

FCC RF Test Report

APPLICANT	: Xiaomi Communications Co., Ltd.
EQUIPMENT	: Mobile Phone
BRAND NAME	: Redmi
MODEL NAME	: A101XM
FCC ID	: 2AFZZK19KR
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter
TEST DATE(S)	: Aug. 25, 2021

We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Alexand

Approved by: Alex Wang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Re-use of Measured Data	6
	1.7	Testing Location	8
	1.8	Test Software	8
	1.9	Applicable Standards	8
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	9
	2.1	Carrier Frequency Channel	9
	2.2	Test Mode	.10
	2.3	Connection Diagram of Test System	.11
	2.4	Support Unit used in test configuration and system	.11
	2.5	EUT Operation Test Setup	.11
3	TEST	RESULT	.12
	3.1	Radiated Band Edges and Spurious Emission Measurement	.12
	3.2	Antenna Requirements	.16
4	LIST	OF MEASURING EQUIPMENT	.17
5	UNC	ERTAINTY OF EVALUATION	.18
AP	PEND	X A. RADIATED SPURIOUS EMISSION	
AP	PEND	X B. DUTY CYCLE PLOTS	
AP	PEND	X C. SETUP PHOTOGRAPHS	
AP	PEND	X D. REFERENCE REPORT	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR122708-01A	Rev. 01	Initial issue of report	Sep. 22, 2021

Report Section	FCC Rule	Description	Limit	Result	Remark
-	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	1
-	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	1
-	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	1
-	15.247(a)(1)	20dB Bandwidth	N/A	N/A	1
-	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	1
-	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	1
-	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	1
3.1	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 13.23 dB at 44.550 MHz
-	15.207	AC Conducted Emission	15.207(a)	Pass	1
3.2	15.203 &	Antenna Requirement	N/A	N/A	-

SUMMARY OF TEST RESULT

Remark 1: Test items are performed on original report which can be referred to Sporton report number FR122708A.

Declaration of Conformity:

15.247(b)

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Xiaomi Communications Co., Ltd.

#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085

1.2 Manufacturer

Xiaomi Communications Co., Ltd.

#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Mobile Phone		
Brand Name	Redmi		
Model Name	A101XM		
FCC ID	2AFZZK19KR		
IMEI Code	I Code Radiation : 860036050004491		
HW Version	P0.1		
SW Version	MIUI13		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Antenna Type / Gain	PIFA Antenna type with gain 0.41 dBi			
	Bluetooth BR (1Mbps) : GFSK			
Type of Modulation	Bluetooth EDR (2Mbps) :π/4-DQPSK			
	Bluetooth EDR (3Mbps) : 8-DPSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Re-use of Measured Data

1.6.1 Introduction Section

This application re-uses data collected on a similar device. The subject device of this application (Model: A101XM, FCC ID: 2AFZZK19KR) is electrically identical to the reference device (Model: XIG02, FCC ID: 2AFZZK19JR) for the portions of the circuitry corresponding to the data being re-used. Based on their similarity, the FCC Part 15C (equipment class: DTS, DSS) reuse the original model's result and do spot-check, following the FCC KDB 484596 D01 v01.

The applicant takes full responsibility that the test data as referenced in this report represent compliance for this FCC ID: 2AFZZK19KR.

1.6.2 Difference Section

The **main** difference between FCC ID: 2AFZZK19JR and FCC ID: 2AFZZK19KR is that the two models support different WWAN bands /NFC / WIFI 5G U-NII-3.

Other differences and all the details of similarity and difference can be found in the A101XM_Operational Description of Product Equality Declaration which is exhibited separately.

Rule Part	Equipment Class	Frequency Band (MHz)	Reference FCC ID(Parent)	Type Grant/ Permissive Change	Reference Title	FCC ID Filling (Variant)	Report Title/Section
	DSS (BR/EDR)	2400~2483.5	2AFZZK19JR	Original Grant	FR122708A	2AFZZK19KR	All sections applicable except RSE
15C	DTS (BLE)	2400~2483.5	~2483.5 2AFZZK19JR Original Grant FR122708	FR122708B	2AFZZK19KR	All sections applicable except RSE	
	DTS (WLAN)	2400~2483.5	2AFZZK19JR	Original Grant	FR122708C	2AFZZK19KR	All sections applicable except RSE

1.6.3 Reference detail Section:

1.6.4 Spot Check Verification Data Section

Conducted power test against the variant model based on the worst-case condition from the original model was performed in this filing to demonstrate the test data from original model remains representative for the variant model

Summary for power and RSE spot check for each rule entry and technology is listed as below:

Test Item	Mode	2AFZZK19JR Worst Result	2AFZZK19KR Worst Result	Difference (dB)
Conducted Power (dBm)	Bluetooth BR/EDR	10.95	10.51	0.44

Conclusion:

Based on the spot check test result, the test data from the original model is representative for the variant model. The power level and RSE spot check are shown within expected level compliant to limit line.

We confirm that the test data reuse policy of FCC KDB 484596 D01 Referencing Test Data v01 has been followed and the test data as referenced from the parent model report represents compliance with new FCC ID.

1.7 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.					
	No. 1098, Pengxi North	n Road, Kunshan Econom	ic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China					
Test Sile Location	TEL : +86-512-57900158					
	FAX : +86-512-57900958					
	Sporton Site No.	FCC Designation No.	FCC Test Firm			
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.			
	03CH05-KS	CN1257	314309			

1.8 Test Software

lte	em	Site	Manufacturer	Name	Version
	1.	03CH05-KS	AUDIX	E3	6.2009-8-24al

1.9 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

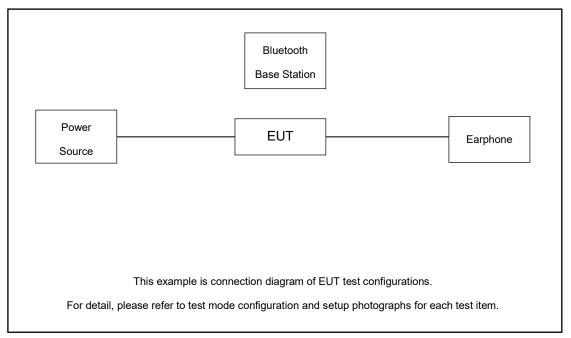
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Summary table of Test Cases							
		Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps Bluetooth EDR 2Mbps Bluetooth EDR						
	GFSK	π/4-DQPSK	8-DPSK				
	E	Bluetooth EDR 3Mbps 8-DPS	K				
Radiated		Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz						
	Mode 3: CH78_2480 MHz						
Remark:	Remark:						

- 1. For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, The tests were performed with Adapter , Earphone and USB Cable.

2.3 Connection Diagram of Test System

For Radiated Emission

2.4 Support Unit used in test configuration and system

Item	Equipment Trade Name		Model Name	FCC ID	Data Cable	Power Cord	
1.	BT Base Station	R&S	СВТ	N/A	N/A	Unshielded,1.8m	
2.	Earphone	Xiaomi	N/A	N/A	N/A	N/A	
3.	Adapter	Xiaomi	N/A	N/A	N/A	N/A	

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

3 Test Result

3.1 Radiated Band Edges and Spurious Emission Measurement

3.1.1 Limit of Radiated Band Edges and Spurious Emission

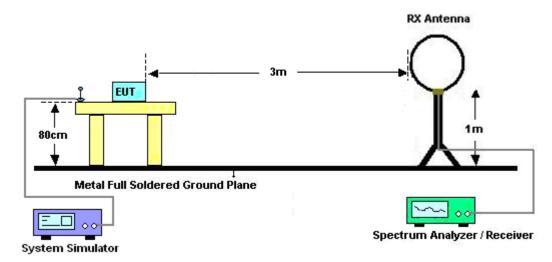
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

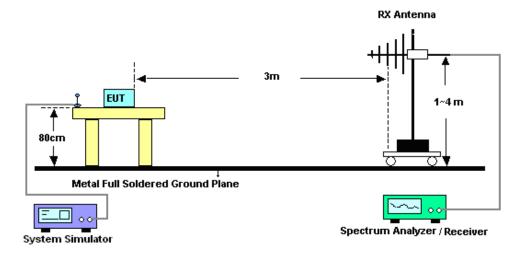
3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

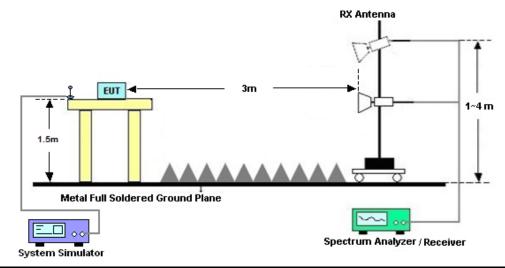
3.1.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 1. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 2. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.1.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AFZZK19KR Page Number : 14 of 18 Report Issued Date : Sep. 22, 2021 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

3.1.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.1.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.1.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix A.

3.1.8 Duty cycle correction factor for average measurement

Please refer to Appendix B.

3.2 Antenna Requirements

3.2.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.2.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.2.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;M ax 30dBm	Oct. 17, 2020	Aug. 25, 2021	Oct. 16, 2021	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Apr. 13, 2021	Aug. 25, 2021	Apr. 12, 2022	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 01, 2020	Aug. 25, 2021	Oct. 31, 2021	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	Jun. 04 ,2021	Aug. 25, 2021	Jun. 03, 2022	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 24, 2021	Aug. 25, 2021	Apr. 23, 2022	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2020	Aug. 25, 2021	Nov. 09, 2021	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Apr. 12, 2021	Aug. 25, 2021	Apr. 11, 2022	Radiation (03CH05-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 07, 2021	Aug. 25, 2021	Jan. 06, 2022	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2012228	1Ghz-18Ghz	Oct. 17, 2020	Aug. 25, 2021	Oct. 16, 2021	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5G Hz	Oct. 17, 2020	Aug. 25, 2021	Oct. 16, 2021	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Aug. 25, 2021	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Aug. 25, 2021	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Aug. 25, 2021	NCR	Radiation (03CH05-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VUB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VUB

Appendix A. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

ВТ	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		2344.58	54.35	-19.65	74	49.42	32.06	7.63	34.76	111	111	Ρ	Н
	*	2344.58	29.56	-24.44	54	-	-	-	-	-	-	А	н
		2402	103.55	-	-	98.34	32.2	7.72	34.71	111	111	Ρ	Н
BT		2402	78.76	-	-	-	-	-	-	-	-	А	Н
CH00 2402MHz		2335.09	54.46	-19.54	74	49.53	32.06	7.63	34.76	307	77	Р	V
2402MHZ	*	2335.09	29.67	-24.33	54	-	-	-	-	-	-	А	V
		2402	98.58	-	-	93.37	32.2	7.72	34.71	307	77	Р	V
		2402	73.79	-	-	-	-	-	-	-	-	А	V
		2484.82	54.38	-19.62	74	49.03	32.12	7.86	34.63	100	138	Р	Н
	*	2484.82	29.59	-24.41	54	-	-	-	-	-	-	А	Н
		2480	104.14	-	-	98.79	32.12	7.86	34.63	100	138	Р	Н
BT		2480	79.35	-	-	-	-	-	-	-	-	А	Н
CH 78 2480MHz		2491.3	53.65	-20.35	74	48.26	32.1	7.89	34.6	369	86	Р	V
2400111172	*	2491.3	28.86	-25.14	54	-	-	-	-	-	-	А	V
		2480	99.39	-	-	94.04	32.12	7.86	34.63	369	86	Р	V
		2480	74.60	-	-	-	-	-	-	-	-	А	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	e.		·	·			

BT (Band Edge @ 3m)

BT (Harmonic @ 3m)													_
ВТ	Note	Frequency	Level (dBµV/m)	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Path Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Peak Avg. (P/A)	
ВТ СН 00		4806	40.58	-33.42	74	56.27	34.3	11.18	61.17	300	0	P	H
2402MHz		4806	40.82	-33.18	74	56.51	34.3	11.18	61.17	100	360	Р	V
		4884	40.63	-33.37	74	56.12	34.34	11.28	61.11	300	0	Р	Н
BT		7320	44	-30	74	55.41	35.93	13.73	61.07	300	0	Р	Н
CH 39 2441MHz		4884	41.69	-32.31	74	57.18	34.34	11.28	61.11	100	360	Р	V
244 111172		7320	44.2	-29.8	74	55.61	35.93	13.73	61.07	100	360	Р	V
		4962	40.99	-33.01	74	56.93	34.38	11.39	61.71	300	0	Р	Н
BT		7440	42.97	-31.03	74	55.28	35.91	13.85	62.07	300	0	Р	Н
CH 78 2480MHz		4962	40.91	-33.09	74	56.85	34.38	11.39	61.71	100	360	Р	V
2400111172		7440	42.22	-31.78	74	54.53	35.91	13.85	62.07	100	360	Р	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	e.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		102.75	23.5	-20	43.5	37.57	16.37	1.76	32.2	-	-	Р	Н
		169.68	27.85	-15.65	43.5	41.98	15.7	2.27	32.1	-	-	Р	Н
		318.09	32.23	-13.77	46	41.68	19.58	3.11	32.14	100	0	Р	Н
		386.96	23.8	-22.2	46	31.2	21.44	3.43	32.27	-	-	Р	н
		487.84	24	-22	46	28.72	23.77	3.86	32.35	-	-	Ρ	Н
2.4GHz BT		644.98	25.52	-20.48	46	26.89	26.43	4.41	32.21	-	-	Ρ	Н
LF		44.55	26.77	-13.23	40	40.44	17.35	1.16	32.18	200	0	Р	V
		101.78	24.11	-19.39	43.5	38.28	16.28	1.75	32.2	-	-	Р	V
		156.1	25.22	-18.28	43.5	38.4	16.74	2.18	32.1	-	-	Р	V
		203.63	28.38	-15.12	43.5	42.86	15.14	2.49	32.11	-	-	Р	V
		317.12	29.91	-16.09	46	39.36	19.57	3.11	32.13	-	-	Р	V
		941.8	29.37	-16.63	46	25.54	30.7	5.33	32.2	-	-	Р	V
Remark		o other spurio											
Remark	2. Al	l results are P	ASS again	st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

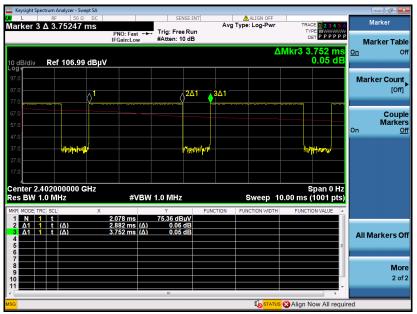
- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

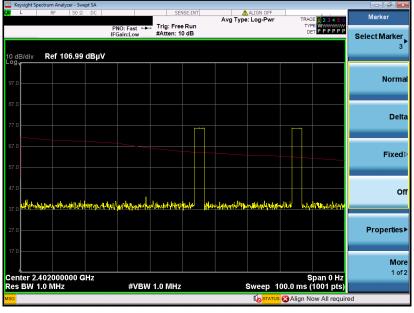
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)


For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".



Appendix B. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Channel 00

3DH5 on time (Count Pulses) Plot on Channel 00

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.882 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.

Appendix D. Reference Report

Please refer to Sporton report number FR122708A which is issued separately.