

D4100V2 Dipole impedance and return loss Validation

ipole impedance and	l return loss Validatio	n	
Meas. Results	Current Meas.	Previous Meas.	Max. Deviation
Meas. Data	2021.11.10	2020.11.13	/
Return Loss(dB)	-20.022	-21.902	-8.58%
Impodance	56.876 Ω – 2.324	58.735 Ω – 0.039	-2.285Ω
Impedance	jΩ	jΩ	(Imaginary part)
	Return Loss 1	for Head TSL	
>Trl sl1 Log Mag 10.00db/ 50.00 >1 4.1000000 G			
	MZ -20.022 08		
40.00			
30.00			
20.00			
10.00			
0.000			
0.000			<u> </u>
-10.00			
-20.00		1	
		1	
-30.00			
-40.00			
0.04,00.00.00			
-50,00 Land 3.7 GHz	IFBW 100	Hz	Stop 4.3 GHz Cor.
	Impedance f		
▶Trl S11 Smith (R+jX) Sca	Te 1.0000 [F1]		
>1 4.1000000 GHZ 56.8	376 Ω -2.3244 Ω 5 5716 pF		
			<i>)</i> }
	1	7	
		$X / X \downarrow$	
			/
1 Start 3.7 GHz	IF8W 100) Hz	Stop 4.3 GHz Cor 🛚

F.125GHz Dipole

Client

baluntek

Certificate No:

Z21-60173

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1200

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 18, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
ReferenceProbe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Feb-20 (CTTL, No.J20X00516)	Feb-21
NetworkAnalyzerE5071C	MY46110673	10-Feb-20 (CTTL, No.J20X00515)	Feb-21
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	爱包
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	26
		Issued: May	
This calibration certificate s	hall not be repro	duced except in full without written approval	of the laboratory.

Certificate No: Z21-60173

Page 1 of 14

Glossarv:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60173

Page 2 of 14

Measurement Conditions
DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.67 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	***	
SAR measured	100 mW input power	7.80 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	77.8 W/kg ± 24.4 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition		
SAR measured	100 mW input power	2.22 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ± 24.2 % (k=2)	

Certificate No: Z21-60173

Page 3 of 14

Head TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.2 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.21 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	15
SAR measured	100 mW input power	7.75 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.2 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.7 W/kg ± 24.2 % (k=2)

Certificate No: Z21-60173

Page 4 of 14

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.1 ± 6 %	5.34 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.33 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.

II.	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.82 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		1222

SAR result with Body TSL at 5600 MHz

Condition	
100 mW input power	7.72 W/kg
normalized to 1W	77.2 W/kg ± 24.4 % (k=2)
Condition	
100 mW input power	2.16 W/kg
normalized to 1W	21.6 W/kg ± 24.2 % (k=2)
	100 mW input power normalized to 1W Condition 100 mW input power

Certificate No: Z21-60173

Page 5 of 14

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Body TSL parameters at 5750 MHz

he following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	6.05 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		-

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.34 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 24.2 % (k=2)

Certificate No: Z21-60173

Page 6 of 14

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$45.1\Omega + 1.25j\Omega$	
Return Loss	- 25.5dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$49.7\Omega + 7.81j\Omega$
Return Loss	- 22.1dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$45.9\Omega + 4.85j\Omega$	
Return Loss	- 23.5dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	$43.9\Omega + 2.08j\Omega$
Return Loss	- 23.3dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$50.3\Omega + 8.89j\Omega$	
Return Loss	- 21.1dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	$46.6\Omega + 5.63j\Omega$	
Return Loss	- 23.3dB	

Certificate No: Z21-60173

Page 7 of 14

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

General Antenna Parameters and Design

Electrical Delay (one direction)	1.096 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z21-60173

Page 8 of 14

Date: 05.18.2021

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.668 S/m; ϵ_r = 35.48; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.045 S/m; ϵ_r = 34.88; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.208 S/m; ϵ_r = 34.67; ρ = 1000 kg/m³,

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(5.43, 5.43, 5.43) @ 5250 MHz; ConvF(4.69, 4.69, 4.69) @ 5600 MHz; ConvF(4.9, 4.9, 4.9) @ 5750 MHz; Calibrated: 2021-04-26
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.22 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 7.8 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.3%

Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.18 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 35.5 W/kg

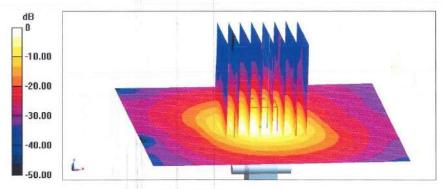
SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.32 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 62.9%

Maximum value of SAR (measured) = 19.8 W/kg

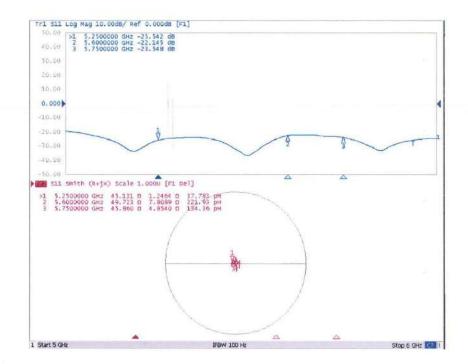
Certificate No: Z21-60173


Page 9 of 14

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.06 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 34.6 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 62.1% Maximum value of SAR (measured) = 19.0 W/kg

0 dB = 19.0 W/kg = 12.79 dBW/kg


Certificate No: Z21-60173

Page 10 of 14

Impedance Measurement Plot for Head TSL

Certificate No: Z21-60173

Page 11 of 14

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.com http://www.chinattl.com

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Date: 05.18.2021

Medium parameters used: f = 5250 MHz; σ = 5.34 S/m; ϵ_r = 49.12; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.815 S/m; ϵ_r = 48.44; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.045 S/m; ϵ_r = 48.11; ρ = 1000 kg/m³.

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(4.95, 4.95, 4.95) @ 5250 MHz; ConvF(4.32, 4.32, 4.32) @ 5600 MHz; ConvF(4.38, 4.38, 4.38) @ 5750 MHz; Calibrated: 2021-04-26,
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.86 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 7.33 W/kg; SAR(10 g) = 2.05 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.3%

Maximum value of SAR (measured) = 17.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.06 V/m; Power Drift = 0.02 dB

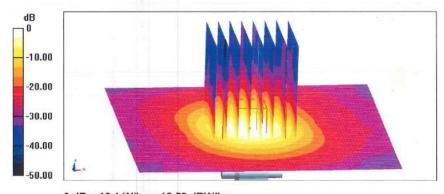
Peak SAR (extrapolated) = 33.1 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.16 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.1%

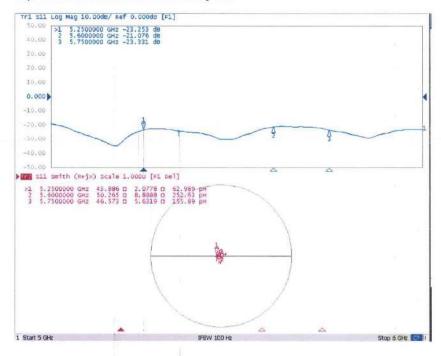
Maximum value of SAR (measured) = 18.8 W/kg


Certificate No: Z21-60173

Page 12 of 14

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.58 V/m; Power Drift = -0.04 dB
Peak SAR (extrapolated) = 32.8 W/kg
SAR(1 g) = 7.34 W/kg; SAR(10 g) = 2.03 W/kg
Smallest distance from peaks to all points 3 dB below = 7.2 mm
Ratio of SAR at M2 to SAR at M1 = 62%
Maximum value of SAR (measured) = 18.1 W/kg

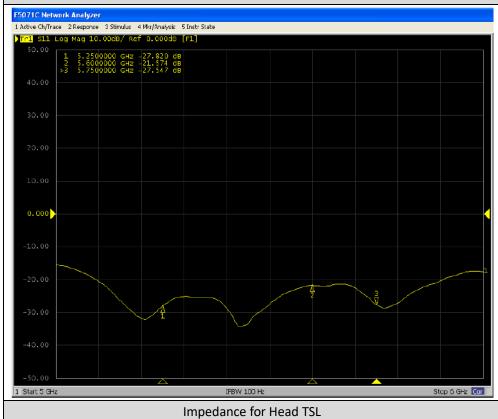
0 dB = 18.1 W/kg = 12.58 dBW/kg

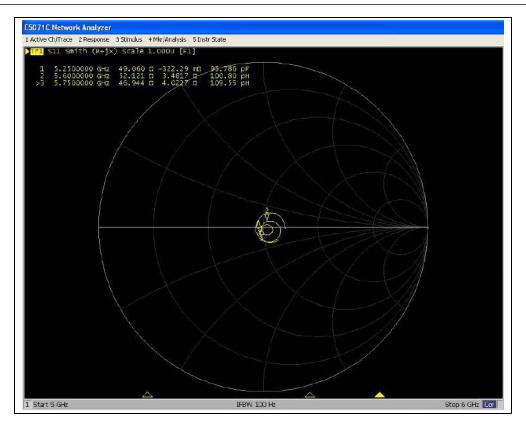

Certificate No: Z21-60173

Page 13 of 14

Impedance Measurement Plot for Body TSL

Certificate No: Z21-60173


Page 14 of 14


D5GHzV2 Dipole impedance and return loss Validation

Meas. Results	Current Meas.	Previous Meas.	Max. Deviation
Meas. Data	2023.05.16	2022.05.17	/
5.25GHz	-27.820	-29.961	-7.15%
Return Loss(dB)	-27.020	-29.901	-7.13%
5.25GHz	49.06 Ω -0.322 jΩ	48.925 Ω +1.802	-2.124Ω
Impedance	49.00 12 -0.322]12	jΩ	(Imaginary part)
5.6GHz	-21.574	-25.244	-14.54%
Return Loss(dB)	-21.574	-23.244	-14.54%
5.6GHz	52.121Ω +3.482 jΩ	47.163Ω +3.417 jΩ	4.958Ω
Impedance	32.121\frac{1}{2} +3.462 \frac{1}{2}	47.10312+3.417][2	(Real part)
5.75GHz	-27.547	-27.284	0.96%
Return Loss(dB)	-27.547	-27.204	0.90%
5.75GHz	46.944Ω +4.023 jΩ	50.693Ω +8.724 jΩ	-4.701Ω
Impedance	40.34412 74.023]12	JU.UJJ\$2 +0.724 J\$2	(Imaginary part)

Return Loss for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

	ERTIFICATE		
Object	D6.5GHzV2 - SN	:1037	
Calibration procedure(s)	QA CAL-22.v6 Calibration Proce	dure for SAR Validation Sources	between 3-10 GHz
Calibration date:	July 01, 2021		
		onal standards, which realize the physical unit robability are given on the following pages and	
All calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature $(22 \pm 3)^{\circ}$ C	and humidity < 70%,
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
-ower meter whi-			
ASSESSED ASSESSED AND ASSESSED ASSESSED.	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103244 SN: 103245		
Power sensor NRP-Z91 Power sensor NRP-Z91		09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T	SN: 103245	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292)	Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator	SN: 103245 SN: 100967	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293)	Apr-22 Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination	SN: 103245 SN: 100967 SN: BH9394 (20k)	09-Apr-21 (No. 217-03281) 09-Apr-21 (No. 217-03282) 08-Apr-21 (No. 217-03283) 09-Apr-21 (No. 217-03343)	Apr-22 Apr-22 Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327	09-Apr-21 (No. 217-03281) 09-Apr-21 (No. 217-03282) 08-Apr-21 (No. 217-03283) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP-33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 05327 SN: 7405 SN: 908	09-Apr-21 (No. 217-03281) 09-Apr-21 (No. 217-03282) 08-Apr-21 (No. 217-03283) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908	09-Apr-21 (No. 217-03281) 09-Apr-21 (No. 217-03282) 08-Apr-21 (No. 217-03283) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 05327 SN: 7405 SN: 908	09-Apr-21 (No. 217-03281) 09-Apr-21 (No. 217-03282) 08-Apr-21 (No. 217-03283) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G	SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669 SN: 101093	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18) 10-May-12 (in house oheck Dec-18)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21 In house check: Dec-21
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G Network Analyzer R&S ZVL13	SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669 SN: 101093	09-Apr-21 (No. 217-03281) 09-Apr-21 (No. 217-03282) 08-Apr-21 (No. 217-03283) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18) 10-May-12 (in house check Dec-18)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G	SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669 SN: 101093	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18) 10-May-12 (in house oheck Dec-18)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21 In house check: Dec-21
Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G Network Analyzer R&S ZVL13	SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669 SN: 101093	09-Apr-21 (No. 217-03281) 09-Apr-21 (No. 217-03282) 08-Apr-21 (No. 217-03283) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18) 10-May-12 (in house check Dec-18)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21 In house check: Dec-21

Certificate No: D6.5GHzV2-1037_Jul21

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned
 under the liquid filled phantom. The impedance stated is transformed from the measurement at the
 SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty
 required.
- · SAR measured: SAR measured at the stated antenna input power.
- . SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1037_Jul21

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.6 ± 6 %	6.12 mho/m ± 6 °
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	28,8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	286 W/kg ± 24.7 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 24.4 % (k=2)

Certificate No: D6.5GHzV2-1037_Jul21

Page 3 of 6

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.5 Ω - 2.4 jΩ	
Return Loss	- 30.9 dB	

APD (Absorbed Power Density)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	128 W/m²
APD measured	normalized to 1W	1280 W/m ² ± 28.9 % (k=2)

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No; D6.5GHzV2-1037_Jul21

Page 4 of 6

DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1037, UID 0 -, Channel 6500 (6500.0MHz)

Device under	Test Pro	perties
--------------	----------	---------

Name, Manufacturer D6.5GHz Dimensions [mm] 16.0 x 6.0 x 300.0

IMEI SN: 1037 **DUT Type**

Exposure Conditions

Phantom Section, TSL Position, Test Band Distance Group, UID Frequency [MHz]

Conversion Factor 5.75 TSL Cond. [S/m] TSL Permittivity

Flat, HSL

[mm] 5.00

Band CW,

6500

(1)

6.12

33.6

Hardware Setup

Phantom MFP V8.0 Center - 1182

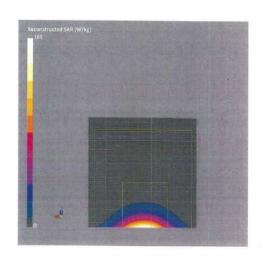
TSL HBBL600-10000V6

/6

Probe, Calibration Date EX3DV4 - SN7405, 2020-12-30 DAE, Calibration Date DAE4 Sn908, 2021-06-24

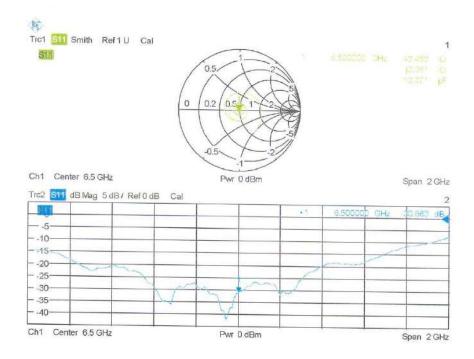
Scan Setup

Grid Extents [mm]
Grid Steps [mm]
Sensor Surface [mm]
Graded Grid
Grading Ratio


Grading Ratio MAIA Surface Detection Scan Method Zoom Scan 22.0 x 22.0 x 22.0 3.4 x 3.4 x 1.4

1.4 Yes 1.4 N/A VMS + 6p Measured Measurement Results

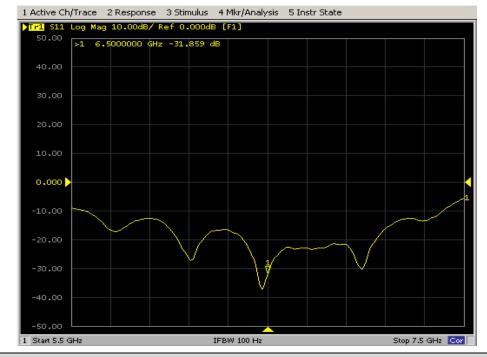
psSAR1g [W/Kg] psSAR10g [W/Kg] Power Drift [dB] Power Scaling Scaling Factor [dB] TSL Correction MZ/M1 [%] Dist 3dB Peak [mm] Zoom Scan 2021-07-10, 10:54

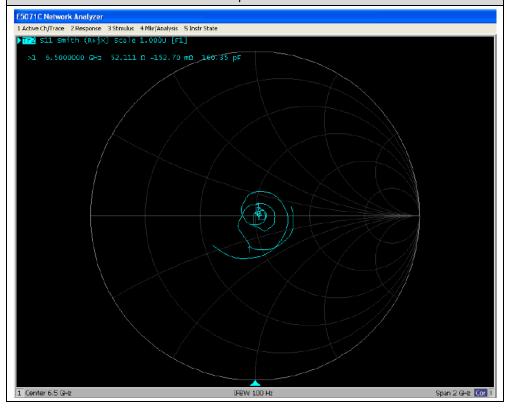

28.8 5.30 0.00 Disabled

No correction 50.2 4.8

Impedance Measurement Plot for Head TSL

Certificate No: D6.5GHzV2-1037_Jul21


Page 6 of 6


D6.5GHzV2 Dipole impedance and return loss Validation

Meas. Results	Current Meas.	Previous Meas.	Max. Deviation
Meas. Data	2022.05.30	2022.05.31	/
Return Loss(dB)	-25.126	-25.126	-18.59%
l man a dan a a	F2 111 O O 1F2 iO	52.111 Ω -0.153 jΩ	3.653Ω
Impedance	52.111 Ω -0.153 jΩ	52.111 \(\overline{1}\)2-0.155 \(\overline{1}\)32.111 \(\overline{1}\)2-0.155 \(\overline{1}\)32.111	(Real part)

Return Loss

Impedance

--END OF REPORT--