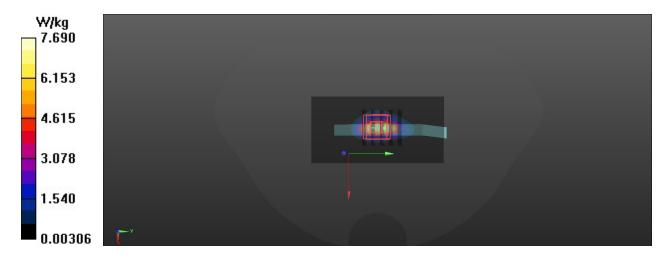
P47 LTE 4_QPSK20M_Bottom Side_0cm_Ch20175_50RB_OS50_Ant 0

DUT: 200106W008

Communication System: LTE ; Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium: HSL1750_0119 Medium parameters used: f = 1733 MHz; σ = 1.369 S/m; ϵ_r = 38.509; ρ = 1000 kg/m³


Ambient Temperature : 22.9°C; Liquid Temperature : 21.8°C

DASY5 Configuration:

- Probe: EX3DV4 SN7555; ConvF(8.51, 8.51, 8.51) @ 1732.5 MHz; Calibrated: 9/16/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1590; Calibrated: 9/11/2019
- Phantom: Twin-SAM (Left); Type: QD 000 P41 AA; Serial: 1988
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

- Area Scan (41x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 7.69 W/kg

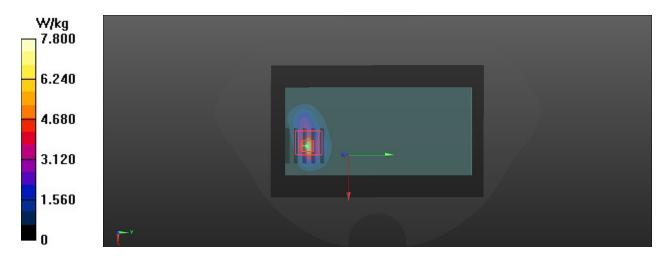
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.67 V/m; Power Drift = 0.05 dB
Peak SAR (extrapolated) = 9.32 W/kg
SAR(1 g) = 3.96 W/kg; SAR(10 g) = 1.69 W/kg
Maximum value of SAR (measured) = 7.62 W/kg

P48 LTE 7_QPSK20M_Rear Face_0cm_Ch20850_50RB_OS50_Ant 0

DUT: 200106W008

Communication System: LTE ; Frequency: 2510 MHz; Duty Cycle: 1:1

Medium: HSL2600_0213 Medium parameters used: f = 2510 MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 39.277$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.2°C; Liquid Temperature : 22.1°C

DASY5 Configuration:

- Probe: EX3DV4 SN7555; ConvF(7.45, 7.45, 7.45) @ 2510 MHz; Calibrated: 9/16/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1590; Calibrated: 9/11/2019
- Phantom: Twin-SAM (Left); Type: QD 000 P41 AA; Serial: 1988
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

- Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 7.80 W/kg

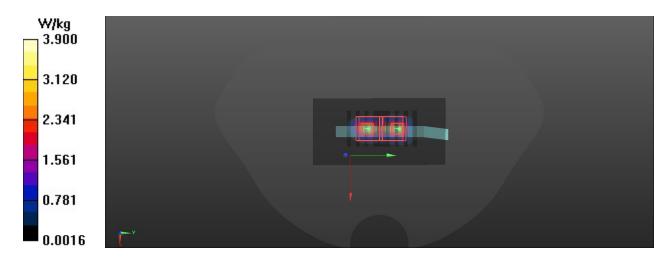
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.007 V/m; Power Drift = 0.00 dB
Peak SAR (extrapolated) = 9.28 W/kg
SAR(1 g) = 3.26 W/kg; SAR(10 g) = 1.25 W/kg
Maximum value of SAR (measured) = 7.14 W/kg

P49 LTE 38_QPSK20M_Bottom Side_0cm_Ch38150_50RB_OS50_Ant 0

DUT: 200106W008

Communication System: LTE TDD ; Frequency: 2610 MHz;Duty Cycle: 1:1.58 Medium: HSL2600_0213 Medium parameters used : f = 2610 MHz; $\sigma = 2.05$ S/m; $\epsilon_r = 38.892$; $\rho = 1000$ kg/m³

Ambient Temperature : 23.2°C; Liquid Temperature : 22.1°C


DASY5 Configuration:

- Probe: EX3DV4 SN7555; ConvF(7.45, 7.45, 7.45) @ 2610 MHz; Calibrated: 9/16/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1590; Calibrated: 9/11/2019
- Phantom: Twin-SAM (Left); Type: QD 000 P41 AA; Serial: 1988
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

- Area Scan (51x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 3.90 W/kg

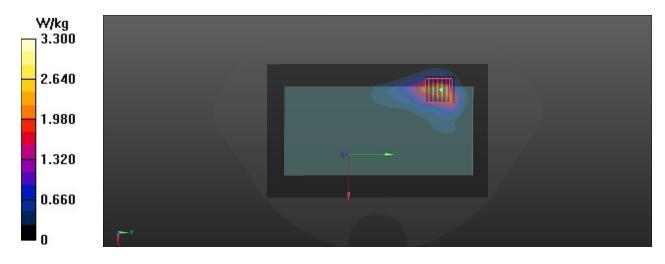
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.23 V/m; Power Drift = 0.06 dB
Peak SAR (extrapolated) = 5.23 W/kg
SAR(1 g) = 2 W/kg; SAR(10 g) = 0.736 W/kg
Maximum value of SAR (measured) = 4.20 W/kg

Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.23 V/m; Power Drift = 0.06 dB
Peak SAR (extrapolated) = 6.74 W/kg
SAR(1 g) = 2.02 W/kg; SAR(10 g) = 0.679 W/kg
Maximum value of SAR (measured) = 4.96 W/kg

P50 802.11a_Rear Face_0cm_Ch52_Ant 0+1

DUT: 200106W008

Communication System: 802.11a ; Frequency: 5260 MHz;Duty Cycle: 1:1 Medium: HSL5G_0217 Medium parameters used: f = 5260 MHz; $\sigma = 4.732$ S/m; $\epsilon_r = 37.269$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.0°C; Liquid Temperature : 22.1°C

DASY5 Configuration:

- Probe: EX3DV4 SN7555; ConvF(5.3, 5.3, 5.3) @ 5260 MHz; Calibrated: 9/16/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1590; Calibrated: 9/11/2019
- Phantom: Twin-SAM (Left); Type: QD 000 P41 AA; Serial: 1988
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

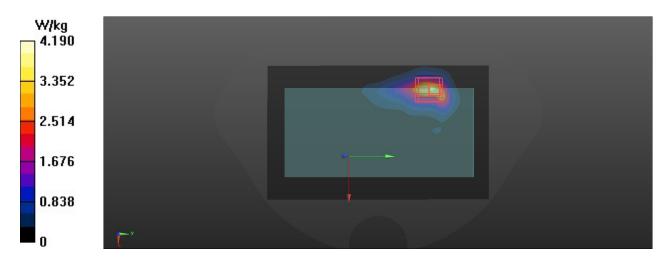
- Area Scan (121x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 3.30 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 1.409 V/m; Power Drift = 0.02 dB
Peak SAR (extrapolated) = 5.49 W/kg
SAR(1 g) = 1.22 W/kg; SAR(10 g) = 0.468 W/kg
Maximum value of SAR (measured) = 3.10 W/kg

P51 802.11a_Rear Face_0cm_Ch100_Ant 0+1

DUT: 200106W008

Communication System: 802.11a ; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium: HSL5G_0215 Medium parameters used: f = 5500 MHz; σ = 4.96 S/m; ϵ_r = 36.94; ρ = 1000 kg/m³


Ambient Temperature : 22.9°C; Liquid Temperature : 21.7°C

DASY5 Configuration:

- Probe: EX3DV4 SN7555; ConvF(4.83, 4.83, 4.83) @ 5500 MHz; Calibrated: 9/16/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1590; Calibrated: 9/11/2019
- Phantom: Twin-SAM (Left); Type: QD 000 P41 AA; Serial: 1988
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

- Area Scan (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.19 W/kg

- Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.483 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 8.03 W/kg SAR(1 g) = 1.63 W/kg; SAR(10 g) = 0.635 W/kg Maximum value of SAR (measured) = 4.19 W/kg

Appendix C. Calibration Certificate for Probe and Dipole

The SPEAG calibration certificates are shown as follows.

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

ADT CN

Certificate No:

Z19-60298

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d139

September 3, 2019

http://www.chinattl.cn

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

Client

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A	101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Aug-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	記名
Reviewed by:	Lin Hao	SAR Test Engineer	小林书

Issued: September 6, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60298

In Collaboration with
S D E A G
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

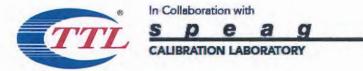
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.53 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.28 W/kg ± 18.7 % (k=2)

Body TSL parameters


The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.63 W /kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.35 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60298

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8Ω- 2.97jΩ
Return Loss	- 30.3dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1Ω- 4.52jΩ	
Return Loss	- 25.2dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.256 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

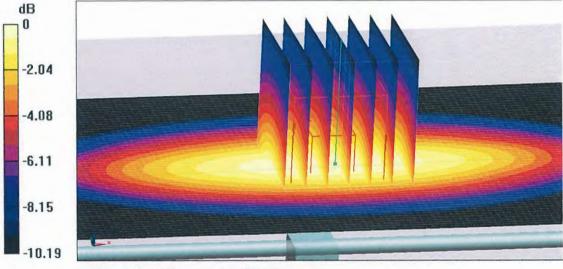
e

CALIBRATION LABORATORY

In Collaboration with

DASY5 Validation Report for Head TSLDate: 09.03.2019Test Laboratory: CTTL, Beijing, ChinaDUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d139Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1Medium parameters used: f = 835 MHz; $\sigma = 0.911$ S/m; $\varepsilon_r = 41.92$; $\rho = 1000$ kg/m3Phantom section: Right SectionDASY5 Configuration:

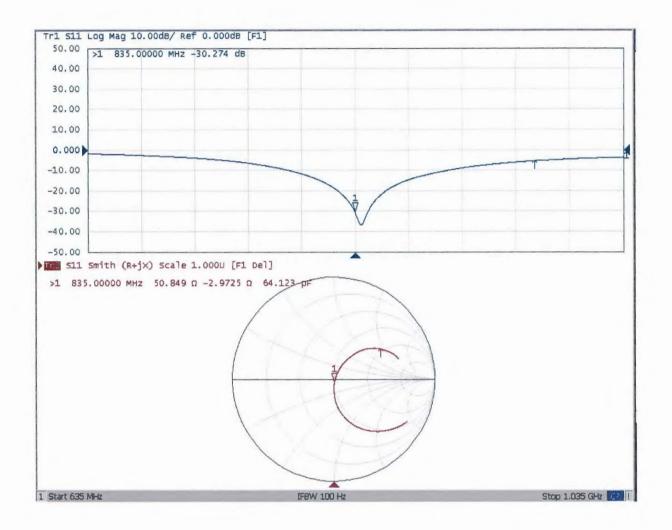
- Probe: EX3DV4 SN3617; ConvF(9.75, 9.75, 9.75) @ 835 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.26 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg


Maximum value of SAR (measured) = 3.19 W/kg

0 dB = 3.19 W/kg = 5.04 dBW/kg

Impedance Measurement Plot for Head TSL

Page 6 of 8

S D C A G CALIBRATION LABORATORY

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

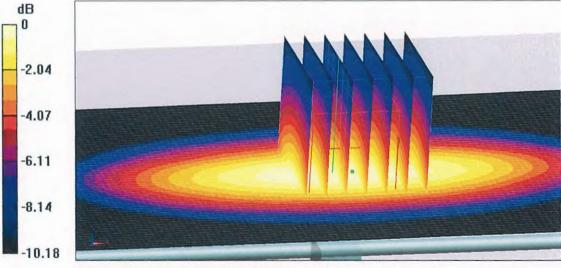
Date: 09.03.2019

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d139

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.963$ S/m; $\varepsilon_r = 55.62$; $\rho = 1000$ kg/m3

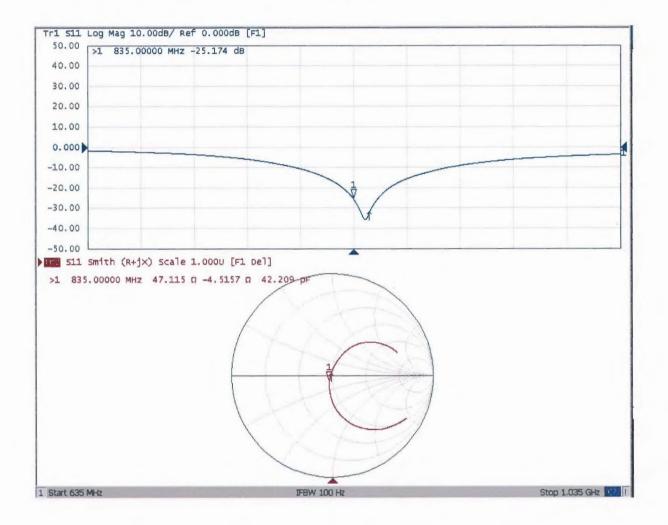
Phantom section: Center Section


DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.61, 9.61, 9.61) @ 835 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.32 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.58 W/kg


Maximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dBW/kg

Impedance Measurement Plot for Body TSL

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

CALIBRATION CERTIFICATE

ADT CN

Client

Certificate No:

http://www.chinattl.cn

Z19-60300

Object D1750V2 - SN: 1071 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 30, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration ID# Power Meter NRP2 106276 11-Apr-19 (CTTL, No.J19X02605) Apr-20 Power sensor NRP6A 101369 11-Apr-19 (CTTL, No.J19X02605) Apr-20 Reference Probe EX3DV4 SN 3617 31-Jan-19(SPEAG, No.EX3-3617 Jan19) Jan-20 DAE4 SN 1555 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Aug-20 Scheduled Calibration Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) 23-Jan-19 (CTTL, No.J19X00336) Signal Generator E4438C MY49071430 Jan-20 NetworkAnalyzer E5071C MY46110673 24-Jan-19 (CTTL, No.J19X00547) Jan-20 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 2, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60300

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.1 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.9 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60300

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8Ω- 1.95 jΩ
Return Loss	- 32.7 dB

Antenna Parameters with Body TSL

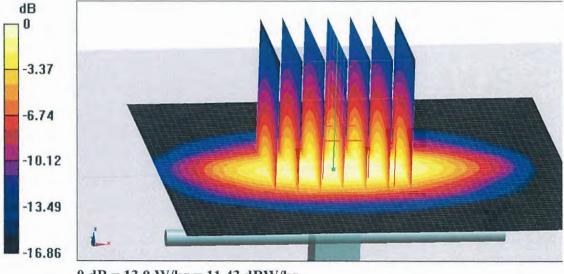
Impedance, transformed to feed point	44.5Ω- 1.82 jΩ
Return Loss	- 24.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.083 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

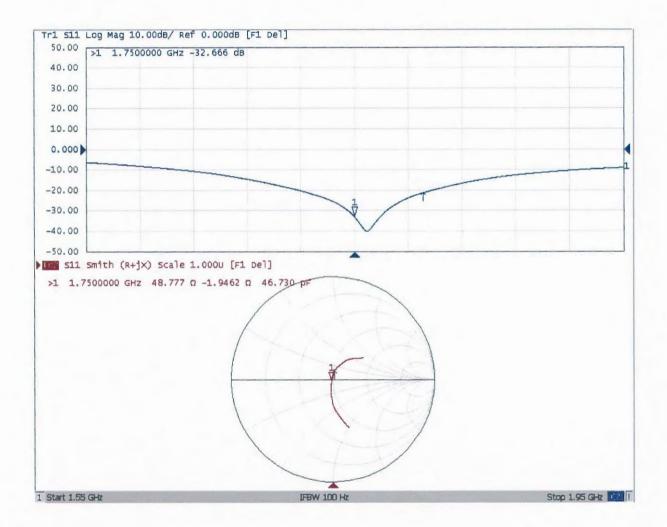
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG

- Probe: EX3DV4 SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.27 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.07 W/kg; SAR(10 g) = 4.81 W/kg Maximum value of SAR (measured) = 13.9 W/kg


0 dB = 13.9 W/kg = 11.43 dBW/kg

Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Page 6 of 8

е CALIBRATION LABORATORY

In Collaboration with

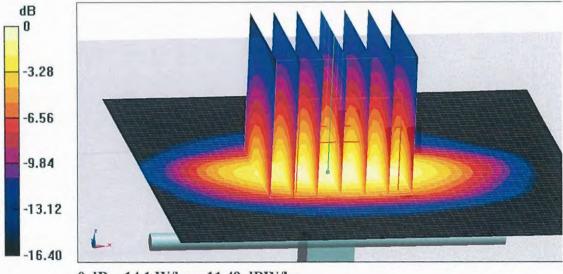
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 08.30.2019

Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1071 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.516 \text{ S/m}$; $\varepsilon_r = 53.05$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Center Section

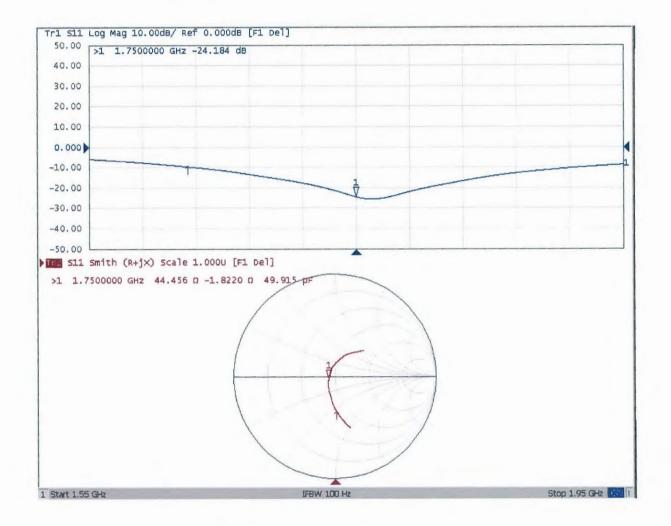

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.79 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 9.39 W/kg; SAR(10 g) = 5.01 W/kg

Maximum value of SAR (measured) = 14.1 W/kg



0 dB = 14.1 W/kg = 11.49 dBW/kg

Page 7 of 8

Impedance Measurement Plot for Body TSL

Page 8 of 8

Calibration Procedure(s)

pages and are part of the certificate.

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following

September 2, 2019

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)^{*}C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A	101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Aug-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	La test
Reviewed by:	Lin Hao	SAR Test Engineer	林鹅
Approved by:	Qi Dianyuan	SAR Project Leader	ava
			ember 6, 2019
This calibration certificate sh	all not be reproc	duced except in full without written approval of	of the laboratory.

Certificate No: Z19-60301

lossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

а

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.0 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.8 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60301

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8Ω+ 7.18jΩ	
Return Loss	- 22.2dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5Ω+ 7.47jΩ	
Return Loss	- 22.5dB	

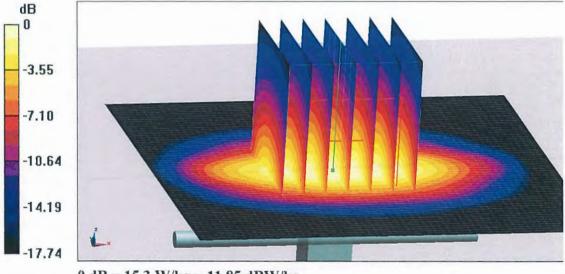
General Antenna Parameters and Design

Electrical Delay (one direction)	1.063 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

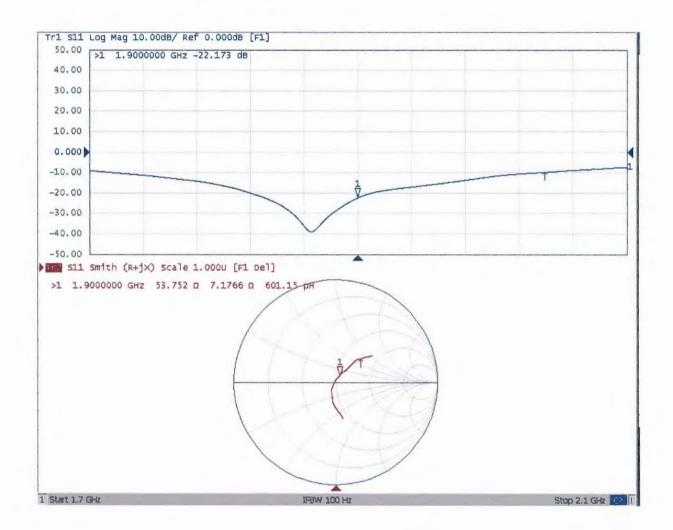
Additional EUT Data


Manufactured by	SPEAG

DASY5 Validation Report for Head TSLDate: 09.02.2019Test Laboratory: CTTL, Beijing, ChinaDUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d159Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1Medium parameters used: f = 1900 MHz; $\sigma = 1.414$ S/m; $\varepsilon_r = 40.25$; $\rho = 1000$ kg/m3Phantom section: Center SectionDASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.1 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 9.79 W/kg; SAR(10 g) = 5.07 W/kg Maximum value of SAR (measured) = 15.3 W/kg


0 dB = 15.3 W/kg = 11.85 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China E-mail: cttl@chinattl.com

Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Page 6 of 8

e

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

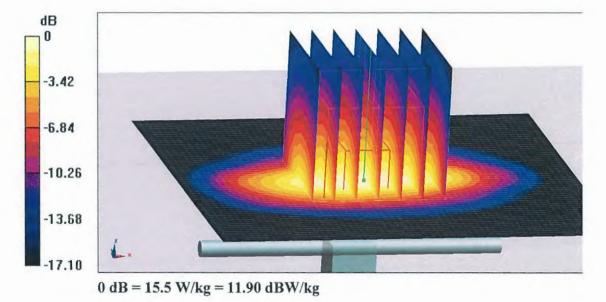
Date: 09.02.2019

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d159

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.502 \text{ S/m}$; $\varepsilon_r = 53.64$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Right Section

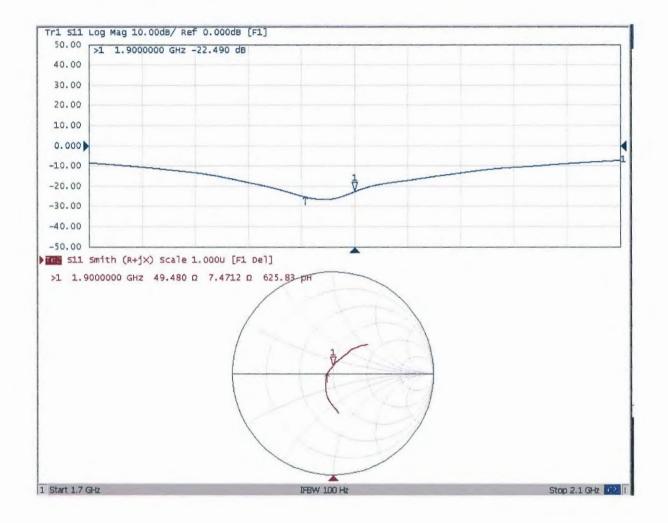

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.78, 7.78, 7.78) @ 1900 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.84 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.23 W/kg

Maximum value of SAR (measured) = 15.5 W/kg



Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

ADT CN

Certificate No:

Z19-60303

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 893

http://www.chinattl.cn

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

Client

September 4, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Aug-20
ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
Name	Function	Signature
Zhao Jing	SAR Test Engineer	1 Jan
Lin Hao	SAR Test Engineer	the the
Qi Dianyuan	SAR Project Leader	Sto on
		tember 6, 2019
	106276 101369 SN 3617 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao Qi Dianyuan	10136911-Apr-19 (CTTL, No.J19X02605)SN 361731-Jan-19(SPEAG,No.EX3-3617_Jan19)SN 155522-Aug-19(CTTL-SPEAG,No.Z19-60295)ID #Cal Date(Calibrated by, Certificate No.)MY4907143023-Jan-19 (CTTL, No.J19X00336)MY4611067324-Jan-19 (CTTL, No.J19X00547)NameFunctionZhao JingSAR Test EngineerLin HaoSAR Test EngineerQi DianyuanSAR Project Leader

In Collaboration with S D C A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.