29.86	Fac dB 5. 2: 5. 2: 7. 2: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:	Level +	ment <u>BuV/m</u> <u>46. 19</u> <u>35. 09</u> Correct F	dBuV/m 74.00 54.00	dB -27. 81	Peak	or Co	omment
/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	ΛΑ Μe	MHz 4823. 6820 4823. 7270	Leve1 dBuV/m 0 40.96 0 29.86	Fac dB 5. 2: 5. 2: 7. 2: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:	Level +	ment <u>BuV/m</u> <u>46. 19</u> <u>35. 09</u> Correct F	dBuV/m 74.00 54.00	dB -27. 81	Peak	or Co	omment

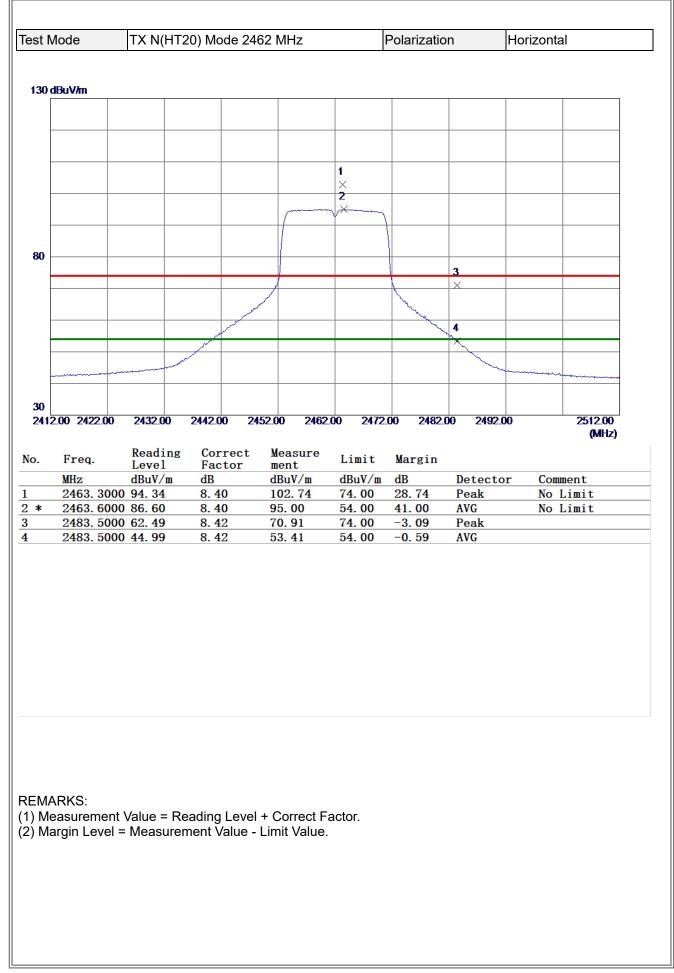




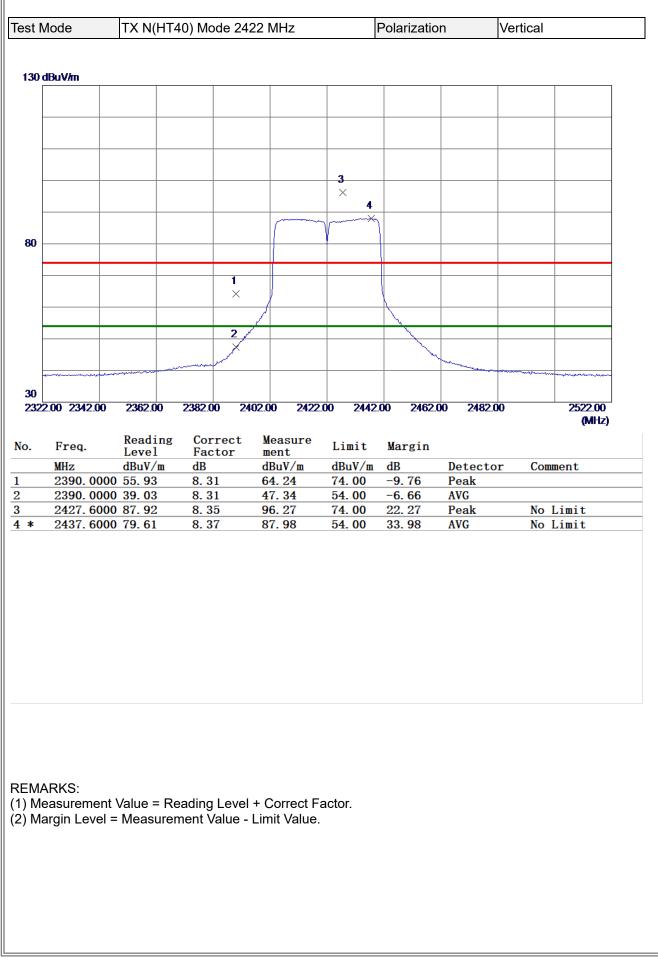


t Mode	TX N(HT	20) Mode 24	137 MHz		Polarizatio	n	Vertical	
0 dBuV/m								
	2 ×							
0								
0								
000.00 3550.	.00 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	00 21400	0.00	26500.00 (MHz)
								• • •
Ener	Reading	Correct	Measure	Limit	Manaia			
. Freq.	Reading Level	Factor	Measure ment	Limit	Margin	D 4 4	0	
MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB	Detecto	or Cor	nment
MHz ≰ 4873.9	Level	Factor	ment			Detecto AVG Peak	or Cor	nment
MHz ≰ 4873.9	Level dBuV/m 0770 29.80	Factor dB 5.48	ment dBuV/m 35.28	dBuV/m 54.00	dB −18. 72	AVG	or Cor	ment

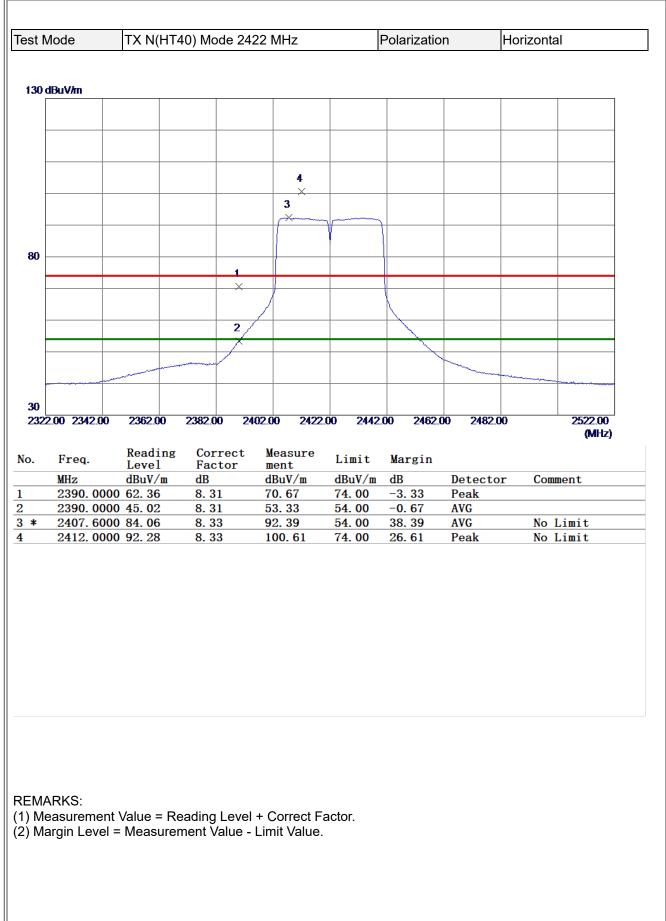


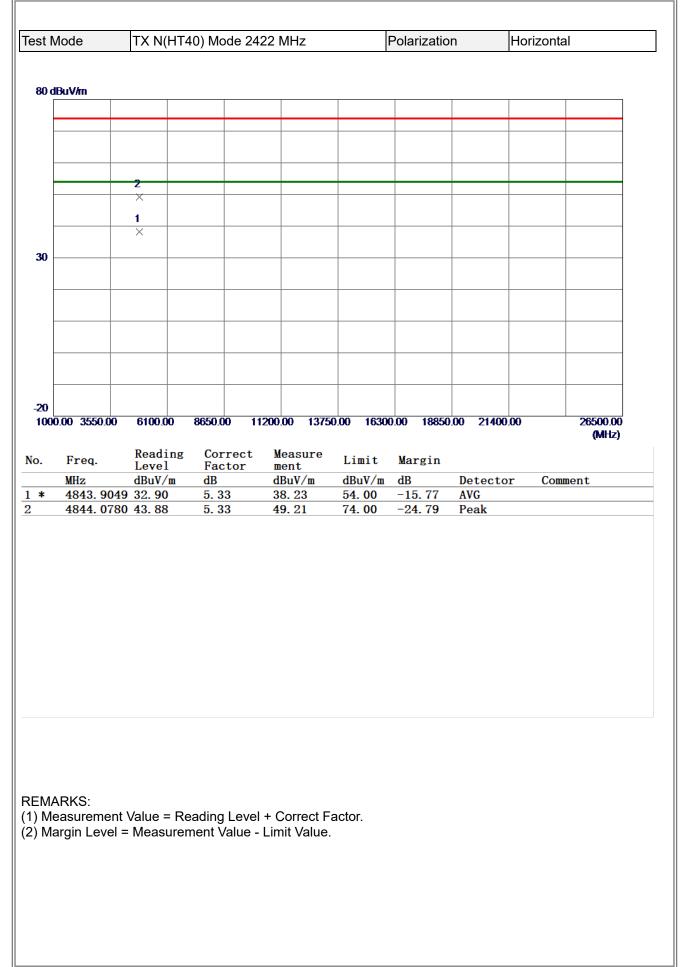


90 dBuVh Image: Constraint of the second secon	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× 1 × 6100.00 Reading Level dBuV/m 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× 1 × 6100.00 Reading Level dBuV/m 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
X I I I I 30 I X I I I 30 X I I I I 30 I I I I I I I I I I I I 20 I I I I I I I 20 I I I I I <td< th=""><th>0 000.00 3550.00 Freq. MHz 4922.5400</th><th>× 1 × 6100.00 Reading Level dBuV/m 28. 42</th><th>Correct Factor dB 5.73</th><th>Measure ment dBuV/m 34.15</th><th>Limit dBuV/m 54.00</th><th>Margin dB -19.85</th><th>Detecto AVG</th><th></th><th>(MHz)</th></td<>	0 000.00 3550.00 Freq. MHz 4922.5400	× 1 × 6100.00 Reading Level dBuV/m 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
X I I I I 30 1 X I I I 30 X I I I I I I 30 I I I I I I I I I I I I I I I I I I 20 I <	0 000.00 3550.00 Freq. MHz 4922.5400	× 1 × 6100.00 Reading Level dBuV/m 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
X I I I I 30 1 X I I I 30 X I I I I I I 30 I I I I I I I I I I I I I I I I I I 20 I I I I I I I I I I I 20 I	0 000.00 3550.00 Freq. MHz 4922.5400	× 1 × 6100.00 Reading Level dBuV/m 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
X I I I I 30 1 X I I I 30 X I I I I I I 30 I I I I I I I I I I I I I I I I I I 20 I <	0 000.00 3550.00 Freq. MHz 4922.5400	× 1 × 6100.00 Reading Level dBuV/m 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
X I I I I 30 1 X I I I 30 X I I I I I I 30 I I I I I I I I I I I I I I I I I I 20 I I I I I I I I I I I 20 I	0 000.00 3550.00 Freq. MHz 4922.5400	× 1 × 6100.00 Reading Level dBuV/m 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
30 1 × 1 × 1	0 000.00 3550.00 Freq. MHz 4922.5400	1 × 6100.00 Reading Level dBuV/m 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
30 ×	0 000.00 3550.00 Freq. MHz 4922.5400	× 6100.00 Reading Level dBuV/m) 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
30 30 <td< td=""><td>0 000.00 3550.00 Freq. MHz 4922.5400</td><td>6100.00 Reading Level dBuV/m) 28. 42</td><td>Correct Factor dB 5.73</td><td>Measure ment dBuV/m 34.15</td><td>Limit dBuV/m 54.00</td><td>Margin dB -19.85</td><td>Detecto AVG</td><td></td><td>(MHz)</td></td<>	0 000.00 3550.00 Freq. MHz 4922.5400	6100.00 Reading Level dBuV/m) 28. 42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
MHz Buv/m B	000.00 3550.00 Freq. MHz 4922.5400	Reading Level dBuV/m 28.42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4922.5400 28.42 5.73 34.15 54.00 -19.85 AVG	000.00 3550.00 Freq. MHz 4922.5400	Reading Level dBuV/m 28.42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4922.5400 28.42 5.73 34.15 54.00 -19.85 AVG	000.00 3550.00 Freq. MHz 4922.5400	Reading Level dBuV/m 28.42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
MHz Buv/m B	000.00 3550.00 Freq. MHz 4922.5400	Reading Level dBuV/m 28.42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
MHz Buv/m B	000.00 3550.00 Freq. MHz 4922.5400	Reading Level dBuV/m 28.42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
Number Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Duv/m dB Duv/m Duv/m dB Duv/m	000.00 3550.00 Freq. MHz 4922.5400	Reading Level dBuV/m 28.42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
Number Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Duv/m dB Duv/m Duv/m dB Duv/m	000.00 3550.00 Freq. MHz 4922.5400	Reading Level dBuV/m 28.42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
MHz Buv/m B	000.00 3550.00 Freq. MHz 4922.5400	Reading Level dBuV/m 28.42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 4922.5400 28.42 5.73 34.15 54.00 -19.85 AVG	Freq. MHz 4922.5400	Reading Level dBuV/m 28.42	Correct Factor dB 5.73	Measure ment dBuV/m 34.15	Limit dBuV/m 54.00	Margin dB -19.85	Detecto AVG		(MHz)
MHz BuV/m dB dBuV/m dBuV/m dB Detector Comment * 4922.5400 28.42 5.73 34.15 54.00 -19.85 AVG	MHz 4922.5400	Level dBuV/m 28.42	Factor dB 5.73	ment dBuV/m 34.15	dBuV/m 54. 00	dB -19. 85	AVG	or Co	mment
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4922.5400 28.42 5.73 34.15 54.00 -19.85 AVG	MHz 4922.5400	dBuV/m) 28. 42	dB 5. 73	dBuV/m 34. 15	dBuV/m 54. 00	dB -19. 85	AVG	or Co	mment
4925. 2430 40. 05 5. 74 45. 79 74. 00 -28. 21 Peak	4925. 2430	40. 05	5. 74	45. 79	74. 00	-28. 21	Peak		
	MARKS:								
MARKS:	Measurement '	Value = Re	eading Leve	el + Correct F	actor.				
Measurement Value = Reading Level + Correct Factor.	Margin Level =	Measurer	ment Value	- Limit Value					
EMARKS:) Measurement Value = Reading Level + Correct Factor.) Margin Level = Measurement Value - Limit Value.									
) Measurement Value = Reading Level + Correct Factor.									
) Measurement Value = Reading Level + Correct Factor.									
) Measurement Value = Reading Level + Correct Factor.									
Measurement Value = Reading Level + Correct Factor.									

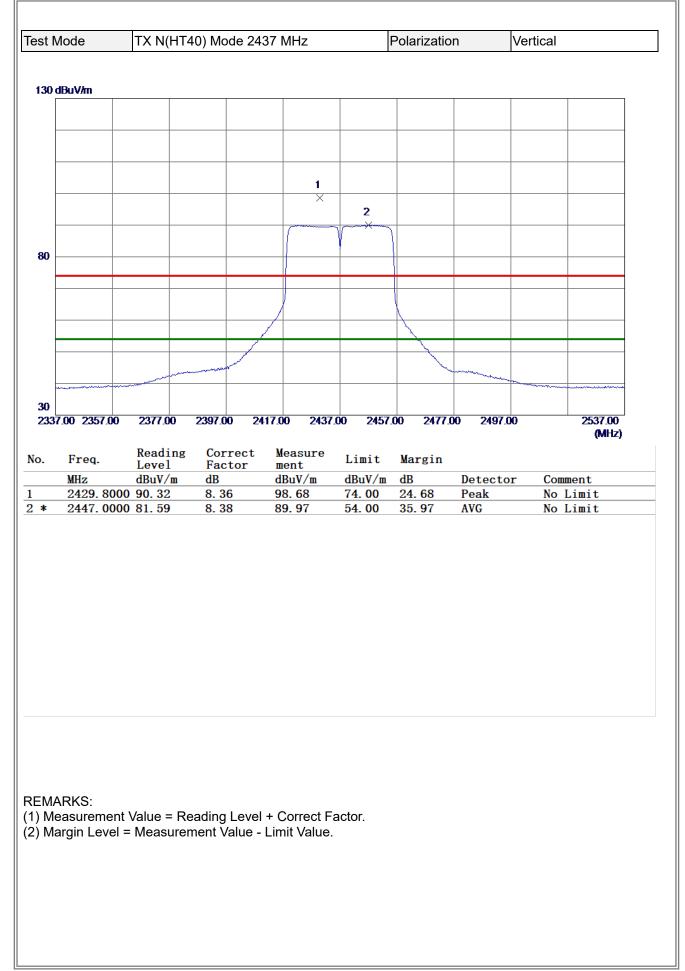


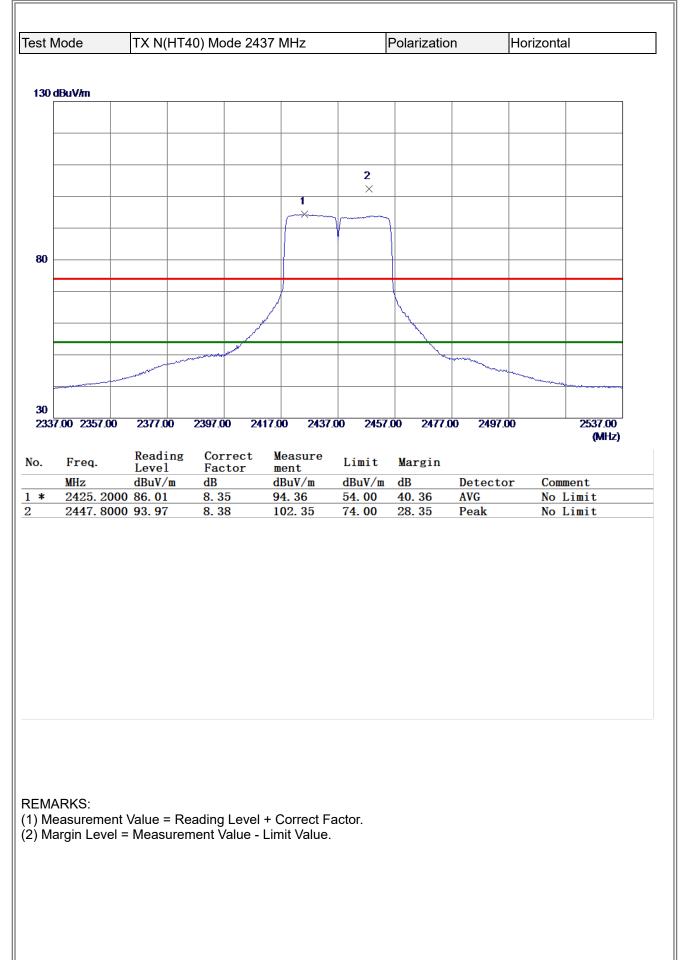
st N	lode	TX N(I	HT20) M	ode 24	62 MHz		Polarizat	ion	Horizo	ntal
) d	BuV/m									
ł		1								
ŀ		×								
		2								
80										
ŀ										
20										
	0.00 3550.00) 6100.0	0 8650.0	00 1 [°]	1200.00 1	13750.00 16	300.00 188	50.00 2140	0.00	26500.00
										(MHz)
).	Freq.	Readi	ng Con Fac	rrect	Measu	re Limit	Margin			
).	MHz	Level dBuV/r	Fac n dB	rrect ctor	Measur ment dBuV/m	Стшт		Detect	or C	omment
	MHz 4922.26	Level	Fac m dB 5.7	ctor 73	ment	<u>n dBuV/</u> 74.00	m dB -21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/1 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/1 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/1 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
	MHz 4922.26	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
*	MHz 4922.26 4924.03	Level dBuV/1 20 46.87	Fac m dB 5.7	ctor 73	ment dBuV/m 52.60	<u>n dBuV/</u> 74.00	m dB −21.40	Detect Peak	or C	omment
* EMA	MHz 4922. 26 4924. 03	Leve1 dBuV/n 20 46. 87 50 34. 23	Reading	g Level	ment dBuV/n 52. 60 39. 96	ct Factor.	m dB -21.40	Detect Peak	or C	omment
* ====================================	MHz 4922.26 4924.03	Leve1 dBuV/n 20 46. 87 50 34. 23	Reading	g Level	ment dBuV/n 52. 60 39. 96	ct Factor.	m dB -21.40	Detect Peak	or C	omment
* ====================================	MHz 4922. 26 4924. 03	Leve1 dBuV/n 20 46. 87 50 34. 23	Reading	g Level	ment dBuV/n 52. 60 39. 96	ct Factor.	m dB -21.40	Detect Peak	or C	omment
) Me	MHz 4922. 26 4924. 03	Leve1 dBuV/n 20 46. 87 50 34. 23	Reading	g Level	ment dBuV/n 52. 60 39. 96	ct Factor.	m dB -21.40	Detect Peak	or C	omment
* ====================================	MHz 4922. 26 4924. 03	Leve1 dBuV/n 20 46. 87 50 34. 23	Reading	g Level	ment dBuV/n 52. 60 39. 96	ct Factor.	m dB -21.40	Detect Peak	or C	omment
* EMA	MHz 4922. 26 4924. 03	Leve1 dBuV/n 20 46. 87 50 34. 23	Reading	g Level	ment dBuV/n 52. 60 39. 96	ct Factor.	m dB -21.40	Detect Peak	or C	omment
* MA	MHz 4922. 26 4924. 03	Leve1 dBuV/n 20 46. 87 50 34. 23	Reading	g Level	ment dBuV/n 52. 60 39. 96	ct Factor.	m dB -21.40	Detect Peak	or C	omment
< MA Me	MHz 4922. 26 4924. 03	Leve1 dBuV/n 20 46. 87 50 34. 23	Reading	g Level	ment dBuV/n 52. 60 39. 96	ct Factor.	m dB -21.40	Detect Peak	or C	omment



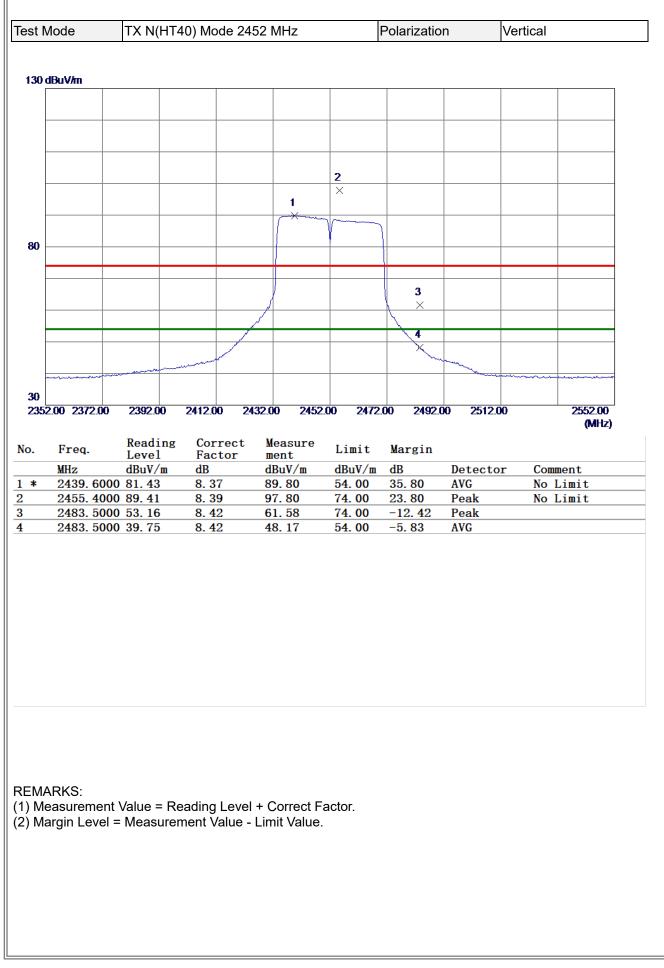


t Mode	TX N(H1	40) Mode	2422 MHz		Polarizatio	n	Vertical	
0 dBuV/m								
	1							
	X							
	2 ×							
o								
0								
000.00 3550.	00 6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	00 21400	0.00	26500.00 (MHz)
	Reading	correc	t Measure					(MILLZ)
Freq.	Reauting	. Correc						
	Level	Factor	r ment	Limit	Margin			
MHz	Level dBuV/m	Factor dB	r ment dBuV/m	dBuV/m	dB	Detecto	or Com	ment
MHz 4842.3	Level dBuV/m 330 40.02	Factor dB 5. 32	r ment dBuV/m 45.34	dBuV/m 74.00	dB -28.66	Peak	or Com	ment
MHz 4842.3	Level dBuV/m	Factor dB	r ment dBuV/m	dBuV/m	dB		or Com	nent
MHz 4842.3	Level dBuV/m 330 40.02	Factor dB 5. 32	r ment dBuV/m 45.34	dBuV/m 74.00	dB -28.66	Peak	or Com	nent

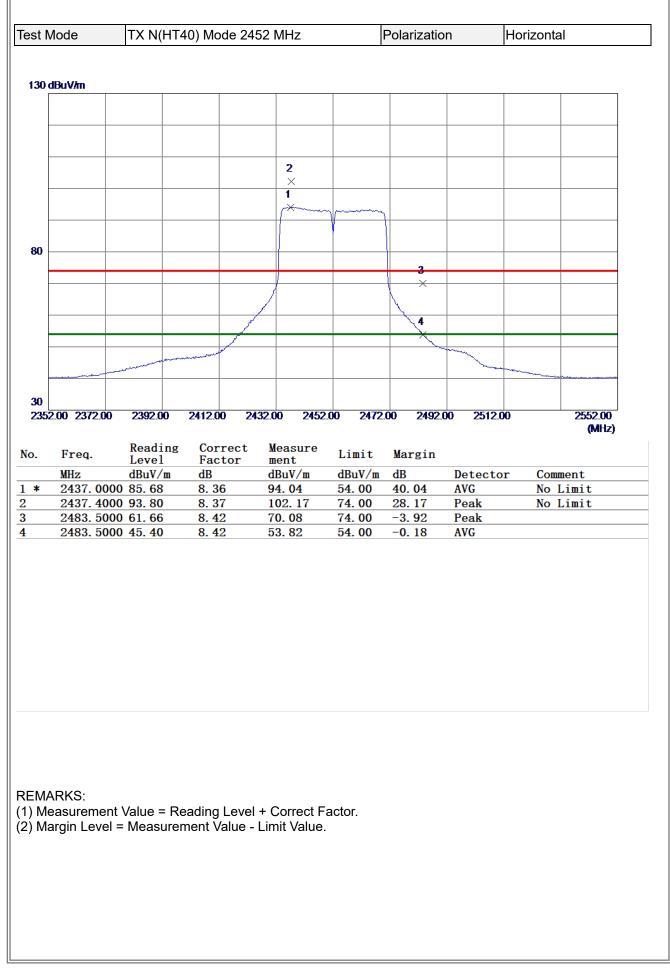


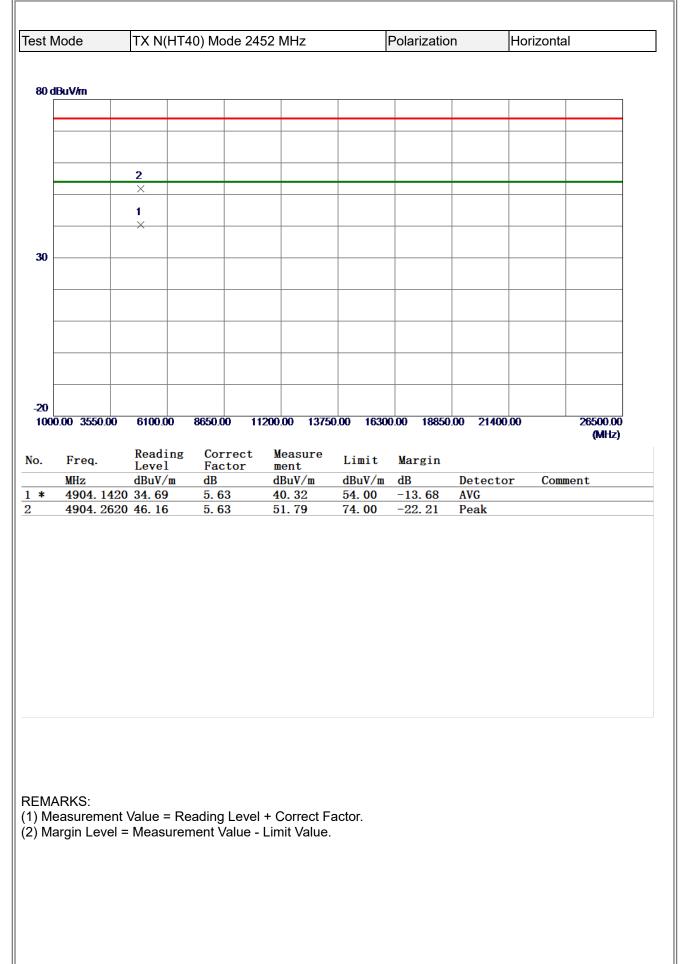


	Node	TX N(HT	40) Mode 24	37 MHz		Polarizatio	n	Vertical	
80 d	lBuV/m						1	1	
		1 ×							
		2							
		×							
30									
20									
100	0.00 3550.0	0 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	.00 21400).00	26500.00 (MHz)
o .	Freq.	Reading	Correct	Measure	Limit	Margin			
		Level	Factor	ment	LIMIC	margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detecto	or Con	ment
		dBuV/m 400 39.90	dB 5. 47	dBuV/m 45.37	dBuV/m 74.00	-28.63	Detecto Peak	or Con	ment
	4871.8							or Con	ment
*	4871.8	400 39.90	5.47	45.37	74.00	-28.63	Peak	or Con	ment

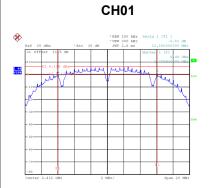

BIL

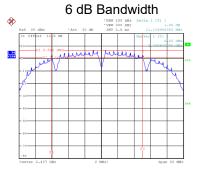
	TX N(H	T40) Mode	e 2437 M⊦	łz		Polarizatio	n	Horizon	ital
0 dBuV/m									
	1								
	×								
	2								
0									_
0									
000.00 355	0.00 6100.00	8650.00	11200.00	13750	.00 1630	0.00 18850	.00 21400	.00	26500.00
									(MHz)
. Freq.	Reading Level	g Corre	ct Mea	sure					
		Facto	r men	t	Limit	Margin			
MHz	dBuV/m	Facto dB	dBu	t V/m	dBuV/m	dB	Detecto	r Co	mment
4874.				t V/m 13			Detecto Peak AVG	r Co	mment
4874.	dBuV/m 0019 46.65	dB 5.48	dBu 52.	t V/m 13	dBuV/m 74. 00	dB -21. 87	Peak	r Co	mment





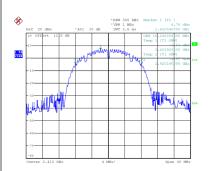
	ode	TX N(HT	40) Mode 2	452 MHz		Polarizatio	n	Vertical	
0 dBu	uV/m								
-									
		2							
		×							
		1							
30		×							
-20									
1000.0	00 3550.00	6100.00	8650.00	11200.00 13750	0.00 1630	0.00 18850	0.00 21400	0.00	26500.00 (MHz)
D.	Freq.	Reading	Correct	Measure	Limit	Margin			
	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m		Detecto	or Com	ment
*	4903. 927	0 28.97	5.63	34.60	54.00	-19. 40	AVG		
	4904.762	0 40.25	5.64	45.89	74.00	-28.11	Peak		



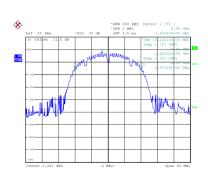

APPENDIX E - BANDWIDTH


Test Mode	e TX E	3 Mode			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	12.150	16.240	0.5	Complies
06	2437	11.120	16.240	0.5	Complies
11	2462	11.160	16.240	0.5	Complies

CH06



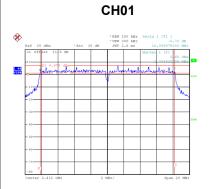
CH11

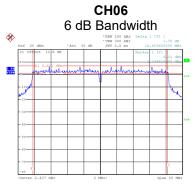


Date: 31.JUL.2021 16:44:32

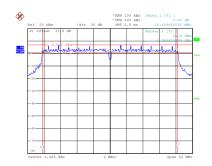
Date: 31.JUL.2021 16:49:04

Date: 31.JUL.2021 16:49:11

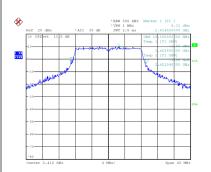

Date: 31.JUL.2021 16:44:39


Date: 31.JUL.2021 16:46:28

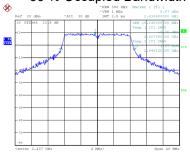
Date: 31.JUL.2021 16:46:21



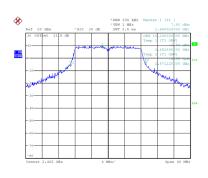
Test Mode	e TX (G Mode			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	16.390	18.160	0.5	Complies
06	2437	16.410	18.240	0.5	Complies
11	2462	16.410	18.240	0.5	Complies



CH11



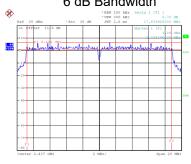
Date: 31.JUL.2021 16:50:22

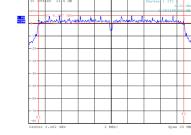

99 % Occupied Bandwidth

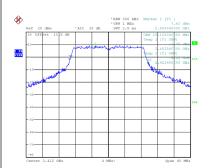
Date: 31.JUL.2021 16:51:36

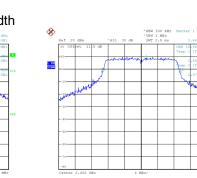
Date: 31.JUL.2021 16:52:47

Date: 31.JUL.2021 16:52:54


Date: 31.JUL.2021 16:50:29


Date: 31.JUL.2021 16:51:43


Test Mode	e TX N	N(HT20) Mode			
	•				
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	17.740	19.120	0.5	Complies
06	2437	17.640	19.200	0.5	Complies
11	2462	17.660	18.960	0.5	Complies
	CH01		CH06 6 dB Bandwidth	CH11	
Ref 20 dBm 20 \$ffret 11 5 dB	*VBW 300 kHz *Att 30 dB SWT 2.5 ms		*RBN 100 kHz Delta 1 (T1) *VRN 300 kHz 0.72 dB 20 dBm *Att 30 dB SMT 2.5 ms 17.65000 Hdz ¢ffhet 11 5 dB Marker 1 [T1	*20W 100 kHz Delta J *VNW 300 kHz Ref 20 dBm *Att 30 dB SW72.65 me 17. 20 offet 11 5 dB Marker	-0.91 dB 659975000 NHz

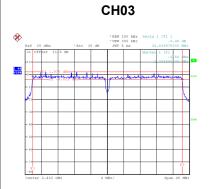


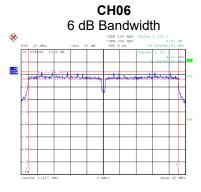
Date: 31.JUL.2021 16:53:54

99 % Occupied Bandwidth

Date: 31.JUL.2021 16:55:12

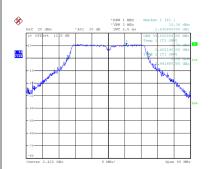
Date: 31.JUL.2021 16:56:33


Date: 31.JUL.2021 16:56:27

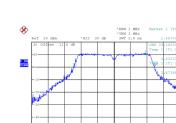

Date: 31.JUL.2021 16:54:01

Date: 31.JUL.2021 16:55:19

Test Mode	e TX N	N(HT40) Mode			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
03	2422	36.440	39.520	0.5	Complies
06	2437	36.560	39.680	0.5	Complies
09	2452	36.440	39.360	0.5	Complies



СН09


Date: 31.JUL.2021 17:04:02

Date: 31.JUL.2021 17:04:09

99 % Occupied Bandwidth

Date: 31.JUL.2021 17:05:15

Date: 31.JUL.2021 17:08:13

Date: 31.JUL.2021 17:08:20

Date: 31.JUL.2021 17:05:22

APPENDIX F - MAXIMUM OUTPUT POWER

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	17.72	30.00	1.0000	Complie
06	2437	17.67	30.00	1.0000	Complie
11	2462	17.61	30.00	1.0000	Complie
Fest Mode	TX G Mode				
Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	24.14	30.00	1.0000	Complie
06	2437	25.87	30.00	1.0000	Complie
11	2462	24.27	30.00	1.0000	Complie
Fest Mode	TX N(HT20) N	lode			
Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	24.58	30.00	1.0000	Complie
06	2437	25.91	30.00	1.0000	Complie
11	2462	24.64	30.00	1.0000	Complie
	TX N(HT40) N	lode			
Test Mode					
Test Mode Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
Channel	(MHz)	(dBm)	(dBm)	(W)	Result Complie Complie

APPENDIX G - CONDUCTED SPURIOUS EMISSIONS