


Fig. 54 Conducted Spurious Emission (802.11ac-HT40, Ch159, 25 GHz-40 GHz)

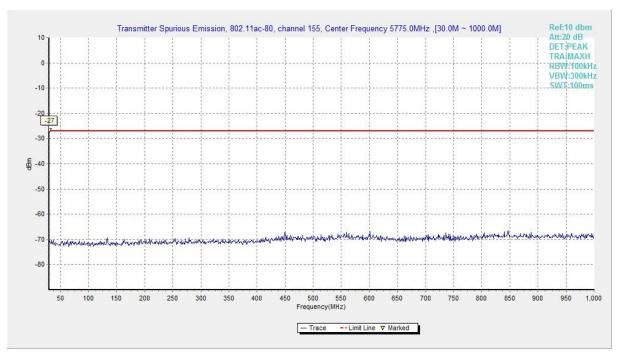



Fig. 55 Conducted Spurious Emission (802.11ac-HT80, Ch155, 30 MHz-1 GHz)





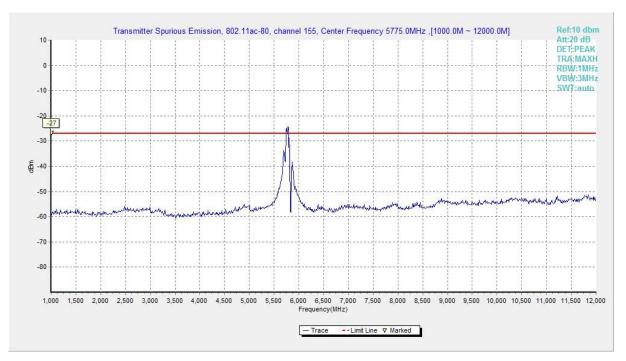



Fig. 56 Conducted Spurious Emission (802.11ac-HT80, Ch155, 1 GHz -12 GHz)

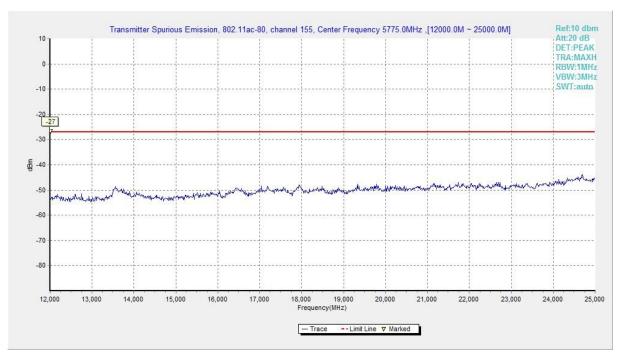



Fig. 57 Conducted Spurious Emission (802.11ac-HT80, Ch155, 12 GHz-25 GHz)





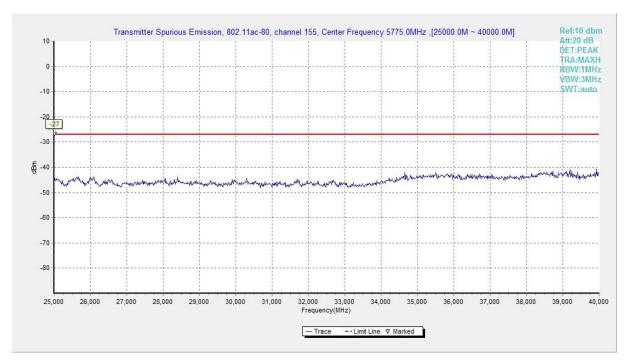
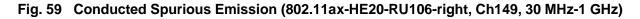




Fig. 58 Conducted Spurious Emission (802.11ac-HT80, Ch155, 25 GHz-40 GHz)

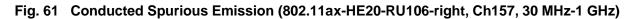
| MultiView                                            | 3) Spectru     | m                                 |         |                       |        |            |                |                     |                   |
|------------------------------------------------------|----------------|-----------------------------------|---------|-----------------------|--------|------------|----------------|---------------------|-------------------|
| Ref Level 10<br>Att                                  |                | set 2.50 dB ● RB<br>T 9.7 ms ● VB |         | de Auto Sween         |        |            |                |                     |                   |
| l Frequency S                                        | weep           | 1                                 |         |                       |        |            |                |                     | ●1Pk Max          |
|                                                      |                |                                   |         |                       |        |            |                |                     |                   |
| D dBm                                                |                |                                   |         |                       |        |            |                |                     |                   |
| 10 dBm                                               |                |                                   |         |                       |        |            |                |                     |                   |
| -20 dBm                                              |                |                                   |         |                       |        |            |                |                     |                   |
| -30 dBm                                              | H1 -27.000 dBm | L                                 |         |                       |        |            |                |                     |                   |
| -40 dBm                                              |                |                                   |         |                       |        |            |                |                     |                   |
| -50 dBm                                              |                |                                   |         |                       |        |            |                |                     |                   |
| -60 dBm                                              |                |                                   |         |                       |        |            |                |                     |                   |
| <sub>V</sub> ZQJ <b>dBm</b> mourta <sub>ante</sub> r | annonalistor   | re-                               | -       | and the second second | hander | monoralist | ourgender work | un mar and a second | nangantratraterad |
| 80 dBm                                               |                |                                   |         |                       |        |            |                |                     |                   |
|                                                      |                |                                   |         |                       |        |            |                |                     |                   |
| 30.0 MHz                                             |                |                                   | 1001 pt | 5                     | 9.     | 7.0 MHz/   |                |                     | 1.0 GHz           |
|                                                      |                |                                   |         |                       |        |            | Measuring      |                     | 17:13:04          |

17:13:04 12.02.2020








| MultiView 🙁            | Spectrum    |                                 |          |              |           |         |            |                        |                        |
|------------------------|-------------|---------------------------------|----------|--------------|-----------|---------|------------|------------------------|------------------------|
| Ref Level 10.00<br>Att |             | t 2.50 dB • RBV<br>156 ms • VBV |          | • Auto Sweep |           |         |            |                        |                        |
| 1 Frequency Sw         |             |                                 |          |              |           |         |            |                        | ●1Pk Max               |
|                        |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
| 0 dBm                  |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
| -10 dBm                |             |                                 |          |              |           |         |            |                        |                        |
|                        | 1           |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
| -20 dBm                |             |                                 |          |              |           |         |            |                        |                        |
|                        | -27.000 dBm |                                 |          |              |           |         |            |                        |                        |
| -30 dBm                |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
| -40 dBm                | -           |                                 |          |              |           |         |            | Mananana               |                        |
|                        |             |                                 |          |              |           | monun   | mon manage | 1 res march 1 th march | a mar have a ma        |
|                        |             |                                 | A B      | Mannan       | montalent |         |            | 1                      |                        |
| -50 dEm                | //          | a contraction                   | munn     | hat he was   |           |         |            |                        |                        |
| ha h                   | mound       | www.paper end -                 | *        |              |           |         |            |                        |                        |
| -60 dBm                |             |                                 |          |              |           |         |            |                        |                        |
| oo abiii               |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
| -70 dBm                |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
| -80 dBm                |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
|                        |             |                                 |          |              |           |         |            |                        |                        |
| 1.0 GHz                |             |                                 | 1001 pts | 6            | 3         | .9 GHz/ |            |                        | 40.0 GHz               |
| L                      | Л           |                                 |          |              |           |         | Measuring  |                        | 12.02.2020<br>17:25:45 |

17:25:46 12.02.2020

## Fig. 60 Conducted Spurious Emission (802.11ax-HE20-RU106-right, Ch149, 1 GHz-40 GHz)

| MultiView           | B Spectrum      |            |                              |                |      |           |           |             |                      |
|---------------------|-----------------|------------|------------------------------|----------------|------|-----------|-----------|-------------|----------------------|
| Ref Level 10<br>Att | 0.00 dBm Offset |            | RBW 100 kHz<br>VBW 300 kHz M | ode Auto Sween |      |           |           |             |                      |
| Frequency S         |                 | 5.7 1113 0 | DI SOOKIZ III                |                |      |           |           |             | ●1Pk Ma>             |
|                     |                 |            |                              |                |      |           |           |             |                      |
| dBm                 |                 |            |                              |                |      |           |           |             |                      |
| 10 dBm              |                 |            |                              |                |      |           |           |             |                      |
| 20 dBm              |                 |            |                              |                |      |           |           |             |                      |
|                     | H1 -27.000 dBm  |            |                              |                |      |           |           |             |                      |
| 30 dBm              |                 |            |                              |                |      |           |           |             |                      |
| 40 dBm              |                 |            |                              |                |      |           |           |             |                      |
| 50 dBm              |                 |            |                              |                |      |           |           |             |                      |
| 50 dBm              |                 |            |                              |                |      |           |           |             |                      |
| 70. dem             | www.www.www.    | munder     | www.                         | per un man     | www. | Manganana | mound     | www.horshhu | normanian            |
|                     |                 |            | ſ                            |                |      |           |           |             |                      |
| 30 dBm              |                 |            |                              |                |      |           |           |             |                      |
| 0.0 MHz             |                 |            | 1001 p                       | ts             | 9    | 7.0 MHz/  |           |             | 1.0 GI               |
|                     | Y               |            |                              |                |      |           | Measuring | 4           | 12.02.202<br>17:35:2 |

17:35:21 12.02.2020







| MultiView 😁             | Spectrum      |                               |             |               |                   |          |           |         |                                 |
|-------------------------|---------------|-------------------------------|-------------|---------------|-------------------|----------|-----------|---------|---------------------------------|
| Ref Level 10.0<br>• Att |               | t 2.50 dB • RB<br>156 ms • VB |             | e Auto Sweep  |                   |          |           |         |                                 |
| 1 Frequency Sw          |               | 100 110 - 40                  |             |               |                   |          |           |         | ●1Pk Max                        |
|                         |               |                               |             |               |                   |          |           |         |                                 |
|                         |               |                               |             |               |                   |          |           |         |                                 |
| 0 dBm                   |               |                               |             |               |                   |          |           |         |                                 |
|                         |               |                               |             |               |                   |          |           |         |                                 |
| -10 dBm                 |               |                               |             |               |                   |          |           |         |                                 |
| 10 dbiii                |               |                               |             |               |                   |          |           |         |                                 |
|                         |               |                               |             |               |                   |          |           |         |                                 |
| -20 dBm                 |               |                               |             |               |                   |          |           |         |                                 |
|                         | 1 -27.000 dBm |                               |             |               |                   |          |           |         |                                 |
| -30 dBm                 | -27.000 0.811 |                               |             |               |                   |          |           |         |                                 |
|                         |               |                               |             |               |                   |          |           |         |                                 |
|                         |               |                               |             |               |                   |          |           |         |                                 |
| -40 dBm                 |               |                               |             |               |                   |          |           | protect | martine many and                |
|                         |               |                               |             |               | and amount of the | www.     | Wyman     | www     |                                 |
| -50 dBm                 |               |                               | Americant   | markinghowing | ~~~~~             |          |           | munkuly |                                 |
|                         | 1 mar ward    | an management                 | was annos . |               |                   |          |           |         |                                 |
| -60 dBm                 | ALCON V.      |                               |             |               |                   |          |           |         |                                 |
| -00 ubm                 |               |                               |             |               |                   |          |           |         |                                 |
|                         |               |                               |             |               |                   |          |           |         |                                 |
| -70 dBm                 |               |                               |             |               |                   |          |           |         |                                 |
|                         |               |                               |             |               |                   |          |           |         |                                 |
| -80 dBm                 |               |                               |             |               |                   |          |           |         |                                 |
|                         |               |                               |             |               |                   |          |           |         |                                 |
|                         |               |                               |             |               |                   |          |           |         |                                 |
| 1.0 GHz                 |               |                               | 1001 pt:    | s <u> </u>    | 3                 | 8.9 GHz/ | I         | I       | 40.0 GHz                        |
|                         | 1             |                               |             |               |                   |          | Measuring |         | <b>#</b> 12.02.2020<br>17:32:43 |

17:32:44 12.02.2020

# Fig. 62 Conducted Spurious Emission (802.11ax-HE20-RU106-right, Ch157, 1 GHz-40 GHz)

| MultiView 8          | Spectrum                                            |                           |                                                     |               |                        |             |           |                  |
|----------------------|-----------------------------------------------------|---------------------------|-----------------------------------------------------|---------------|------------------------|-------------|-----------|------------------|
| Ref Level 10.<br>Att | 00 dBm Offset                                       |                           | <b>RBW</b> 100 kHz<br><b>/BW</b> 300 kHz <b>M</b> o | do Auto Swoon |                        |             |           |                  |
| Frequency S          |                                                     | 9.7 ms 🔍 (                | BH SOURIE ME                                        |               |                        |             |           | ●1Pk Ma>         |
|                      |                                                     |                           |                                                     |               |                        |             |           |                  |
| dBm                  |                                                     |                           |                                                     |               |                        |             |           |                  |
| 10 dBm               |                                                     |                           |                                                     |               |                        |             |           |                  |
| 20 dBm               |                                                     |                           |                                                     |               |                        |             |           |                  |
|                      | H1 -27.000 dBm —                                    |                           |                                                     |               |                        |             |           |                  |
| 30 dBm               |                                                     |                           |                                                     |               |                        |             |           |                  |
| 40 dBm               |                                                     |                           |                                                     |               |                        |             |           |                  |
| 50 dBm               |                                                     |                           |                                                     |               |                        |             |           |                  |
| 60 dBm               |                                                     |                           |                                                     |               |                        |             |           |                  |
| 70 dBm               |                                                     | Alman                     | www.www.com.while                                   | mounderserver | a martin and a marting | mohenweinen | norman    | <br>mananananana |
| anne ven entralled e | w Managedania a sa | and a second state of the |                                                     |               |                        |             |           |                  |
| 30 dBm               |                                                     |                           |                                                     |               |                        |             |           |                  |
| 0.0 MHz              |                                                     |                           | 1001 pt                                             | s             | 9                      | 7.0 MHz/    |           | <br>1.0 Gł       |
|                      |                                                     |                           |                                                     |               |                        |             | Measuring | <br>12.02.202    |

17:37:29 12.02.2020

# Fig. 63 Conducted Spurious Emission (802.11ax-HE20-RU106-right, Ch161, 30 MHz-1 GHz)





| MultiView 😁 Spectru                     | m                                      |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|----------------------------------------|--------------------------|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level 10.00 dBm Off<br>Att 20 dB SW |                                        | e Auto Sweep             |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 Frequency Sweep                       |                                        |                          |          |                    | ●1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 dBm                                   |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBm                                 |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm                                 |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | •                                      |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -30 dBm                                 |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm                                 |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                        |                          | monorman | An Man Mark Marken | where we wanted the state of th |
| -50 dBm                                 | www.www.www.www.www.www.www.www.www.ww | man and man and a second |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | Mary Maring and more and               |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -60 dBm                                 |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -70 dBm                                 |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -80 dBm                                 |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                        |                          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0 GHz                                 |                                        | s :                      | 3.9 GHz/ |                    | 40.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         |                                        |                          |          |                    | 12.02.2020<br>17:41:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

17:41:57 12.02.2020

## Fig. 64 Conducted Spurious Emission (802.11ax-HE20-RU106-right, Ch161, 1 GHz-40 GHz)

| MultiView           | 8 Spectrum       |                   |                                                     |               |         |          |           |                          |                      |
|---------------------|------------------|-------------------|-----------------------------------------------------|---------------|---------|----------|-----------|--------------------------|----------------------|
| Ref Level 10<br>Att | D.00 dBm Offset  |                   | <b>RBW</b> 100 kHz<br><b>/BW</b> 300 kHz <b>M</b> o | do Auto Swoon |         |          |           |                          |                      |
| Frequency S         |                  | 9.7 ms - 4        | 500 KHZ 100                                         |               |         |          |           |                          |                      |
|                     |                  |                   |                                                     |               |         |          |           |                          |                      |
| I dBm               |                  |                   |                                                     |               |         |          |           |                          | -                    |
| 10 dBm              |                  |                   |                                                     |               |         |          |           |                          |                      |
| 20 dBm              |                  |                   |                                                     |               |         |          |           |                          |                      |
| 30 dBm              | H1 -27.000 dBm - |                   |                                                     |               |         |          |           |                          |                      |
|                     |                  |                   |                                                     |               |         |          |           |                          |                      |
| 40 dBm              |                  |                   |                                                     |               |         |          |           |                          | -                    |
| 50 dBm              |                  |                   |                                                     |               |         |          |           |                          |                      |
| 60 dBm              |                  |                   |                                                     |               |         |          |           |                          |                      |
| 70.dBm              |                  | oul-share the not | hon and a strange of the second                     | mound         | Amandom | militani | water     | with the second          | www.when             |
| 30 dBm              |                  |                   | _                                                   |               |         |          |           |                          |                      |
|                     |                  |                   |                                                     |               |         |          |           |                          |                      |
| 30.0 MHz            |                  |                   | 1001 pt                                             | s             | . 9     | 7.0 MHz/ |           |                          | 1.0 GH               |
|                     | T I              |                   |                                                     |               |         |          | Measuring | Concernant Provide State | 12.02.202<br>18:59:3 |

18:59:40 12.02.2020

# Fig. 65 Conducted Spurious Emission (802.11ax-HE40-RU242-right, Ch151, 30 MHz-1 GHz)





| MultiView            | Spectrum                    |                               |                  |              |                |         |            |                        |             |
|----------------------|-----------------------------|-------------------------------|------------------|--------------|----------------|---------|------------|------------------------|-------------|
| RefLevel 10<br>• Att | .00 dBm Offset<br>20 dB SWT | t 2.50 dB • RB<br>156 ms • VB |                  | e Auto Sweep |                |         |            |                        |             |
| 1 Frequency S        |                             | 150 ms - 06                   |                  | e Auto Sweep |                |         |            |                        | ●1Pk Max    |
|                      |                             |                               |                  |              |                |         |            |                        |             |
| 0 dBm                |                             |                               |                  |              |                |         |            |                        |             |
| U UBM                |                             |                               |                  |              |                |         |            |                        |             |
|                      |                             |                               |                  |              |                |         |            |                        |             |
| -10 dBm              |                             |                               |                  |              |                |         |            |                        |             |
|                      | 1                           |                               |                  |              |                |         |            |                        |             |
| -20 dBm              |                             |                               |                  |              |                |         |            |                        |             |
|                      | H1 -27.000 dBm              |                               |                  |              |                |         |            |                        |             |
| -30 dBm              |                             |                               |                  |              |                |         |            |                        |             |
|                      |                             |                               |                  |              |                |         |            |                        |             |
| -40 dBm              |                             |                               |                  |              |                |         |            | 66-0476                | dat warning |
|                      |                             |                               |                  |              | - matching and | man     | www.Warner | Munimum                | ·····       |
| -50 dBm              |                             | . N Alkha                     | h har manual and | mann         | Web Cole PVV   |         |            | when an and the second |             |
| . Ann it             | W Unannow                   | Service and a service         | SV               |              |                |         |            |                        |             |
| -60 dBm              |                             |                               |                  |              |                |         |            |                        |             |
|                      |                             |                               |                  |              |                |         |            |                        |             |
| -70 dBm              |                             |                               |                  |              |                |         |            |                        |             |
|                      |                             |                               |                  |              |                |         |            |                        |             |
| -80 dBm              |                             |                               |                  |              |                |         |            |                        |             |
|                      |                             |                               |                  |              |                |         |            |                        |             |
| 1.0.0115             |                             |                               | 1001 pt          |              |                |         |            |                        | 40.0.00     |
| 1.0 GHz              | T                           |                               | 1001 pt          | 5            | 3              | .9 GHz/ |            |                        | 40.0 GHz    |
| L                    |                             |                               |                  |              |                |         | Measuring  |                        | 18:56:03    |

18:56:04 12.02.2020

## Fig. 66 Conducted Spurious Emission (802.11ax-HE40-RU242-right, Ch151, 1 GHz-40 GHz)

| MultiView 😁            | Spectrum                                                                                                        |          |                                  |                          |                   |                   |                                |                |                                 |
|------------------------|-----------------------------------------------------------------------------------------------------------------|----------|----------------------------------|--------------------------|-------------------|-------------------|--------------------------------|----------------|---------------------------------|
| Ref Level 10.00<br>Att |                                                                                                                 |          | 3W 100 kHz<br>3W 300 kHz Ma      | de Auto Sween            |                   |                   |                                |                |                                 |
| Frequency Swe          |                                                                                                                 | 517 1110 |                                  |                          |                   |                   |                                |                | ⊙1Pk Max                        |
|                        |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
| dBm                    |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
|                        |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
| 10 dBm                 |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
|                        |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
| 20 dBm                 |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
|                        | -27.000 dBm                                                                                                     |          |                                  |                          |                   |                   |                                |                |                                 |
| 30 dBm                 |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
|                        |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
| 40 dBm                 |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
|                        |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
| 50 dBm                 |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
|                        |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
| 60 dBm                 |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
|                        |                                                                                                                 |          |                                  |                          | . ALAM MAN WAR IN | Muhamman          |                                | hanon manahran | ma who who me down              |
| 7.0. jBm mar wind      | where a shake here and a s |          | len warden in the set of the set | when have been a strated |                   | . man on hard and | Mathedia of a of och indiana a |                |                                 |
|                        |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
| 80 dBm                 |                                                                                                                 |          |                                  |                          |                   |                   |                                |                | +                               |
|                        |                                                                                                                 |          |                                  |                          |                   |                   |                                |                |                                 |
| 30.0 MHz               |                                                                                                                 |          | 1001 pt                          | s                        | 9                 | 7.0 MHz/          | l                              |                | 1.0 GF                          |
|                        |                                                                                                                 |          |                                  |                          |                   |                   | Measuring                      |                | 12.02.202 <b>())</b><br>19:02:2 |

19:02:26 12.02.2020







| MultiView 88          | Spectrum        |                                 |                  |              |        |         |           |           |                        |
|-----------------------|-----------------|---------------------------------|------------------|--------------|--------|---------|-----------|-----------|------------------------|
| Ref Level 10.0<br>Att |                 | t 2.50 dB • RBV<br>156 ms • VBV |                  | e Auto Sweep |        |         |           |           |                        |
| 1 Frequency Sw        |                 |                                 |                  |              |        |         |           |           | ●1Pk Max               |
|                       |                 |                                 |                  |              |        |         |           |           |                        |
|                       |                 |                                 |                  |              |        |         |           |           |                        |
| 0 dBm                 |                 |                                 |                  |              |        |         |           |           |                        |
|                       |                 |                                 |                  |              |        |         |           |           |                        |
| -10 dBm               |                 |                                 |                  |              |        |         |           |           |                        |
|                       |                 |                                 |                  |              |        |         |           |           |                        |
| -20 dBm               |                 |                                 |                  |              |        |         |           |           |                        |
|                       |                 |                                 |                  |              |        |         |           |           |                        |
|                       | 1 -27.000 dBm - |                                 |                  |              |        |         |           |           |                        |
| -30 dBm               |                 |                                 |                  |              |        |         |           |           |                        |
|                       |                 |                                 |                  |              |        |         |           |           |                        |
| -40 dBm               |                 |                                 |                  |              |        |         |           | Also also | and an and the second  |
|                       | - 11            |                                 |                  |              |        | monum   | multiment | Manna     | all the Address of the |
| -50 dBm               |                 |                                 | Mun out          | Marsham      | mmmmm. |         |           | mandurada |                        |
|                       | 1 word          | - May Marine                    | Mar and a second |              |        |         |           |           |                        |
| -60 dBm               |                 |                                 |                  |              |        |         |           |           |                        |
| oo abiii              |                 |                                 |                  |              |        |         |           |           |                        |
|                       |                 |                                 |                  |              |        |         |           |           |                        |
| -70 dBm               |                 |                                 |                  |              |        |         |           |           |                        |
|                       |                 |                                 |                  |              |        |         |           |           |                        |
| -80 dBm               |                 |                                 |                  |              |        |         |           |           |                        |
|                       |                 |                                 |                  |              |        |         |           |           |                        |
|                       |                 |                                 |                  |              |        | L       |           |           |                        |
| 1.0 GHz               | 1               |                                 | 1001 pt          | 5            | 3      | .9 GHz/ |           |           | 40.0 GHz               |
| L                     |                 |                                 |                  |              |        |         | Measuring |           | 12.02.2020<br>19:07:51 |

19:07:52 12.02.2020

#### Fig. 68 Conducted Spurious Emission (802.11ax-HE40-RU242-right, Ch159, 1 GHz-40 GHz)

| MultiView 🔠 Spa                  | ectrum                       | L                                      |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|----------------------------------|------------------------------|----------------------------------------|-----------------|-------------|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Ref Level 10.00 dBm<br>Att 20 dB |                              | dB • RBW 100 kHz<br>ns • VBW 300 kHz N | Iode Auto Sween |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Frequency Sweep                  |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ●1Pk Ma>             |
|                                  |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| dBm                              |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                  |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 10 dBm                           |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                  |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 20 dBm                           |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| H1 -27.0                         | 00 dBm                       |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 30 dBm                           |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                  |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 40 dBm                           |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 50 dBm                           |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                  |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| i0 dBm                           |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                  |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| gudenter mythe month of          | And the second second second | outer a new production on the second   | alway and make  | wandrennake | mundenterrolm | approximately and the | and a second and a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mappharonalist       |
|                                  |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 30 dBm                           |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                  |                              |                                        |                 |             |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 0.0 MHz                          |                              | 1001 p                                 | ots             | 9           | 7.0 MHz/      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 Gł               |
|                                  |                              |                                        |                 |             |               | Measuring             | for a second sec | 12.02.202<br>18:25:5 |

18:25:59 12.02.2020

#### Fig. 69 Conducted Spurious Emission (802.11ax-HE80-RU484-right, Ch155, 30 MHz-1 GHz)





| 9.99999 MHz            |             |             | 1001 pt                                | 5            | 4     | .0 GHz/ | Measuring          |                | 40.0 Gl  |
|------------------------|-------------|-------------|----------------------------------------|--------------|-------|---------|--------------------|----------------|----------|
| 0.00000 MU             |             |             | 1001                                   |              |       |         |                    |                | 10.0.0   |
| 30 dBm                 |             |             |                                        |              |       |         |                    |                |          |
|                        |             |             |                                        |              |       |         |                    |                |          |
| 70 dBm                 |             |             |                                        |              |       |         |                    |                |          |
| 50 dBm                 |             |             |                                        |              |       |         |                    |                |          |
| Mran Marin             | more house  | maramin     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | -<br>-       |       |         |                    |                |          |
| 50 dBm                 |             |             | Mrs. wat                               | pomment      | mount |         | 1.1.0.0.1.101100.0 | W. O.W.        |          |
| 40 dBm                 |             |             |                                        |              |       | MAN MAN | where was a se     | with Marrielan | manunder |
|                        |             |             |                                        |              |       |         |                    |                |          |
| 30 dBm                 | -27.000 dBm |             |                                        |              |       |         |                    |                |          |
| 20 dBm                 |             |             |                                        |              |       |         |                    |                |          |
|                        |             |             |                                        |              |       |         |                    |                |          |
| 10 dBm                 |             |             |                                        |              |       |         |                    |                |          |
| dBm                    |             |             |                                        |              |       |         |                    |                |          |
|                        |             |             |                                        |              |       |         |                    |                |          |
| Frequency Swe          |             | 100 ms - AR |                                        | e Auto Sweep |       |         |                    |                | ●1Pk Ma  |
| Ref Level 10.00<br>Att |             |             | wr1MHz<br>N/3MHz Mode                  |              |       |         |                    |                |          |



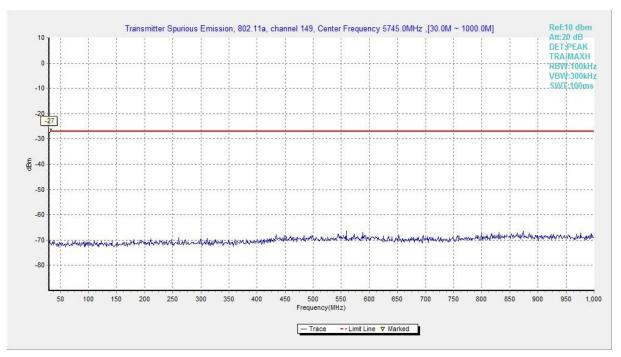



Fig. 71 Conducted Spurious Emission (802.11a, Ch149, 30 MHz-1 GHz)





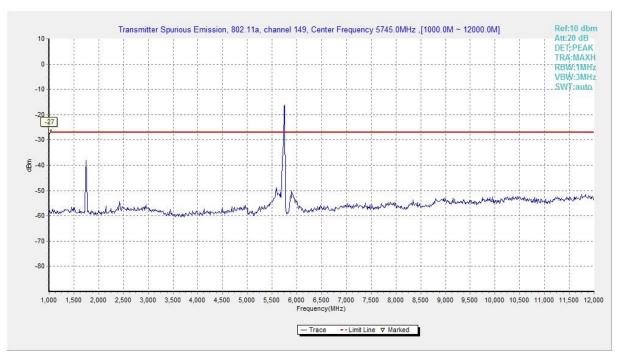



Fig. 72 Conducted Spurious Emission (802.11a, Ch149, 1 GHz -12 GHz)

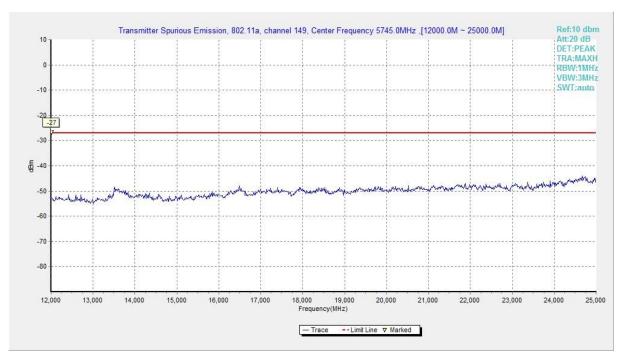



Fig. 73 Conducted Spurious Emission (802.11a, Ch149, 12 GHz-25 GHz)





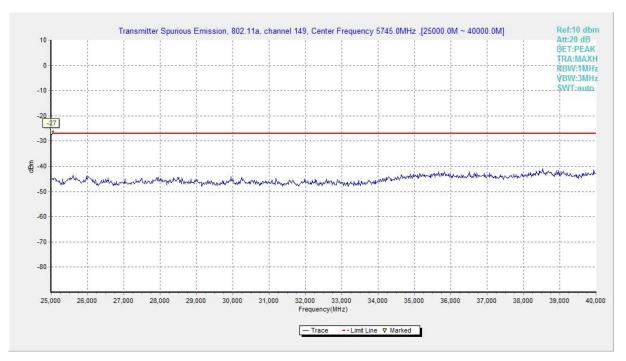



Fig. 74 Conducted Spurious Emission (802.11a, Ch149, 25 GHz-40 GHz)

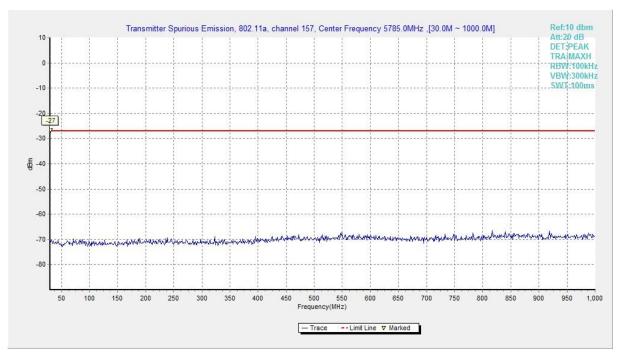



Fig. 75 Conducted Spurious Emission (802.11a, Ch157, 30 MHz-1 GHz)





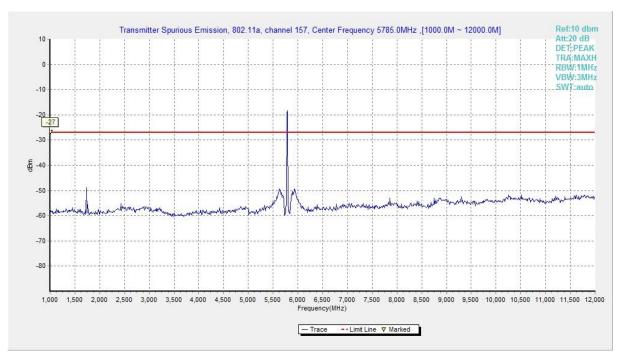



Fig. 76 Conducted Spurious Emission (802.11a, Ch157, 1 GHz -12 GHz)

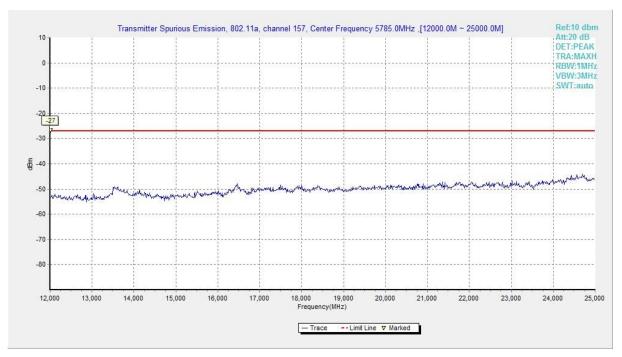



Fig. 77 Conducted Spurious Emission (802.11a, Ch157, 12 GHz-25 GHz)





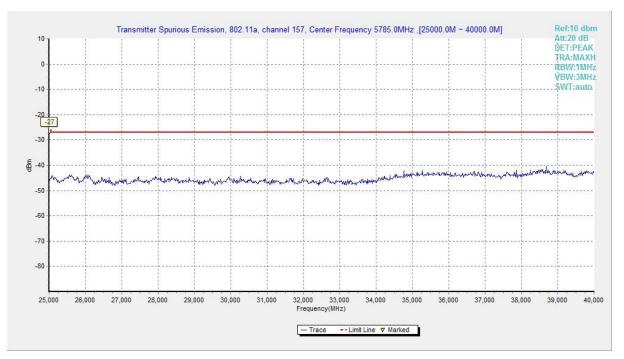



Fig. 78 Conducted Spurious Emission (802.11a, Ch157, 25 GHz-40 GHz)

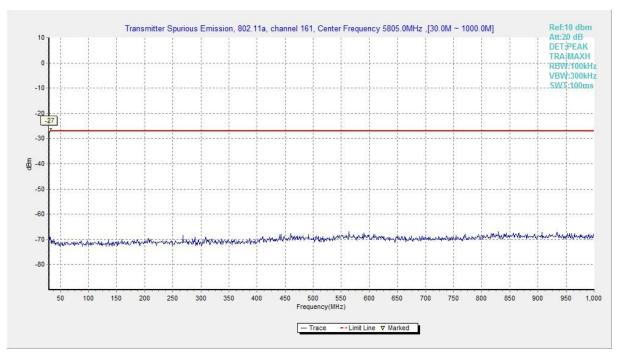



Fig. 79 Conducted Spurious Emission (802.11a, Ch161, 30 MHz-1 GHz)





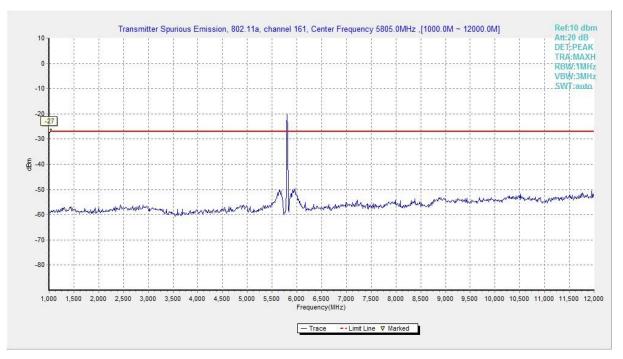



Fig. 80 Conducted Spurious Emission (802.11a, Ch161, 1 GHz -12 GHz)

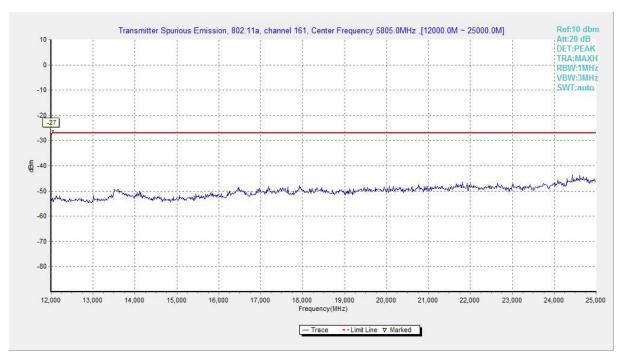



Fig. 81 Conducted Spurious Emission (802.11a, Ch161, 12 GHz-25 GHz)





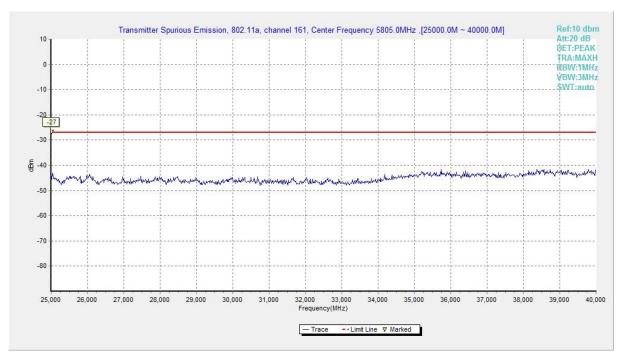



Fig. 82 Conducted Spurious Emission (802.11a, Ch161, 25 GHz-40 GHz)

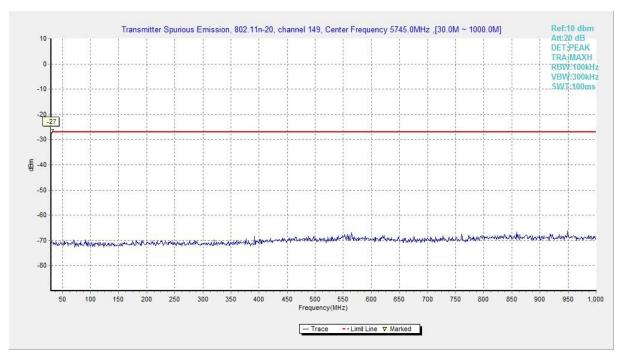



Fig. 83 Conducted Spurious Emission (802.11n-HT20, Ch149, 30 MHz-1 GHz)





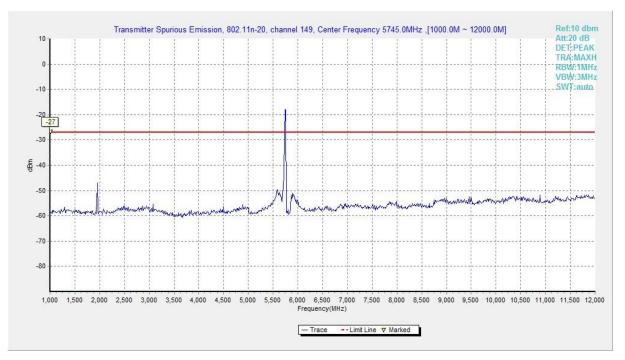



Fig. 84 Conducted Spurious Emission (802.11n-HT20, Ch149, 1 GHz -12 GHz)

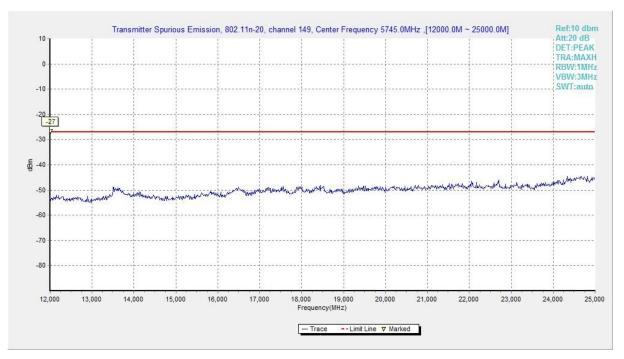



Fig. 85 Conducted Spurious Emission (802.11n-HT20, Ch149, 12 GHz-25 GHz)





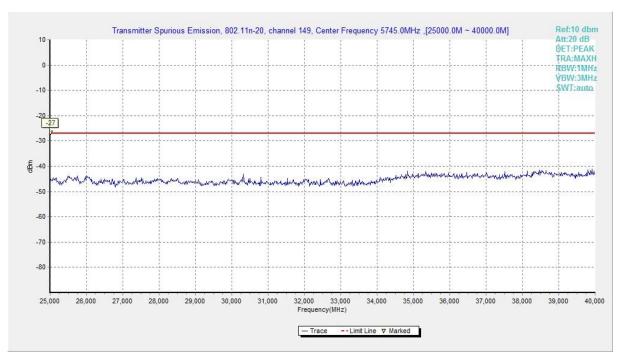



Fig. 86 Conducted Spurious Emission (802.11n-HT20, Ch149, 25 GHz-40 GHz)

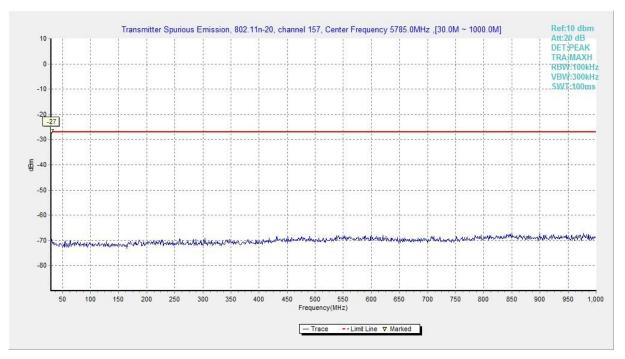



Fig. 87 Conducted Spurious Emission (802.11n-HT20, Ch157, 30 MHz-1 GHz)





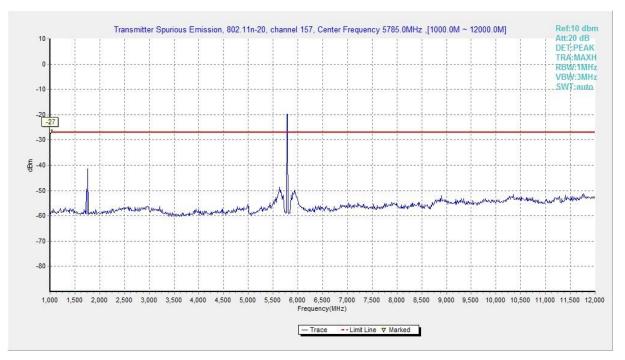



Fig. 88 Conducted Spurious Emission (802.11n-HT20, Ch157, 1 GHz -12 GHz)

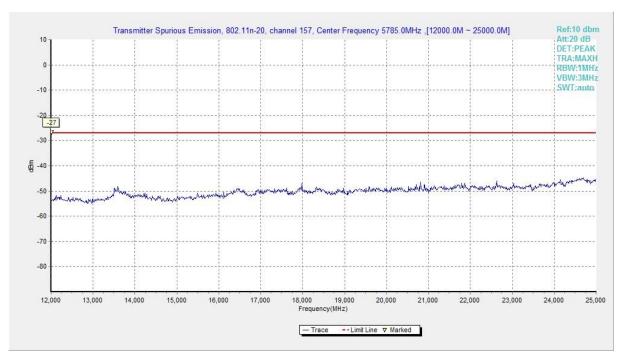



Fig. 89 Conducted Spurious Emission (802.11n-HT20, Ch157, 12 GHz-25 GHz)





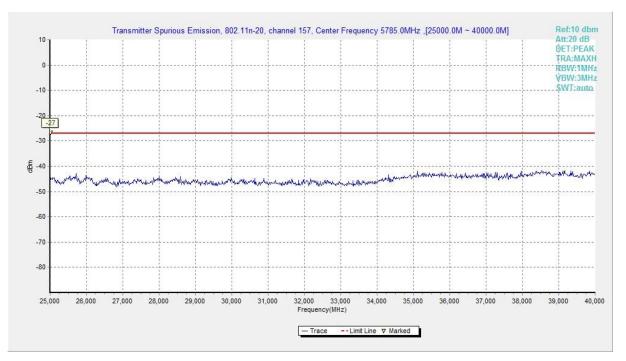



Fig. 90 Conducted Spurious Emission (802.11n-HT20, Ch157, 25 GHz-40 GHz)

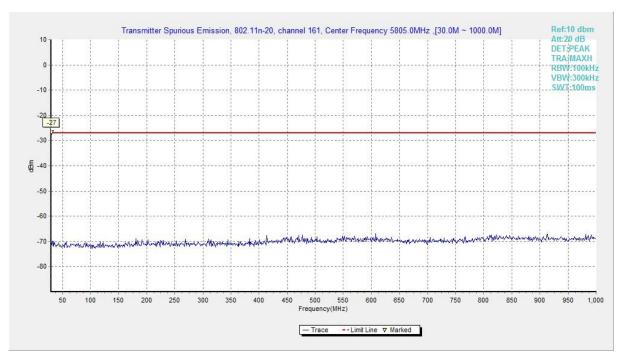



Fig. 91 Conducted Spurious Emission (802.11n-HT20, Ch161, 30 MHz-1 GHz)





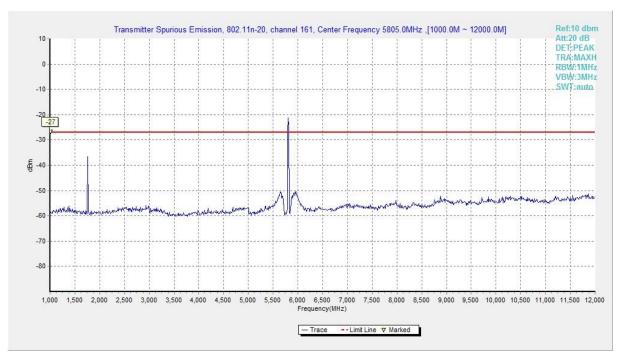



Fig. 92 Conducted Spurious Emission (802.11n-HT20, Ch161, 1 GHz -12 GHz)

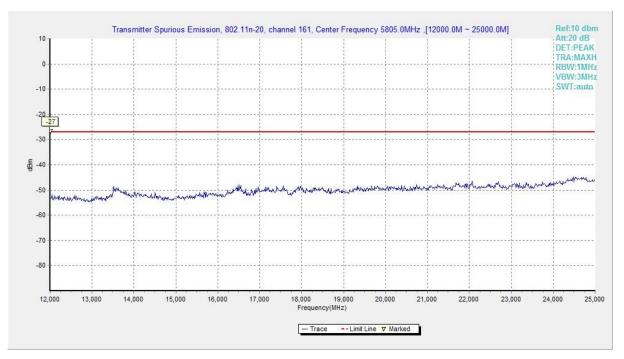



Fig. 93 Conducted Spurious Emission (802.11n-HT20, Ch161, 12 GHz-25 GHz)





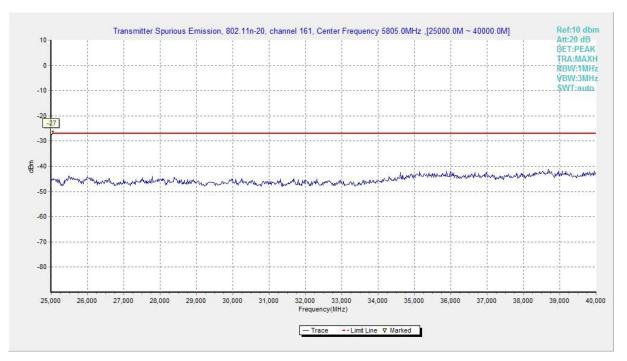



Fig. 94 Conducted Spurious Emission (802.11n-HT20, Ch161, 25 GHz-40 GHz)

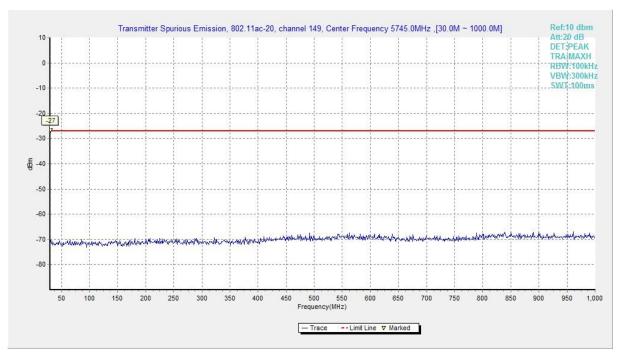



Fig. 95 Conducted Spurious Emission (802.11ac-HT20, Ch149, 30 MHz-1 GHz)





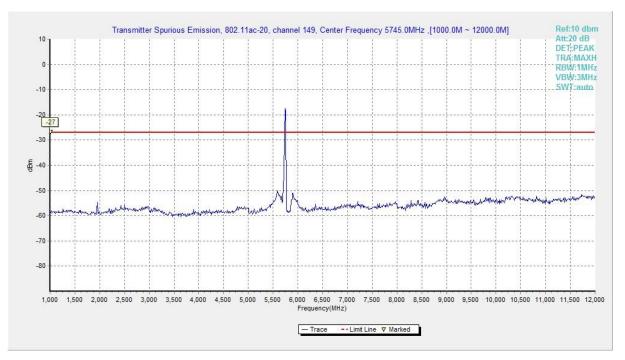



Fig. 96 Conducted Spurious Emission (802.11ac-HT20, Ch149, 1 GHz -12 GHz)

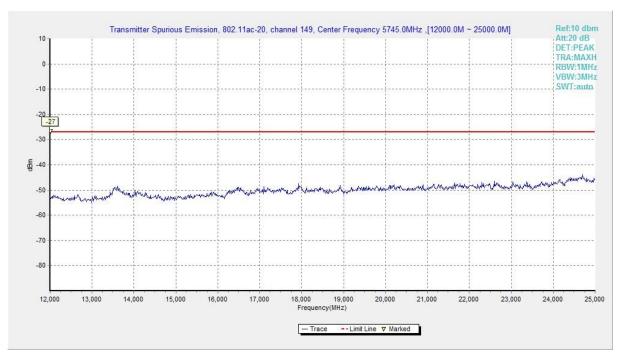



Fig. 97 Conducted Spurious Emission (802.11ac-HT20, Ch149, 12 GHz-25 GHz)





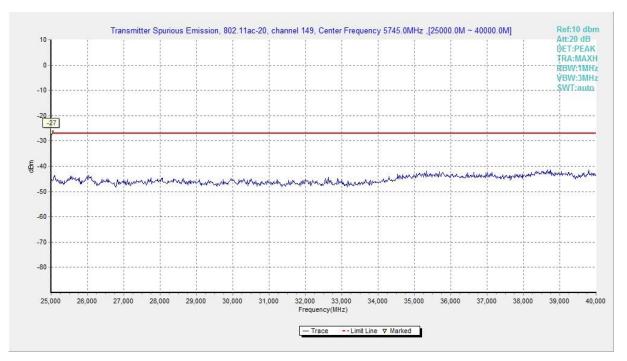



Fig. 98 Conducted Spurious Emission (802.11ac-HT20, Ch149, 25 GHz-40 GHz)

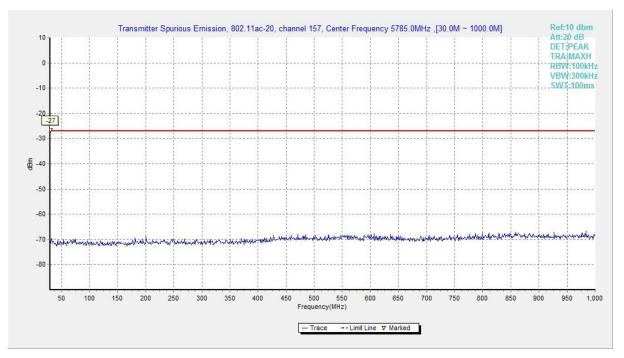



Fig. 99 Conducted Spurious Emission (802.11ac-HT20, Ch157, 30 MHz-1 GHz)





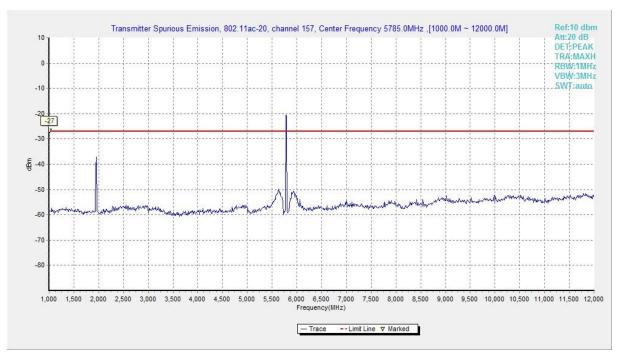



Fig. 100 Conducted Spurious Emission (802.11ac-HT20, Ch157, 1 GHz -12 GHz)

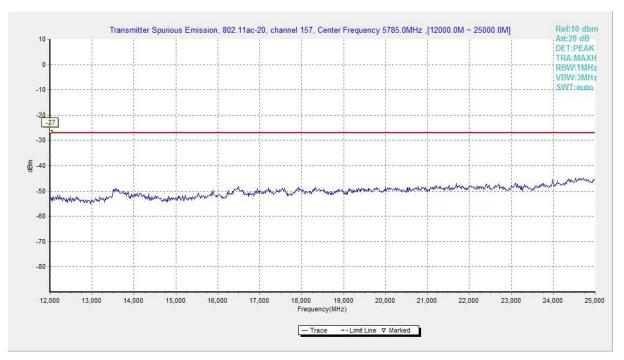



Fig. 101 Conducted Spurious Emission (802.11ac-HT20, Ch157, 12 GHz-25 GHz)





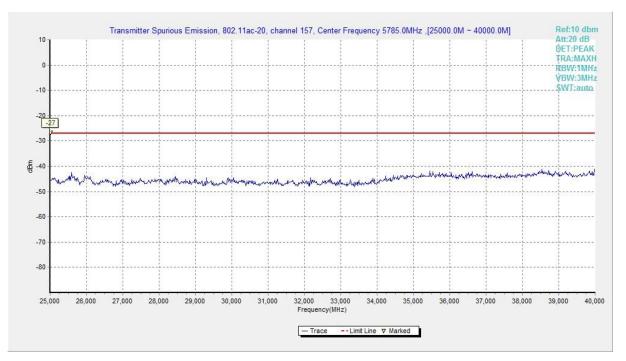



Fig. 102 Conducted Spurious Emission (802.11ac-HT20, Ch157, 25 GHz-40 GHz)

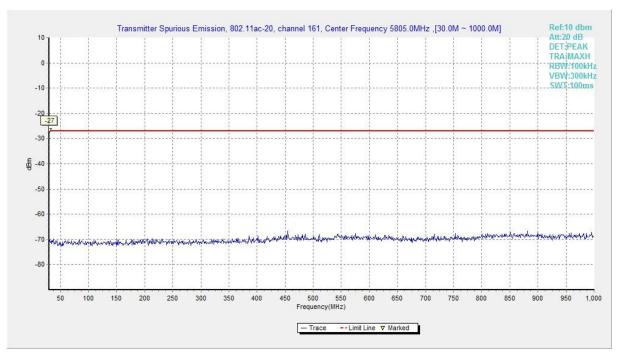



Fig. 103 Conducted Spurious Emission (802.11ac-HT20, Ch161, 30 MHz-1 GHz)





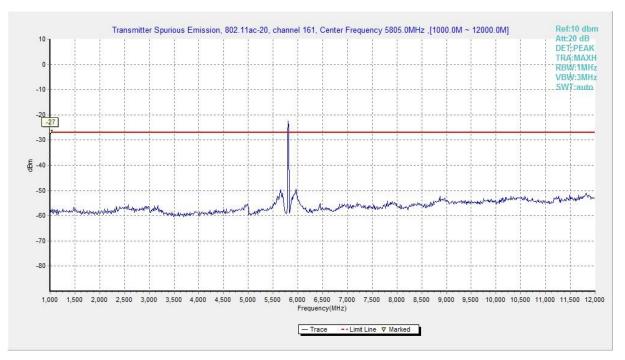



Fig. 104 Conducted Spurious Emission (802.11ac-HT20, Ch161, 1 GHz -12 GHz)

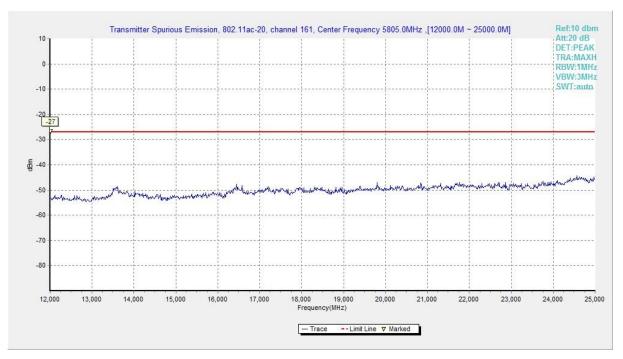



Fig. 105 Conducted Spurious Emission (802.11ac-HT20, Ch161, 12 GHz-25 GHz)





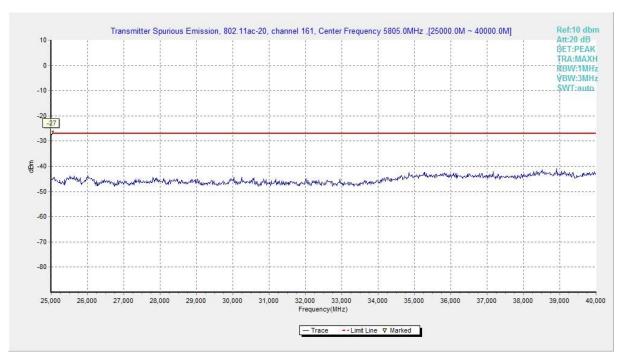



Fig. 106 Conducted Spurious Emission (802.11ac-HT20, Ch161, 25 GHz-40 GHz)

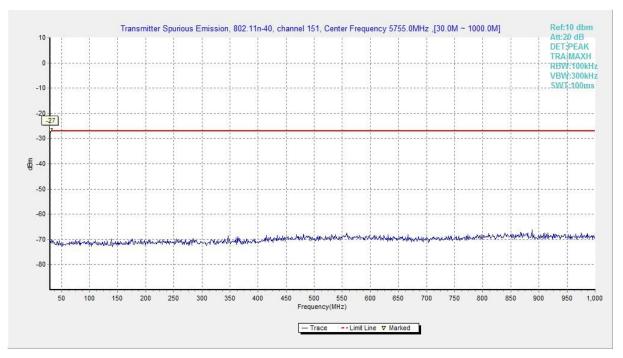



Fig. 107 Conducted Spurious Emission (802.11n-HT40, Ch151, 30 MHz-1 GHz)





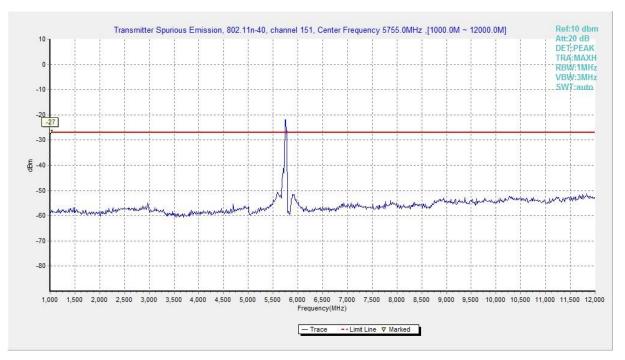



Fig. 108 Conducted Spurious Emission (802.11n-HT40, Ch151, 1 GHz -12 GHz)

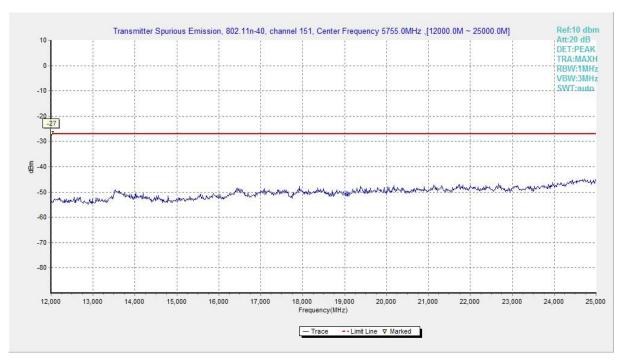



Fig. 109 Conducted Spurious Emission (802.11n-HT40, Ch151, 12 GHz-25 GHz)








Fig. 110 Conducted Spurious Emission (802.11n-HT40, Ch151, 25 GHz-40 GHz)

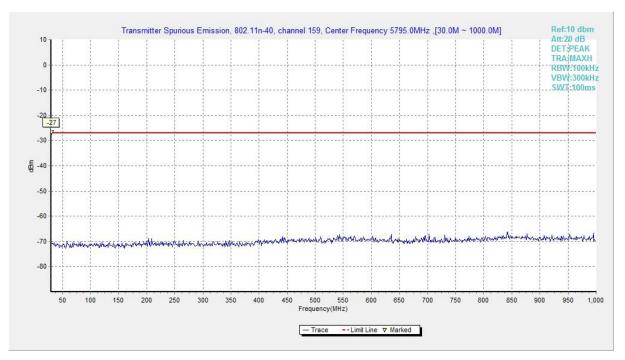



Fig. 111 Conducted Spurious Emission (802.11n-HT40, Ch159, 30 MHz-1 GHz)





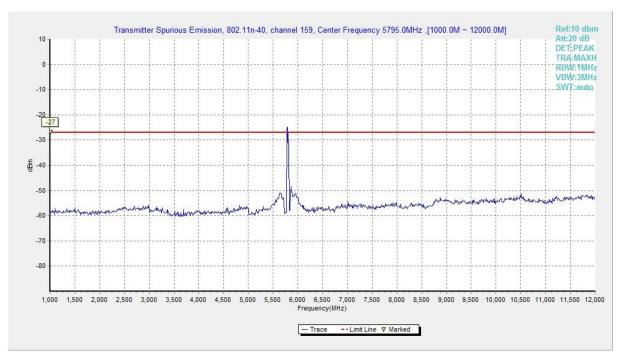



Fig. 112 Conducted Spurious Emission (802.11n-HT40, Ch159, 1 GHz -12 GHz)

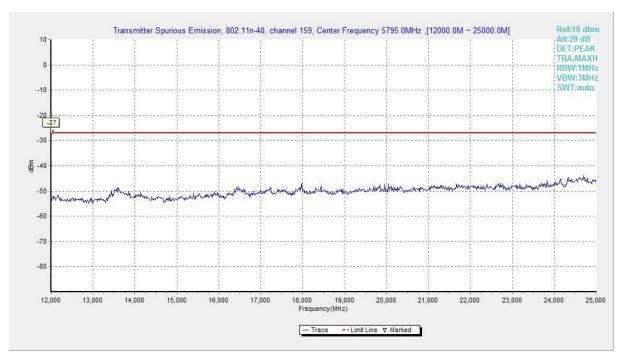



Fig. 113 Conducted Spurious Emission (802.11n-HT40, Ch159, 12 GHz-25 GHz)





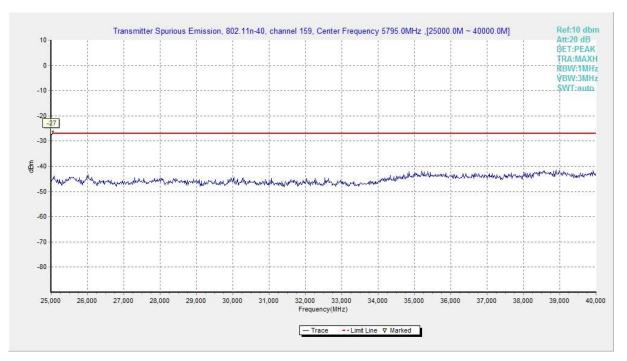



Fig. 114 Conducted Spurious Emission (802.11n-HT40, Ch159, 25 GHz-40 GHz)

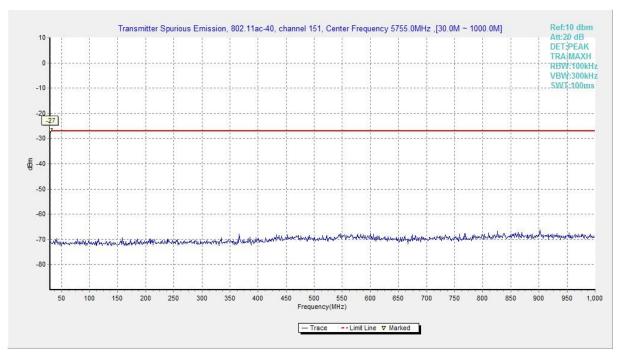



Fig. 115 Conducted Spurious Emission (802.11ac-HT40, Ch151, 30 MHz-1 GHz)





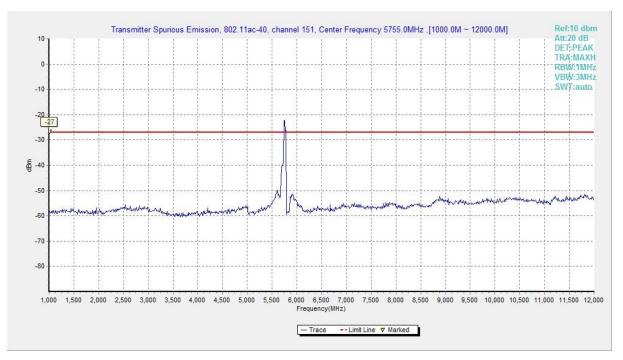



Fig. 116 Conducted Spurious Emission (802.11ac-HT40, Ch151, 1 GHz -12 GHz)

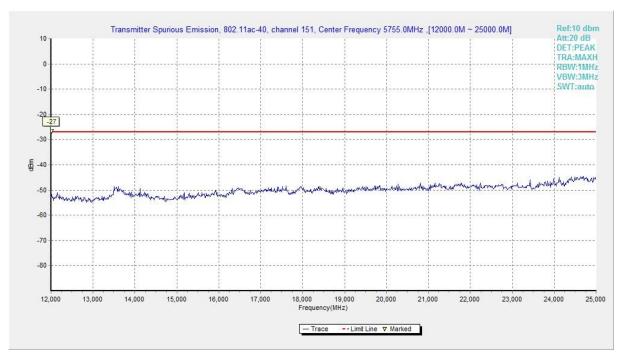



Fig. 117 Conducted Spurious Emission (802.11ac-HT40, Ch151, 12 GHz-25 GHz)





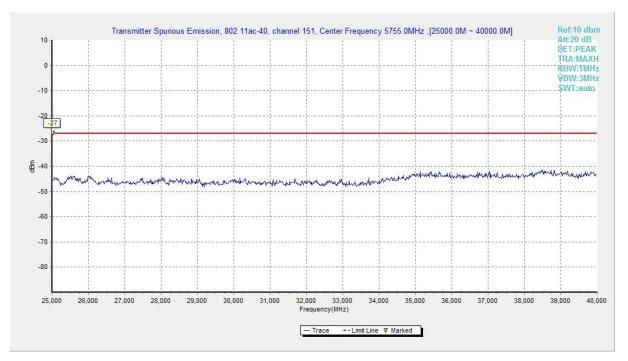



Fig. 118 Conducted Spurious Emission (802.11ac-HT40, Ch151, 25 GHz-40 GHz)

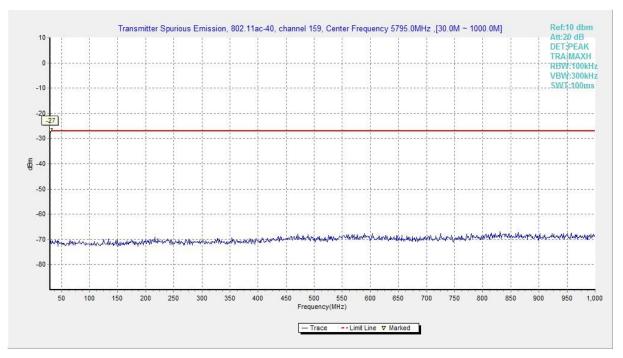



Fig. 119 Conducted Spurious Emission (802.11ac-HT40, Ch159, 30 MHz-1 GHz)





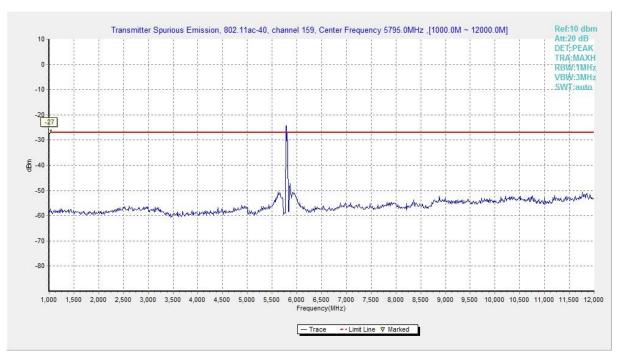



Fig. 120 Conducted Spurious Emission (802.11ac-HT40, Ch159, 1 GHz -12 GHz)

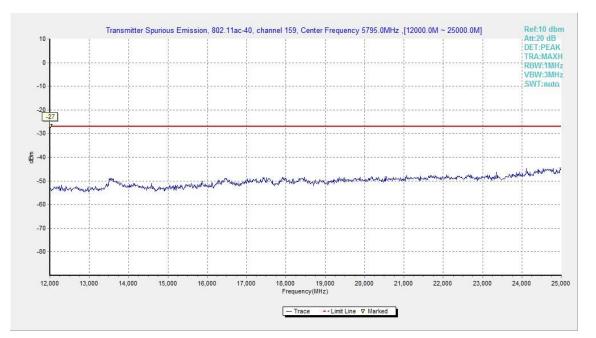



Fig. 121 Conducted Spurious Emission (802.11ac-HT40, Ch159, 12 GHz-25 GHz)





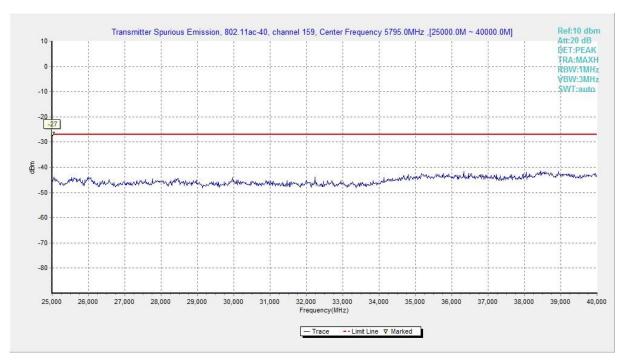



Fig. 122 Conducted Spurious Emission (802.11ac-HT40, Ch159, 25 GHz-40 GHz)

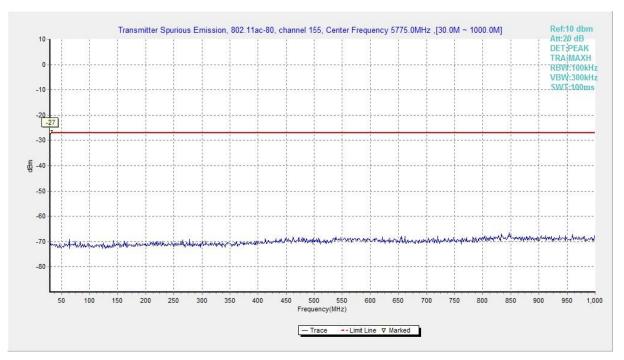



Fig. 123 Conducted Spurious Emission (802.11ac-HT80, Ch155, 30 MHz-1 GHz)





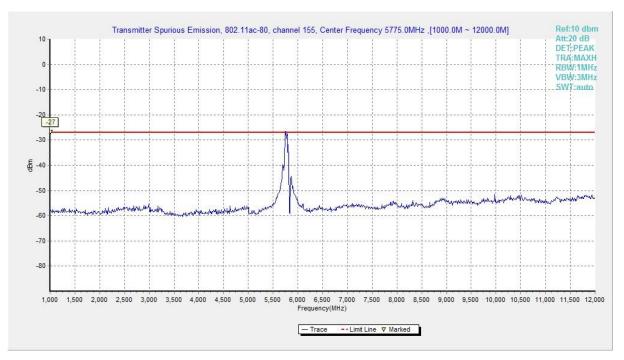



Fig. 124 Conducted Spurious Emission (802.11ac-HT80, Ch155, 1 GHz -12 GHz)

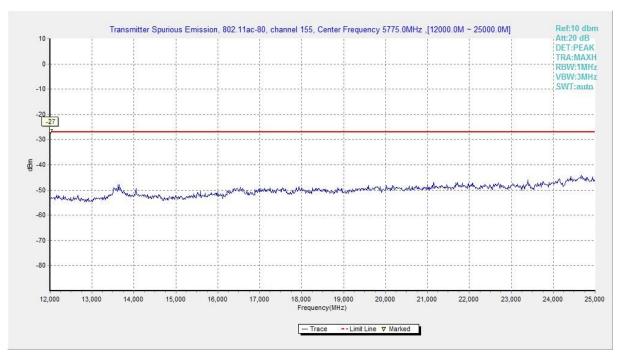



Fig. 125 Conducted Spurious Emission (802.11ac-HT80, Ch155, 12 GHz-25 GHz)





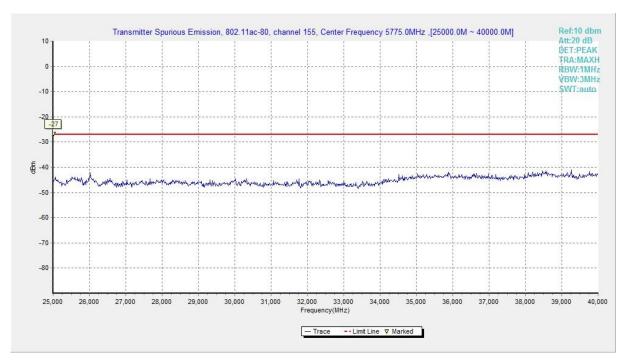



Fig. 126 Conducted Spurious Emission (802.11ac-HT80, Ch155, 25 GHz-40 GHz)

| Ref Level 10.00 dBm   Att 20 dB   1 Frequency Sweep   0 dBm   -10 dBm |                   | ₩ 100 kHz<br>№ 300 kHz Mo    | de Auto Sweep |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ●1Pk Max               |
|-----------------------------------------------------------------------|-------------------|------------------------------|---------------|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|
| 1 Frequency Sweep                                                     |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ●1Pk Max               |
|                                                                       |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
|                                                                       |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
| -10 dBm                                                               |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
| 10 0.011                                                              |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
| -20 dBm                                                               |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
| -30 dBm                                                               | dBm               |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
| -40 dBm                                                               |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
| -50 dBm                                                               |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
| -60 dBm                                                               |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
| tizandanominina and management                                        | mandertanderstand | Contraction and the American | a lanna mar   | up when when when the | www.halantala | water the state of | munahanna | MMMaynowhen            |
| -80 dBm                                                               |                   |                              |               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |
| 30.0 MHz                                                              |                   | 1001 pts                     |               | 0-                    | 7.0 MHz/      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1.0 GHz                |
|                                                                       |                   | 1001 pt                      | 3             | 9.                    |               | Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 12.02.2020<br>17:59:50 |

17:59:51 12.02.2020

