

FCC Radio Test Report

FCC ID: 2AFZZL09G

This report concerns: Original Grant

Project No.	:	2106C114
Equipment	:	Mi Smart Speaker
Brand Name	:	MI
Test Model	:	L09G
Series Model	:	N/A
Applicant	:	Xiaomi Communications Co.,Ltd
Address	:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District,
		Beijing, China
Manufacturer	:	Xiaomi Communications Co.,Ltd
Address	:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District,
		Beijing, China
Factory	:	Huizhou MTN WEIYE Technology Development Co.,Ltd
Address	:	No.2 Huitai Road,Huinan High-tech Industrial Park,Huiao
		Avenue,Huizhou City,Guangdong Province,China. 516000
Date of Receipt	:	Jun. 16, 2021
Date of Test	:	Jun. 16, 2021 ~ Aug. 05, 2021
Issued Date	:	Aug. 13, 2021
Report Version	:	R00
Test Sample	:	Engineering Sample No.: DG202106169
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart C
		FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Theng chella

Prepared by : Chella Zheng

J-Chan Ma

Approved by : Ethan Ma

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
	-
1. SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
1.3 TEST ENVIRONMENT CONDITIONS	8
2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 DESCRIPTION OF TEST MODES	11
2.3 PARAMETERS OF TEST SOFTWARE	12
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
2.5 SUPPORT UNITS	13
3 . AC POWER LINE CONDUCTED EMISSIONS	14
3.1 LIMIT	14
3.2 TEST PROCEDURE	14
3.3 DEVIATION FROM TEST STANDARD	14
3.4 TEST SETUP	15
3.5 EUT OPERATING CONDITIONS	15
3.6 TEST RESULTS	15
4. RADIATED EMISSIONS	16
4.1 LIMIT	16
4.2 TEST PROCEDURE	16
4.3 DEVIATION FROM TEST STANDARD	17
4.4 TEST SETUP	17
4.5 EUT OPERATING CONDITIONS	19
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	19
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	19
4.8 TEST RESULTS - ABOVE 1000 MHZ	19
5 . NUMBER OF HOPPING FREQUENCY	20
5.1 LIMIT	20
5.2 TEST PROCEDURE	20
5.3 DEVIATION FROM STANDARD	20
5.4 TEST SETUP	20
5.5 EUT OPERATION CONDITIONS	20

Table of Contents	Page
5.6 TEST RESULTS	20
6 . AVERAGE TIME OF OCCUPANCY	21
6.1 LIMIT	21
6.2 TEST PROCEDURE	21
6.3 DEVIATION FROM STANDARD	21
6.4 TEST SETUP	21
6.5 EUT OPERATION CONDITIONS	21
6.6 TEST RESULTS	21
7 . HOPPING CHANNEL SEPARATION	22
7.1 LIMIT	22
7.2 TEST PROCEDURE	22
7.3 DEVIATION FROM STANDARD	22
7.4 TEST SETUP	22
7.5 EUT OPERATION CONDITIONS	22
7.6 TEST RESULTS	22
8 . BANDWIDTH	23
8.1 LIMIT	23
8.2 TEST PROCEDURE	23
8.3 DEVIATION FROM STANDARD	23
8.4 TEST SETUP	23
8.5 EUT OPERATION CONDITIONS	23
8.6 TEST RESULTS	23
9 . MAXIMUM OUTPUT POWER	24
9.1 LIMIT	24
9.2 TEST PROCEDURE	24
9.3 DEVIATION FROM STANDARD	24
9.4 TEST SETUP	24
9.5 EUT OPERATION CONDITIONS	24
9.6 TEST RESULTS	24
10 . CONDUCTED SPURIOUS EMISSION	25
10.1 LIMIT	25
10.2 TEST PROCEDURE	25
10.3 DEVIATION FROM STANDARD	25
10.4 TEST SETUP	25

Table of Contents	Page
10.5 EUT OPERATION CONDITIONS	25
10.6 TEST RESULTS	25
11 . MEASUREMENT INSTRUMENTS LIST	26
12 . EUT TEST PHOTO	28
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	33
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	36
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	41
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	44
APPENDIX E - NUMBER OF HOPPING FREQUENCY	69
APPENDIX F - AVERAGE TIME OF OCCUPANCY	71
APPENDIX G - HOPPING CHANNEL SEPARATION	76
APPENDIX H - BANDWIDTH	78
APPENDIX I - MAXIMUM OUTPUT POWER	80
APPENDIX J - CONDUCTED SPURIOUS EMISSION	83
APPENDIX K - DECLARATION FOR BLUETOOTH DEVICE	88

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Aug. 13, 2021

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C						
Standard(s) Section	Test Item	Test Result	Judgment	Remark		
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS			
15.247(d) 15.205(a) 15.209(a)	Radiated Emission	APPENDIX B APPENDIX C APPENDIX D	PASS			
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX E	PASS			
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX F	PASS			
15.247(a)(1)	Hopping Channel Separation	APPENDIX G	PASS			
15.247(a)(1)	Bandwidth	APPENDIX H	PASS			
15.247(a)(1)	Maximum Output Power	APPENDIX I	PASS			
15.247(d)	Conducted Spurious Emission	APPENDIX J	PASS			
15.203	Antenna Requirement		PASS	Note(2)		

Note:

- (1) "N/A" denotes test is not applicable in this test report
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China. BTL's Test Firm Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.68

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
	CISPR	9kHz ~ 30MHz	-	3.02
		30MHz ~ 200MHz	V	4.26
		30MHz ~ 200MHz	Н	3.38
DG-CB03		200MHz ~ 1,000MHz	V	3.98
		200MHz ~ 1,000MHz	Н	3.94
		1GHz ~ 6GHz	-	3.96
		6GHz ~ 18GHz	-	5.24
		18GHz ~ 26.5GHz	-	3.62
		26.5GHz ~ 40GHz	-	4.00

C. Other Measurement:

Test Item	Uncertainty
Conducted Spurious Emission	±2.71 dB
Hopping Channel Separation	±53.46 Hz
Maximum Output Power	±0.95 dB
Number of Hopping Frequency	±53.46 Hz
Bandwidth	±3.8 %
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	25°C	60%	AC 120V/60Hz	Laughing Zhang
Radiated Emissions-9 kHz to 30 MHz	25°C	60%	AC 120V/60Hz	Hayden Chen
Radiated Emissions-30 MHz to 1000 MHz	26°C	52%	AC 120V/60Hz	Hayden Chen
Radiated Emissions-Above 1000 MHz	26°C	52%	AC 120V/60Hz	Hayden Chen
Number of Hopping Frequency	23.3°C	62%	DC 12V	Jesse Wang
Average Time of Occupancy	23.3°C	62%	DC 12V	Jesse Wang
Hopping Channel Separation	23.3°C	62%	DC 12V	Jesse Wang
Bandwidth	23.3°C	62%	DC 12V	Jesse Wang
Maximum Output Power	23.3°C	62%	DC 12V	Jesse Wang
Conducted Spurious Emission	23.3°C	62%	DC 12V	Jesse Wang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mi Smart Speaker
Brand Name	Xiaomi
Test Model	L09G
Series Model	N/A
Model Difference(s)	N/A
Software Version	N/A
Hardware Version	N/A
Power Source	DC voltage supplied from AC adapter. Model: CYXT18-120150U
Power Rating	I/P: 100-240V~ 50/60Hz 0.6A O/P: 12V === 1.5A
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8-DPSK
Bit Rate of Transmitter	1Mbps, 2Mbps, 3Mbps
Max. Output Power	3Mbps: 8.10 dBm (0.0065 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	South star	N12-6457-R04	FPC	N/A	2.36

Note:

The antenna gain is provided by the manufacturer.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX Mode_1Mbps Channel 00/39/78
Mode 2	TX Mode_2Mbps Channel 00/39/78
Mode 3	TX Mode_3Mbps Channel 00/39/78
Mode 4	TX Mode_3Mbps Channel 78

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test			
Final Test Mode Description			
Mode 4	TX Mode_3Mbps Channel 78		

Radiated emissions test - Below 1GHz				
Final Test Mode	Description			
Mode 4	TX Mode_3Mbps Channel 78			

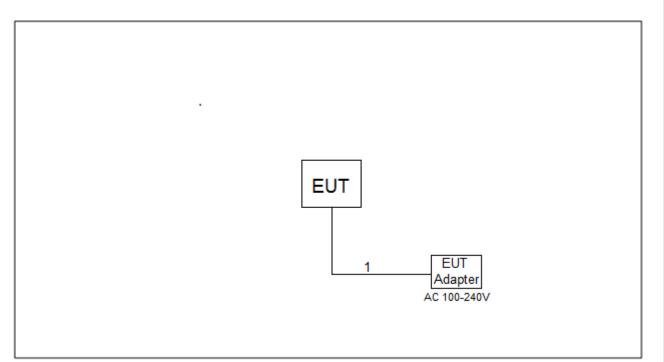
Radiated emissions test - Above 1GHz			
Final Test Mode	Description		
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 3	TX Mode_3Mbps Channel 00/39/78		

Maximum Output Power		
Final Test Mode Description		
Mode 1	TX Mode_1Mbps Channel 00/39/78	
Mode 2 TX Mode_2Mbps Channel 00/39/78		
Mode 3 TX Mode_3Mbps Channel 00/39/78		

Other Conducted test		
Final Test Mode Description		
Mode 1	TX Mode_1Mbps Channel 00/39/78	
Mode 3 TX Mode_3Mbps Channel 00/39/78		

Note:

- (1) The measurements for Output Power were tested with DH1/3/5 during 1Mbps, 2Mbps and 3Mbps, the worst case were 1Mbps (DH5) and 3Mbps (DH5), only worst case were documented for other test items except Average Time of Occupancy.
- (2) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (3) This product has the mode of BT AFH, which was considered during testing, but this mode is not the worst case mode, and this report only shows the worst case mode.
- (4) For AC power line conducted emissions and radiated spurious emissions below 1 GHz test, the 3Mbps Channel 78 are found to be the worst case and recorded.


2.3 PARAMETERS OF TEST SOFTWARE

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version	N/A		
Frequency (MHz)	2402	2441	2480
1Mbps	default	default	default
2Mbps	default	default	default
3Mbps	default	default	default

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
-	-	-	-	-

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.2m

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Frequency of Emission (MHz)	Limit (dBµV)		
Frequency of Emission (Minz)	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	

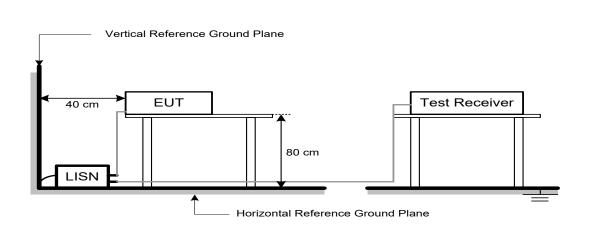
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting data or hopping on mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of [Note]. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/m at 3 m)	
	Peak	Average
Above 1000	74	54

Note:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

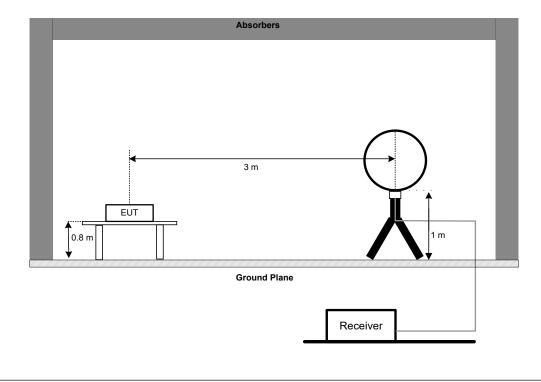
4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

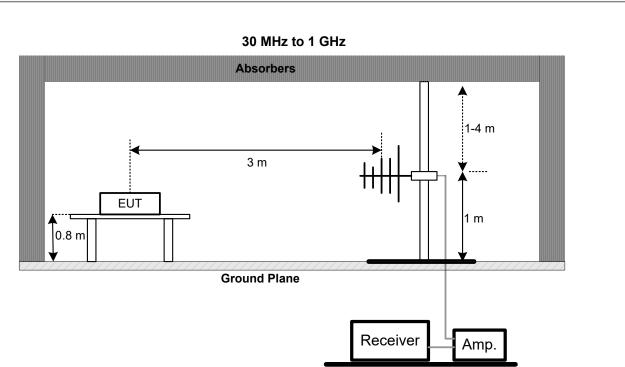
The following table is the setting of the receiver:

Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

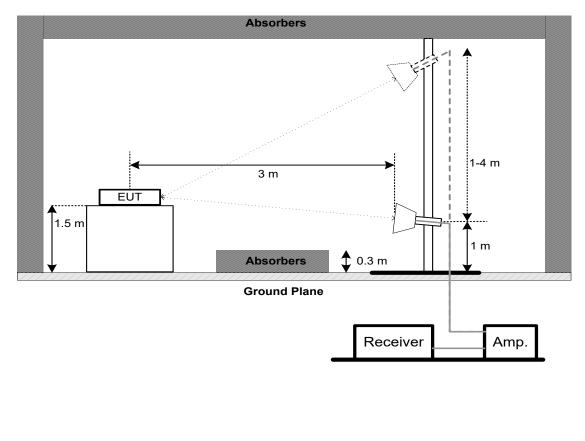
Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value

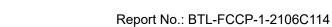

Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP


9 kHz to 30 MHz



Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULTS - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

4.8 TEST RESULTS - ABOVE 1000 MHz

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. NUMBER OF HOPPING FREQUENCY

5.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)(iii)	Number of Hopping Frequency	15

5.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	> Operating Frequency Range
RBW	100 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

6. AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec

6.2 TEST PROCEDURE

- a. Set the EUT for DH1, DH3 and DH5 packet transmitting.
- b. Measure the maximum time duration of one single pulse.
- c. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- d. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- e. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- f. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- g. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	0 MHz
RBW	1 MHz
VBW	1 MHz
Detector	Peak
Trace	Max Hold
Sweep Time	As necessary to capture the entire dwell time per hopping channel

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

7. HOPPING CHANNEL SEPARATION

7.1 LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	Wide enough to capture the peaks of two adjacent channels
RBW	30 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

8. BANDWIDTH

8.1 LIMIT

Section	Test Item
FCC 15.247(a)(1)	Bandwidth

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	> Measurement Bandwidth
RBW	30 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9. MAXIMUM OUTPUT POWER

9.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)	Maximum Output Power	0.1250 Watt or 20.97 dBm

Note: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting			
Span Frequency	Approximately five times the 20 dB bandwidth, centered on a hopping channel.			
RBW	3 MHz			
VBW	3 MHz			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX I.

10. CONDUCTED SPURIOUS EMISSION

10.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting				
Start Frequency	30 MHz				
Stop Frequency	26.5 GHz				
RBW	100 kHz				
VBW	100 kHz				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.6 TEST RESULTS

Please refer to the APPENDIX J.

11. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions							
Item	em Kind of Equipment Manufacturer Type No. S		Serial No.	Calibrated until				
1	EMI Test Receiver	R&S	ESCI	100382	Feb. 28, 2022			
2	LISN	EMCO	3816/2	52765	Feb. 27, 2022			
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Feb. 27, 2022			
4	50Ω Terminator	SHX	TF5-3	15041305	Feb. 27, 2022			
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
6	Cable	N/A	RG223	12m Mar. 09, 20				
7	643 Shield Room	43 Shield Room ETS		N/A	N/A			

	Radiated Emissions - 9 kHz to 30 MHz							
Item	Item Kind of Equipment Manufacturer Type No. Serial No. Cali							
1	Loop Antenna	EM	EM-6876-1	230	Apr. 28, 2022			
2	Cable	N/A	RG 213/U	N/A	May 27, 2022			
3	EMI Test Receiver	R&S	ESCI	100895	Feb. 27, 2022			
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
5	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2022			

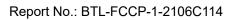
	Radiated Emissions - 30 MHz to 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 15, 2022			
2	Amplifier	HP	8447D	2944A08742	Feb. 28, 2022			
3	Receiver	Agilent	N9038A	MY52130039	Mar. 19, 2022			
4	Cable	emci	LMR-400(30MHz-1 GHz)(8m+5m)	N/A	May 20, 2022			
5	Controller	СТ	SC100	N/A	N/A			
6	Controller	MF	MF-7802	MF780208416	N/A			
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
8	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2022			

	Radiated Emissions - Above 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Double Ridged Guide Antenna	ETS	3115	75789	May 10, 2022			
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 30, 2022			
3	Amplifier	Agilent	8449B	3008A02584	Jul. 10, 2022			
4	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Feb. 28, 2022			
5	Receiver	Agilent	N9038A	MY52130039	Jul. 10, 2022			
6	Controller	СТ	SC100	N/A	N/A			
7	Controller	MF	MF-7802	MF780208416	N/A			
8	Cable	N/A	EMC104-SM-SM-6 000	N/A	Oct. 16, 2021			
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
10	Filter	STI	STI15-9912	N/A	Jul. 10, 2022			
11	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2022			

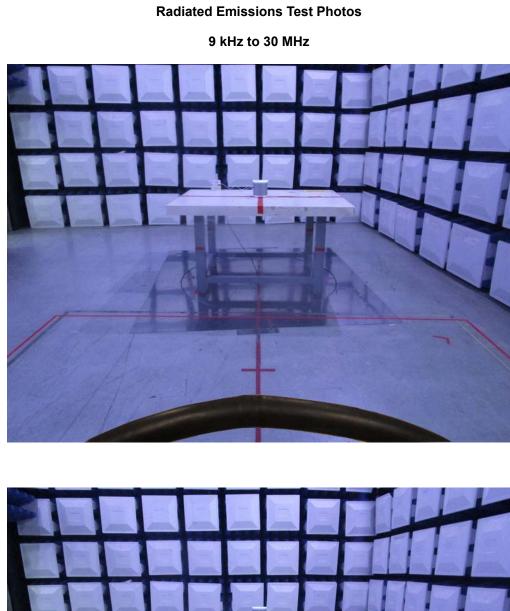
Number of Hopping Frequency & Average Time of Occupancy & Hopping Channel Separation & Bandwidth & Maximum Output Power & Conducted Spurious Emission								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP40	100185	Jul. 10, 2022			
2	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022			
3	RF Cable	Tongkaichuan	N/A	N/A	N/A			
4								

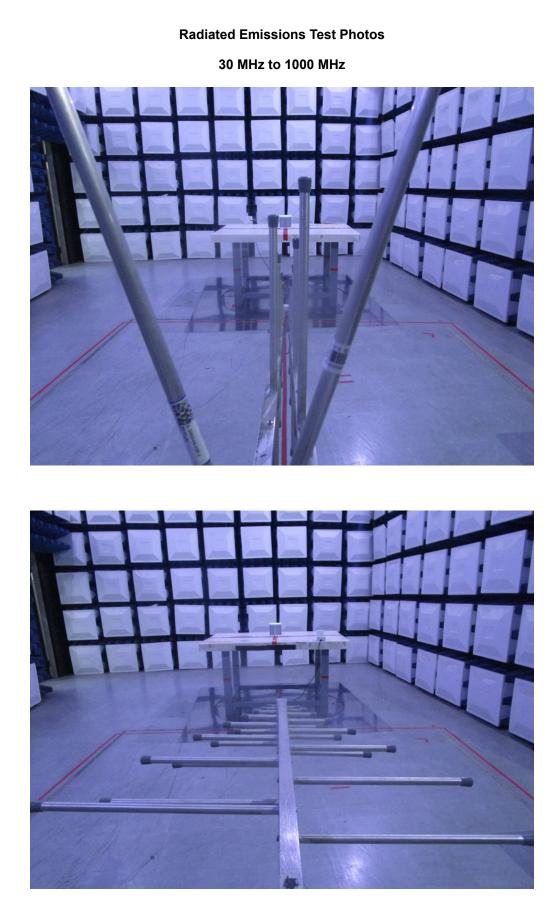
Remark "N/A" denotes no model name, serial no. or calibration specified.

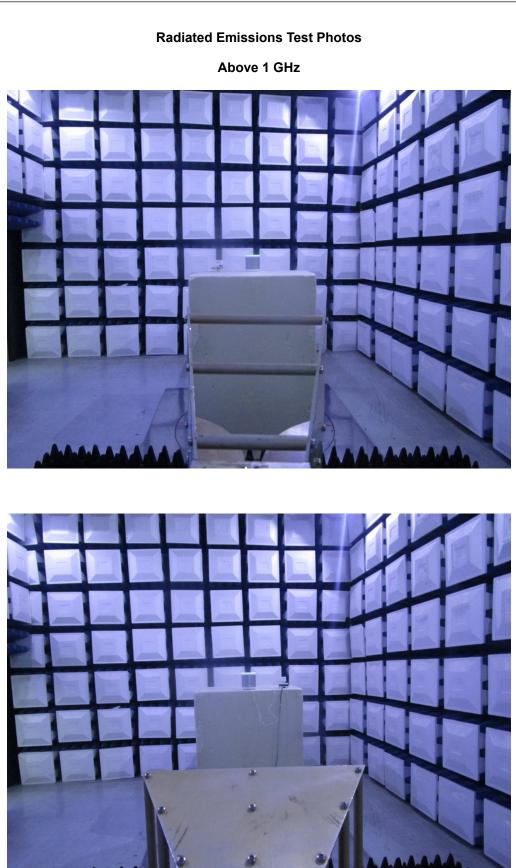
All calibration period of equipment list is one year.



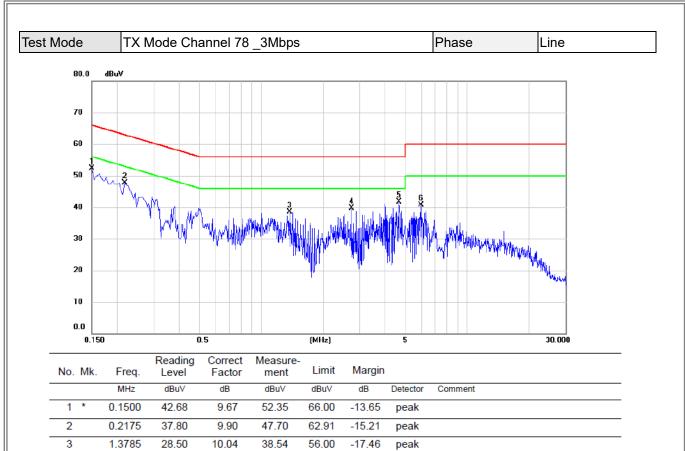
12. EUT TEST PHOTO


AC Power Line Conducted Emissions Test Photos









APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

REMARKS:

4

5

6

2.7510

4.6725

5.9550

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

29.52

31.36

30.27

10.16

10.31

10.40

39.68

41.67

40.67

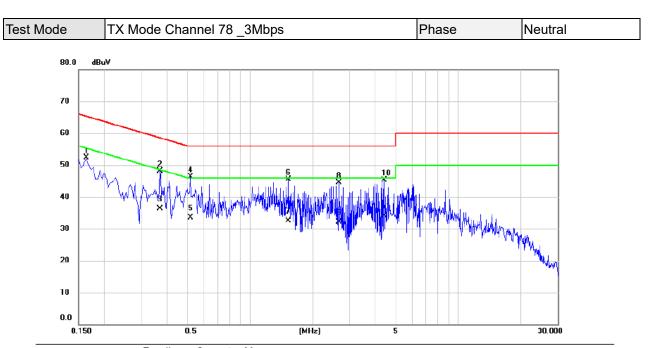
56.00

56.00

60.00

-16.32

-14.33

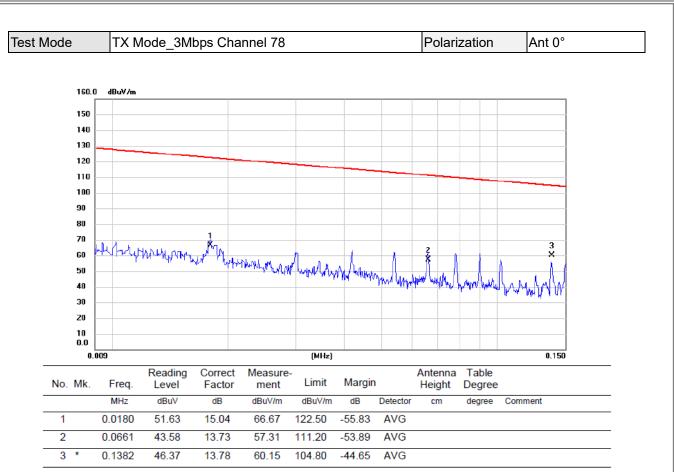

-19.33

peak

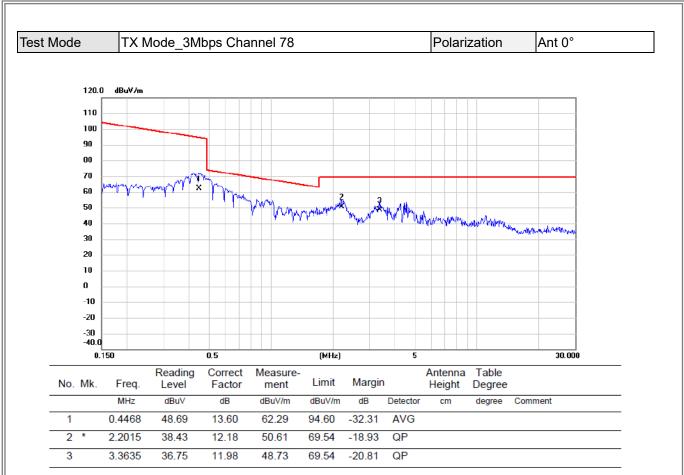
peak

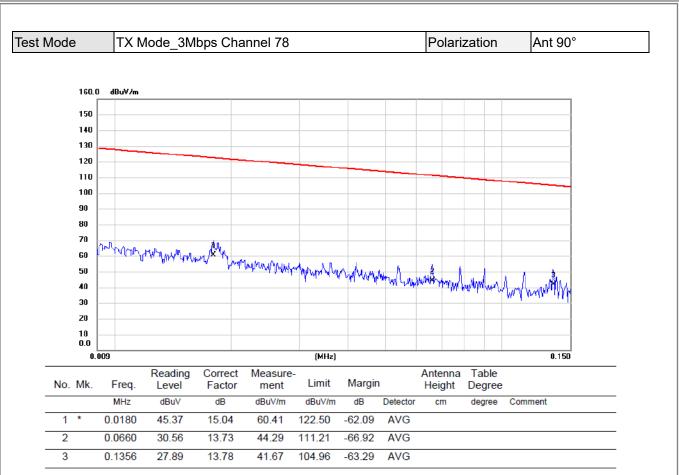
peak

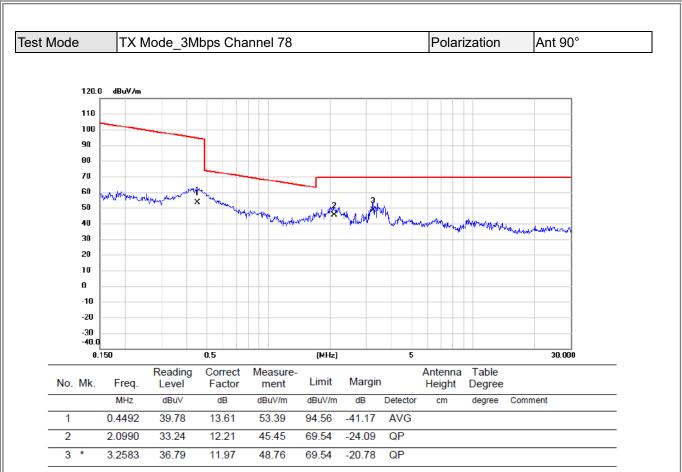
MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.1635 42.40 9.85 52.25 65.28 -13.03 peak 2 0.3704 38.07 10.06 48.13 58.49 -10.36 peak 3 0.3704 26.30 10.06 36.36 48.49 -12.13 AVG 4 * 0.5190 36.15 10.15 46.30 56.00 -9.70 peak 5 0.5190 23.40 10.15 33.55 46.00 -12.45 AVG 6 1.5315 35.08 10.37 45.45 56.00 -10.55 peak 7 1.5315 22.10 10.37 32.47 46.00 -13.53 AVG 8 2.6700 33.92 10.49 44.41 56.00 -11.59 peak 9 2.6700 21.70 10.49 32.19 46.00 -13.81 AVG 10	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
2 0.3704 38.07 10.06 48.13 58.49 -10.36 peak 3 0.3704 26.30 10.06 36.36 48.49 -12.13 AVG 4 * 0.5190 36.15 10.15 46.30 56.00 -9.70 peak 5 0.5190 23.40 10.15 33.55 46.00 -12.45 AVG 6 1.5315 35.08 10.37 45.45 56.00 -10.55 peak 7 1.5315 22.10 10.37 32.47 46.00 -13.53 AVG 8 2.6700 33.92 10.49 44.41 56.00 -11.59 peak 9 2.6700 21.70 10.49 32.19 46.00 -13.81 AVG 10 4.4205 34.67 10.63 45.30 56.00 -10.70 peak			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
3 0.3704 26.30 10.06 36.36 48.49 -12.13 AVG 4 * 0.5190 36.15 10.15 46.30 56.00 -9.70 peak 5 0.5190 23.40 10.15 33.55 46.00 -12.45 AVG 6 1.5315 35.08 10.37 45.45 56.00 -10.55 peak 7 1.5315 22.10 10.37 32.47 46.00 -13.53 AVG 8 2.6700 33.92 10.49 44.41 56.00 -11.59 peak 9 2.6700 21.70 10.49 32.19 46.00 -13.81 AVG 10 4.4205 34.67 10.63 45.30 56.00 -10.70 peak	1		0.1635	42.40	9.85	52.25	65.28	-13.03	peak	
4 * 0.5190 36.15 10.15 46.30 56.00 -9.70 peak 5 0.5190 23.40 10.15 33.55 46.00 -12.45 AVG 6 1.5315 35.08 10.37 45.45 56.00 -10.55 peak 7 1.5315 22.10 10.37 32.47 46.00 -13.53 AVG 8 2.6700 33.92 10.49 44.41 56.00 -11.59 peak 9 2.6700 21.70 10.49 32.19 46.00 -13.81 AVG 10 4.4205 34.67 10.63 45.30 56.00 -10.70 peak	2		0.3704	38.07	10.06	48.13	58.49	-10.36	peak	
5 0.5190 23.40 10.15 33.55 46.00 -12.45 AVG 6 1.5315 35.08 10.37 45.45 56.00 -10.55 peak 7 1.5315 22.10 10.37 32.47 46.00 -13.53 AVG 8 2.6700 33.92 10.49 44.41 56.00 -11.59 peak 9 2.6700 21.70 10.49 32.19 46.00 -13.81 AVG 10 4.4205 34.67 10.63 45.30 56.00 -10.70 peak	3		0.3704	26.30	10.06	36.36	48.49	-12.13	AVG	
6 1.5315 35.08 10.37 45.45 56.00 -10.55 peak 7 1.5315 22.10 10.37 32.47 46.00 -13.53 AVG 8 2.6700 33.92 10.49 44.41 56.00 -11.59 peak 9 2.6700 21.70 10.49 32.19 46.00 -13.81 AVG 10 4.4205 34.67 10.63 45.30 56.00 -10.70 peak	4	*	0.5190	36.15	10.15	46.30	56.00	-9.70	peak	
7 1.5315 22.10 10.37 32.47 46.00 -13.53 AVG 8 2.6700 33.92 10.49 44.41 56.00 -11.59 peak 9 2.6700 21.70 10.49 32.19 46.00 -13.81 AVG 10 4.4205 34.67 10.63 45.30 56.00 -10.70 peak	5		0.5190	23.40	10.15	33.55	46.00	-12.45	AVG	
8 2.6700 33.92 10.49 44.41 56.00 -11.59 peak 9 2.6700 21.70 10.49 32.19 46.00 -13.81 AVG 10 4.4205 34.67 10.63 45.30 56.00 -10.70 peak	6		1.5315	35.08	10.37	45.45	56.00	-10.55	peak	
9 2.6700 21.70 10.49 32.19 46.00 -13.81 AVG 10 4.4205 34.67 10.63 45.30 56.00 -10.70 peak	7		1.5315	22.10	10.37	32.47	46.00	-13.53	AVG	
10 4.4205 34.67 10.63 45.30 56.00 -10.70 peak	8		2.6700	33.92	10.49	44.41	56.00	-11.59	peak	
	9		2.6700	21.70	10.49	32.19	46.00	-13.81	AVG	
11 4.4205 23.40 10.63 34.03 46.00 -11.97 AVG	10		4.4205	34.67	10.63	45.30	56.00	-10.70	peak	
	11		4.4205	23.40	10.63	34.03	46.00	-11.97	AVG	


REMARKS:

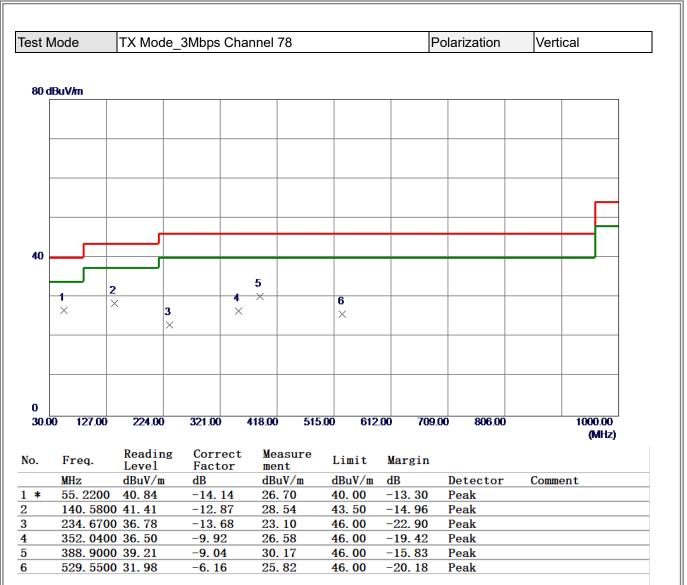
(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.


APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

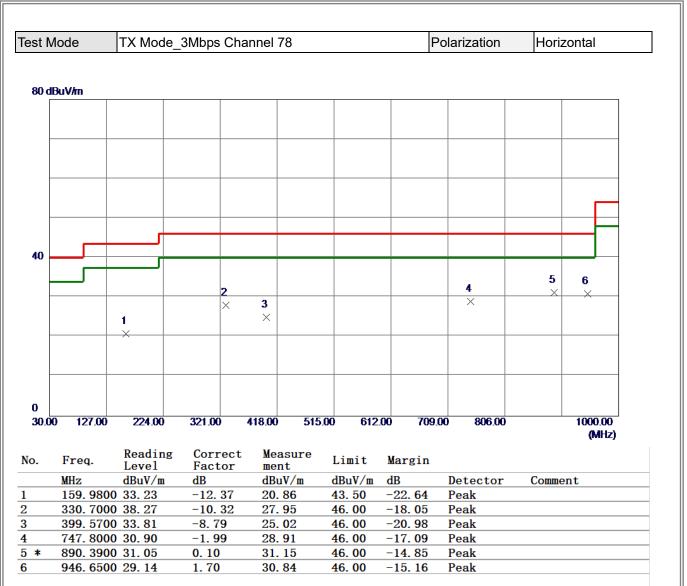

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

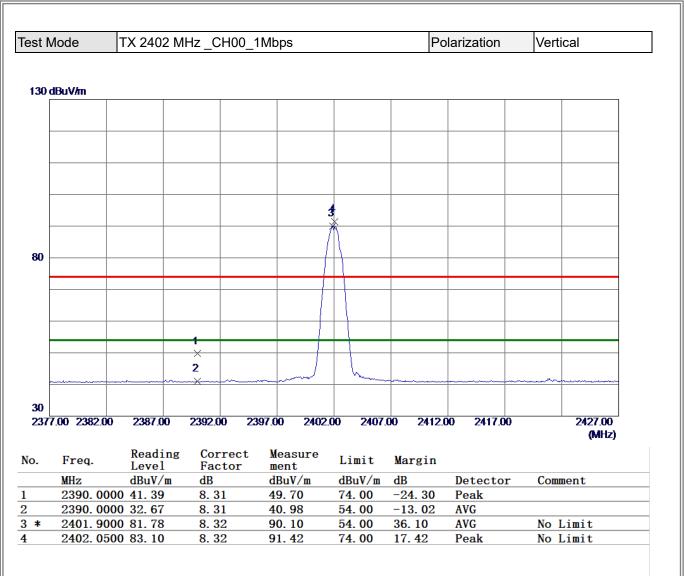
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



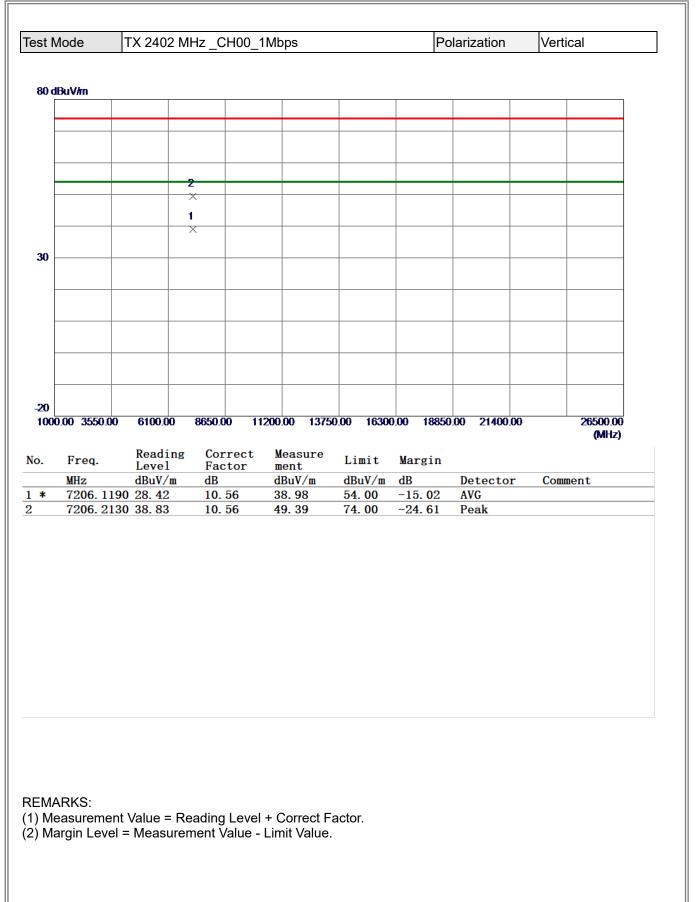
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

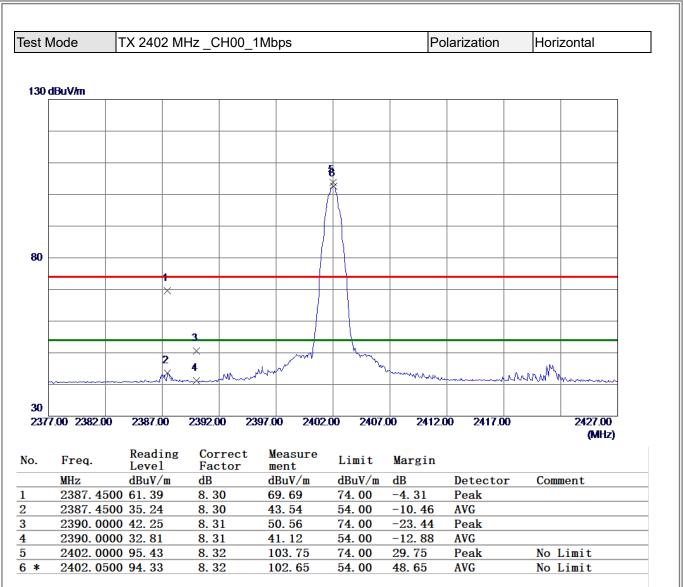

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

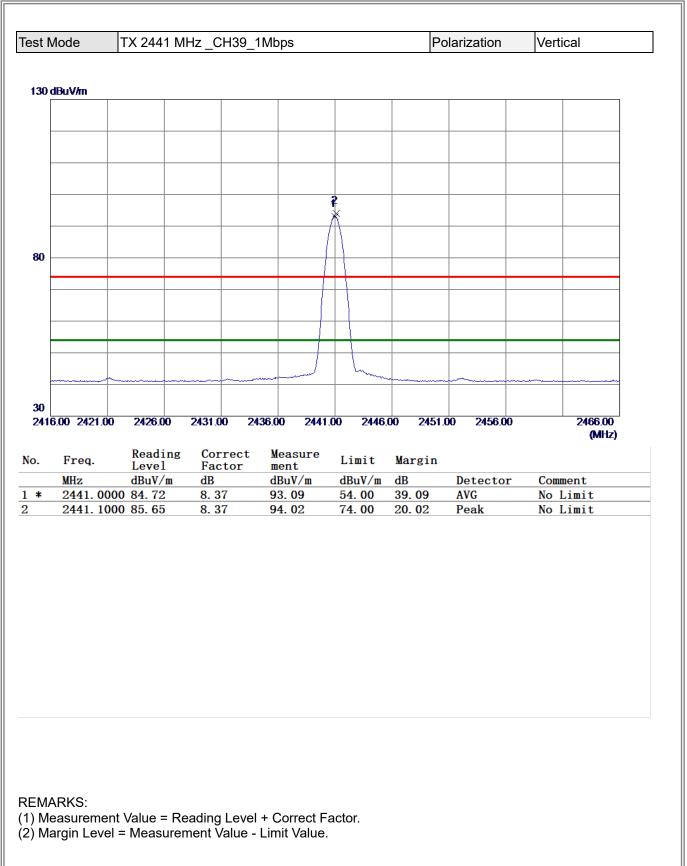


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

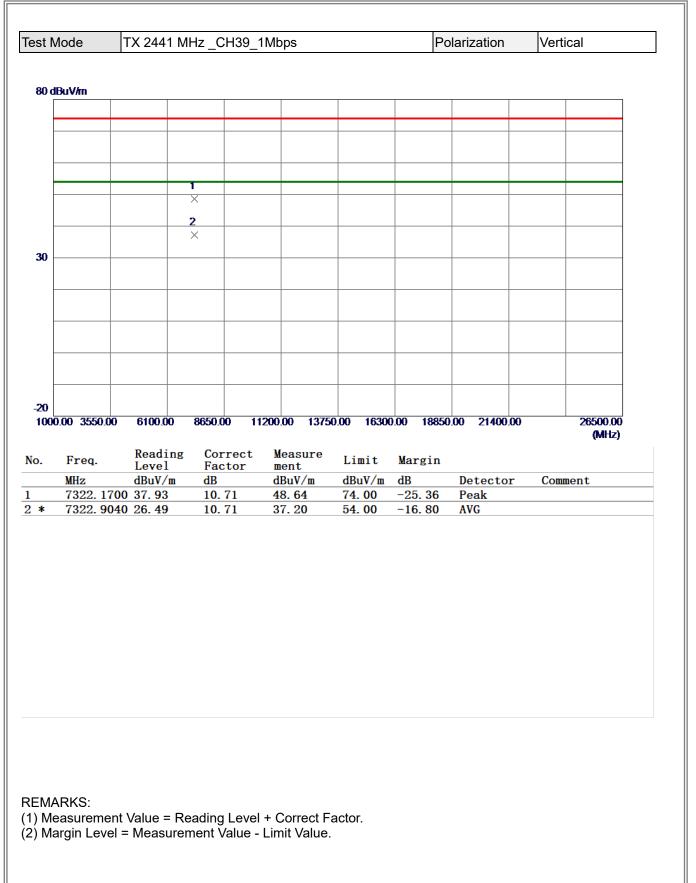

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ



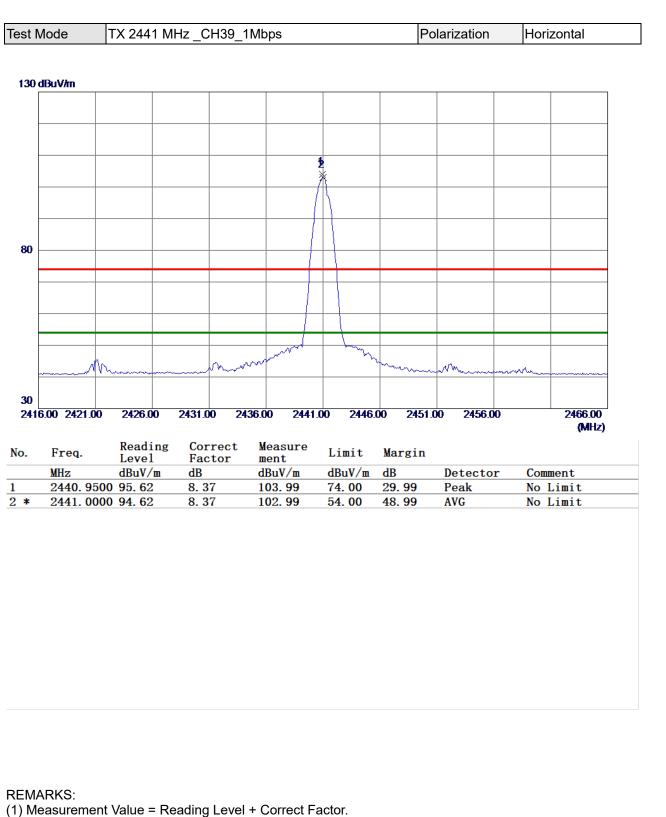
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

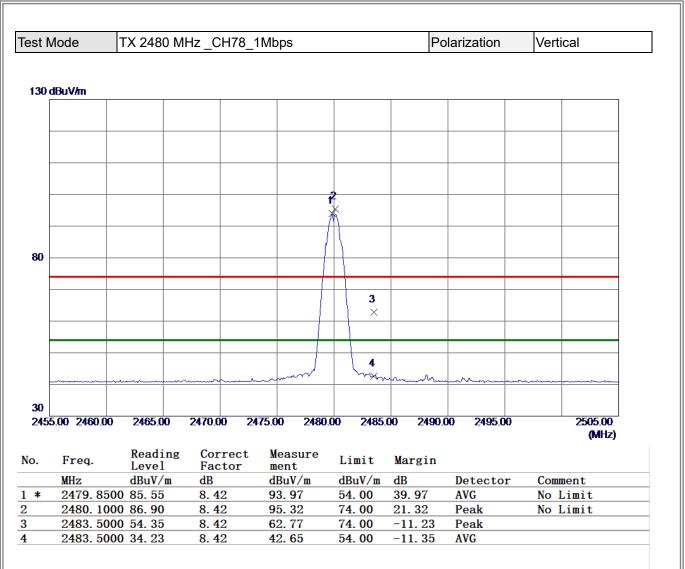


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



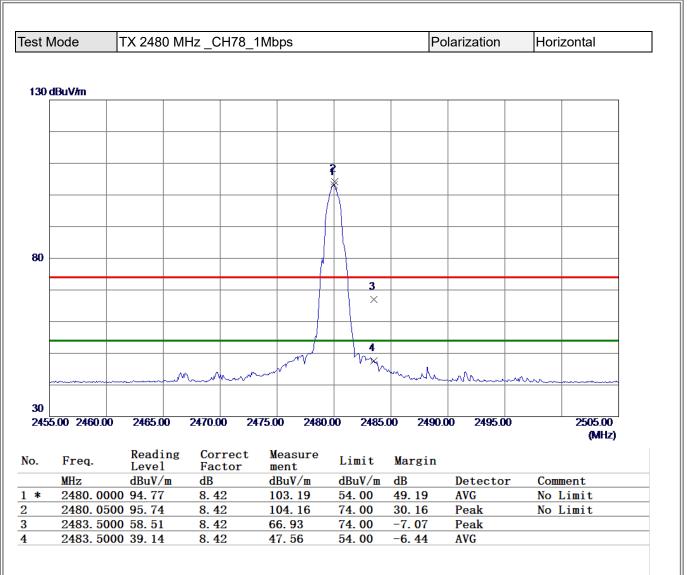
80 dBx//m a </th <th>551 101</th> <th>ode</th> <th>TX 2402 M</th> <th>Hz_CH00_</th> <th>1Mbps</th> <th></th> <th>Po</th> <th>olarization</th> <th>Hori</th> <th>zontal</th>	551 101	ode	TX 2402 M	Hz_CH00_	1Mbps		Po	olarization	Hori	zontal
1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30										
30 X Image: Constraint of the sector comment -20 Image: Constraint of the sector comment Image: Constraint of the sector comment -20 Image: Constraint of the sector comment Image: Constraint of the sector comment 0. Freq. Reading correct meant Limit Margin MHz dBuV/m dBuV/m </td <td>80 dE</td> <td>}uV/m</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	80 dE	}uV/m								
30 X Image: Constraint of the sector is a sector sector is a sector sector is a s	Γ									
30 X Image: Constraint of the state of										
30 2 1										
30 X Image: Constraint of the state of	-			1						
30 X	H									
30										
20										
20										
MHz Buv/m B	30 -									
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 0. Freq. Reading Level Correct Factor ment Measure Limit Margin Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7206.0340 41.81 10.56 52.37 74.00 -21.63 Peak										
Number Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7206.0340 41.81 10.56 52.37 74.00 -21.63 Peak										
MHz Buv/m B										
IOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 . Freq. Reading Correct Measure Limit Margin . Freq. BuV/m dB dBuV/m dB Detector Comment MHz dBuV/m dB dBuV/m dB Detector Comment 7206.0340 41.81 10.56 52.37 74.00 -21.63 Peak										
MHz Buv/m B	\vdash									
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz BuV/m dB BuV/m dBuV/m dB Detector Comment 7206.0340 41.81 10.56 52.37 74.00 -21.63 Peak										
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 0. Freq. Reading Level Correct Factor ment Measure Limit Margin Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7206.0340 41.81 10.56 52.37 74.00 -21.63 Peak						1				
(MHz MHz BuV/m dB Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7206.0340 41.81 10.56 52.37 74.00 -21.63 Peak									-	
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment7206.034041.8110.5652.3774.00-21.63Peak	000	.00 3550.00	6100.00	8650.00 1	1200.00 1375	J.UU 163UU	00.00 18850	.00 21400.0	U	
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7206.0340 41.81 10.56 52.37 74.00 -21.63 Peak		P	Reading	Correct	Measure		. .			•
7206. 0340 41. 81 10. 56 52. 37 74. 00 -21. 63 Peak	-		Level	Factor	ment					
									Сош	ment
	*									





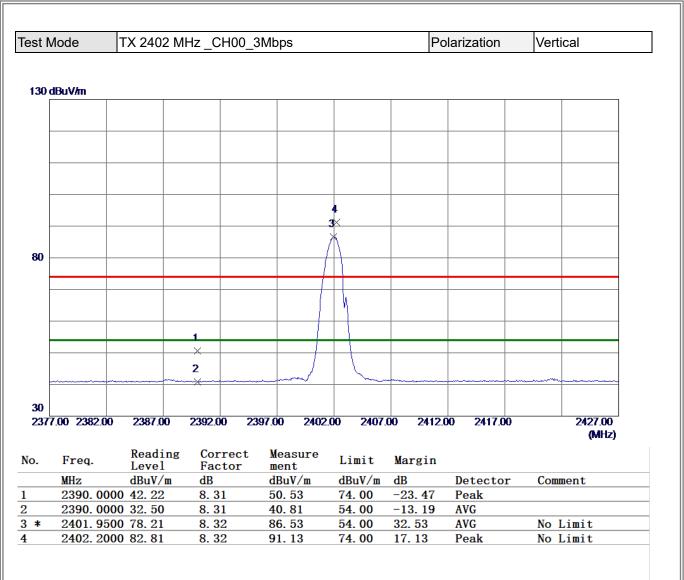
(2) Margin Level = Measurement Value - Limit Value.

	TX 2441 M	IHz _CH39_	1Mbps		Po	larization	Hor	rizontal
dBuV/m								
		2						
		× 1						
		×						
0								
0 000.00 355	0.00 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 21400.0	00	26500.0
00.00 555	0.00 0100.00	0000.00	1200.00 1313	0.00 10.00	0.00 10000	.00 21400.		2000.0 (MHz)
Freq.	Reading	Correct	Measure	Limit	Margin			
		-			Margin			
	Level	Factor	ment dBuV/m			Detector	r Con	ment
MHz 7322.	Level dBuV/m 9350 30.51	Factor dB 10.71	dBuV/m 41. 22	dBuV/m 54. 00	dB −12. 78	Detecto AVG	r Con	ment
MHz 7322.	Level dBuV/m	Factor dB	dBuV/m	dBuV/m	dB		r Con	nment
MHz ⊧ 7322.	Level dBuV/m 9350 30.51	Factor dB 10.71	dBuV/m 41. 22	dBuV/m 54. 00	dB −12. 78	AVG	r Com	nment



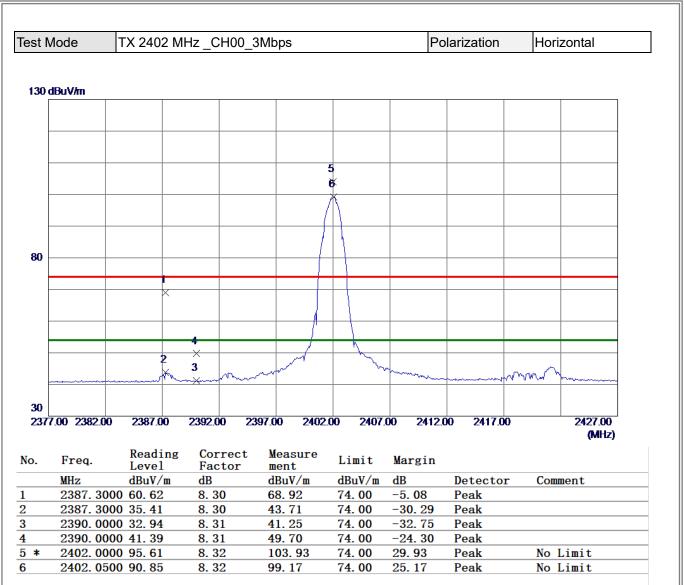
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

30 di	lode	TX 2480 N	1Hz _Cł	H78_1N	lbps		P	olarization	V	ertical
b di 										
	∃uV/m									
╞										
			-							
			2 ×							
			1							
┢			X							
.										
-										
┢					1					
$\left \right $										
)										
00	.00 3550.0	0 6100.00	8650.00) 1120	0.00 1375	0.00 16300	0.00 1885	0.00 21400	.00	26500.0
		Reading	Cori	roct	Measure					(MHz)
	Freq.	Level	Fact	tor	ment	Limit	Margin			
	MHz	dBuV/m	dB		dBuV/m	dBuV/m		Detecto	or C	omment
		010 27. 18 220 38. 70	10.8		38. 04 49. 56	54.00 74.00	-15.96 -24.44	AVG Peak		



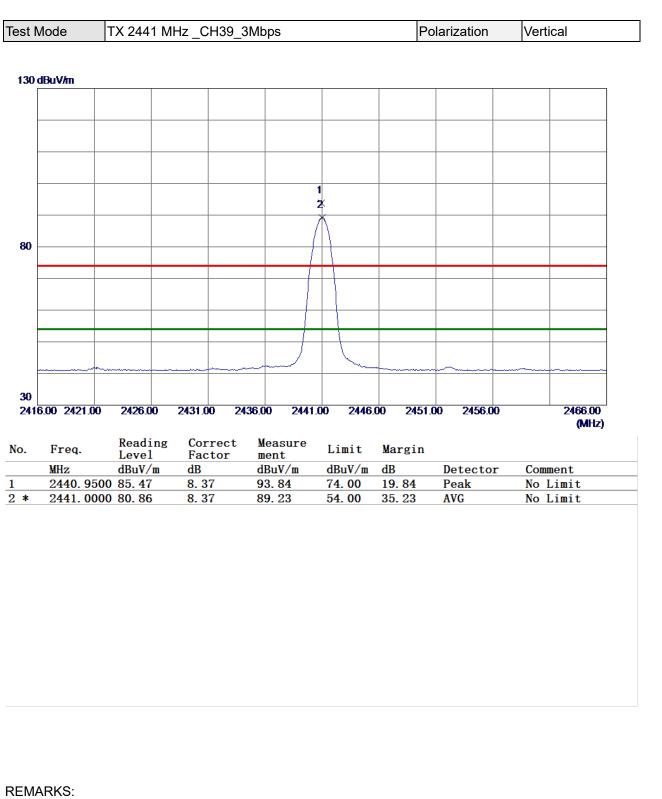
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	1 1 × 2 × ×	1 -	1 -		lode	TX 2480 M	Hz_CH78_	1Mbps		Po	larization	Horizontal
1 1 1 × × × 2 × × × × × 0 × × 1 × × 2 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1000.00 3550.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500 0 × ×	1 1 × 2 × ×	1 -	1 -									
1 1 1 2 × × 2 × × 30 × × 30 × × 1 × × 2 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1 × × 1000.00 3550.00 11200.00 13750.00 16300.00 21400.00 26500 1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 21400.00 26500 1000.00 3650.00 11200.00 13750.00 16300.00 21400.00 26500.00 1000.00	1 1 × 2 × ×	1 -	1 -	80 di	BuV <i>I</i> m							
X X X X 30 X X X X 20 X X X X X 20	X X X X 2 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	× × × × 2 × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×	× ×									
X X	X X X X 2 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	× × × × 2 × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×	× ×									
× ×	X X X X 2 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	× × × × 2 × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×	× ×									
X X	X X X X 2 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	× × × × 2 × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×	× ×	-								
2 × <	2 × Image: Contract Measure Limit Margin Image: Contract Measure Limit Margin Image: Measure Measur	2 × <	2 X Image: Contract Measure Limit Margin MHz dBuV/m dB dBuV/m dB DuV/m dB Detector Comment	Ļ								
30 ×	× ×	× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × <td< td=""><td>x x</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	x x	-								
00 .	MHz Reading Level Correct Factor Measure ment ment Limit Limit Margin MB Detector Comment MHz dBuV/m dB dBuV/m dB 74.00 -22.44 Peak	Image: Second system Image: Se	0									
20 .	Image: Contract Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	Image: Second system Image: Second system <td< td=""><td>0 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	0 0									
20 .	Image: Contract Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	Image: Second system Image: Second system <td< td=""><td>0 0</td><td>30 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	0 0	30 -								
NOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500. (MH . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz Freq. Reading Correct Measure Limit Margin (MHz MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak									
NOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500. (MH . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz Freq. Reading Correct Measure Limit Margin (MHz MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	-								
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500. (MH b. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz Freq. Reading Correct Measure Limit Margin (MHz MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak									
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500. (MH b. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz Freq. Reading Correct Measure Limit Margin (MHz MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	F								
MHz dBuV/m dB dBuV/m dB UV/m dB Duv/m Duv/m dB Duv/m Du	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz Freq. Reading Correct Measure Limit Margin (MHz MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin (MHz) MHz dBuV/m dB dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak									
MHz dBuV/m dB dBuV/m dB UV/m dB Duv/m Duv/m dB Duv/m Du	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz Freq. Reading Correct Measure Limit Margin (MHz MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin (MHz) MHz dBuV/m dB dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak									
MHz Buv/m B	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz Freq. Reading Correct Measure Limit Margin (MHz MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin (MHz) MHz dBuV/m dB dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	Ļ								
NOOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500. (MH . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz Freq. Reading Correct Measure Limit Margin (MHz MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	NO0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin (MHz) MHz dBuV/m dB dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	<u></u>								
MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	Keading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	Keading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak		.00 3550.0	0 6100.00	8650.00 11	1200.00 1375).00 16300	0.00 18850	.00 21400.00) 2650
MHz BuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak									
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.6320 40.70 10.86 51.56 74.00 -22.44 Peak		Freq.	Reading Level	Correct Factor		Limit	Margin		
									1D 1/		n	
* 7440. 1260 30. 85 10. 86 41. 71 54. 00 -12. 29 AVG	7440. 1260 30. 85 10. 86 41. 71 54. 00 -12. 29 AVG	7440. 1260 30. 85 10. 86 41. 71 54. 00 -12. 29 AVG	440. 1260 30. 85 10. 86 41. 71 54. 00 -12. 29 AVG			dBuV/m	dB	abuv/m			Detector	Comment
					7439.63	dBuV/m 320 40.70	10.86	51.56	74.00	-22.44	Peak	Comment
					7439.63	dBuV/m 320 40.70	10.86	51.56	74.00	-22.44	Peak	Comment
				*	7439.63	dBuV/m 320 40.70	10.86	51.56	74.00	-22.44	Peak	Comment
				*	7439.63	dBuV/m 320 40.70	10.86	51.56	74.00	-22.44	Peak	Comment
				*	7439.63	dBuV/m 320 40.70	10.86	51.56	74.00	-22.44	Peak	Comment
MARKS:				MA	7439. 63 7440. 12	dBuV/m 320 40. 70 260 30. 85	10. 86 10. 86	51. 56 41. 71	74.00 54.00	-22.44	Peak	Comment
Measurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	MA	7439. 63 7440. 12	<u>dBuV/m</u> 320 40. 70 260 30. 85	10. 86 10. 86	51. 56 41. 71	74.00 54.00	-22.44	Peak	Comment
	/leasurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	MA	7439. 63 7440. 12	<u>dBuV/m</u> 320 40. 70 260 30. 85	10. 86 10. 86	51. 56 41. 71	74.00 54.00	-22.44	Peak	
Measurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	MA	7439. 63 7440. 12	<u>dBuV/m</u> 320 40. 70 260 30. 85	10. 86 10. 86	51. 56 41. 71	74.00 54.00	-22.44	Peak	

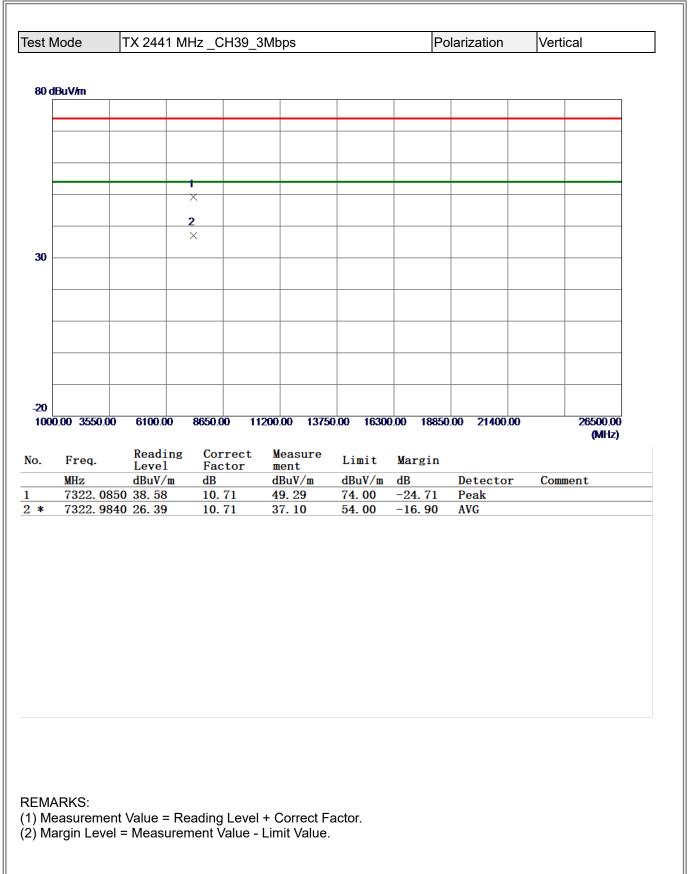


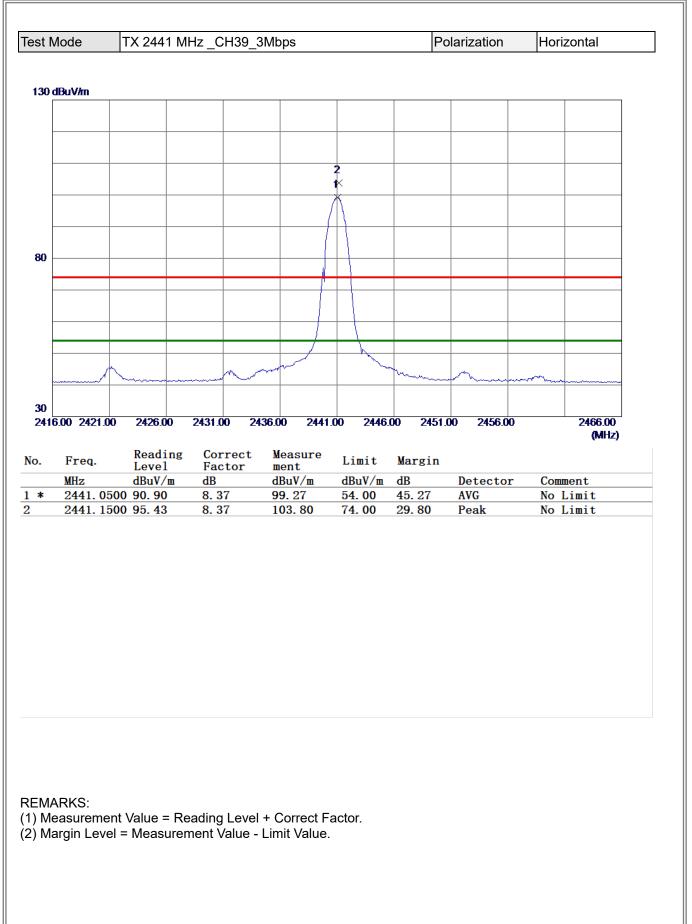
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

0 dBuV/m				
2 ×				
00.00 3550.00 6100.00 8650.00	11200.00 13750.00	16300.00 18850	.00 21400.00	26500.0
				(MHz)
Freq. Reading Corre	ect Measure L	imit Margin		
Level Fact			Detector C	omment
7206. 2160 33. 87 10. 50	6 44. 43 7	4.00 -29.57	Peak	
7206. 5520 22. 11 10. 56	6 <u>32.</u> 67 5	4.00 -21.33	AVG	
MHz dBuV/m dB	or ment ^L <u>dBuV/m d</u> 6 44.43 7	BuV/m dB		omment

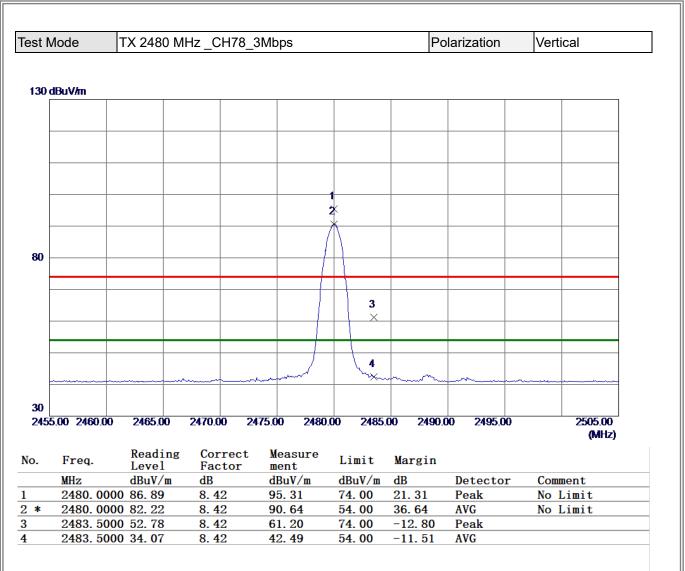


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

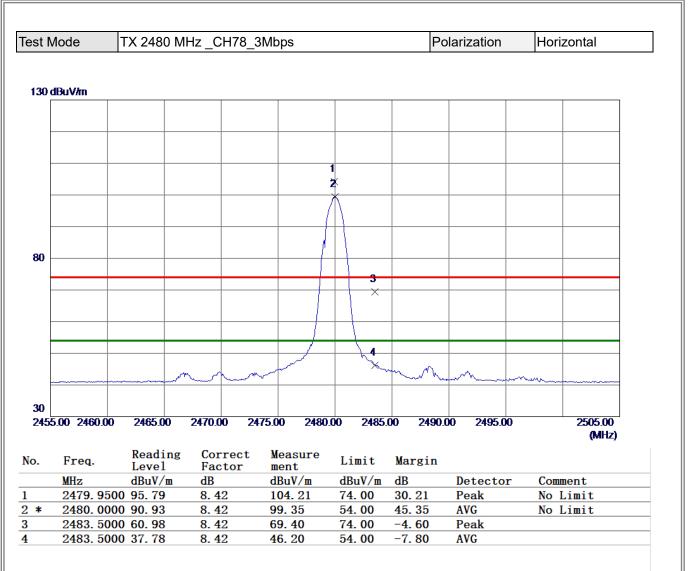

	TX 2402 N	1Hz_CH00_3	3Mbps		Pc	larization	Horizontal
0 dBuV/m					1		
				<u> </u>			
		2					
		×					
		×					
0							
0 000.00 3550.0	0 6100.00	8650.00 1 1	1200.00 13750	0.00 16300).00 18850	0.00 21400.0	0 26500.0
	0 0100.00	000000		10000			(MHz
Freq.	Reading	Correct	Measure	Limit	Margin		
MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detector	Comment
1200.20	30 33. 32	10. 50	40.00	74.00	-21.92	reak	
Freq. <u>MHz</u> : 7206.18	Reading Level	Correct Factor	Measure ment	Limit	Margin		(M



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



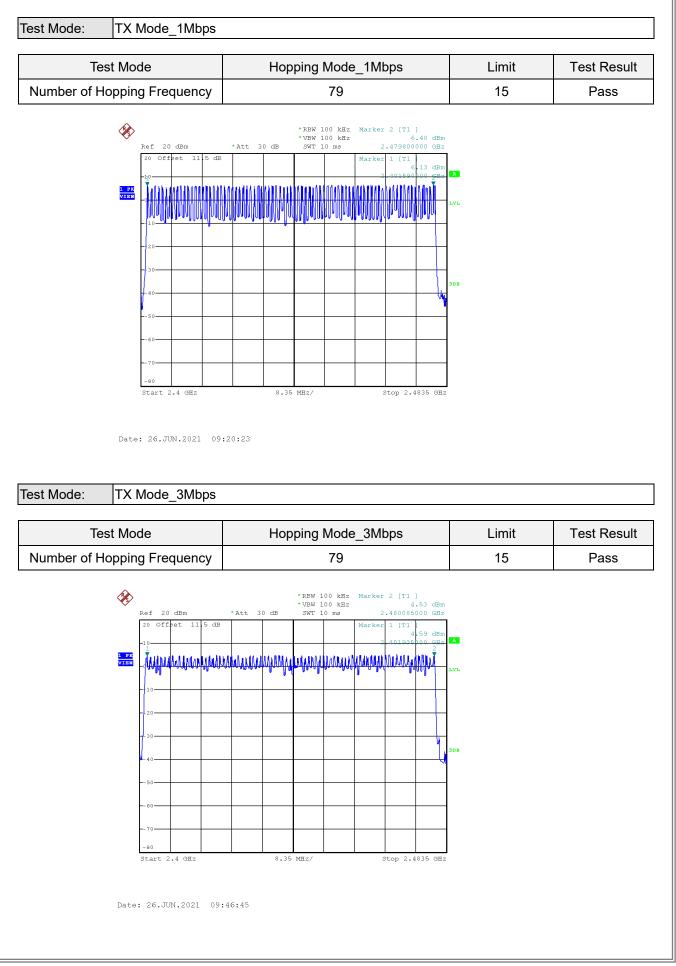
	de	TX 2441 M	1Hz _CH39_	_3Mbps		Pc	larization	Hori	zontal
dBu	ıV <i>i</i> m								
			2 ×						
-			-x						
)									
-									
	0 3550.00	6100.00	8650.00	1200.00 1375	0.00 1630	0.00 18850	.00 21400.0	0	26500.00
									(MHz)
]	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
I	MHz				10.17/	-			mant
		dBuV/m	dB	dBuV/m	dBuV/m		Detector	Сош	ment
	7322. 85	50 28. 93	10.71	39.64	54.00	-14.36	AVG	Сош	ment
	7322. 85								
	7322. 85	50 28. 93	10.71	39.64	54.00	-14.36	AVG		



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

30 distVin 1 2 2 2 30 2 30 </th <th></th> <th>ode</th> <th>TX 2480 M</th> <th>Hz_CH78_3</th> <th>BMbps</th> <th></th> <th>Po</th> <th>olarization</th> <th>Vertical</th>		ode	TX 2480 M	Hz_CH78_3	BMbps		Po	olarization	Vertical
Image: Note of the second se									
Image: state of the s	80 dE	}uV/m							
2 2 4	Γ								
2 2 4									
2 2 1									
2 2 1									
2 2 1	┝			1					
× ×	┢			×					
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7439.1800 38.59 10.86 49.45 74.00 -24.55 Peak									
Image: Contract Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7439.1800 38.59 10.86 49.45 74.00 -24.55 Peak				×					
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 (MHz Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.1800 38.59 10.86 49.45 74.00 -24.55 Peak) -								
00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 (MHz Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.1800 38.59 10.86 49.45 74.00 -24.55 Peak									
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 Keading Correct Measure Limit Margin MHz MHz BuV/m dBuV/m dBuV/m dBuV/m Comment	F								
NOO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 MHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.1800 38.59 10.86 49.45 74.00 -24.55 Peak									
D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin (MHz) (MHz) MHz dBuV/m dB dBuV/m dBuV/m dB Comment Co									
D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin (MHz) (MHz) MHz dBuV/m dB dBuV/m dBuV/m dB Comment Co									
D00.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 (MHz Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.1800 38.59 10.86 49.45 74.00 -24.55 Peak									
000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.0 . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.1800 38.59 10.86 49.45 74.00 -24.55 Peak	-								
Freq.Reading LevelCorrect FactorMeasure mentLimit MarginMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment7439.180038.5910.8649.4574.00-24.55Peak	0								
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment7439.180038.5910.8649.4574.00-24.55Peak	000	.00 3550.00	6100.00	8650.00 11	200.00 13750	0.00 16300	0.00 18850	0.00 21400.00	
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.1800 38.59 10.86 49.45 74.00 -24.55 Peak									(MHz
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 7439.1800 38.59 10.86 49.45 74.00 -24.55 Peak		Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
			dBuV/m	dB	dBuV/m			Detector	Comment
* 7439.8500 27.20 10.86 38.06 54.00 -15.94 AVG									
		(439.8500	27.20	10.86	38.06	54.00	-15.94	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



	le	TX 2480 N	/Hz_C	H78_3M	bps		Pc	larization	Hori	zontal
Bu\	//m									
			2							
			-×							
			1							
			_X							
0 00	3550.00	6100.00	8650.0	0 1120	0.00 13750	0.00 16300	0.00 18850	.00 21400.0	0	26500.00
0.00		0100.00	0000.00				1000	211003		(MHz)
F	req.	Reading	Cor	rect 1	Measure	Limit	Margin			
	Hz	Level dBuV/m	Fac dB		ment dBuV/m	dBuV/m		Detector	Сош	ment
7	439. 8390) 29.64	10.8	36 4	40. 50	54.00	-13. 50	AVG		
_7	440. 2770) 39. 58	10.8	36 8	50.44	74.00	-23. 56	Peak		

APPENDIX E - NUMBER OF HOPPING FREQUENCY

APPENDIX F - AVERAGE TIME OF OCCUPANCY

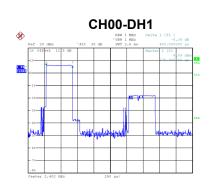
Te	st Mode	Hopping Mode_1Mbp)S			
	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
	DH1	2402	0.4000	0.1280	0.4000	Pass
	DH3	2402	1.6600	0.2656	0.4000	Pass
	DH5	2402	2.9200	0.3115	0.4000	Pass
	DH1	2441	0.4000	0.1280	0.4000	Pass
	DH3	2441	1.6600	0.2656	0.4000	Pass
	DH5	2441	2.9200	0.3115	0.4000	Pass
	DH1	2480	0.4000	0.1280	0.4000	Pass
	DH3	2480	1.6600	0.2656	0.4000	Pass
	DH5	2480	2.8800	0.3072	0.4000	Pass

CH78-DH1

RBW 1 MHz VBW 1 MHz

8

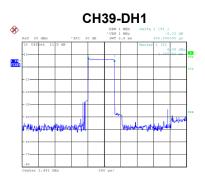
1 22



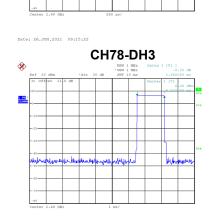
Date: 26.JUN.2021 09:14:25

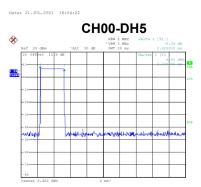
الممراديار وتصريهم الراف المقاسين

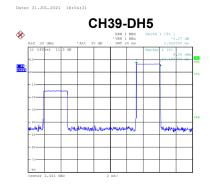
Ø


L PR CLRW




CH00-DH3


MB MB


nereligentie

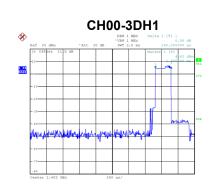
Date: 31.JUL.2021 16:09:51

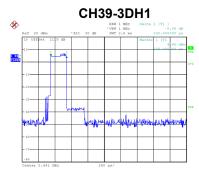
Date: 31.JUL.2021 16:09:43

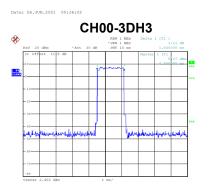
Date: 31.JUL.2021 16:09:47

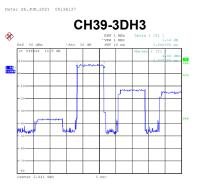
Test Mode	Hopping Mode_3Mbp	DS			
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
3DH1	2402	0.2400	0.0768	0.4000	Pass
3DH3	2402	1.6400	0.2624	0.4000	Pass
3DH5	2402	2.8800	0.3072	0.4000	Pass
3DH1	2441	0.2400	0.0768	0.4000	Pass
3DH3	2441	1.6400	0.2624	0.4000	Pass
3DH5	2441	2.8800	0.3072	0.4000	Pass
3DH1	2480	0.2350	0.0752	0.4000	Pass
3DH3	2480	1.6400	0.2624	0.4000	Pass
3DH5	2480	2.8800	0.3072	0.4000	Pass

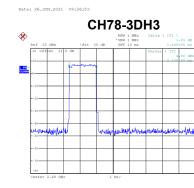
Northerspecture

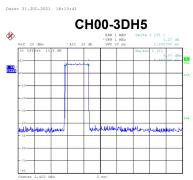

CH78-3DH1

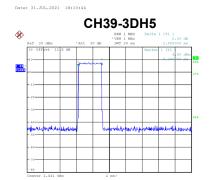

×BW 1 MHz VBW 1 MHz SWT 2.5 m


8


1 22

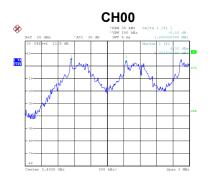






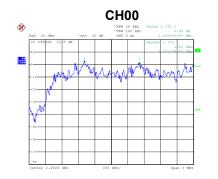


Date: 31.JUL.2021 16:11:29


Date: 31.JUL.2021 16:11:33

APPENDIX G - HOPPING CHANNEL SEPARATION

Test Mode	Hopping Mode_1Mbps				
Channel Separation 2/3 of 20 dB Bandwidth					
Channel	(MHz)	(MHz)	(MHz)	Test Result	
00	2402	1.000	0.520	Pass	
39	2441	1.002	0.544	Pass	
78	2480	0.984	0.571	Pass	



Date: 26.JUN.2021 09:16:30

Date: 26.JUN.2021 09:17:33

Test Mode Hopping Mode_3Mbps

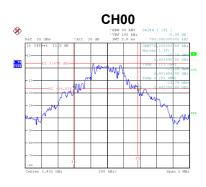
Channel	Frequency (MHz)	Channel Separation (MHz)	2/3 of 20 dB Bandwidth (MHz)	Test Result
00	2402	1.008	0.821	Pass
39	2441	0.998	0.827	Pass
78	2480	1.012	0.824	Pass

Date: 26.JUN.2021 09:39:46

CH389

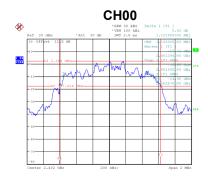
Date: 26.JUN.2021 09:41:51

Date: 26.JUN.2021 09:43:58




APPENDIX H - BANDWIDTH

Test Mode TX Mode _1Mbps					
	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	
	00	2402	0.780	0.776	
	39	2441	0.816	0.816	
Ī	78	2480	0.856	0.804	



Date: 26.JUN.2021 09:10:33

Date: 26.JUN.2021 09:13:00

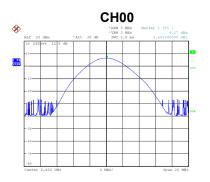
Test Mode TX Mode _3Mbps

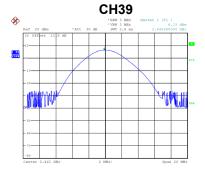
Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)
00	2402	1.232	1.136
39	2441	1.240	1.144
78	2480	1.236	1.152

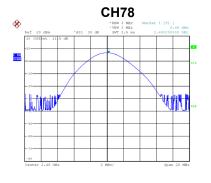
 PECHEAD
 PECHEAD

Date: 26.JUN.2021 09:33:07

Date: 26.JUN.2021 09:29:19

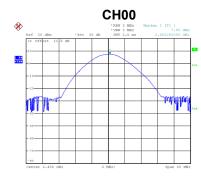

Date: 26.JUN.2021 09:35:21




APPENDIX I - MAXIMUM OUTPUT POWER

Test Mode TX Mode _1Mbps						
	Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
	00	2402	6.27	20.97	0.1250	Pass
	39	2441	6.33	20.97	0.1250	Pass
	78	2480	6.49	20.97	0.1250	Pass

Date: 26.JUN.2021 09:11:04


Date: 26.JUN.2021 09:12:21

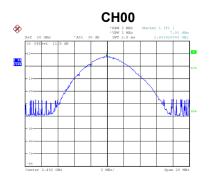
Date: 26.JUN.2021 09:13:32

Test Mode TX Mode _2Mbps

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	7.50	20.97	0.1250	Pass
39	2441	7.51	20.97	0.1250	Pass
78	2480	7.67	20.97	0.1250	Pass

CH39

Date: 26.JUN.2021 09:25:53


Date: 26.JUN.2021 09:26:14

8

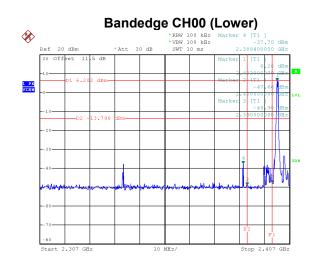

Date: 26.JUN.2021 09:26:31

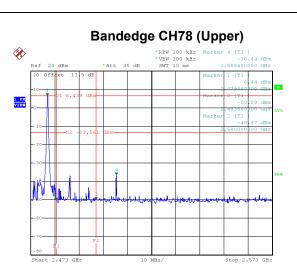
Test Mode TX Mode _3Mbps Frequency **Output Power** Max. Limit Max. Limit Channel Test Result (MHz) (dBm) (dBm) (W) 2402 7.91 0.1250 00 20.97 Pass 39 2441 7.90 20.97 0.1250 Pass 78 Pass 2480 8.10 20.97 0.1250

Date: 26.JUN.2021 09:33:43

Date: 26.JUN.2021 09:30:00

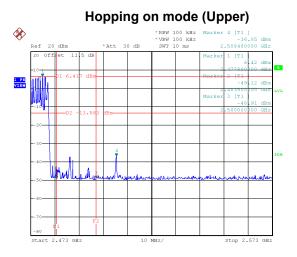
Date: 26.JUN.2021 09:31:22


APPENDIX J - CONDUCTED SPURIOUS EMISSION

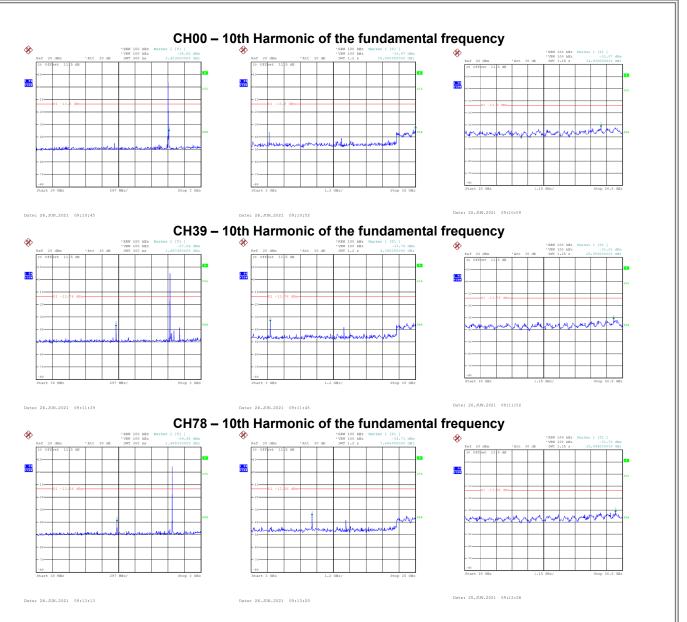



Test Mode

TX Mode _1Mbps

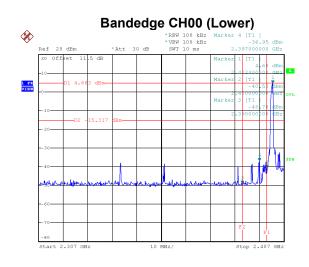


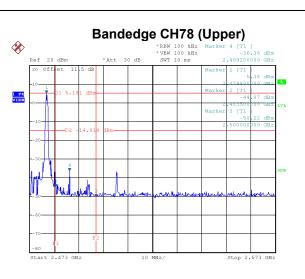
Date: 26.JUN.2021 09:10:10

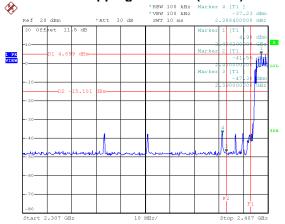

Date: 26.JUN.2021 09:20:57

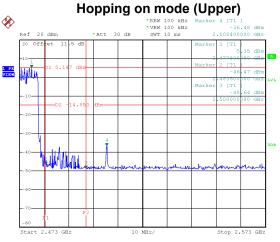
Date: 26.JUN.2021 09:21:30

Date: 26.JUN.2021 09:12:37

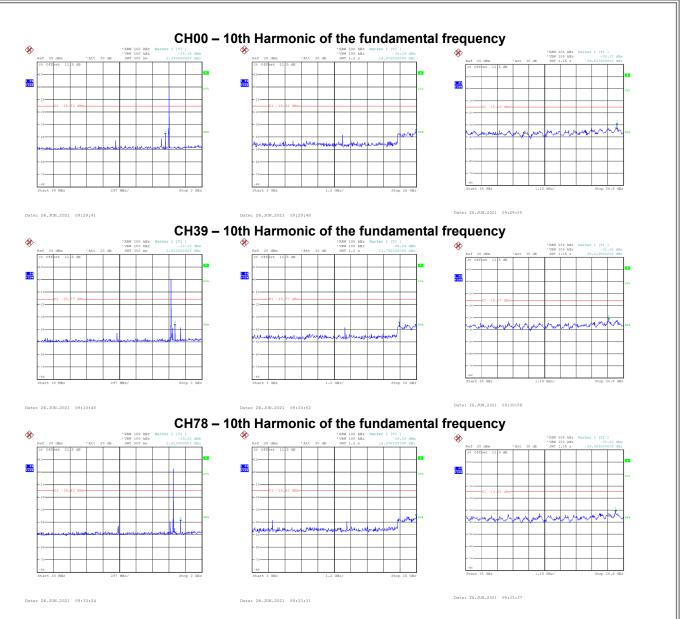

BL




Test Mode TX Mode _3Mbps



Date: 26.JUN.2021 09:28:51



Date: 26.JUN.2021 09:48:19

Date: 26.JUN.2021 09:49:53

Date: 26.JUN.2021 09:32:40

BL

APPENDIX K - DECLARATION FOR BLUETOOTH DEVICE

1. Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device has no influence on the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason the check of these RF parameters in one op-mode is sufficient.

2. Frequency range of a Bluetooth device:

Hereby we declare that the maximum frequency of this device is: 2402 - 2480MHz. This is according to the Bluetooth Core Specification (+ critical errata) for devices which will be operated in the USA. This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/04-E). Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification are not supported by this device.

3. Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organised in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from its BD address which is unique for each Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4. Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode: 40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

5. Equally average use of frequencies in data mode and behaviour for short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

- a) LAP/UAP of the master of the connection.
- b) Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS.

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronisation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 μ s. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire.

LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR- operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behaviour:

The first connection between the two devices is established, a hopping sequence was generated. For transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6. Receiver input bandwidth and behaviour for repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz. In every connection one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master.

Additionally the type of connection (e.g. single or multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

End of Test Report