

RF TEST REPORT

Applicant Xiaomi Communications Co., Ltd.

FCC ID 2AFZZ33L2G

Product Mobile Phone

Brand Redmi

Model 220233L2G

Report No. R2112A1138-R4

Issue Date January 20, 2022

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 15C (2020). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Peng Tao

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. T	Test Laboratory	∠
1.1.		
1.2.		
1.3.		
2. G	General Description of Equipment under Test	5
2.1.		
2.2.	2. General information	5
3. A	Applied Standards	6
4. T	Test Configuration	7
5. T	Test Case Results	8
5.1.		
5.2.	2. 99% Bandwidth and 6dB Bandwidth	11
5.3.	Band Edge	17
5.4.	1. Power Spectral Density	19
5.5.	5. Spurious RF Conducted Emissions	24
5.6.	S. Unwanted Emission	28
5.7.	7. Conducted Emission	60
6. N	Main Test Instruments	63
ANNE	EX A: The EUT Appearance	65
	EX B: Test Setup Photos	
	EX C: Product Change Description	
	S 1	

Summary of measurement results

Number	Test Case	Clause in FCC rules	Verdict
1	Maximum conducted output power	15.247(b)(3)	PASS
2	6 dB bandwidth	15.247(a)(2)	PASS
3	Power spectral density	15.247(e)	PASS
4	Band Edge	15.247(d)	PASS
5	Spurious RF Conducted Emissions	15.247(d)	PASS
6	Unwanted Emissions	15.247(d),15.205,15.209	PASS
7	Conducted Emissions	15.207	PASS

Date of Testing: (Original) April 28, 2020 ~ June 1, 2020 (Variant) December 27, 2021~January 10, 2022

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

220233L2G (Report No.: R2112A1138-R4) is a variant model of M2006C3LG (Report No.: R2004A0237-R4). Test values partial duplicated from Original for variant. There is only test Maximum output power and Unwanted Emission and Conducted Emission for variant in this report.

The Difference between M2006C3LG and 220233L2G refer to the following table:

Difference		M2006C3LG	220233L2G		
		(Original) (Variant)			
Rear	Camera	13M	13M+2M		
Finger P	rint Sensor	not support	support		
	RF Part	RF band are same between 220233L2G RF PA and M2006C3LG RF PA.			
		Modem has been changed to adjust PA used and bias.			
	RF SW	Calibration files have also been updated to improve GSM linearized			
	Part	character, WCDMA performance under extreme condition and LTE current			
		consumption performance.			
RF PA		There are no change of DRX Saw and Duplexer.			
Supplier		M2006C3LG RF PA:	220233L2G RF PA:		
Suppliel		TXM+PA	TXM+PA		
	RF HW	TXM—VC7916-53M	TXM—OM8816-62M		
	PART	PA VC7643-62M	PA HS8443-61M		
		There are no change of DRX Saw and Duplexer.			
		Except of TXM and PA changes, The capacitance and inductance on the RF			
		path also have some difference.			
Others		The same	The same		

The detailed product change description please refers to the Difference Declaration Letter.

TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 3 of 67

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA technology**

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under

the conditions and modes of operation as described herein . Measurement Uncertainties were not

taken into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant	Xiaomi Communications Co., Ltd.		
Applicant address	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian		
Applicant address	District, Beijing, China, 100085		
Manufacturer	Xiaomi Communications Co., Ltd.		
Manufacturer address	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian		
Manufacturer address	District, Beijing, China, 100085		

2.2. General information

EUT Description					
Model	220233L2G				
	Original	IMEI 1: 863234040033848			
IMEI	(M2006C3LG)	IMEI 2: 863234040038441			
IIVI⊏I	Variant	IMEI 1: 862643060049503			
	(220233L2G)	IMEI 2: 8626430	060049511		
Hardware Version	P2				
Software Version	MIUI 12.5				
Antenna Type	Fixed Internal Antenna				
Antenna Connector	A permanently attached	antenna (meet wi	th the standard FCC Part		
Antenna Connector	15.203 requirement)				
	Frequency(M	Hz)	Gain (dBi)		
	2412		-0.10		
Antenna Gain	2422		0.70		
Antenna Gain	2437		0.40		
	2452		1.00		
	2462		0.70		
additional beamforming gain	NA				
Task Marila	802.11b				
Test Mode	802.11g, 802.11n(HT20/HT40);				
Madulation Type	802.11b: DSSS;				
Modulation Type	802.11g/n(HT20/HT40): OFDM				
Max. Conducted Power	Wi-Fi 2.4G :16.25dBm				
Operating Frequency	802.11b/g/n(HT20): 2412 ~ 2462 MHz				
Range(s)	802.11n(HT40): 2422 ~ 2452 MHz				
Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by					

the applicant.

TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 5 of 67

RF Test Report Report Report No.: R2112A1138-R4

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15C (2020) Radio Frequency Devices

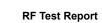
ANSI C63.10 (2013)

Reference standard:

KDB 558074 D01 15.247 Meas Guidance v05r02

4. Test Configuration

Test Mode


The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

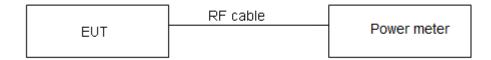
Worst-case data rates are shown as following table.

Band	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

RF Test Report No.: R2112A1138-R4

5. Test Case Results

5.1. Maximum output power


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT was connected to Power meter with a known loss. The EUT is max power transmission with proper modulation.

Test Setup

Limits

Rule Part 15.247 (b) (3) specifies that "For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz: 1 Watt."

Average Output Power	≤ 1W (30dBm)
----------------------	--------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Test Results

Single Antenna Power Index				
Packet Type	CH1	CH6	CH11	
802.11b	17	17	17	
802.11g	14	14	14	
802.11n HT20	12	12	12	
Packet Type	СНЗ	CH6	СН9	
802.11n HT40	10	10	10	

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)
802.11b	1.00	1.00	1.00	0.00
802.11g	1.39	1.43	0.97	0.13
802.11n HT20	1.30	1.34	0.97	0.13
802.11n HT40	0.65	0.69	0.94	0.29
Note: when Duty cycle>0.98, Duty cycle correction Factor not required.				

Average Power Average Power Network **Carrier frequency** Limit with duty factor Conclusion Measured **Standards** (MHz) (dBm) (dBm) (dBm) 2412 16.12 16.12 30 **PASS** 802.11b 2437 16.17 16.17 30 **PASS** 16.25 2462 16.25 30 **PASS PASS** 2412 12.98 13.11 30 2437 13.04 13.17 30 **PASS** 802.11g 2462 13.01 13.14 30 **PASS** 2412 10.81 **PASS** 10.94 30 802.11n 2437 11.01 11.14 30 **PASS** HT20 **PASS** 2462 10.92 11.05 30 9.37 2422 9.66 30 **PASS** 802.11n 2437 9.42 9.71 30 **PASS** HT40 2452 9.92 **PASS** 9.63 30

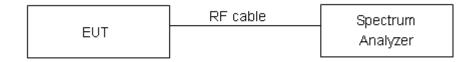
Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor

Report No.: R2112A1138-R4

F Test Report Report No.: R2112A1138-R4

5.2. 99% Bandwidth and 6dB Bandwidth

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer. Dector=Peak, Trace mode=max hold.

The EUT was connected to the spectrum analyzer through a known loss cable. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value.

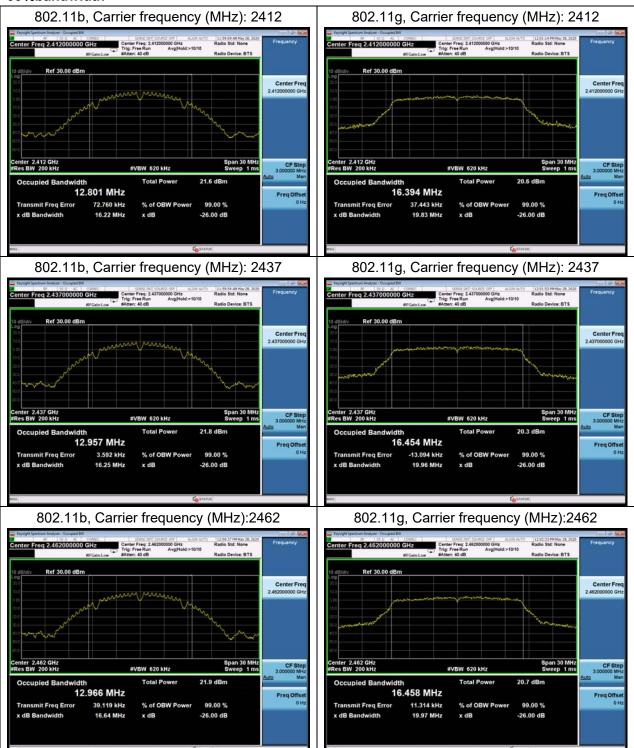
Test Setup

Limits

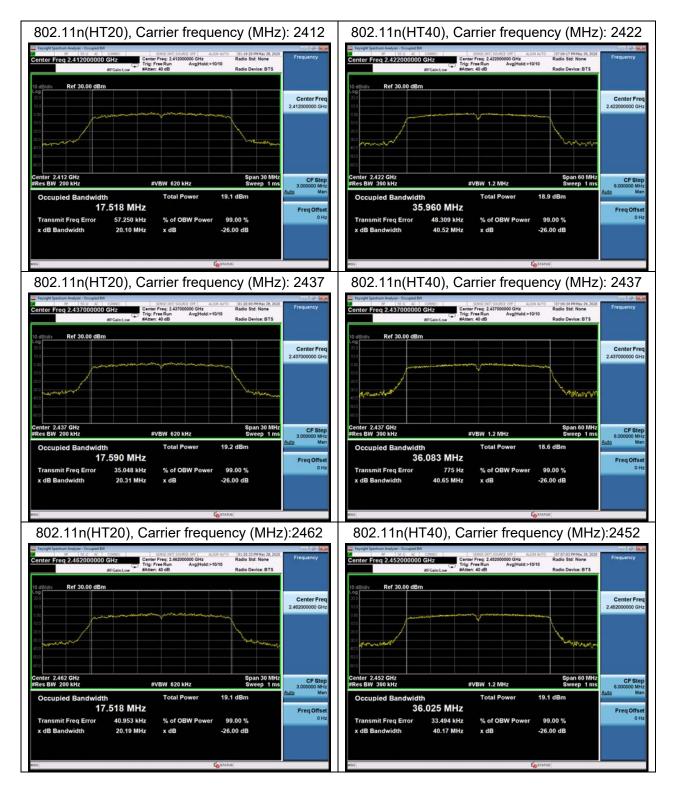
Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz."

Measurement Uncertainty

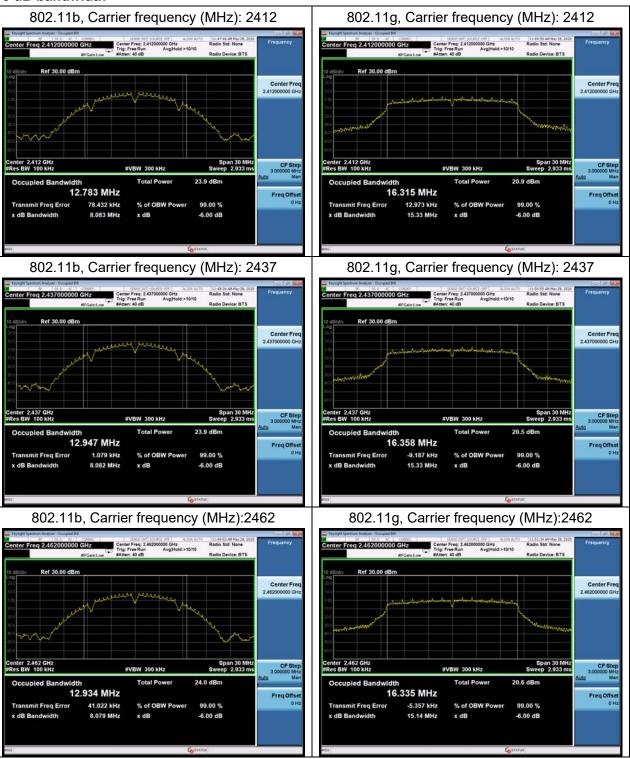
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

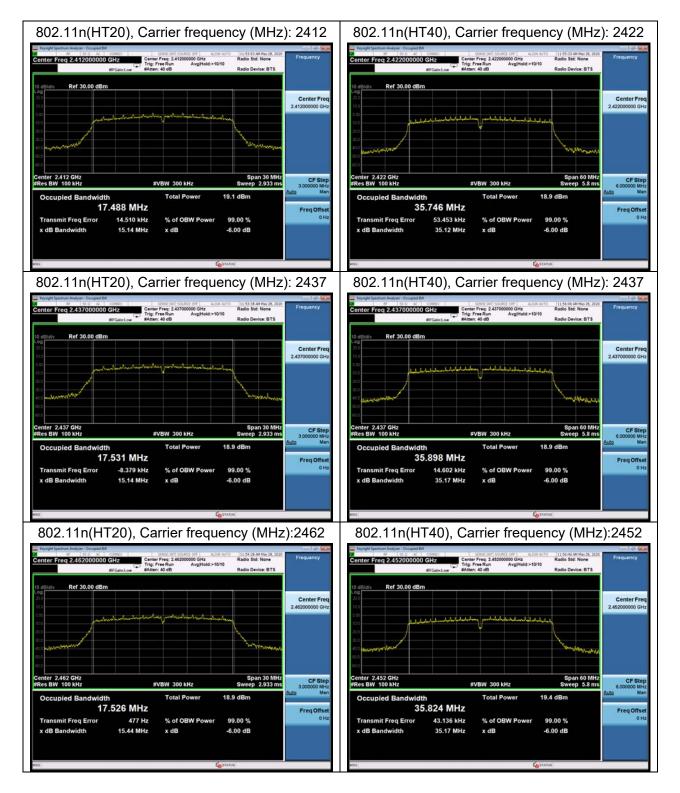

Test Results:

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	2412	12.801	12.783	500	PASS
802.11b	2437	12.957	12.947	500	PASS
	2462	12.966	12.934	500	PASS
	2412	16.394	16.315	500	PASS
802.11g	2437	16.454	16.358	500	PASS
	2462	16.458	16.335	500	PASS
	2412	17.518	17.488	500	PASS
802.11n HT20	2437	17.590	17.531	500	PASS
11120	2462	17.518	17.526	500	PASS
	2422	35.960	35.746	500	PASS
802.11n HT40	2437	36.083	35.898	500	PASS
11140	2452	36.025	35.824	500	PASS



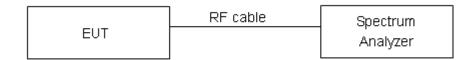
99%bandwidth




RF Test Report Report No.: R2112A1138-R4

6 dB bandwidth

5.3. Band Edge


Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

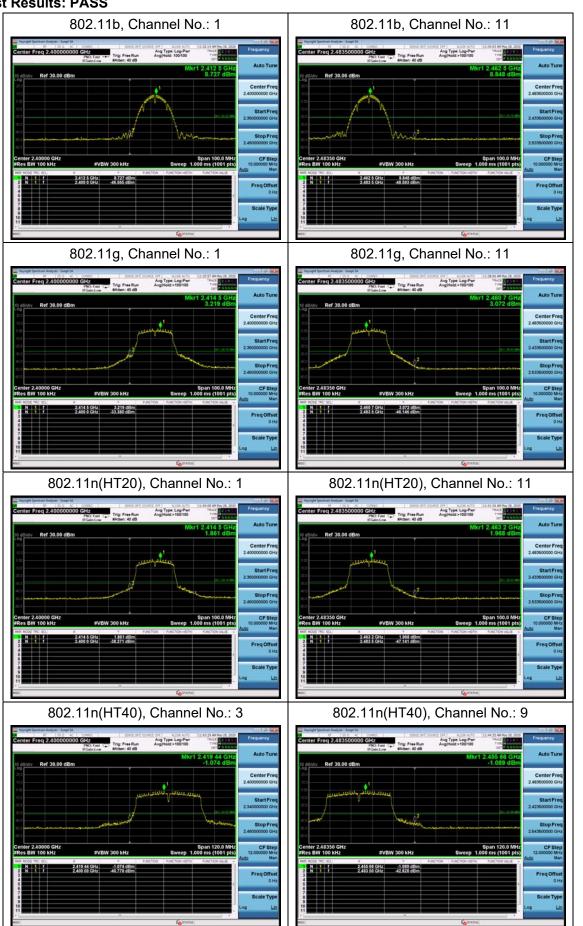
Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits." If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."


Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty	
2GHz-3GHz	1.407 dB	

RF Test Report Report No.: R2112A1138-R4

Test Results: PASS

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Report No.: R2112A1138-R4

Method of Measurement

During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss.

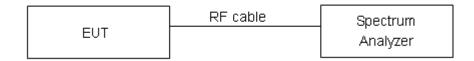
The EUT is max power transmission with proper modulation.

Method AVGPSD-1 was used for this test.

- a) Set instrument center frequency to DTS channel center frequency
- b) Set span to at least 1.5 times the OBW
- c) Set RBW to:3kHz≤RBW≤100kHz
- d) Set VBW ≥ [3x RBW]
- e) Detector=power averaging(rms) or sample detector(when rms not available)
- f) Ensure that the number of measurement points in the sweep 2[2 X span/RBWT]
- g)Sweep time auto couple
- h) Employ trace averaging(rms) mode over a minimum of 100 traces
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat(note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

Method AVGPSD-2 was used for this test.

- a) Measure the duty cycle(D)of the transmitter output signal as described in 11.6
- b) Set instrument center frequency to DTS channel center frequency
- c)Set span to at least 1.5 times the OBW
- d) Set RBW to:3kHz≤RBW≤100Kh
- e) Set VBW ≥ [3x RBW]
- f)Detector= power averaging(rms) or sample detector (when rms not available)
- g) Ensure that the number of measurement points in the sweep 2[2 X span/RBW]
- h) Sweep time =auto couple
- i) Do not use sweep triggering; allow sweep to "free run"
- j) Employ trace averaging(rms) mode over a minimum of 100 traces
- k) Use the peak marker function to determine the maximum amplitude level
- I) Add [10 log(1/ D)], where D is the duty cycle measured in step a), to the measured PSD to



RF Test Report No.: R2112A1138-R4

compute the average PSD during the actual transmission time

m) If measured value exceeds requirement specified by regulatory agency then reduce RBW(but o less than 3 kHz) and repeat(note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

Test setup

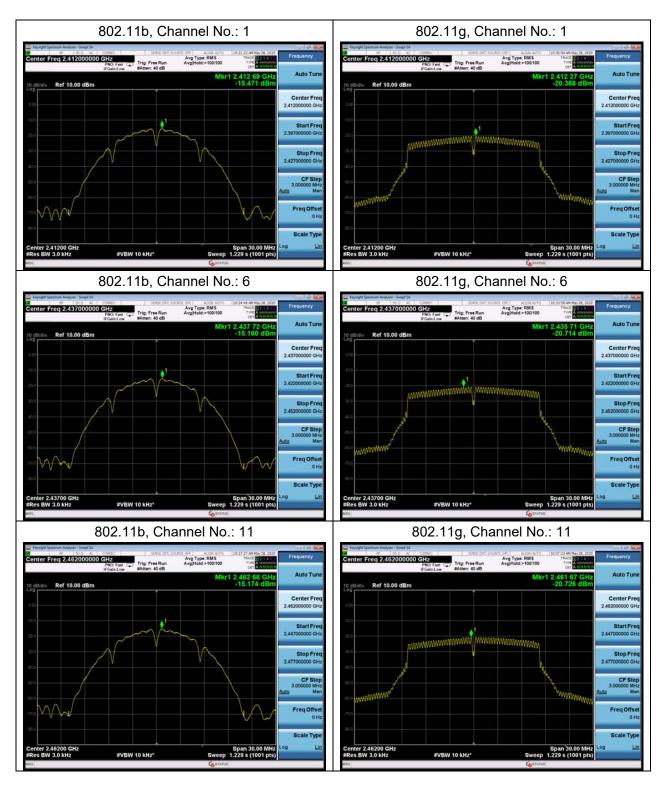
Limits

Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. "

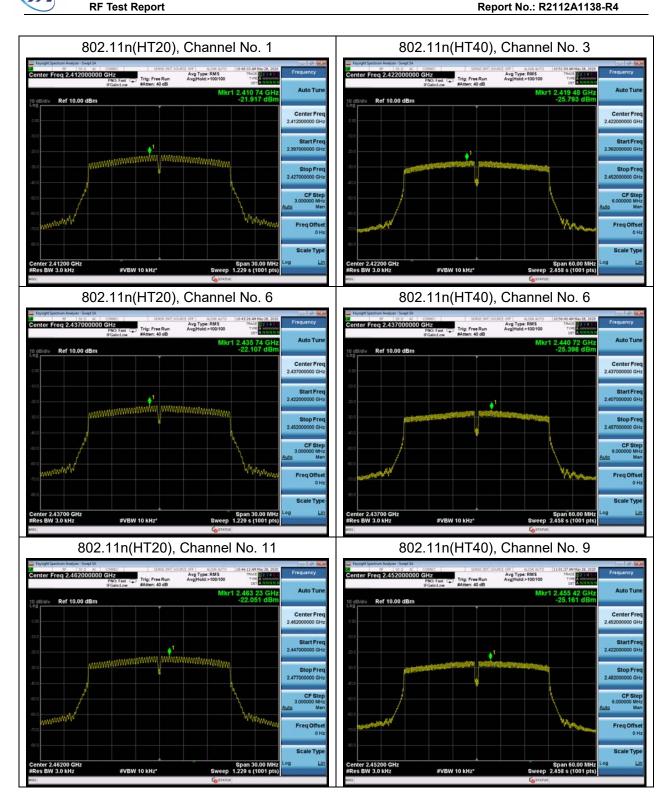
|--|

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.



F Test Report No.: R2112A1138-R4


Test Results

Network Standards	Channel Number	Read Value (dBm / 3kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
	1	-15.47	-15.47	8	PASS
802.11b	6	-15.16	-15.16	8	PASS
	11	-15.17	-15.17	8	PASS
	1	-20.37	-20.22	8	PASS
802.11g	6	-20.71	-20.57	8	PASS
	11	-20.73	-20.58	8	PASS
	1	-21.92	-21.78	8	PASS
802.11n HT20	6	-22.11	-21.97	8	PASS
20	11	-22.05	-21.91	8	PASS
	3	-25.79	-25.79	8	PASS
802.11n HT40	6	-25.40	-25.40	8	PASS
	9	-25.16	-25.16	8	PASS

Note: Power Spectral Density =Read Value+Duty cycle correction factor

5.5. Spurious RF Conducted Emissions

Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Method of Measurement

The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to ATUO.

The test is in transmitting mode.

Test setup

Limits

Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

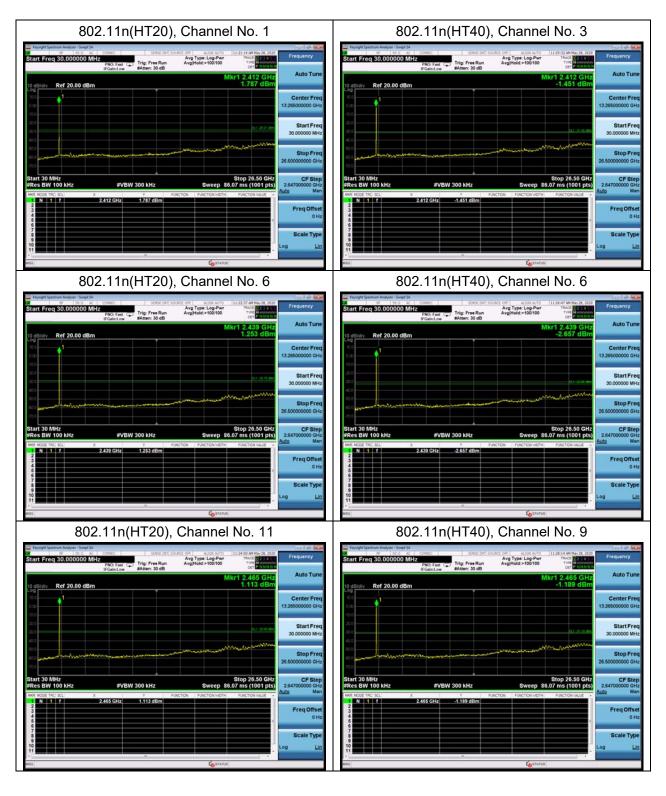
Network Standards	Carrier frequency (MHz)	Reference value (dBm)	Limit
	2412	8.47	-21.53
802.11b	2437	7.67	-22.33
	2462	8.82	-21.18
	2412	3.37	-26.63
802.11g	2437	2.94	-27.06
	2462	3.02	-26.98
000 11n	2412	1.79	-28.21
802.11n HT20	2437	1.25	-28.75
11120	2462	1.11	-28.89
802.11n	2422	-1.45	-31.45
HT40	2437	-2.66	-32.66

TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 24 of 67

RF Test Report		Repo	rt No.: R2112A1138-R4	
	2452	-1.19	-31.19	


Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-26GHz	1.407 dB

Test Results:

RF Test Report No.: R2112A1138-R4

5.6. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	102.5kPa	

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported.

The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

This method refer to ANSI C63.10-2013.

The procedure for peak unwanted emissions measurements above 1000 MHz is as follows:

Set the spectrum analyzer in the following:

9kHz~150 kHz

RBW=200Hz, VBW=1kHz/ Sweep=AUTO

150 kHz~30MHz

RBW=9KHz, VBW=30KHz,/ Sweep=AUTO

Below 1GHz

RBW=100kHz / VBW=300kHz / Sweep=AUTO

a) Peak emission levels are measured by setting the instrument as follows:

Above 1GHz

PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

b) Average emission levels are measured by setting the instrument as follows:

Above 1GHz

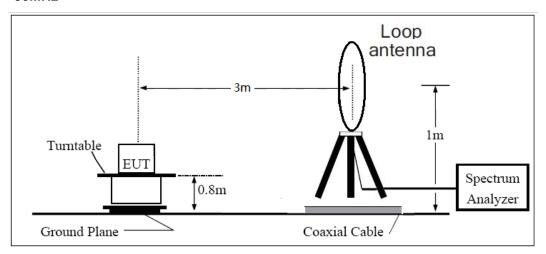
AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

- c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage

Page 28 of 67

RF Test Report No.: R2112A1138-R4

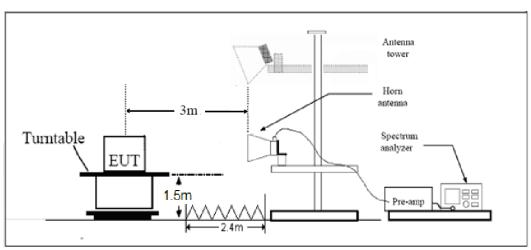
averaging. Log or dB averaging shall not be used.)


- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

The test is in transmitting mode.



Test setup


9KHz ~ 30MHz

30MHz ~ 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

RF Test Report No.: R2112A1138-R4

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
0.009-0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dBuV/m

Average Limit=54 dBuV/m

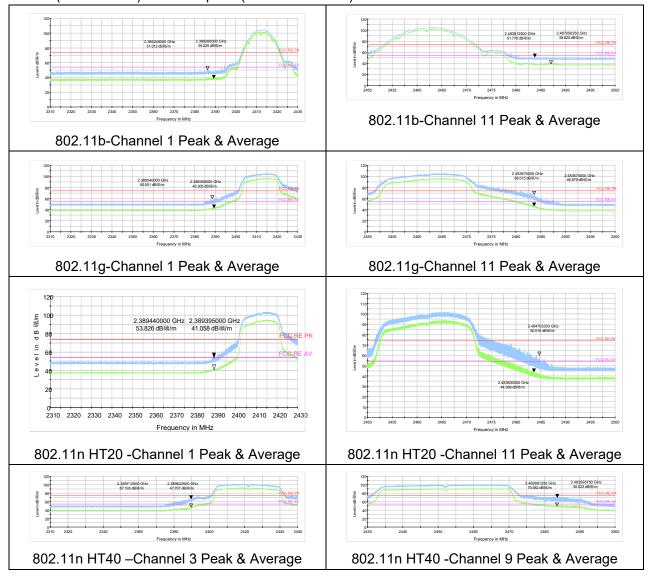
Spurious Radiated Emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz	
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15	
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46	
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75	
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5	
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2	
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5	
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7	
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4	
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5	
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2	
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4	
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12	
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0	
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8	
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5	
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)	
13.36 - 13.41				

F Test Report No.: R2112A1138-R4

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty		
9KHz-30MHz	3.55 dB		
30MHz-200MHz	4.17 dB		
200MHz-1GHz	4.84 dB		
1-18GHz	4.35 dB		
18-26.5GHz	5.90 dB		
26.5GHz~40GHz	5.92 dB		

F Test Report No.: R2112A1138-R4

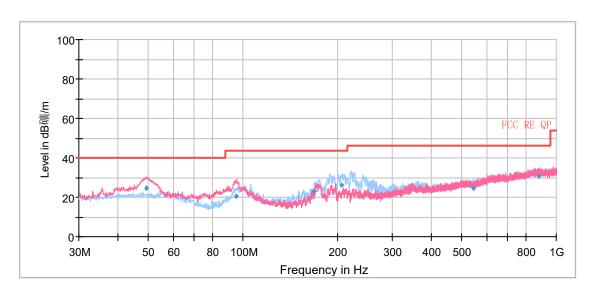
Test Results:

A font (Level in dB礦/m) in the test plot =(level in dB μ V/m)

RF Test Report No.: R2112A1138-R4

Result of RE

Test result

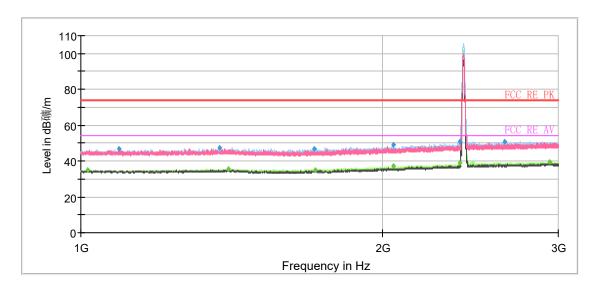

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 18GHz-26.5GHz are more than 20dB below the limit are not reported.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

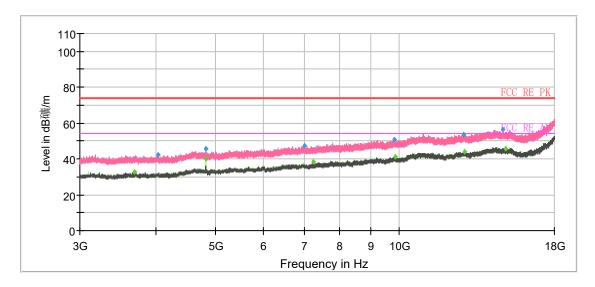
During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11n HT20, Channel 6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

A font (Level in dB礦/m) in the test plot =(level in dB μ V/m)

Continuous TX mode:


Radiates Emission from 30MHz to 1GHz

Frequency	Quasi-Peak	Height	Polarization	Azimuth	Correct	Margin	Limit
(MHz)	(dBuV/m)	(cm)		(deg)	Factor (dB)	(dB)	(dBuV/m)
49.043750	24.86	105.0	V	268.0	14	15.14	40.00
95.316250	20.73	125.0	V	317.0	12	22.77	43.50
168.843750	23.04	125.0	Н	81.0	10	20.46	43.50
206.950000	26.04	121.0	Н	270.0	11	17.46	43.50
544.020000	24.65	196.0	Н	126.0	20	21.35	46.00
876.643750	30.56	100.0	Н	31.0	25	15.44	46.00

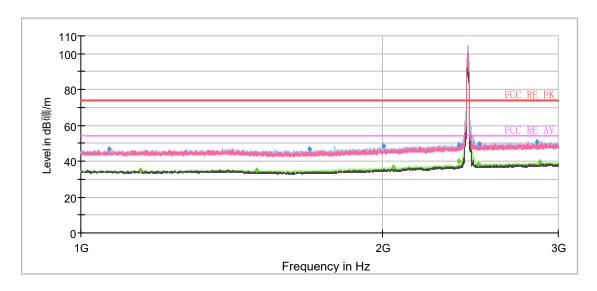

Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

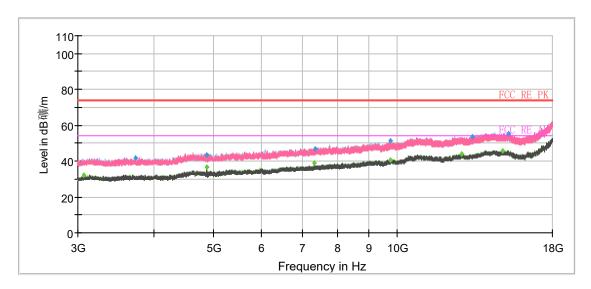
2. Margin = Limit - Quasi-Peak

802.11b CH1

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz




Frequency MaxPeak Limit Height Corr. Average Margin Azimuth Pol (dB µ V/m) (dB µ V/m) (dB µ V/m) (MHz) (dB) (cm) (deg) (dB/m) 1015.750000 34.91 54.00 19.09 200.0 V 105.0 -10 1091.000000 46.57 74.00 27.43 200.0 V 265.0 -9 47.20 74.00 -7 1377.000000 26.80 200.0 Η 5.0 ---1403.000000 54.00 18.39 100.0 Н 216.0 -7 35.61 74.00 200.0 1709.250000 47.03 26.97 Н 5.0 -6 ---1716.000000 35.24 54.00 18.76 100.0 Н 265.0 -6 74.00 100.0 2051.500000 49.01 24.99 Η 354.0 -5 2051.500000 37.11 54.00 16.89 100.0 Н 354.0 -5 338.0 2389.500000 50.68 74.00 23.32 100.0 Η -4 2389.500000 39.03 54.00 14.97 200.0 199.0 -4 Η 74.00 2648.500000 50.81 23.19 100.0 Н 355.0 -4 2940.500000 39.29 54.00 14.71 100.0 Н 351.0 -3

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: R2112A1138-R4

802.11b CH6

Radiates Emission from 3GHz to 18GHz

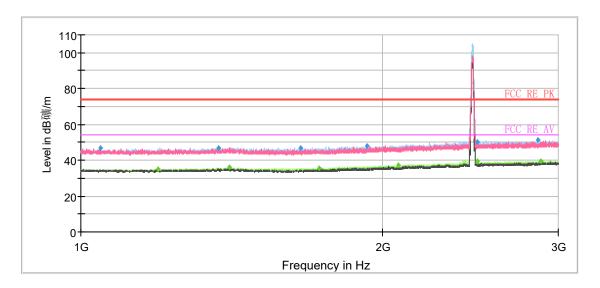
2874.250000

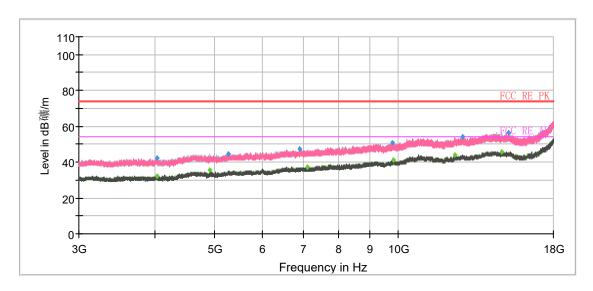
Frequency MaxPeak **Average** Limit Margin Height **Azimuth** Corr. Pol (dB µ V/m) (dB µ V/m) (dB µ V/m) (dB/m) (MHz) (dB) (cm) (deg) 1066.250000 46.55 74.00 27.45 100.0 Η 347.0 -9 1147.250000 34.77 54.00 19.23 100.0 Н 249.0 -9 1499.500000 35.16 54.00 18.84 100.0 Н 315.0 -7 298.0 1690.750000 46.77 74.00 27.23 100.0 Н -6 2005.000000 48.49 74.00 25.51 200.0 Н 30.0 -5 2050.750000 36.43 54.00 17.57 100.0 Η 249.0 -5 2385.750000 49.24 74.00 24.76 100.0 Η 183.0 -4 2388.250000 54.00 14.00 100.0 191.0 40.00 Н -4 2496.250000 38.42 54.00 15.58 100.0 Η 0.0 -4 ---2500.500000 49.56 74.00 24.44 200.0 Н 10.0 -4 2856.750000 50.76 74.00 23.24 100.0 Н 133.0 -3

54.00 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

39.57

14.43

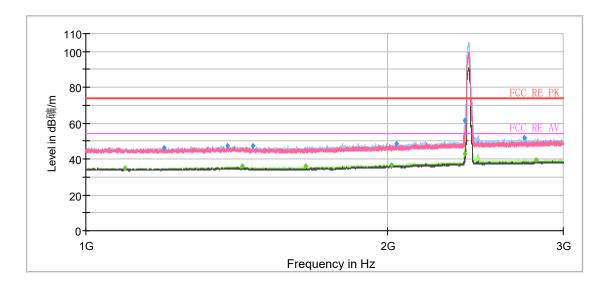

100.0


Η

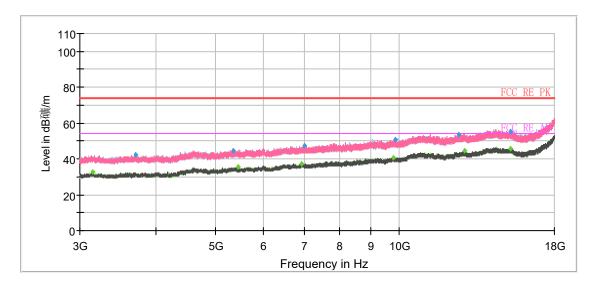
355.0

-3

802.11b CH11



Radiates Emission from 3GHz to 18GHz


Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1045.750000	47.01		74.00	26.99	100.0	Η	350.0	-10
1193.000000		34.96	54.00	19.04	100.0	Н	101.0	-9
1372.750000	47.09		74.00	26.91	200.0	Н	29.0	-7
1408.250000		36.19	54.00	17.81	100.0	Н	358.0	-7
1657.000000	47.09		74.00	26.91	200.0	Н	113.0	-6
1729.250000		35.60	54.00	18.40	100.0	Н	294.0	-6
1933.500000	47.95		74.00	26.05	200.0	Н	0.0	-5
2075.750000		36.97	54.00	17.03	100.0	Н	0.0	-5
2487.250000		39.25	54.00	14.75	100.0	Н	356.0	-4
2492.250000	50.37		74.00	23.63	200.0	.0 H 105.0		-4
2861.000000	51.21		74.00	22.79	100.0	Η	236.0	-3
2881.500000		39.45	54.00	14.55	100.0	Н	244.0	-3

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11g CH1

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz

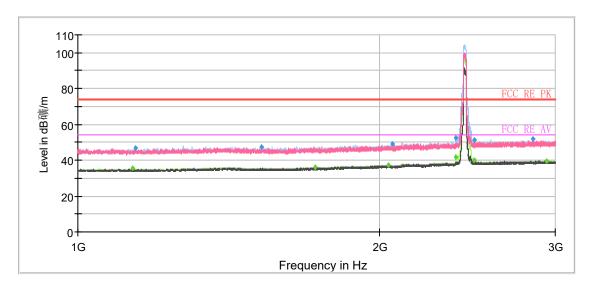
2816.250000

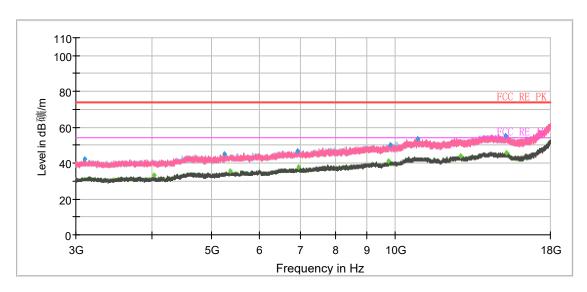
Frequency MaxPeak Limit Height Corr. Average Margin Azimuth Pol (dB µ V/m) (dB µ V/m) (dB μ V/m) (MHz) (dB) (cm) (deg) (dB/m) 1095.000000 35.15 54.00 18.85 100.0 Н 359.0 -9 1197.000000 46.48 74.00 27.52 200.0 V 161.0 -9 47.49 74.00 -7 1385.250000 26.51 200.0 Η 0.0 ---1433.750000 35.92 54.00 18.08 200.0 Н 106.0 -7 74.00 200.0 -7 1468.250000 47.35 26.66 0.0 ---Η 1659.000000 35.84 54.00 18.16 200.0 Н 0.0 -6 54.00 200.0 2022.000000 36.93 17.07 Η 141.0 -5 2044.000000 48.51 74.00 25.49 200.0 Н 0.0 -5 2388.500000 61.37 74.00 12.63 100.0 Η 184.0 -4 2389.750000 54.00 11.28 100.0 193.0 ---42.72 Η -4 74.00 2743.250000 52.10 21.90 100.0 Н 349.0 -4

54.00 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

14.48

100.0

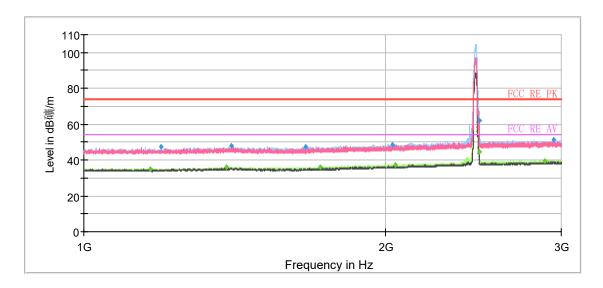

Н


260.0

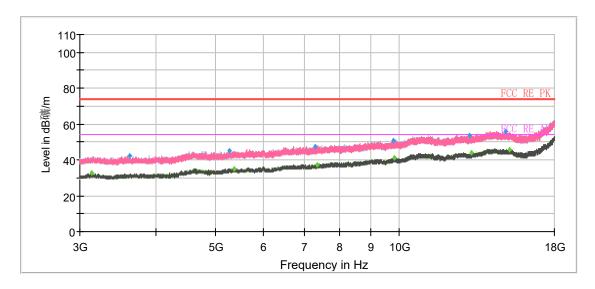
-3

39.52

802.11g CH6



Radiates Emission from 3GHz to 18GHz

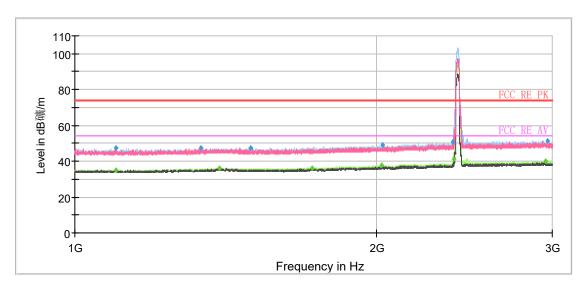

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB µ V/m)	Pol		Azimuth (deg)	Corr. (dB/m)		
1134.500000		35.27	54.00	18.73	200.0	Η	2.0	-9
1141.500000	46.65		74.00	27.35	100.0	Н	308.0	-9
1524.000000	47.40		74.00	26.60	200.0	Н	29.0	-7
1727.000000		35.99	54.00	18.01	100.0	V	61.0	-6
2045.000000		37.15	54.00	16.85	200.0	Н	1.0	-5
2062.750000	49.11		74.00	24.89	100.0	Н	300.0	-5
2387.250000	52.32		74.00	21.68	200.0	Н	196.0	-4
2387.500000		41.70	54.00	12.30	200.0	Н	180.0	-4
2487.000000	51.35		74.00	22.65	100.0	Н	184.0	-4
2487.250000		39.96	54.00	00 14.04 100.0 H 184.0		184.0	-4	
2848.750000	51.90		74.00	22.10	200.0	V	239.0	-3
2937.750000		39.68	54.00	14.32	200.0	Н	9.0	-3

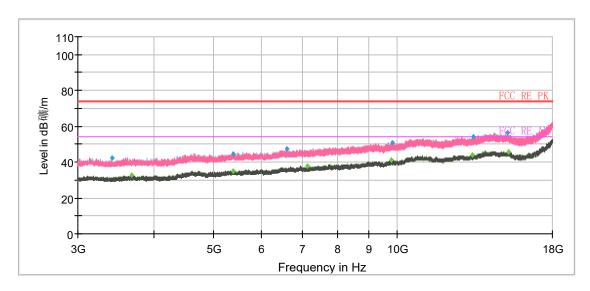
Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11g CH11

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz

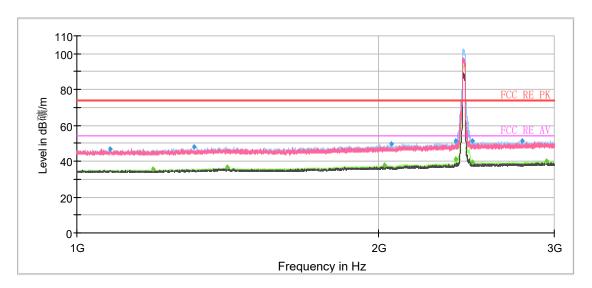


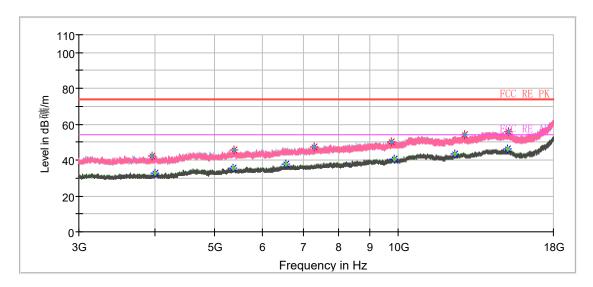


Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	O Pol		Azimuth (deg)	Corr. (dB/m)	
1164.000000		35.18	54.00	18.82	200.0	Η	3.0	-9
1195.000000	47.17		74.00	26.83	200.0	Н	122.0	-9
1389.000000		35.93	54.00	18.07	100.0	Ι	301.0	-7
1403.500000	47.72		74.00	26.28	100.0	٧	50.0	-7
1664.000000	47.59		74.00	26.41	100.0	Ι	233.0	-6
1724.250000		36.19	54.00	17.81	100.0	Ι	309.0	-6
2034.250000	48.78		74.00	25.22	100.0	>	193.0	-5
2049.000000		37.38	54.00	16.62	100.0	Ι	344.0	-5
2484.000000	62.17		74.00	11.83	200.0	Η	207.0	-4
2484.000000		44.56	54.00	9.44	200.0	Н	207.0	-4
2887.500000		39.53	54.00	14.47	100.0	Η	358.0	-3
2947.500000	51.11		74.00	22.89	100.0	Ι	358.0	-3

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH1

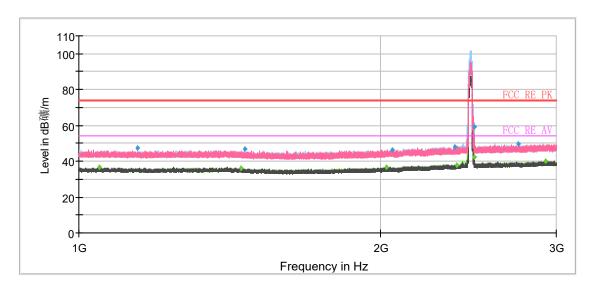


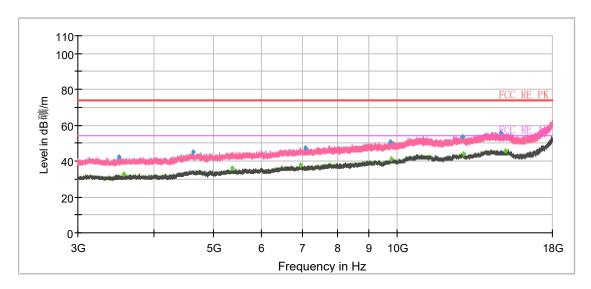

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)			Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1097.750000	47.21		74.00	26.79	200.0	Η	1.0	-9
1098.000000		35.22	54.00	18.78	100.0	Н	0.0	-9
1337.250000	47.14		74.00	26.86	200.0	Н	236.0	-8
1396.000000		36.12	54.00	17.88	200.0	Н	22.0	-7
1498.500000	47.64		74.00	26.36	100.0	Н	358.0	-7
1727.000000		36.26	54.00	17.74	100.0	Н	0.0	-6
2026.750000		37.57	54.00	16.43	200.0	Н	4.0	-5
2031.500000	48.95		74.00	25.05	200.0	Н	72.0	-5
2386.750000	50.62		74.00	23.38	100.0	Н	179.0	-4
2389.750000		41.21	54.00	12.79	100.0	Н	187.0	-4
2952.250000		39.92	54.00	14.08	100.0	Н	0.0	-3
2964.000000	51.41		74.00	22.59	100.0	Н	356.0	-3

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH6

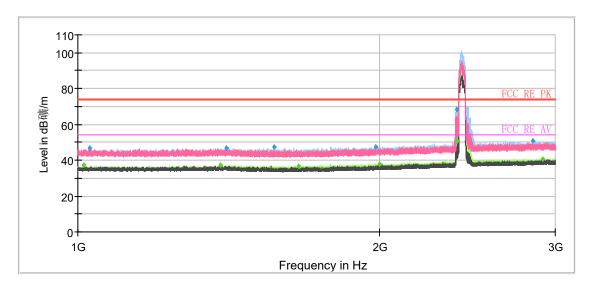

Radiates Emission from 3GHz to 18GHz

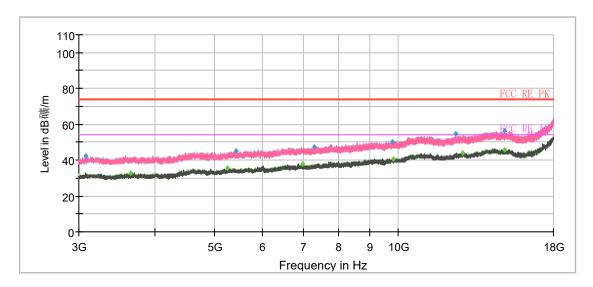

Report Report No.: R2112A1138-R4

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1078.500000	46.75		74.00	27.25	100.0	Н	225.0	-9
1191.750000		35.31	54.00	18.69	200.0	Н	19.0	-9
1308.750000	48.06		74.00	25.94	200.0	Н	4.0	-8
1414.000000		36.39	54.00	17.61	200.0	Н	219.0	-7
2029.000000		37.55	54.00	16.45	100.0	Н	0.0	-5
2060.500000	49.54		74.00	24.46	200.0	Н	5.0	-5
2388.500000		40.98	54.00	13.02	100.0	Н	183.0	-4
2388.750000	51.36		74.00	22.64	200.0	Н	193.0	-4
2484.000000	51.30		74.00	22.70	100.0	Н	225.0	-4
2485.000000		39.22	54.00	14.78	200.0	Н	14.0	-4
2788.000000	51.28		74.00	22.72	200.0	Η	51.0	-4
2944.250000		39.86	54.00	14.14	100.0	Н	148.0	-3

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH11




Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1048.266667		36.39	54.00	17.61	200.0	V	5.0	-9
1144.666667	47.66		74.00	26.34	100.0	Н	257.0	-9
1452.800000		36.03	54.00	17.97	200.0	V	309.0	-7
1466.066667	46.73		74.00	27.27	200.0	Н	351.0	-7
2028.333333		36.79	54.00	17.21	200.0	Н	238.0	- 5
2058.733333	46.53		74.00	27.47	200.0	Н	96.0	-5
2376.400000	47.96		74.00	26.04	200.0	Н	187.0	-4
2386.533333		38.03	54.00	15.97	100.0	V	158.0	-4
2483.733333	59.39		74.00	14.61	200.0	Н	225.0	-4
2484.066667		42.27	54.00	11.73	200.0	Н	187.0	-4
2747.533333	49.90		74.00	24.10	100.0	Н	16.0	-4
2927.266667		40.26	54.00	13.74	200.0	Н	108.0	-3

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT40) CH3

Radiates Emission from 3GHz to 18GHz

2389.066667

2850.533333

2912.066667

Frequency MaxPeak Limit Height Azimuth Corr. Average Margin Pol (dB µ V/m) (dB µ V/m) (dB μ V/m) (MHz) (dB) (cm) (deg) (dB/m) 1012.533333 36.97 54.00 17.03 200.0 V 18.0 -10 1027.600000 46.58 74.00 27.42 200.0 V 310.0 -10 37.33 -7 1387.400000 54.00 16.67 200.0 Η 348.0 1405.866667 46.69 74.00 27.31 100.0 V 51.0 -7 74.00 100.0 1571.333333 47.16 26.84 64.0 -6 Η ---1661.066667 36.79 54.00 17.21 200.0 Н 356.0 -6 1983.200000 47.38 74.00 100.0 26.62 Η 6.0 -5 37.97 1999.933333 54.00 16.03 200.0 Н 225.0 -5 2389.066667 68.32 74.00 5.68 100.0 Η 187.0 -4

54.00 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

54.00

74.00

3.51

23.23

13.19

100.0

100.0

200.0

Η

Н

Н

50.49

40.81

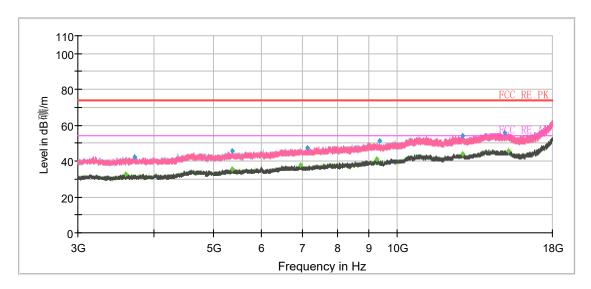
50.77

Report No.: R2112A1138-R4

187.0

143.0

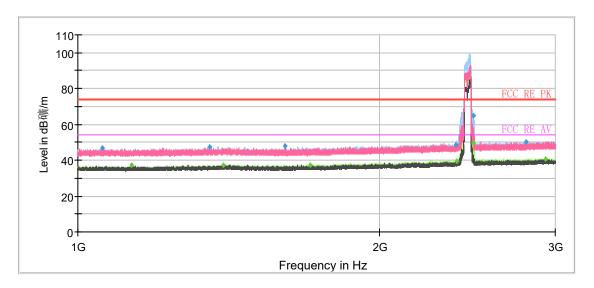
267.0

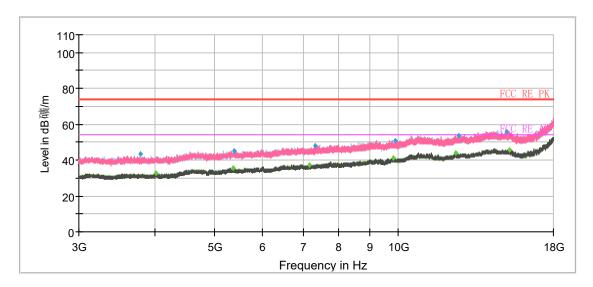

-4

-3

-3

802.11n (HT40) CH6


Radiates Emission from 3GHz to 18GHz

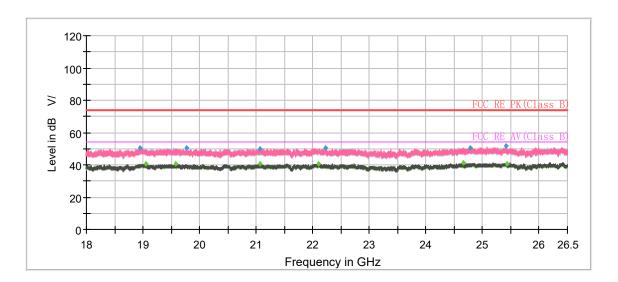


Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1114.066667	46.89		74.00	27.11	200.0	Н	226.0	-9
1116.933333		36.60	54.00	17.40	100.0	Н	64.0	-9
1370.933333	47.30		74.00	26.70	100.0	Н	90.0	-7
1416.200000		37.57	54.00	16.43	200.0	Н	306.0	-7
1624.333333		37.28	54.00	16.72	200.0	Н	341.0	-6
1669.066667	47.81		74.00	26.19	200.0	Н	293.0	-6
1988.600000		38.28	54.00	15.72	200.0	Н	331.0	-5
2051.733333	47.81		74.00	26.19	200.0	Н	358.0	-5
2388.600000		44.11	54.00	9.89	100.0	Н	203.0	-4
2388.600000	57.54		74.00	16.46	100.0	Н	203.0	-4
2875.266667	51.32		74.00	22.68	100.0	Н	173.0	-3
2878.666667		40.88	54.00	13.12	100.0	Н	37.0	-3

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT40) CH9

Radiates Emission from 3GHz to 18GHz



Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol		Corr. (dB/m)
1056.866667	46.58		74.00	27.42	100.0	V	196.0	-10
1131.133333		37.10	54.00	16.90	200.0	Н	355.0	-9
1354.533333	47.51		74.00	26.49	200.0	V	0.0	-7
1397.666667		37.46	54.00	16.54	200.0	Н	355.0	-7
1609.400000	47.79		74.00	26.21	200.0	Н	329.0	-6
1707.200000		37.40	54.00	16.60	200.0	Н	352.0	-6
2387.200000	48.79		74.00	25.21	100.0	Н	190.0	-4
2388.600000		39.69	54.00	14.31	100.0	Н	190.0	-4
2484.600000		49.83	54.00	4.17	200.0	Н	194.0	-4
2485.800000	64.64		74.00	9.36	100.0	Н	190.0	-4
2805.000000	50.45		74.00	23.55	200.0	Н	359.0	-3
2935.133333		40.89	54.00	13.11	200.0	Η	223.0	-3

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

During the test, the Radiates Emission from 18GHz to 26.5GHz was performed in all modes with all channels, 802.11n HT40, Channel 3 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

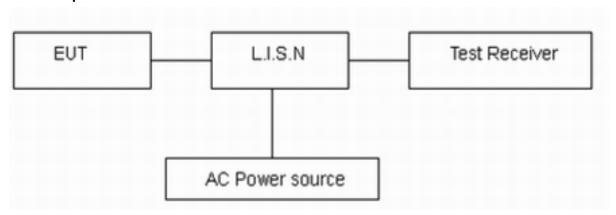
Radiates Emission from 18GHz to 26.5GHz

TA-MB-04-005R

Page 59 of 67

5.7. Conducted Emission

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10-2013. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

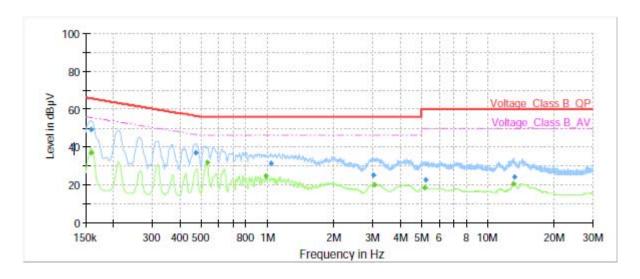
The test is in transmitting mode.

Test Setup

Note: AC Power source is used to change the voltage 110V/60Hz.

Limits

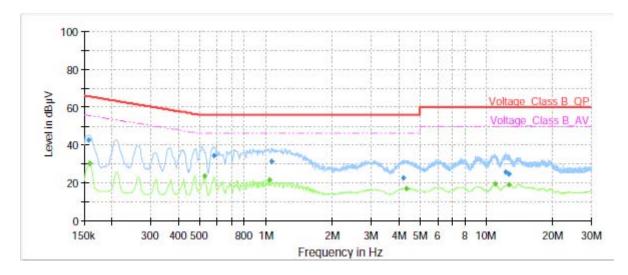
Frequency	Conducted Limits(dBμV)						
(MHz)	Quasi-peak	Average					
0.15 - 0.5	66 to 56 *	56 to 46*					
0.5 - 5	56	46					
5 - 30	60	50					
* Decreases with the logarithm of the frequency.							


Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB.

Test Results:

Following plots, Blue trace uses the peak detection and Green trace uses the average detection. During the test, the Conducted Emission was performed in all modes (WIFI 2.4G) with all channels, 802.11n HT40, Channel 3 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.



Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16	49.41	-	65.52	16.11	70.0	9.000	L1	ON	21
0.16		37.04	55.52	18.48	70.0	9.000	L1	ON	21
0.47	37.06	-	56.44	19.38	70.0	9.000	L1	ON	20
0.53		31.99	46.00	14.01	70.0	9.000	L1	ON	20
0.98		24.64	46.00	21.36	70.0	9.000	L1	ON	20
1.03	31.40		56.00	24.60	70.0	9.000	L1	ON	20
3.04	25.33		56.00	30.67	70.0	9.000	L1	ON	19
3.04		19.86	46.00	26.14	70.0	9.000	L1	ON	19
5.16		18.27	50.00	31.73	70.0	9.000	L1	ON	19
5.21	22.52		60.00	37.48	70.0	9.000	L1	ON	19
13.07		20.26	50.00	29.74	70.0	9.000	L1	ON	20
13.16	24.32		60.00	35.68	70.0	9.000	L1	ON	20

Remark: Correct factor=cable loss + LISN factor

L line Conducted Emission from 150 KHz to 30 MHz

TA Technology (Shanghai) Co., Ltd.

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16	42.46		65.63	23.17	70.0	9.000	N	ON	21
0.16		30.34	55.52	25.18	70.0	9.000	N	ON	21
0.53		23.61	46.00	22.39	70.0	9.000	N	ON	20
0.58	34.26		56.00	21.74	70.0	9.000	N	ON	20
1.03		21.45	46.00	24.55	70.0	9.000	N	ON	20
1.06	31.20		56.00	24.80	70.0	9.000	N	ON	20
4.22	22.61		56.00	33.39	70.0	9.000	N	ON	19
4.35		16.76	46.00	29.24	70.0	9.000	N	ON	19
10.96		19.54	50.00	30.46	70.0	9.000	N	ON	20
12.31	25.46		60.00	34.54	70.0	9.000	N	ON	20
12.60		19.16	50.00	30.84	70.0	9.000	N	ON	20
12.60	24.51		60.00	35.49	70.0	9.000	N	ON	20

Remark: Correct factor=cable loss + LISN factor

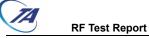
N line Conducted Emission from 150 KHz to 30 MHz

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Spectrum Analyzer	R&S	FSV30	100815	2019-12-15	2020-12-14
EMI Test Receiver	R&S	ESCI	100948	2019-05-19	2020-05-18
EMI Test Receiver	R&S	ESCI	100948	2020-05-18	2021-05-17
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2017-09-26	2020-09-25
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-201	2017-11-18	2020-11-17
Double Ridged Waveguide Horn Antenna	R&S	HF907	100126	2018-07-07	2020-07-06
Standard Gain Horn	ETS-Lindgren	3160-09	00102643	2018-06-20	2020-06-19
EMI Test Receiver	R&S	ESR	101667	2019-05-19	2020-05-18
EMI Test Receiver	R&S	ESR	101667	2020-05-18	2021-05-17
LISN	R&S	ENV216	101171	2018-12-15	2021-12-14
Spectrum Analyzer	Agilent	N9010A	MY47191109	2019-05-19	2020-05-18
Spectrum Analyzer	Agilent	N9010A	MY47191109	2020-05-18	2021-05-17
Power Meter	R&S	NRP2	104306	2019-05-19	2020-05-18
Power Meter	R&S	NRP2	104306	2020-05-18	2021-05-17
Power Sensor	R&S	NRP-Z21	104799	2019-05-19	2020-05-18
Power Sensor	R&S	NRP-Z21	104799	2020-05-18	2021-05-17
20dB Attenuator	Star River Highlight	UCL-TS2S- 20	18013001	2019-12-15	2020-12-14
RF Cable	Agilent	SMA 15cm	0001	2019-12-13	2020-06-12
Software	R&S	EMC32	9.26.0	1	1

Variant: December 27, 2021~January 10, 2022

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Spectrum Analyzer	R&S	FSV30	103591	2021-05-15	2022-05-14
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2020-04-02	2023-04-01
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	391	2019-12-16	2022-12-15
Double Ridged Waveguide Horn Antenna	Schwarzbeck	BBHA 9120D	430	2018-07-07	2023-07-06
Horn Antenna	ETS-Lindgren	3160-09	00102643	2018-06-20	2023-06-19
EMI Test Receiver	R&S	ESR	101667	2021-05-15	2022-05-14
LISN	R&S	ENV216	101171	2020-12-13	2022-12-12
Software	R&S	EMC32	9.26.01	1	1


ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

F Test Report Report No.: R2112A1138-R4

ANNEX C: Product Change Description

The Product Change Description are submitted separately.

******END OF REPORT ******