

FCC RADIO TEST REPORT

FCC ID	:	2AFZZ211G
Equipment	:	Mobile Phone
Brand Name	:	POCO
Model Name	:	22011211G
Applicant	:	Xiaomi Communications Co., Ltd. #019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Manufacturer	:	Xiaomi Communications Co., Ltd. #019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Jan. 06, 2022 and testing was performed from Jan. 13, 2022 to Jan. 29, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. Wensan Laboratory No. 58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan

Table of Contents

His	tory o	f this test report	3
Sur	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	22
	3.5	Radiated Band Edges and Spurious Emission Measurement	27
	3.6	AC Conducted Emission Measurement	31
	3.7	Antenna Requirements	33
4	List c	of Measuring Equipment	34
5	Unce	rtainty of Evaluation	36
Арр	pendix	A. Conducted Test Results	
Арр	pendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	
Арр	pendix	D. Radiated Spurious Emission Plots	
Арр	oendix	E. Duty Cycle Plots	

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR210628B	01	Initial issue of report	Feb. 16, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	4.85 dB under the limit at 2497.960 MHz
3.6	15.207	AC Conducted Emission	Pass	9.95 dB under the limit at 0.188 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.

2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Danny Lee

Report Producer: Amy Chen

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE/5G NR, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, NFC and GNSS.

	Product Feature			
Sample 1	EUT with RAM (Micron)			
Sample 2	EUT with RAM (Samsung)			
	WWAN: PIFA Antenna			
	WLAN 2.4GHz			
	<ant. 16="">: PIFA Antenna</ant.>			
	<ant. 18="">: PIFA Antenna</ant.>			
Antonno Typo	WLAN 5GHz			
Antenna Type	<ant. 17="">: PIFA Antenna</ant.>			
	<ant. 18="">: PIFA Antenna</ant.>			
	Bluetooth: PIFA Antenna			
	GPS / Glonass / BDS / Galileo / SBAS / QZSS / NavIC: PIFA Antenna			
	NFC: Coil Antenna			
	Antenna information			
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi) -1.7			

Remark: The above EUT's information is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory.
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
Test Sile NO.	CO05-HY (TAF Code: 1190)
Remark	The Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No. TH05-HY, 03CH16-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

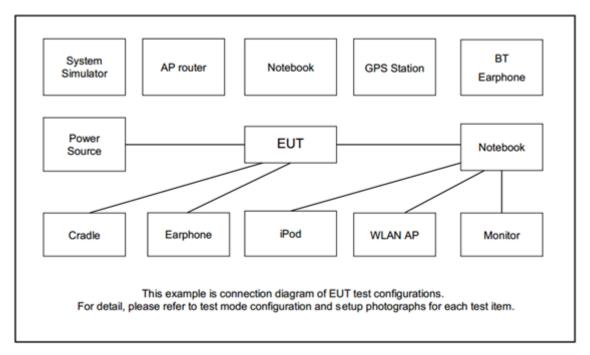
- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape) and WPC Charging Mode, and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X plane as worst plane.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases
Test Item	Data Rate / Modulation
	Bluetooth – LE / GFSK
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
AC Conducted	Mode 1 :LTE Band 26 Rx + Bluetooth Link + WLAN (2.4GHz) Link + GNSS Rx +
Emission	Battery + USB Cable 1 (Data Link with Notebook) + SIM 2 for Sample 1
	d Test Cases, the tests were performed with Adapter 2, USB Cable 1 and Sample 1. ith Notebook means data application transferred mode between EUT and
Notebook.	

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8m
5.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0m	N/A
6.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m

2.5 EUT Operation Test Setup

The RF test items, make the EUT (SW: 2021-12-21-200901) get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

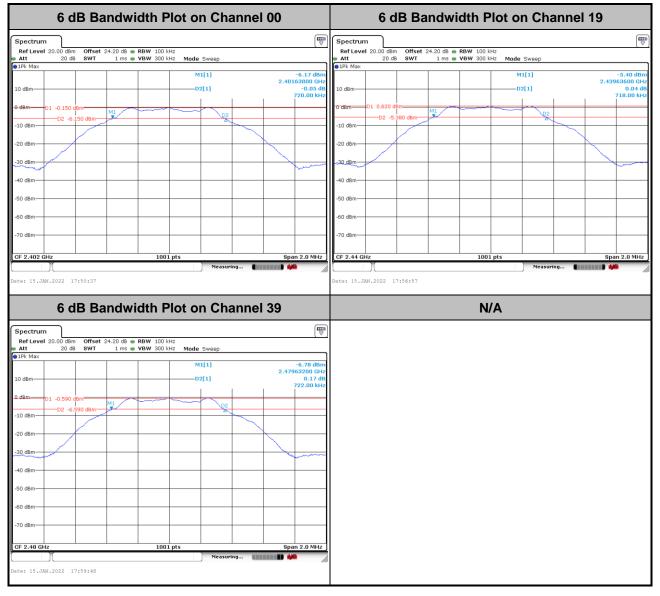
Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

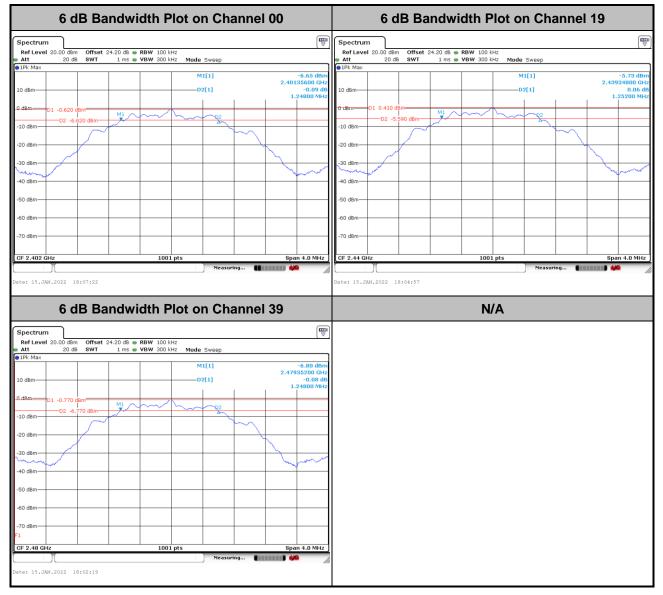
- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

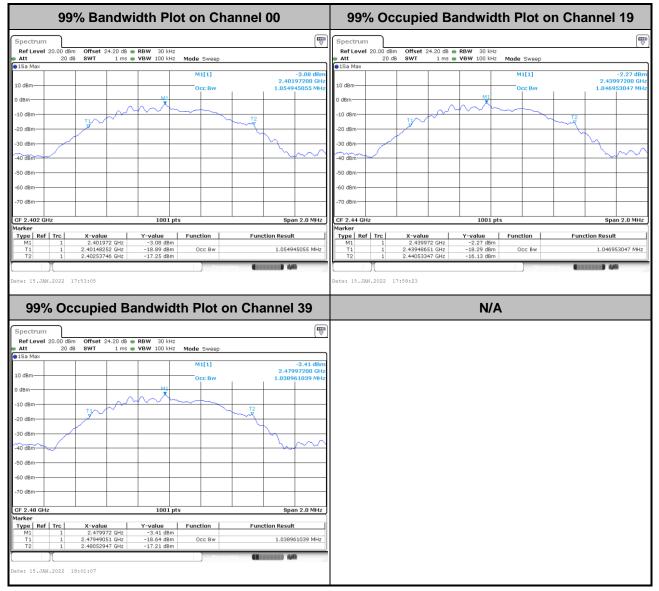

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth


Please refer to Appendix A.

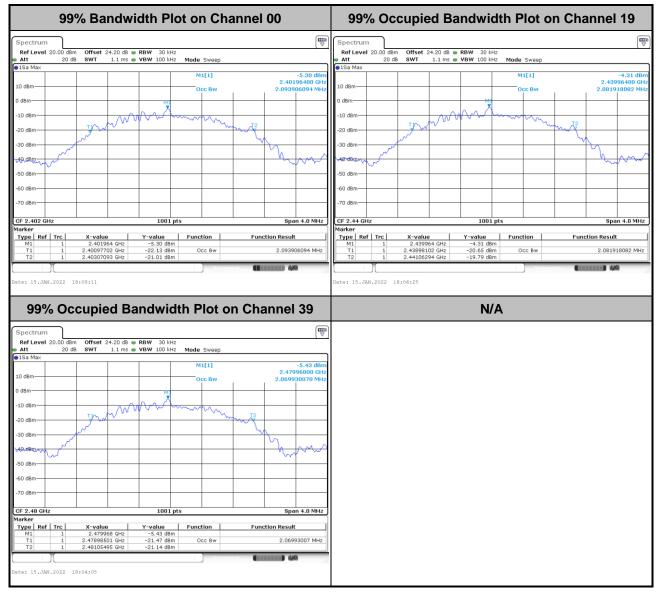
<1Mbps>

<2Mbps>



3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

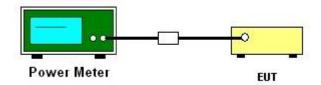
<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

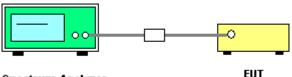
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

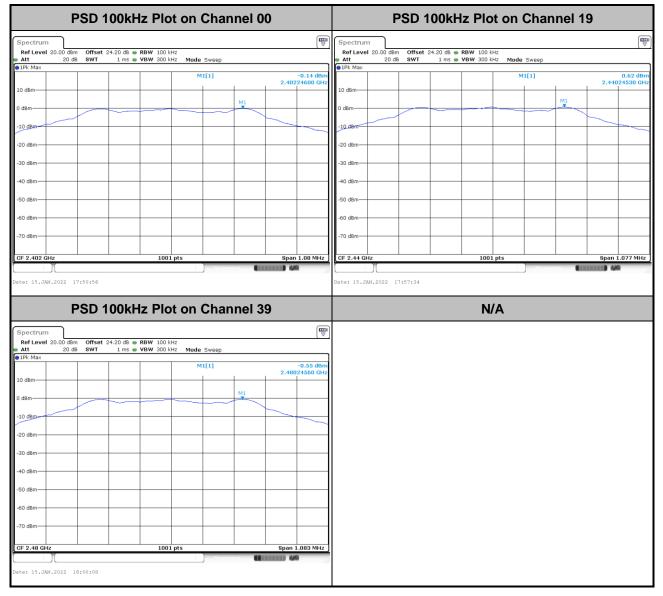
Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

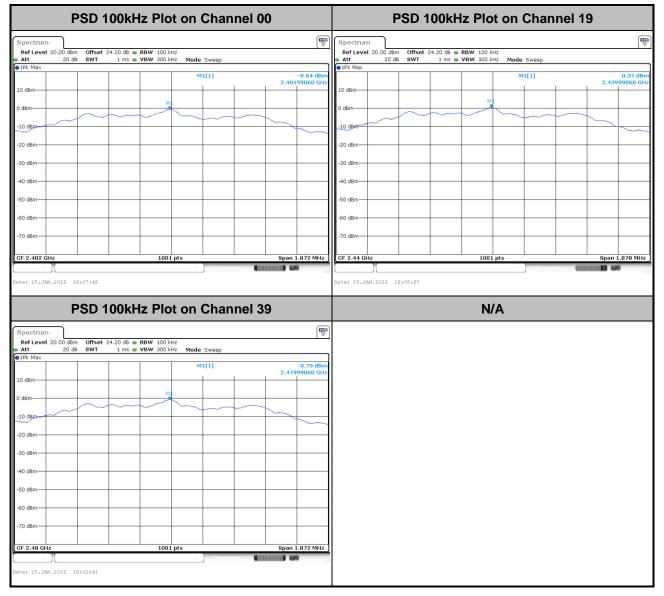
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

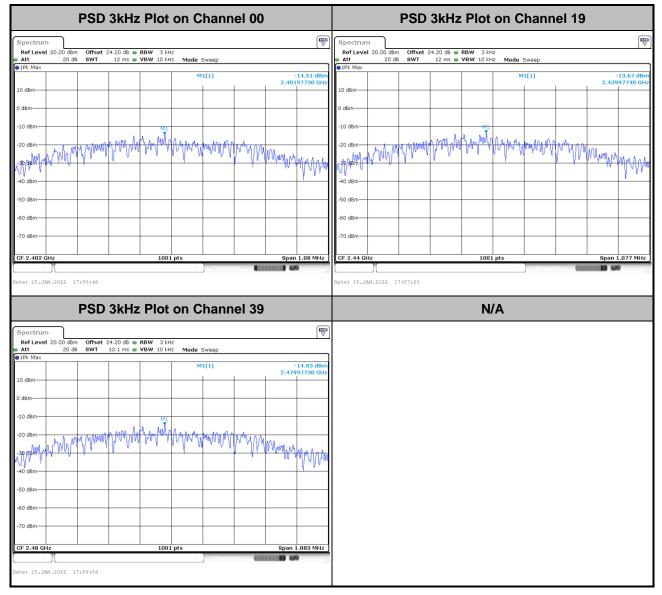
Spectrum Analyzer


3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>


<2Mbps>

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

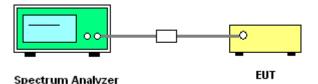
<1Mbps>

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

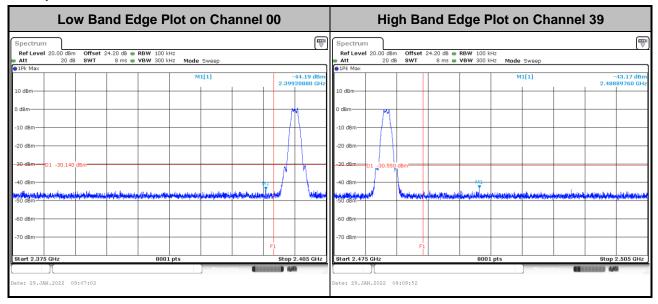
All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

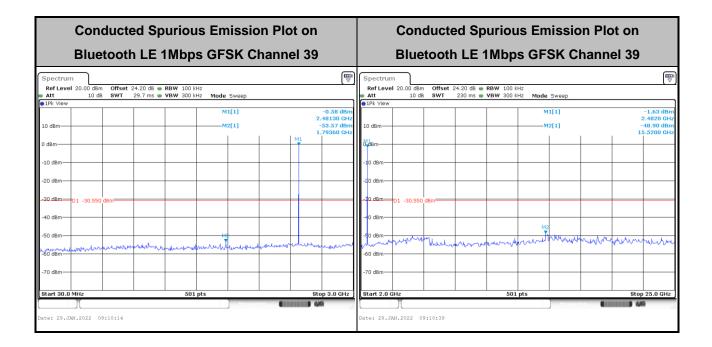

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

<2Mbps>

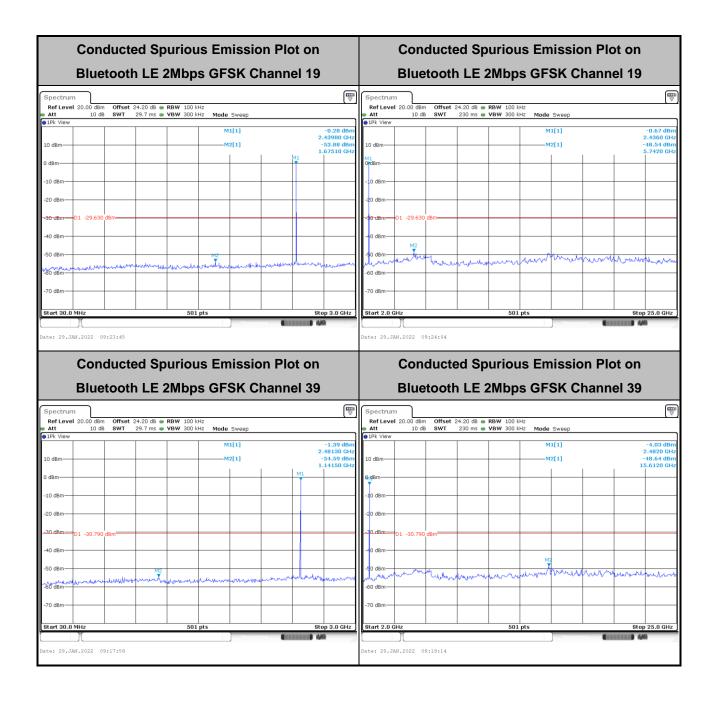
Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 39
Ref Level Offset 24-20 B RBW 100 kHz Figure Figure	Spectrum The sector of the secto
11/r M1[1] -31.97 dBr 10 dBm 0 dBm 2.39999800 GH 0 dBm 0 dBm 0 dBm -10 dBm 0 dBm 0 dBm -30.dBm 01 -30.640 dBm M1 -30 dBm 0 -30.640 dBm M1 -30 dBm 01 -30.640 dBm 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -	ID d8m MI[1] 44.52 d8m 10 d8m 2.49750660 GH 0 d8m -44.52 d8m -20 d8m -40 d8m -20 d8m -40 d8m -30.08m -40 d8m -40 d8m -40 d8m -20 d8m -40 d8m -20 d8m -40 d8m -20 d8m -40 d8m -40 d8m -40 d8m -40 d8m -40 d8m -50 d8m -70 d8m -70 d8m F1 Btart 2.475 GHz 8001 pts Stop 2.505 GHz Date: 29.37N1.2022 09:16:40



3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>

Conducted S	spurious Emission	Plot on	Conducted		
Bluetooth LE	E 1Mbps GFSK Cha	annel 00	Bluetooth L	_E 1Mbps GFSK Ch	annel 00
pectrum Ref Level 20.00 dBm Offset 24.20 dB	i8 🖷 RBW 100 kHz		trum	0 dB ● RBW 100 kHz	Ē
Att 10 dB SWT 29.7 ms	ns - VBW 300 kHz Mode Sweep	e Att	10 dB SWT 230	D ms - VBW 300 kHz Mode Sweep	
LPk View	M1[1]	0.75 dBm	liew	M1[1]	-0.66 dB
) dBm	M2[1]	2.40420 GHz -53.72 dBm 10 dB	n	M2[1]	2.3900 G -48.74 dB
IBm		2.90220 GHz M1 07dBm			15.6120 G
		o ubii			
dBm		-10 dB	m		
dBm		-20 dB	m		
18m-01 -30.140.d8m-			m D1 -30.140 dBm		
Bm		-+0 dB	m	Ma	
Bm		-50 dB		munounder win town	man
Bm	vitrom more mander under and a	monter all -60 de	man hundred hundred	man har address and a second	
dBm		-70 dB	m		
t 30.0 MHz	501 pts	Stop 3.0 GHz Start	2.0 GHz	501 pts	Stop 25.0 G
29.JJN.2022 09:08:07	Spurious Emission	Plot on	29. JAN. 2022 09:08:17 Conducted	Spurious Emission	
: 29.JJM.2022 09:08:07	Ne asurino.	Plot on Innel 19	29. JAN. 2022 09:08:17 Conducted	Spurious Emissior _E 1Mbps GFSK Ch	annel 19
Conducted S Bluetooth LE	Spurious Emission E 1Mbps GFSK Cha	Plot on Innel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L	E 1Mbps GFSK Ch	annel 19
Conducted S Bluetooth LE ectrum f Level 20.00 dBm Offset 24.20 dd	Spurious Emission	Plot on annel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm offset 24:20 10 dB swr 230	-	annel 19
Conducted S Bluetooth LE	Spurious Emission E 1Mbps GFSK Cha	Plot on annel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm offset 24:20 10 dB swr 230	LE 1Mbps GFSK Ch	annel 19
29.JAN.2022 09:08:07 Conducted S Bluetooth LE ctrum Level 20.00 dBm Offset 24.20 dB 10 dB SWT 29.7 m View	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on innel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 10 dB Swr 230	LE 1Mbps GFSK Ch	annel 19
29.JAN.2022 09:08:07 Conducted S Bluetooth LE sctrum fLevel 20.00 dBm offset 24.20 dd 10 db Swr 29.7 m View Bm	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on annel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 10 dB swr 230 Jiew	LE 1Mbps GFSK Ch	annel 19
29.JAN.2022 09:08:07 Conducted S Bluetooth LE Ctrum Level 20.00 dbm Offset 24.20 df Wew	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on annel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm offset 24.20 riew	LE 1Mbps GFSK Ch	annel 19
29. JAN. 2022 09:08:07 Conducted S Bluetooth LE Ctrum Level 20.00 dBm Offset 24.20 dl Swy 29.7 mt View	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on annel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm offset 24.20 riew	LE 1Mbps GFSK Ch	annel 19
29.JAN.2022 09:08:07 Conducted S Bluetooth LE Ctrum Level 20.00 dBm Offset 24.20 dI 10 dB SWT 29.7 m View m Bm	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on annel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 Jo dB SwT 230 Jiew	LE 1Mbps GFSK Ch	annel 19 (1.09 dl 2.4360 d -49.6 d
29.JAN.2022 09:08:07 Conducted S Bluetooth LE ctrum Level 20.00 dbm Offset 24.20 db 10 db SWT 29.7 m View	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on annel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 n n m m m m	LE 1Mbps GFSK Ch	annel 19 (1.09 d 2.4300 C -49.64
29. JAN. 2022 09: 08: 07 Conducted S Bluetooth LE Ctrum Level 20.00 dBm Offset 24.20 df Swy 29.7 m View	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on innel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 r/ew m m m 01 -29.380 dBm	LE 1Mbps GFSK Ch	annel 19 (1.09 d 2.4300 C -49.64
29.JAN.2022 09:08:07 Conducted S Bluetooth LE Ctrum Level 20.00 dBm Offset 24.20 db Wew am m D D dB SWT 29.7 m	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on annel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 r/ew m m m 01 -29.380 dBm	LE 1Mbps GFSK Ch	annel 19 (1.09 d 2.4300 C -49.64
29.JAN.2022 09:08:07 Conducted S Bluetooth LE ctrum Level 20.00 dBm Offset 24.20 df Wew am D D D D D D D D D D D D D D D D D D	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on innel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 riew n m m 01 -29.380 dBm m m 01 -29.380 dBm m m m m m m m m m m m m m m m m m m	LE 1Mbps GFSK Ch	annel 19
29, JAN. 2022 09:08:07 Conducted S Bluetooth LE Ctrum Level 20.00 dbm Offset 24.20 dt SWT 29.7 m View m D Bm D Bm D1 -29.380 dBm Bm Bm D1 -29.380 dBm D1 -29.3	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on innel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 10 dB SWT 230 n m m 01 -29.380 dBm m m m m m m m m m m m m m m m m m m	LE 1Mbps GFSK Ch	annel 19
29.JAN.2022 09:08:07 Conducted S Bluetooth LE truet 20.00 dbm Offset 24.20 db SWT 29.7 m View am	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on innel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 riew m m 01 -29.380 dBm m m m 01 -29.380 dBm m m m m m m m m m m m m m m m m m m	LE 1Mbps GFSK Ch	annel 19
29.JNN.2022 09:08:07 Conducted S Bluetooth LE Ctrum Level 20.00 dBm Offset 24.20 df Swy 29.7 m View M Bm D1 -29.380 dBm D1 -29.380 dB	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on innel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 riew m m 01 -29.380 dBm m m m 01 -29.380 dBm m m m m m m m m m m m m m m m m m m	LE 1Mbps GFSK Ch	annel 19 (1.09 df 2.4300 G -49.6 df 15.5200 G
29.JAN.2022 09:08:07 Conducted S Bluetooth LE ture ture ture ture ture ture ture tur	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz Is • VBW 300 kHz Mode Sweep	Plot on innel 19	29.JAN.2022 09:08:17 Conducted Bluetooth L trum Level 20.00 dBm Offset 24.20 riew m m 01 -29.380 dBm m m m 01 -29.380 dBm m m m m m m m m m m m m m m m m m m	LE 1Mbps GFSK Ch	annel 19



<2Mbps>

Conducted Spu	rious Emission I	Plot on	Conducted Spurious Emission Plot on			
Bluetooth LE 2	Mbps GFSK Char	nnel 00	Bluetooth LE 2Mbps GFSK Channel 00			
Spectrum Ref Level 20:00 dBm Offset 24:20 dB		-0.84 dBm 2.40420 CHz -53.40 dBm 2.94370 CHz M1	Spectrum Ref Level 20.00 dBm Offset Att 10 dB SWT #IPk View 0 0 10 dBm 10 0 -10 dBm -10 0 -20 dBm -10.640 dBm -10.640 dBm	24.20 dB = RBW 100 kHz 230 ms • VBW 300 kHz Mode Sweep M1[1] M2[1] M2[1]	0.41 dBm 2.3900 GHz -49.41 dBm 15.5660 GHz	
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -10 Start 30.0 MHz Date: 29.JNI.2022 09:27:29	501 pts		+0 dBm -50 dBm -60 dBm -70 dBm	501 pts	Stop 25.0 GHz	

3.5 Radiated Band Edges and Spurious Emission Measurement

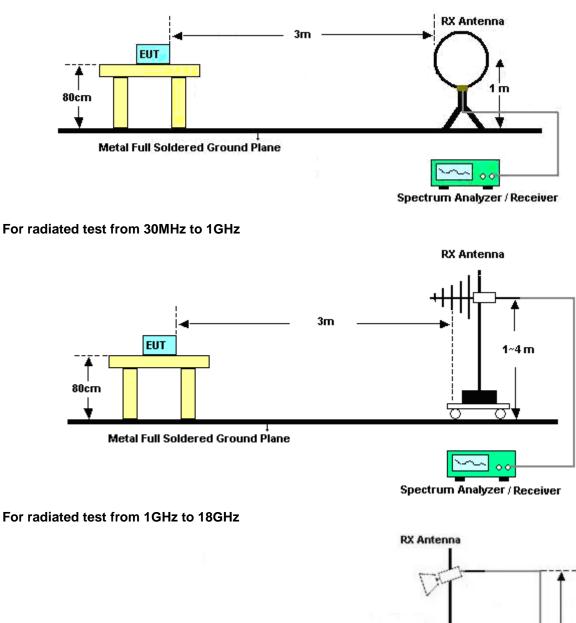
3.5.1 Limit of Radiated Band Edges and Spurious Emission

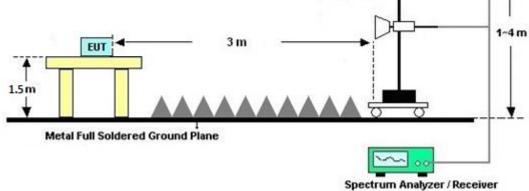
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

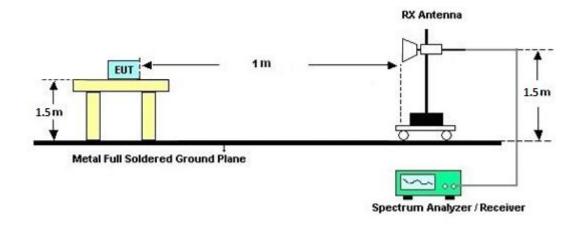
3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures


- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup


For radiated test below 30MHz

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

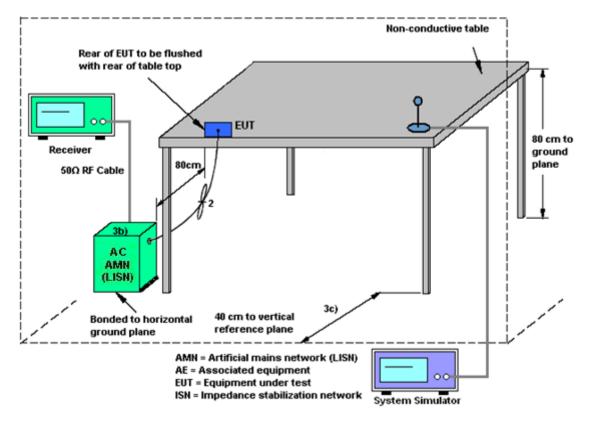
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 07, 2021	Jan. 15, 2022~ Jan. 21, 2022	Sep. 06, 2022	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N- 06	47020 & 06	30MHz to 1GHz	Oct. 09, 2021	Jan. 15, 2022~ Jan. 21, 2022	Oct. 08, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02114	1G~18GHz	Aug. 04, 2021	Jan. 15, 2022~ Jan. 21, 2022	Aug. 03, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Oct. 12, 2021	Jan. 15, 2022~ Jan. 21, 2022	Oct. 11, 2022	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00993	18GHz ~40GHz	Nov. 30, 2021	Jan. 15, 2022~ Jan. 21, 2022	Nov. 29, 2022	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1G	Jul. 05, 2021	Jan. 15, 2022~ Jan. 21, 2022	Jul. 04, 2022	Radiation (03CH16-HY)
Amplifier	EMCI	EMC051845SE	980729	1-18GHz	Jul. 09, 2021	Jan. 15, 2022~ Jan. 21, 2022	Jul. 08, 2022	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 22, 2021	Jan. 15, 2022~ Jan. 21, 2022	Jun. 21, 2022	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 09, 2021	Jan. 15, 2022~ Jan. 21, 2022	Dec. 08, 2022	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A	MY59053012	3Hz~26.5GHz	Nov. 18, 2021	Jan. 15, 2022~ Jan. 21, 2022	Nov. 17, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11680/4PE	NA	Aug. 28, 2021	Jan. 15, 2022~ Jan. 21, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11688/4PE	NA	Aug. 28, 2021	Jan. 15, 2022~ Jan. 21, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-57 57	NA	Aug. 28, 2021	Jan. 15, 2022~ Jan. 21, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Jan. 15, 2022~ Jan. 21, 2022	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jan. 15, 2022~ Jan. 21, 2022	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jan. 15, 2022~ Jan. 21, 2022	N/A	Radiation (03CH16-HY)
Filter	Wainwright	WHKX12-2700- 3000-18000-60 ST	SN3	3GHz High Pass Filter	Jul. 01, 2021	Jan. 15, 2022~ Jan. 21, 2022	Jun. 30, 2022	Radiation (03CH16-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN12	1.53GHz Low Pass Filter	Sep. 14, 2021	Jan. 15, 2022~ Jan. 21, 2022	Sep. 13, 2022	Radiation (03CH16-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	Jan. 13, 2022~ Jan. 29, 2022	Aug. 29, 2022	Conducted (TH05-HY)
Switch Control Mainframe	E-IUSTRUME NT	ETF-1405-0	EC1900067 (BOX7)	N/A	Aug. 12, 2021	Jan. 13, 2022~ Jan. 29, 2022	Aug. 11, 2022	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 16, 2021	Jan. 13, 2022~ Jan. 29, 2022	Dec. 15, 2022	Conducted (TH05-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jan. 27, 2022	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2021	Jan. 27, 2022	Nov. 30, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 03, 2021	Jan. 27, 2022	Dec. 02, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2021	Jan. 27, 2022	Nov. 15, 2022	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Jan. 27, 2022	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Jan. 27, 2022	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 30, 2021	Jan. 27, 2022	Dec. 29, 2022	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.1 dB
of 95% (U = 2Uc(y))	3.1 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB	
of 95% (U = 2Uc(y))	5.0 UB	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.2 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.8 dB
--	--------

Report Number : FR210628B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Benny Ku	Temperature:	21~25	°C
Test Date:	2022/1/13~2022/1/29	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	1.30	30.00	-1.70	-0.40	36.00	Pass
BLE	1Mbps	1	19	2440	2.20	30.00	-1.70	0.50	36.00	Pass
BLE	1Mbps	1	39	2480	1.00	30.00	-1.70	-0.70	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	-0.14	-14.51	-1.70	8.00	Pass	ĺ
BLE	1Mbps	1	19	2440	0.62	-13.67	-1.70	8.00	Pass	
BLE	1Mbps	1	39	2480	-0.55	-14.83	-1.70	8.00	Pass	
Note: P	PSD (dBi	m/ 10)0kHz)	is a refe	rence level (used for Cor	nducted Bar	nd Edges and	d Conducted	d Spurious Emission 30dBc limit.

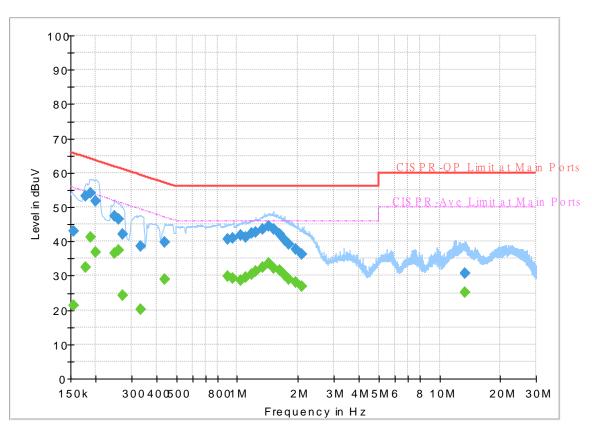
Report Number : FR210628B

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	1.30	30.00	-1.70	-0.40	36.00	Pass
BLE	2Mbps	1	19	2440	2.20	30.00	-1.70	0.50	36.00	Pass
BLE	2Mbps	1	39	2480	1.00	30.00	-1.70	-0.70	36.00	Pass

<u>TEST RESULTS DATA</u>
Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	2Mbps	1	0	2402	-0.64	-16.87	-1.70	8.00	Pass	
BLE	2Mbps	1	19	2440	0.37	-15.82	-1.70	8.00	Pass	
BLE	2Mbps	1	39	2480	-0.79	-16.94	-1.70	8.00	Pass	Ĩ



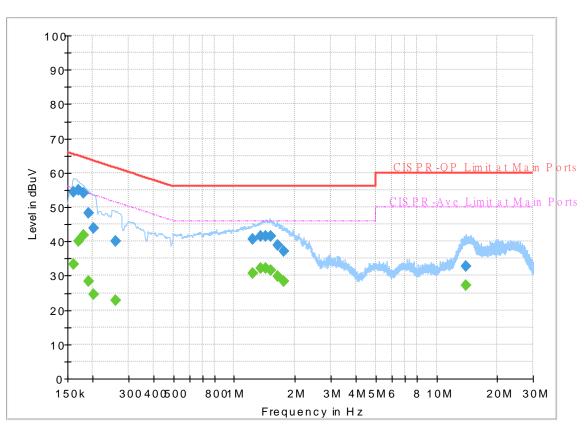
Appendix B. AC Conducted Emission Test Results

Test Engineer :	Colvin Wong	Temperature :	23~26 ℃
Test Engineer.	Calvin Wang	Relative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 210628 Mode 1 Power From System Line

FullSpectrum


Final_Result

Frequency	QuasiPeak			Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.154500		21.32	55.75	34.43	L1	OFF	19.6
0.154500	43.07		65.75	22.68	L1	OFF	19.6
0.177000		32.37	54.63	22.26	L1	OFF	19.6
0.177000	53.27		64.63	11.36	L1	OFF	19.6
0.188250		41.21	54.11	12.90	L1	OFF	19.6
0.188250	54.16		64.11	9.95	L1	OFF	19.6
0.199500		36.96	53.63	16.67	L1	OFF	19.6
0.199500	51.64		63.63	11.99	L1	OFF	19.6
0.246750		36.52	51.87	15.35	L1	OFF	19.6
0.246750	47.23		61.87	14.64	L1	OFF	19.6
0.258000		37.43	51.50	14.07	L1	OFF	19.6
0.258000	46.54		61.50	14.96	L1	OFF	19.6
0.271500		24.31	51.07	26.76	L1	OFF	19.6
0.271500	42.02		61.07	19.05	L1	OFF	19.6
0.334500		20.31	49.34	29.03	L1	OFF	19.6
0.334500	38.60		59.34	20.74	L1	OFF	19.6
0.440250		29.03	47.06	18.03	L1	OFF	19.6
0.440250	39.69		57.06	17.37	L1	OFF	19.6
0.892500		29.70	46.00	16.30	L1	OFF	19.6
0.892500	40.58		56.00	15.42	L1	OFF	19.6
0.951000		29.29	46.00	16.71	L1	OFF	19.6

0.951000	40.79		56.00	15.21	L1	OFF	19.6
1.038750		28.78	46.00	17.22	L1	OFF	19.6
1.038750	41.81		56.00	14.19	L1	OFF	19.6
1.104000		29.59	46.00	16.41	L1	OFF	19.6
1.104000	41.28		56.00	14.72	L1	OFF	19.6
1.173750		30.47	46.00	15.53	L1	OFF	19.6
1.173750	42.29		56.00	13.71	L1	OFF	19.6
1.234500		31.36	46.00	14.64	L1	OFF	19.6
1.234500	42.76		56.00	13.24	L1	OFF	19.6
1.335750		32.40	46.00	13.60	L1	OFF	19.6
1.335750	43.65		56.00	12.35	L1	OFF	19.6
1.425750		33.65	46.00	12.35	L1	OFF	19.6
1.425750	44.40		56.00	11.60	L1	OFF	19.6
1.509000		32.14	46.00	13.86	L1	OFF	19.6
1.509000	43.62		56.00	12.38	L1	OFF	19.6
1.614750		31.69	46.00	14.31	L1	OFF	19.6
1.614750	42.13		56.00	13.87	L1	OFF	19.6
1.713750		30.21	46.00	15.79	L1	OFF	19.6
1.713750	40.42		56.00	15.58	L1	OFF	19.6
1.801500		29.05	46.00	16.95	L1	OFF	19.6
1.801500	39.28		56.00	16.72	L1	OFF	19.6
1.947750		28.21	46.00	17.79	L1	OFF	19.6
1.947750	37.80		56.00	18.20	L1	OFF	19.6
2.091750		26.77	46.00	19.23	L1	OFF	19.6
2.091750	36.31		56.00	19.69	L1	OFF	19.6
13.348500		25.22	50.00	24.78	L1	OFF	19.8
13.348500	30.60		60.00	29.40	L1	OFF	19.8

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 210628 Mode 1 Power From System Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.161250		33.44	55.40	21.96	Ν	OFF	19.6
0.161250	54.25		65.40	11.15	Ν	OFF	19.6
0.170250		40.12	54.95	14.83	Ν	OFF	19.6
0.170250	54.96		64.95	9.99	Ν	OFF	19.6
0.179250		41.73	54.52	12.79	Ν	OFF	19.6
0.179250	54.15		64.52	10.37	Ν	OFF	19.6
0.190500		28.35	54.02	25.67	Ν	OFF	19.6
0.190500	48.26		64.02	15.76	Ν	OFF	19.6
0.201750		24.48	53.54	29.06	Ν	OFF	19.6
0.201750	43.98		63.54	19.56	Ν	OFF	19.6
0.258000		22.83	51.50	28.67	Ν	OFF	19.6
0.258000	40.14		61.50	21.36	Ν	OFF	19.6
1.232250		30.64	46.00	15.36	Ν	OFF	19.6
1.232250	40.64		56.00	15.36	Ν	OFF	19.6
1.351500		32.28	46.00	13.72	Ν	OFF	19.6
1.351500	41.63		56.00	14.37	Ν	OFF	19.6
1.439250		32.03	46.00	13.97	Ν	OFF	19.6
1.439250	41.58		56.00	14.42	Ν	OFF	19.6
1.513500		31.71	46.00	14.29	Ν	OFF	19.6
1.513500	41.39		56.00	14.61	Ν	OFF	19.6
1.639500		29.94	46.00	16.06	Ν	OFF	19.6

1.639500	39.01		56.00	16.99	Ν	OFF	19.6
1.763250		28.29	46.00	17.71	Ν	OFF	19.6
1.763250	37.25		56.00	18.75	Ν	OFF	19.6
13.915500		27.28	50.00	22.72	Ν	OFF	19.9
13.915500	32.86		60.00	27.14	Ν	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engineer :	Andy Yang, Karl Hou, and Wilson Wu	Temperature :	20~25°C
lest Engineer .		Relative Humidity :	50~60%

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2383.92	55.68	-18.32	74	40.2	27.34	18.21	30.07	111	302	Р	Н
		2389.8	46.3	-7.7	54	30.79	27.36	18.22	30.07	111	302	А	Н
	*	2402	95.92	-	-	80.34	27.41	18.24	30.07	111	302	Р	Н
	*	2402	95.14	-	-	79.56	27.41	18.24	30.07	111	302	А	Н
BLE													Н
CH 00													Н
2402MHz		2387.385	55.72	-18.28	74	40.23	27.35	18.21	30.07	337	35	Р	V
240211112		2378.67	46.05	-7.95	54	30.62	27.31	18.2	30.08	337	35	А	V
	*	2402	91.24	-	-	75.66	27.41	18.24	30.07	337	35	Р	V
	*	2402	90.58	-	-	75	27.41	18.24	30.07	337	35	А	V
													V
													V
		2314.06	55.98	-18.02	74	40.88	27.13	18.07	30.1	100	301	Ρ	Н
		2370.34	46.21	-7.79	54	30.83	27.28	18.18	30.08	100	301	А	Н
	*	2440	96.63	-	-	80.82	27.56	18.31	30.06	100	301	Ρ	Н
	*	2440	96	-	-	80.19	27.56	18.31	30.06	100	301	А	Н
		2489.01	56.94	-17.06	74	40.75	27.83	18.4	30.04	100	301	Ρ	Н
BLE		2496.64	47.05	-6.95	54	30.8	27.88	18.41	30.04	100	301	А	Н
CH 19 2440MHz		2358.72	55.9	-18.1	74	40.59	27.23	18.16	30.08	370	57	Р	V
2440101112		2378.32	45.99	-8.01	54	30.56	27.31	18.2	30.08	370	57	А	V
	*	2440	91.31	-	-	75.5	27.56	18.31	30.06	370	57	Р	V
	*	2440	90.62	-	-	74.81	27.56	18.31	30.06	370	57	А	V
		2489.64	58.23	-15.77	74	42.03	27.84	18.4	30.04	370	57	Р	V
		2498.81	47.34	-6.66	54	31.07	27.89	18.42	30.04	370	57	А	V

Page Number : C1 of C14

	*	2480	96.46	-	-	80.35	27.78	18.38	30.05	102	306	Р	н
-	*	2480	95.77	-	-	79.66	27.78	18.38	30.05	102	306	А	Н
-		2498.6	57.99	-16.01	74	41.72	27.89	18.42	30.04	102	306	Р	н
-		2494.72	46.95	-7.05	54	30.71	27.87	18.41	30.04	102	306	А	н
													н
BLE													н
CH 39 2480MHz	*	2480	90.96	-	-	74.85	27.78	18.38	30.05	398	16	Ρ	V
	*	2480	90.28	-	-	74.17	27.78	18.38	30.05	398	16	А	V
-		2488.72	56.76	-17.24	74	40.57	27.83	18.4	30.04	398	16	Ρ	V
		2494.36	46.97	-7.03	54	30.73	27.87	18.41	30.04	398	16	А	V
-													V
													V

2.4GHz 2400~2483.5MI	Ιz
----------------------	----

		-		-			-	-					
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	ļ	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	нлл
		4804	41.01	-32.99	τα σμ ν/π γ 74	51.49	32.41	12.35	55.24	- (Cill)	(ueg) -	P	(1 / v) H
		10875	48.32	-25.68	74	45.38	38.9	19.44	55.4	_	-	P	н
		10875	38.72	-15.28	54	35.78	38.9	19.44	55.4	_	-	A	н
												P	
		14491	48.51	-25.49	74	40.43	40.4	22.01	54.33	-	-		Н
		14491	39.77	-14.23	54	31.69	40.4	22.01	54.33	-	-	A	Н
		17955	53.21	-20.79	74	42.1	42.64	25.04	56.57	-	-	Р	Н
		17955	43.65	-10.35	54	32.54	42.64	25.04	56.57	-	-	А	Н
													н
													н
													Н
													Н
BLE													н
CH 00 2402MHz		4804	39.89	-34.11	74	50.37	32.41	12.35	55.24	-	-	Р	V
240211172		10875	48.88	-25.12	74	45.94	38.9	19.44	55.4	-	-	Р	V
		10875	38.39	-15.61	54	35.45	38.9	19.44	55.4	-	-	А	V
		14491	48.04	-25.96	74	39.96	40.4	22.01	54.33	-	-	Р	V
		14491	39.7	-14.3	54	31.62	40.4	22.01	54.33	-	-	Α	V
		17970	52.7	-21.3	74	41.49	42.76	25.03	56.58	-	-	Р	V
		17970	43.79	-10.21	54	32.58	42.76	25.03	56.58	-	-	А	V
													V
													V
				<u> </u>							<u> </u>		V
													V
													V
													v

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	40.27	-33.73	74	50.67	32.62	12.32	55.34	-	-	Р	Н
		7320	45.36	-28.64	74	48.37	36.76	15.88	55.65	-	-	Р	Н
		11640	50.04	-23.96	74	46.02	38.72	20.25	54.95	-	-	Ρ	Н
		11640	39.92	-14.08	54	35.9	38.72	20.25	54.95	-	-	А	Н
		14475	47.7	-26.3	74	39.62	40.4	22	54.32	-	-	Р	Н
		14475	40.19	-13.81	54	32.11	40.4	22	54.32	-	-	А	Н
		17985	53.47	-20.53	74	42.14	42.88	25.04	56.59	-	-	Р	Н
		17985	43.99	-10.01	54	32.66	42.88	25.04	56.59	-	-	А	Н
													Н
													Н
51.5													Н
BLE CH 19													Н
2440MHz		4880	39.83	-34.17	74	50.23	32.62	12.32	55.34	-	-	Р	V
244010112		7320	45.33	-28.67	74	48.34	36.76	15.88	55.65	-	-	Р	V
		11505	49.21	-24.79	74	45.31	38.8	20.1	55	-	-	Ρ	V
		11505	39.57	-14.43	54	35.67	38.8	20.1	55	-	-	А	V
		14505	49.19	-24.81	74	41.11	40.39	22.02	54.33	-	-	Р	V
		14505	40.57	-13.43	54	32.49	40.39	22.02	54.33	-	-	А	V
		17865	52.18	-21.82	74	41.89	41.78	25.02	56.51	-	-	Р	V
		17865	43.25	-10.75	54	32.96	41.78	25.02	56.51	-	-	А	V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	40.24	-33.76	74	50.38	33.02	12.28	55.44	-	-	Р	Н
		7440	44.9	-29.1	74	48.15	36.22	16.2	55.67	-	-	Р	Н
		12330	49.76	-24.24	74	44.74	38.8	20.81	54.59	-	-	Р	Н
		12330	40.14	-13.86	54	35.12	38.8	20.81	54.59	-	-	А	Н
		14475	48.26	-25.74	74	40.18	40.4	22	54.32	-	-	Р	Н
		14475	39.82	-14.18	54	31.74	40.4	22	54.32	-	-	А	Н
		17985	53.89	-20.11	74	42.56	42.88	25.04	56.59	-	-	Р	Н
		17985	43.85	-10.15	54	32.52	42.88	25.04	56.59	-	-	А	Н
													Н
													Н
													н
BLE													Н
CH 39		4960	40.15	-33.85	74	50.29	33.02	12.28	55.44	-	-	Р	V
2480MHz		7440	45.65	-28.35	74	48.9	36.22	16.2	55.67	-	-	Р	V
		11640	49.31	-24.69	74	45.29	38.72	20.25	54.95	-	-	Р	V
		11640	39.85	-14.15	54	35.83	38.72	20.25	54.95	-	-	А	V
		14505	48.78	-25.22	74	40.7	40.39	22.02	54.33	-	-	Р	V
		14505	40.07	-13.93	54	31.99	40.39	22.02	54.33	-	-	А	V
		17970	52.59	-21.41	74	41.38	42.76	25.03	56.58	-	-	Р	V
		17970	42.9	-11.1	54	31.69	42.76	25.03	56.58	-	-	А	V
													V
													V
													V
													V
	1. Nc	o other spurious	s found.	I		I	1			1	I	1	L
	2. All	results are PA	SS against F	eak and	Average lim	it line.							
Remark	3. Th	e emission pos	ition marked	as "-" m	eans no sus	pected emi	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											
	4. Th	e emission lev	el close to 18	BGHz is o	checked that	the average	ge emissior	level is i	noise floor	only.			

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band	Edge	@ 3m)
-------	------	------	-------

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		2358.09	56.15	-17.85	74	40.84	27.23	18.16	30.08	144	306	Р	Н
		2383.605	47.93	-6.07	54	32.46	27.33	18.21	30.07	144	306	Α	Н
	*	2402	94.67	-	-	79.09	27.41	18.24	30.07	144	306	Р	Н
	*	2402	93.26	-	-	77.68	27.41	18.24	30.07	144	306	А	Н
BLE													Н
CH 00													Н
2402MHz		2310.42	56.11	-17.89	74	41.03	27.12	18.06	30.1	380	42	Р	V
2402101112		2310.105	48.16	-5.84	54	33.08	27.12	18.06	30.1	380	42	А	V
	*	2402	91.05	-	-	75.47	27.41	18.24	30.07	380	42	Ρ	V
	*	2402	89.81	-	-	74.23	27.41	18.24	30.07	380	42	А	V
													V
													V
		2387.28	55.86	-18.14	74	40.37	27.35	18.21	30.07	100	304	Ρ	Н
		2380.28	47.83	-6.17	54	32.39	27.32	18.2	30.08	100	304	А	Н
	*	2440	95.93	-	-	80.12	27.56	18.31	30.06	100	304	Ρ	н
	*	2440	94.65	-	-	78.84	27.56	18.31	30.06	100	304	А	Н
		2492.72	56.5	-17.5	74	40.27	27.86	18.41	30.04	100	304	Ρ	Н
BLE CH 19		2488.24	48.65	-5.35	54	32.46	27.83	18.4	30.04	100	304	А	н
2440MHz		2388.82	57.13	-16.87	74	41.62	27.36	18.22	30.07	368	44	Р	V
2440101112		2367.96	48.09	-5.91	54	32.72	27.27	18.18	30.08	368	44	А	V
	*	2440	91.43	-	-	75.62	27.56	18.31	30.06	368	44	Ρ	V
	*	2440	89.99	-	-	74.18	27.56	18.31	30.06	368	44	А	V
		2484.18	57.37	-16.63	74	41.21	27.81	18.39	30.04	368	44	Р	V
		2489.08	48.98	-5.02	54	32.79	27.83	18.4	30.04	368	44	А	V

	*	2480	96.38	-	-	80.27	27.78	18.38	30.05	100	311	Р	Н
	*	2480	95.03	-	-	78.92	27.78	18.38	30.05	100	311	А	Н
		2487.72	56.85	-17.15	74	40.66	27.83	18.4	30.04	100	311	Р	Н
		2497.96	49.15	-4.85	54	32.88	27.89	18.42	30.04	100	311	А	Н
													Н
BLE													Н
CH 39 2480MHz	*	2480	91.09	-	-	74.98	27.78	18.38	30.05	400	50	Р	V
240011112	*	2480	89.84	-	-	73.73	27.78	18.38	30.05	400	50	А	V
		2493.68	56.03	-17.97	74	39.8	27.86	18.41	30.04	400	50	Ρ	V
		2494.92	48.65	-5.35	54	32.41	27.87	18.41	30.04	400	50	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lin	nit line.							

	ſ	-	[-		Г	,		ſ	F	-	[Γ
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	40.28	-33.72	74	50.76	32.41	12.35	55.24	-	-	Р	Н
		10880	48.46	-25.54	74	45.54	38.88	19.44	55.4	-	-	Р	Н
		10880	38.69	-15.31	54	35.77	38.88	19.44	55.4	-	-	Α	Н
		14490	48.46	-25.54	74	40.38	40.4	22.01	54.33	-	-	Р	Н
		14490	39.93	-14.07	54	31.85	40.4	22.01	54.33	-	-	А	Н
		17970	52.89	-21.11	74	41.68	42.76	25.03	56.58	-	-	Р	Н
		17970	43.51	-10.49	54	32.3	42.76	25.03	56.58	-	-	А	Н
													Н
													Н
													Н
BLE													Н
CH 00													н
2402MHz		4804	40.73	-33.27	74	51.21	32.41	12.35	55.24	-	-	Р	V
240211112		10875	48.37	-25.63	74	45.43	38.9	19.44	55.4	-	-	Р	V
		10875	38.78	-15.22	54	35.84	38.9	19.44	55.4	-	-	Α	V
		14491	48.75	-25.25	74	40.67	40.4	22.01	54.33	-	-	Р	V
		14491	39.88	-14.12	54	31.8	40.4	22.01	54.33	-	-	А	V
		17985	51.89	-22.11	74	40.56	42.88	25.04	56.59	-	-	Р	V
		17985	43.74	-10.26	54	32.41	42.88	25.04	56.59	-	-	А	V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		4880	40.37	-33.63	74	50.77	32.62	12.32	55.34	-	-	Р	Н
		7320	45.52	-28.48	74	48.53	36.76	15.88	55.65	-	-	Р	Н
		10875	48.13	-25.87	74	45.19	38.9	19.44	55.4	-	-	Ρ	Н
		10875	38.53	-15.47	54	35.59	38.9	19.44	55.4	-	-	А	Н
		14491	48.57	-25.43	74	40.49	40.4	22.01	54.33	-	-	Ρ	Н
		14491	40.18	-13.82	54	32.1	40.4	22.01	54.33	-	-	А	Н
		17955	52.54	-21.46	74	41.43	42.64	25.04	56.57	-	-	Р	Н
		17955	43.56	-10.44	54	32.45	42.64	25.04	56.57	-	-	А	Н
													Н
													Н
													Н
BLE													Η
CH 19 2440MHz		4880	40.62	-33.38	74	51.02	32.62	12.32	55.34	-	-	Р	V
244010172		7320	46.2	-27.8	74	49.21	36.76	15.88	55.65	-	-	Р	V
		10880	48.51	-25.49	74	45.59	38.88	19.44	55.4	-	-	Р	V
		10880	39.12	-14.88	54	36.2	38.88	19.44	55.4	-	-	А	V
		14491	48.26	-25.74	74	40.18	40.4	22.01	54.33	-	-	Ρ	V
		14491	39.88	-14.12	54	31.8	40.4	22.01	54.33	-	-	А	V
		17970	52.12	-21.88	74	40.91	42.76	25.03	56.58	-	-	Р	V
		17970	43.74	-10.26	54	32.53	42.76	25.03	56.58	-	-	А	V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		4960	40.21	-33.79	74	50.35	33.02	12.28	55.44	-	-	Р	Н
		7440	46.01	-27.99	74	49.26	36.22	16.2	55.67	-	-	Р	Н
		10875	49.67	-24.33	74	46.73	38.9	19.44	55.4	-	-	Р	Н
		10875	38.62	-15.38	54	35.68	38.9	19.44	55.4	-	-	А	Н
		14491	48.66	-25.34	74	40.58	40.4	22.01	54.33	-	-	Р	Н
		14491	39.97	-14.03	54	31.89	40.4	22.01	54.33	-	-	Α	Н
		17970	52.45	-21.55	74	41.24	42.76	25.03	56.58	-	-	Р	Н
		17970	43.78	-10.22	54	32.57	42.76	25.03	56.58	-	-	А	Н
													Н
													н
51.5													Н
BLE													Н
CH 39 2480MHz		4960	40.07	-33.93	74	50.21	33.02	12.28	55.44	-	-	Р	V
		7440	45.45	-28.55	74	48.7	36.22	16.2	55.67	-	-	Р	V
		10880	48.04	-25.96	74	45.12	38.88	19.44	55.4	-	-	Р	V
		10880	39.16	-14.84	54	36.24	38.88	19.44	55.4	-	-	А	V
		14491	48.77	-25.23	74	40.69	40.4	22.01	54.33	-	-	Р	V
		14491	40.23	-13.77	54	32.15	40.4	22.01	54.33	-	-	А	V
		17880	52.27	-21.73	74	41.81	41.96	25.02	56.52	-	-	Р	V
		17880	43.37	-10.63	54	32.91	41.96	25.02	56.52	-	-	А	V
													V
													V
													V
													V
	1. N	o other spuriou	s found.	<u>. </u>	1	1			1	ı <u> </u>	1		
	2. AI	I results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. Tł	ne emission pos	sition marked	as "-" m	eans no sus	pected emi	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											
	4. Tł	ne emission lev	el close to 18	BGHz is (checked that	the average	ge emissior	ı level is ı	noise floor	only.			

Emission above 18GHz

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		24512	40.09	-33.91	74	57.12	39.1	-2.84	53.29	-	-	Ρ	Н
													Н
													н
													Н
													Н
													Н
													Н
													н
													Н
													Н
													н
2.4GHz													н
BLE		23032	40.2	-33.8	74	58.55	38.9	-3.16	54.09	-	-	Р	V
SHF		20002	10.2	00.0		00.00	00.0	0.10	01.00				v
													V
													V
													V V
													V
													V
													V
													V
													V
													V
													V
		o other spuriou											
Remark		Il results are PA											
		he emission po	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	oor only.											

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		83.35	14.56	-25.44	40	31.55	13.69	1.63	32.31	-	-	Р	Н
		139.61	21.49	-22.01	43.5	33.95	17.56	2.25	32.27	-	-	Р	Н
		187.14	28.24	-15.26	43.5	43.21	14.83	2.43	32.23	-	-	Р	Н
		474.26	25.69	-20.31	46	30.68	23.61	3.79	32.39	-	-	Р	Н
		565.44	27.9	-18.1	46	30.15	26.03	4.18	32.46	-	-	Р	Н
		835.1	31.96	-14.04	46	30.16	28.8	5.04	32.04	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE		62.98	20.02	-19.98	40	38.87	12.02	1.41	32.28	-	-	Р	V
LF		185.2	28.94	-14.56	43.5	43.87	14.88	2.42	32.23	-	-	Р	V
		263.77	21.07	-24.93	46	30.41	19.97	2.94	32.25	-	-	Р	V
		431.58	24.17	-21.83	46	29.95	23.03	3.61	32.42	-	-	Р	V
		641.1	28.13	-17.87	46	29.93	26.3	4.41	32.51	-	-	Р	V
		789.51	31.4	-14.6	46	30.77	28.03	4.87	32.27	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. Nc	other spurious	s found										v
		results are PA		mit line									
Remark		e emission pos			eans no sus	pected em	ission found	l with suf	ficient mar	ain agai	inst limit	line or	noise
		or only.								ugu			
	10	o. only.											

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

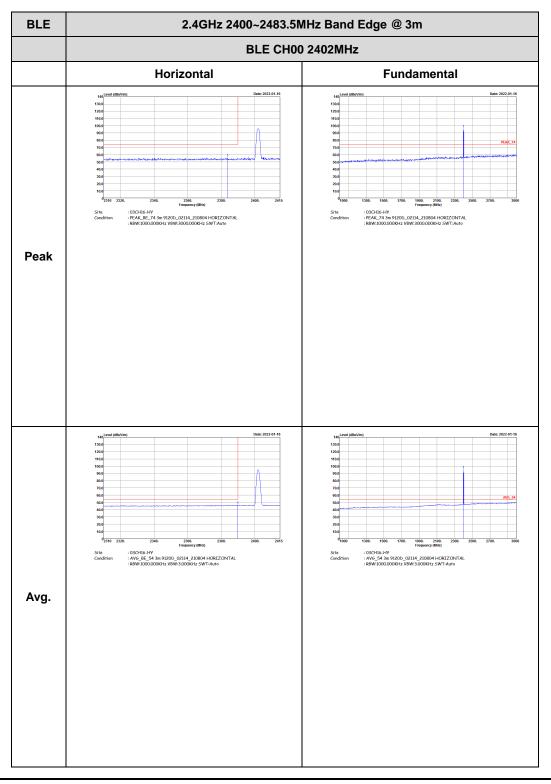
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

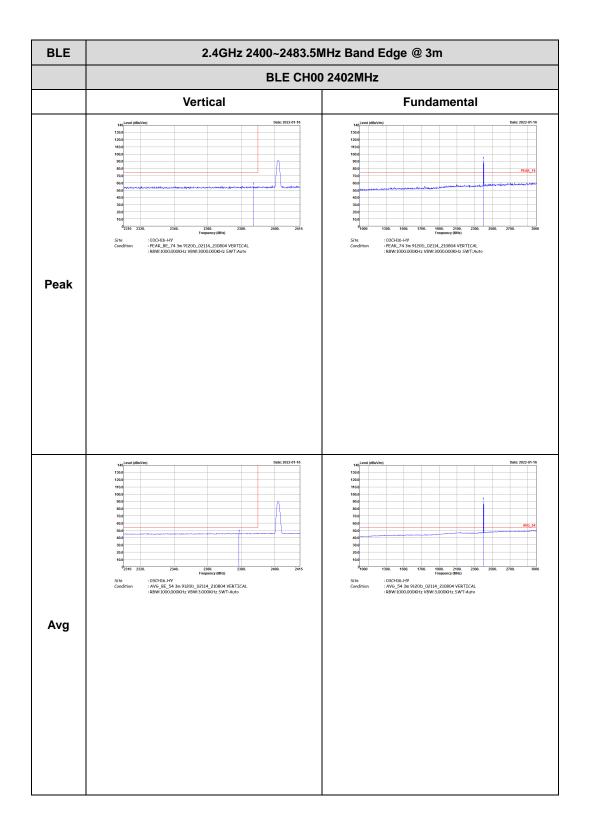
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

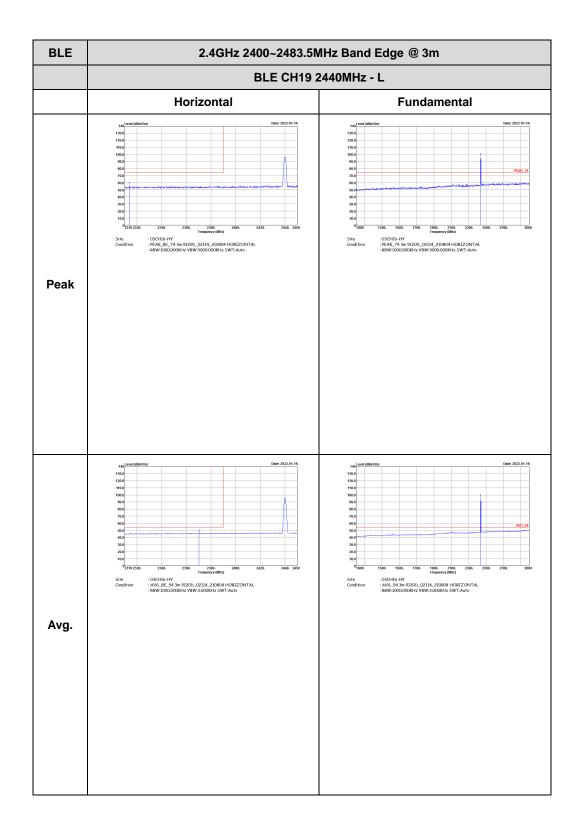
Test Engineer :	Andy Yang, Karl Hou, and Wilson Wu	Temperature :	20~25°C
lest Engineer .		Relative Humidity :	50~60%

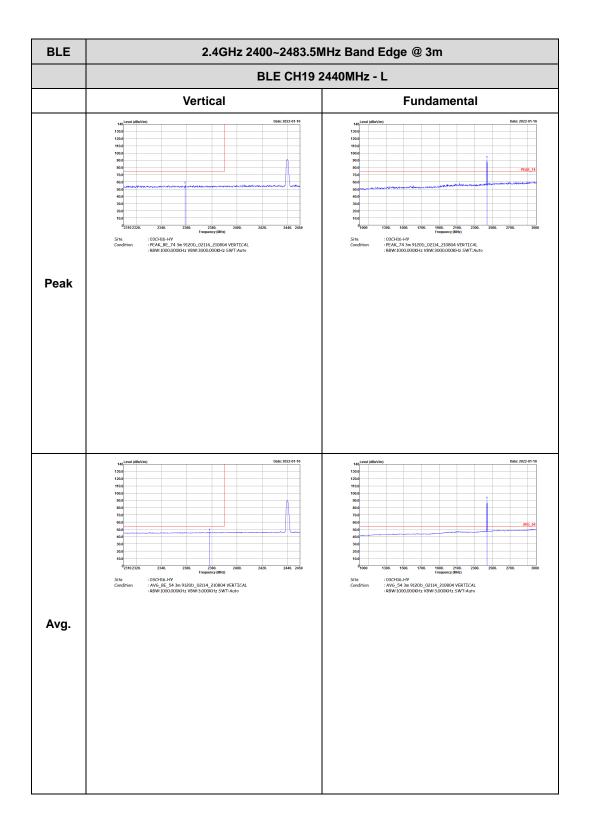
Note symbol

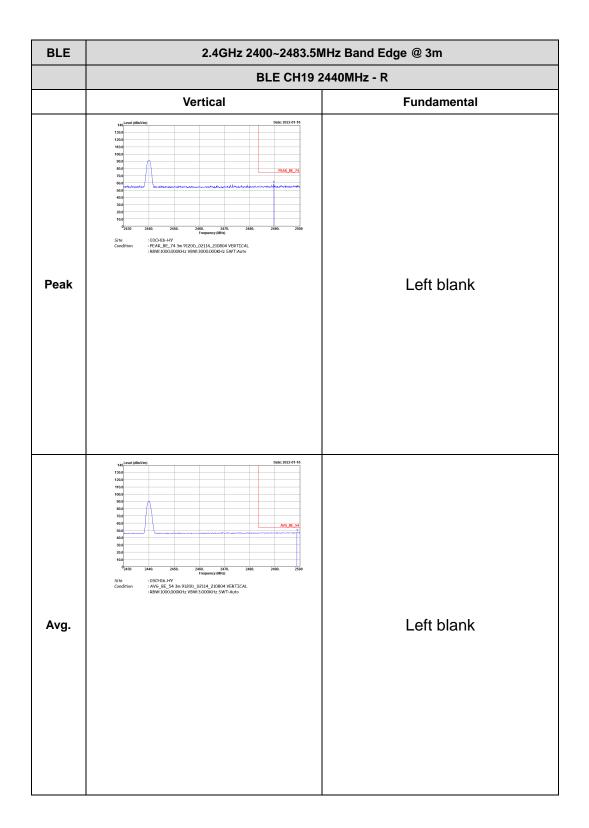

-L	Low channel location
-R	High channel location


<1Mbps>

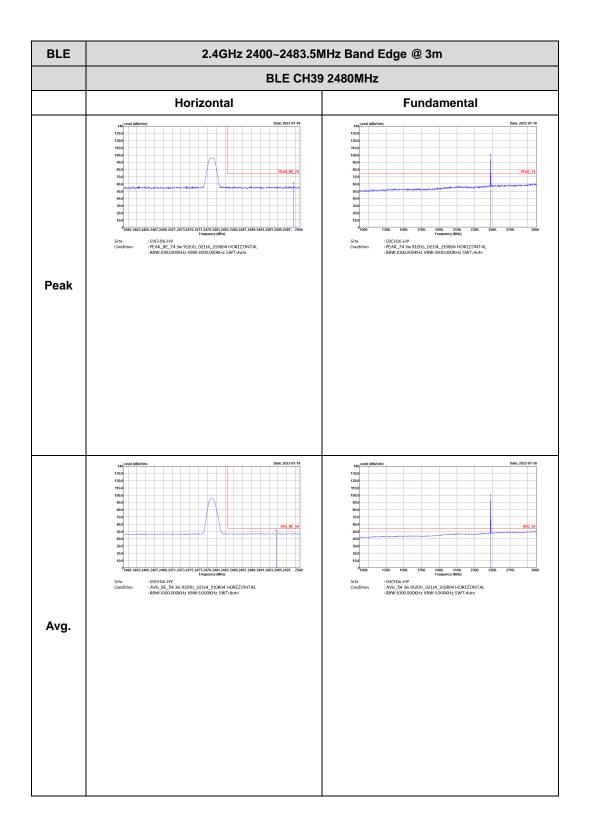
2.4GHz 2400~2483.5MHz

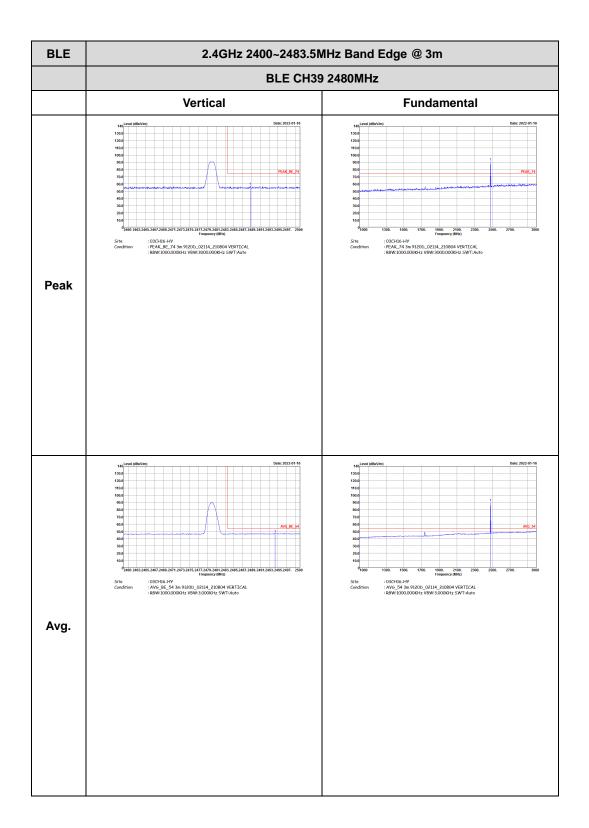

BLE (Band Edge @ 3m)

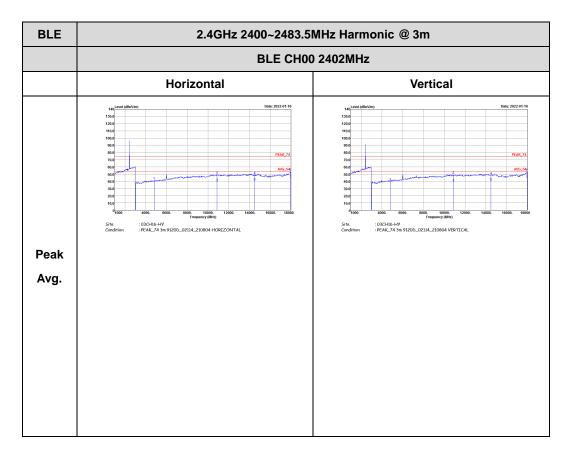


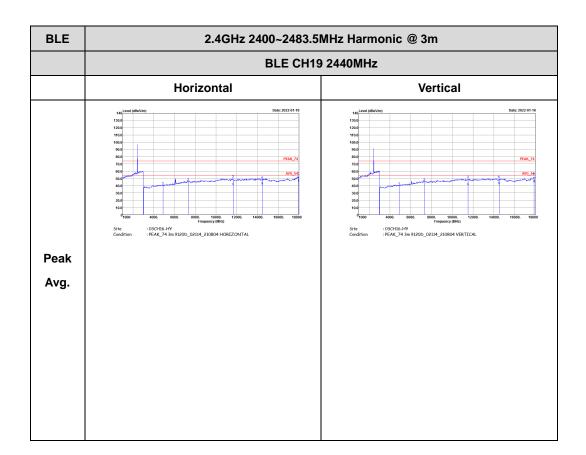


BLE	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
	BLE CH19 2440	MHz - R
	Horizontal	Fundamental
Peak	the constraints of the constrain	Left blank
Avg.	phic 202 01 40 to the second	Left blank

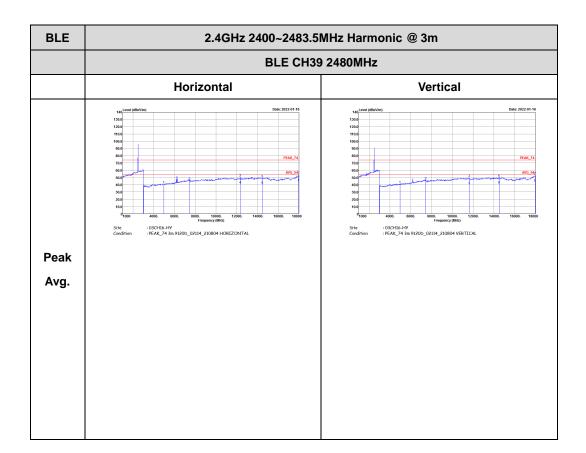




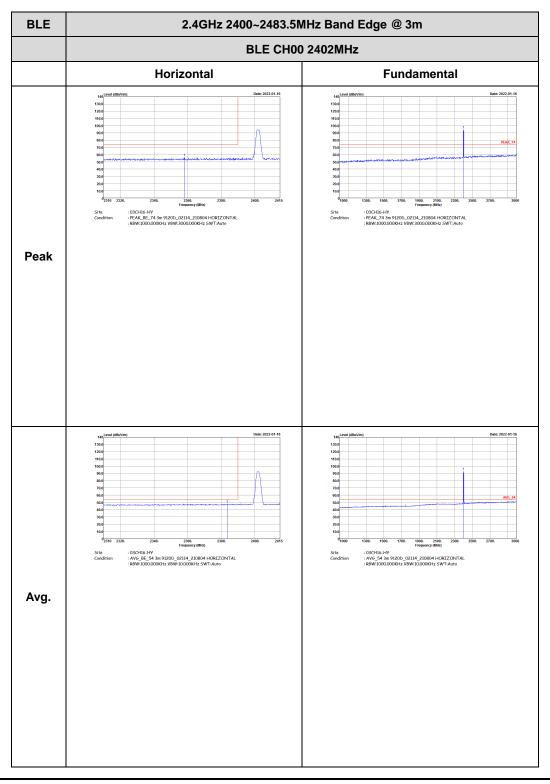


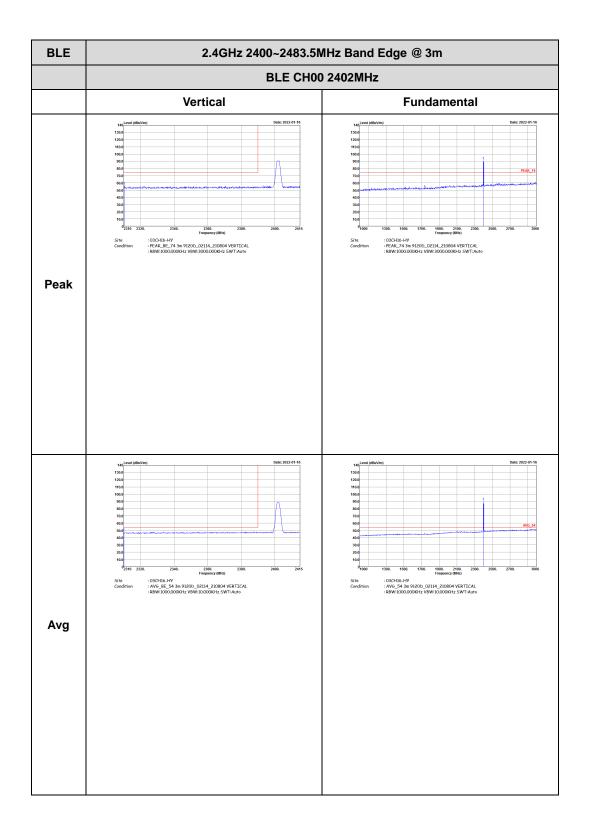


2.4GHz 2400~2483.5MHz

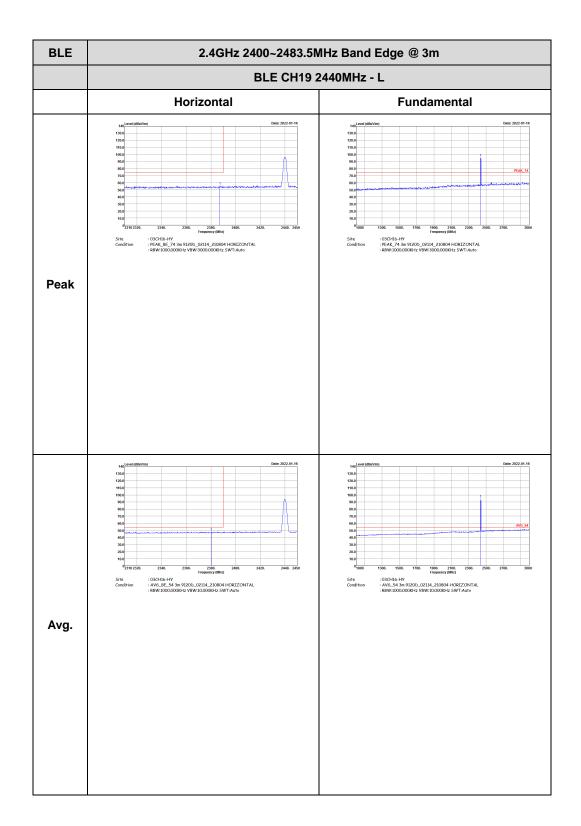


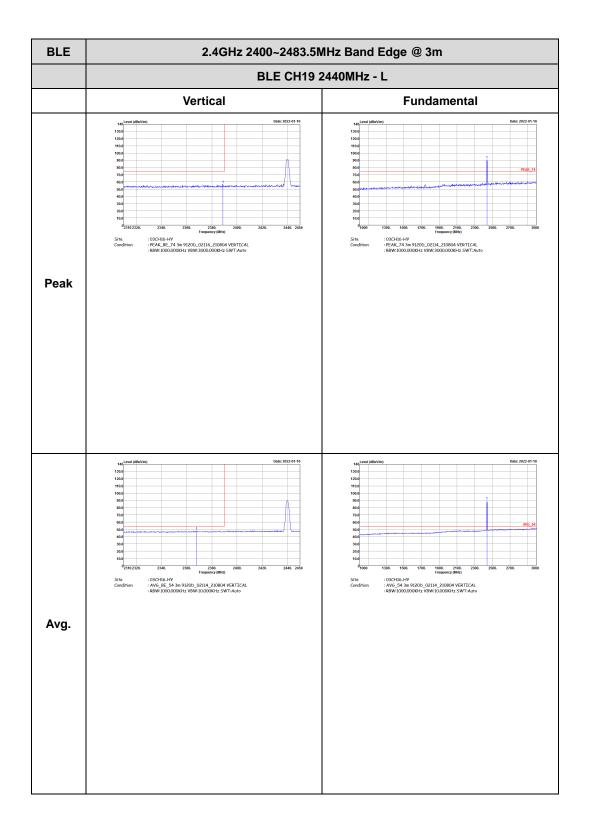
BLE (Harmonic @ 3m)



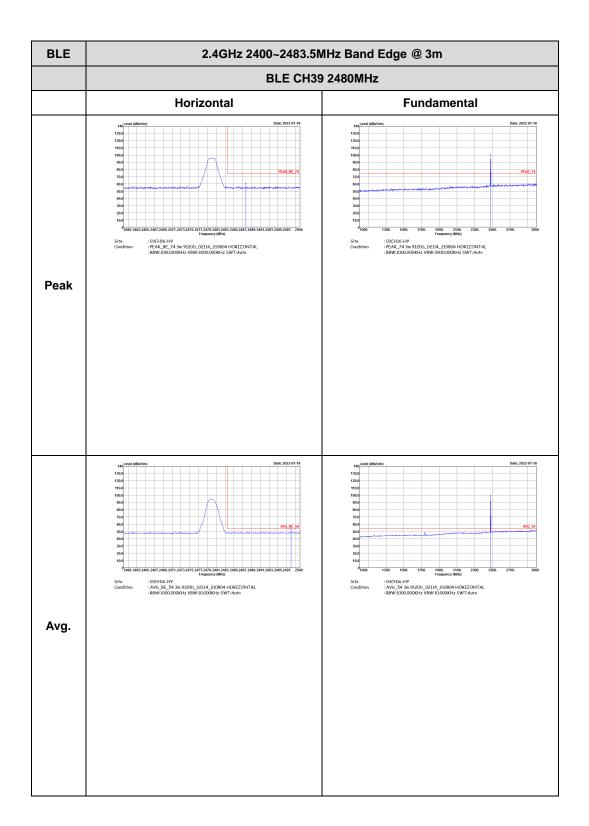

<2Mbps>

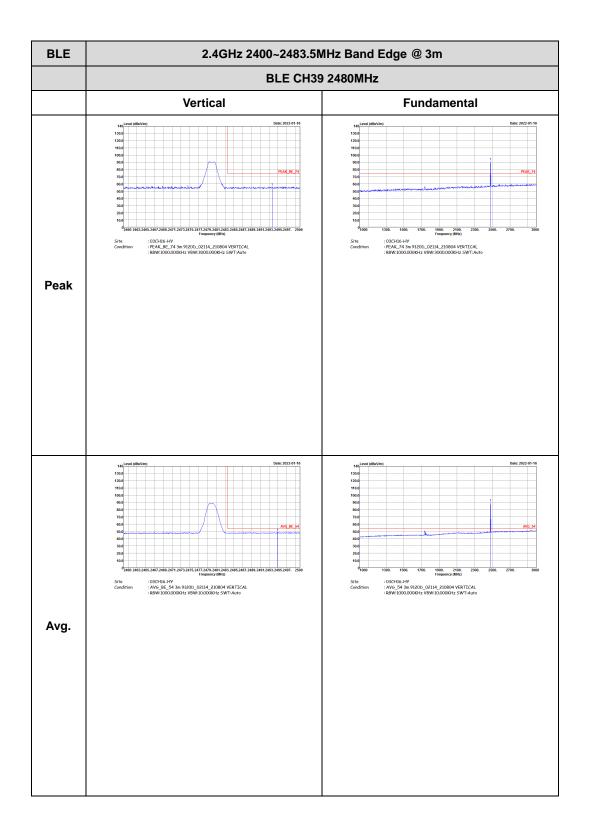
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

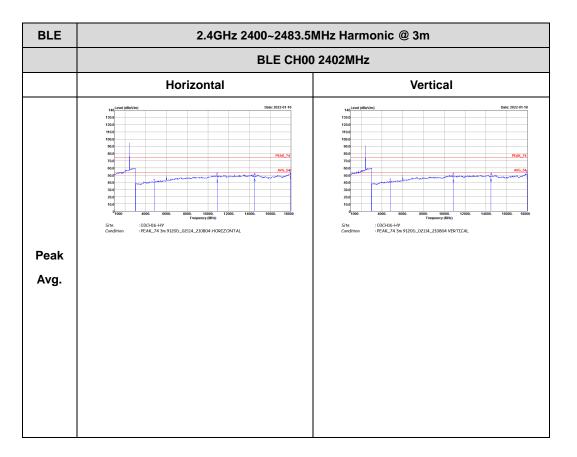


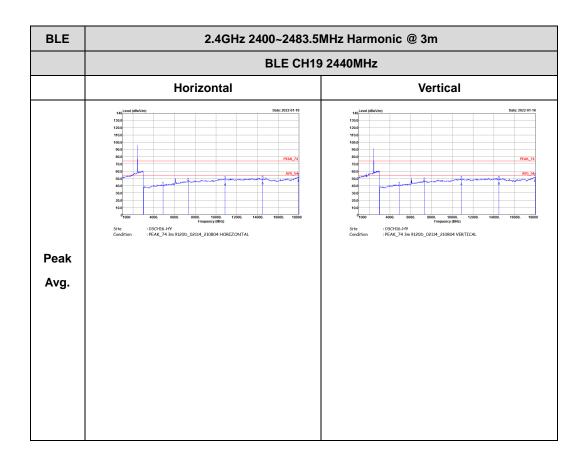
BLE	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
	BLE CH19 2440	MHz - R
	Horizontal	Fundamental
	the weighting the second secon	
Peak		Left blank
Avg.	had for the second seco	Left blank



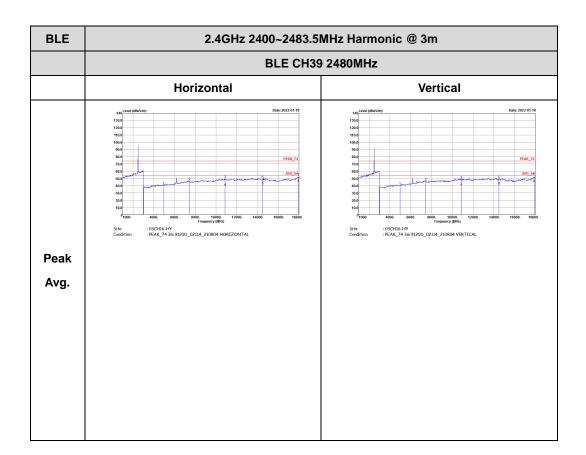


BLE	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
	BLE CH19 2440	MHz - R
	Vertical	Fundamental
Peak	the field of the f	Left blank
Avg.	min 2022 0.0 min 2020 0.0 min 2	Left blank

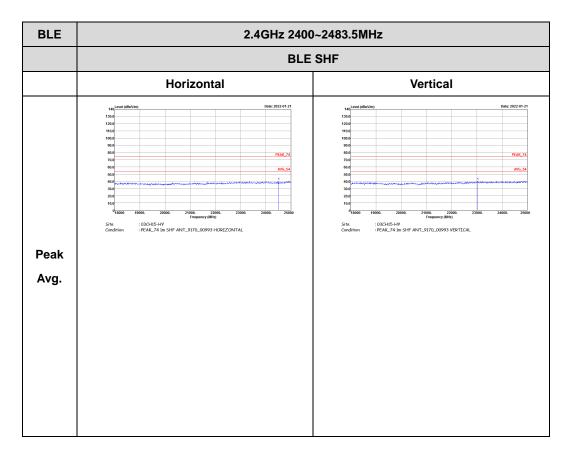


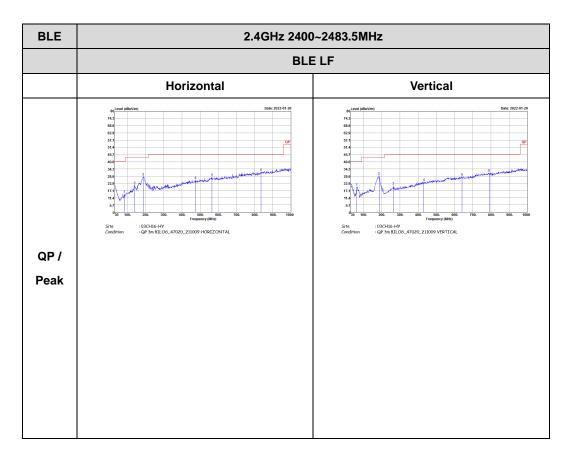


2.4GHz 2400~2483.5MHz



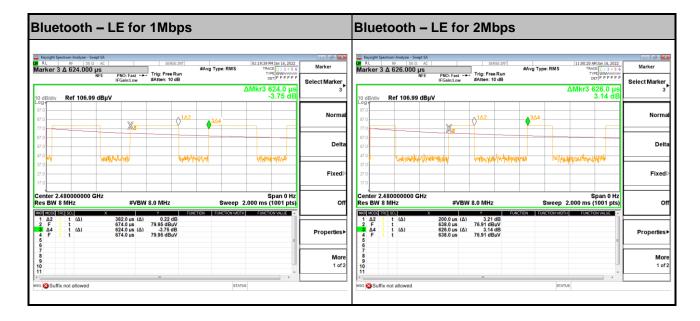
BLE (Harmonic @ 3m)




Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz


2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	61.22	382	2.62	3kHz
Bluetooth - LE for 2Mbps	31.95	200	5.00	10kHz

