

FCC RADIO TEST REPORT

FCC ID	:	2AFZZ1219NY
Equipment	:	Mobile Phone
Brand Name	:	Redmi
Model Name	:	22041219NY
Applicant	:	Xiaomi Communications Co., Ltd.
		#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Manufacturer	:	Xiaomi Communications Co., Ltd.
		#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Feb. 15, 2022 and testing was performed from Feb. 19, 2022 to Mar. 08, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. Wensan Laboratory No. 58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan

Table of Contents

His	tory o	f this test report	3
Su	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	16
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	22
	3.5	Radiated Band Edges and Spurious Emission Measurement	28
	3.6	AC Conducted Emission Measurement	32
	3.7	Antenna Requirements	34
4	List c	of Measuring Equipment	35
5	Unce	rtainty of Evaluation	36
Арј	oendix	A. Conducted Test Results	
Арј	oendix	B. AC Conducted Emission Test Result	
Арј	pendix	C. Radiated Spurious Emission	
Арј	oendix	D. Radiated Spurious Emission Plots	
1.1 Product Feature of Equipment Under Test. 1.2 Modification of EUT 1.3 Testing Location 1.4 Applicable Standards. 2 Test Configuration of Equipment Under Test 2.1 Carrier Frequency Channel 2.2 Test Mode 2.3 Connection Diagram of Test System 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 6dB and 99% Bandwidth Measurement 3.2 Output Power Measurement 3.3 Power Spectral Density Measurement 3.4 Conducted Band Edges and Spurious Emission Measurement 3.5 Radiated Band Edges and Spurious Emission Measurement 3.6 AC Conducted Emission Measurement 3.7 Antenna Requirements 3.7 Antenna Requirements			

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR212127B	01	Initial issue of report	Mar. 09, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	4.94 dB under the limit at 2489.920 MHz
3.6	15.207	AC Conducted Emission	Pass	7.03 dB under the limit at 1.475 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.

2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Lewis Ho

Report Producer: Cindy Liu

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE/5G NR, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, FM Receiver, NFC, and GNSS.

Product Feature				
Sample 1	4+64G with battery 1			
Sample 2	6+128G with battery 2			
Sample 3	4+128G with battery 1			
	WWAN: PIFA Antenna			
	WLAN: PIFA Antenna			
Antonno Tymo	Bluetooth: PIFA Antenna			
Antenna Type	GPS / Glonass / BDS / Galileo: PIFA Antenna			
	NFC: Coil Antenna			
	FM Receiver: Using earphone as Antenna			
	Antenna information			

	Antenna Inforr	nation	
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-1.85	
Demonto The FUT information of	and the standard laws		Commente and

Remark: The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, 03CH16-HY, CO07-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

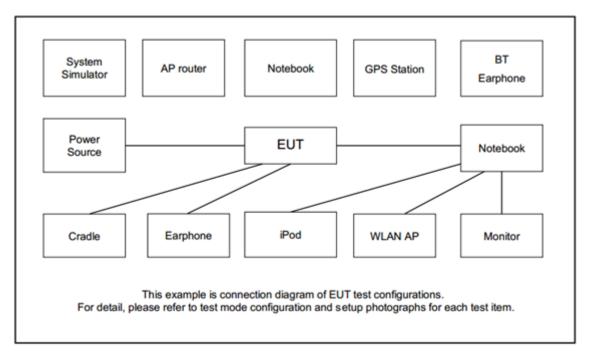
- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases		
Test Item	Data Rate / Modulation		
	Bluetooth – LE / GFSK		
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps		
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps		
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps		
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps		
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps		
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps		
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps		
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps		
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps		
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps		
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps		
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps		
AC Conducted	Mode 1: Bluetooth Link + WLAN (2.4GHz) Link + MPEG4 + Earphone + USB		
Emission Cable 1 (Charging from Adapter) for Sample 2			
Remark: For Ra	diated Test Cases, the tests were performed with USB Cable 1 and Sample 2.		

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony	SBH20	PY7-RD0010	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Earphone	MI	EM023	N/A	Unshielded,1.25m	N/A

2.5 EUT Operation Test Setup

The RF test items, make the EUT (SW: MIUI 13 Global 22.1.21 Beat) get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

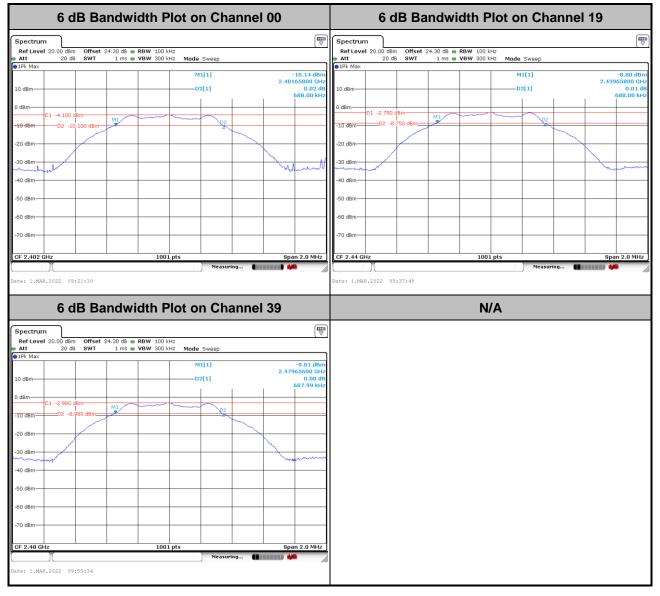
Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

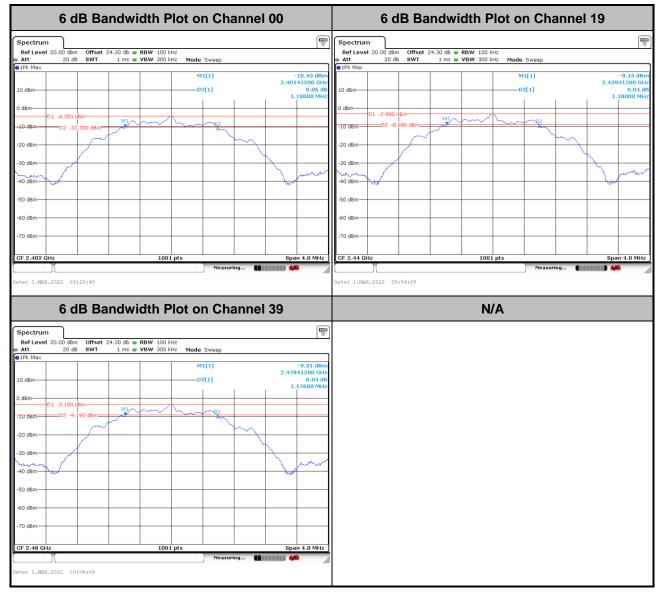
- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT


Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

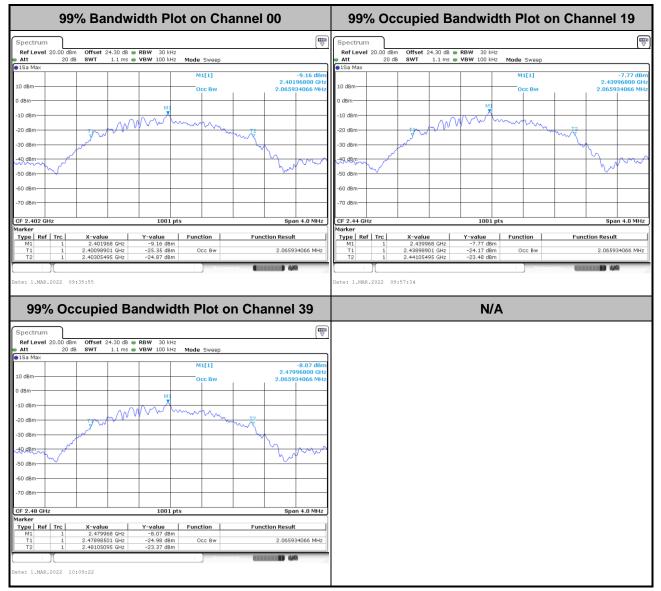

Please refer to Appendix A.

<1Mbps>

<2Mbps>

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

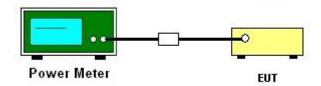
<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

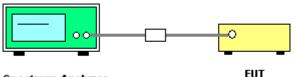
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

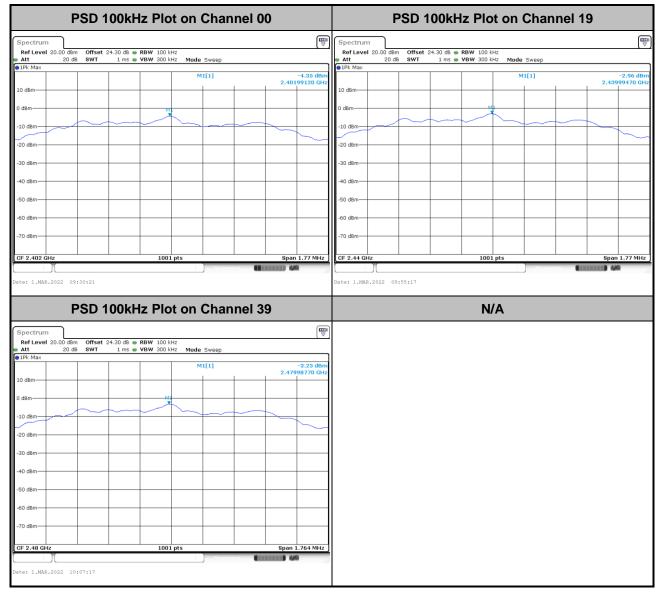
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

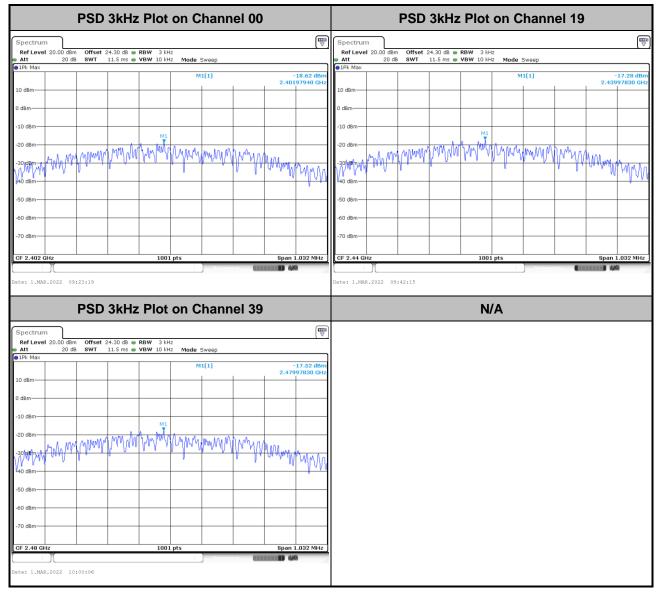
3.3.5 Test Result of Power Spectral Density

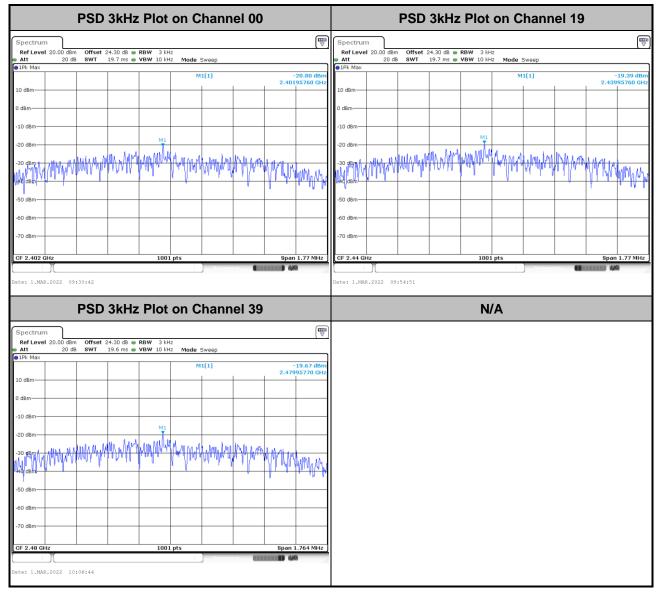
Please refer to Appendix A.


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

PSD 10	0kHz Plot on Chan	nel 00	PSD 1	00kHz Plot on Chan	nel 19
Spectrum Ref Level 20.00 dBm Offset 24.3 Att 20 dB SWT	10 dB ● RBW 100 kHz 1 ms ● VBW 300 kHz Mode Sweep		Spectrum Ref Level 20.00 dBm Offset 24	4.30 d8 ● RBW 100 kHz 1 ms ● VBW 300 kHz Mode Sweep	
1Pk Max	M1[1]	-4.11 dBm 2.40199280 GHz	●1Pk Max	M1[1]	-2.75 dBm 2.43999280 GHz
10 dBm	M		10 dBm	M	
-10 dBm			-10 dBm		
-30 dBm-			-30 dBm		
-40 dBm			-40 dBm		
-60 dBm			-60 dBm		
-70 dBm			-70 dBm		
CF 2.402 GHz	1001 pts	Span 1.032 MHz	CF 2.44 GHz	1001 pts	Span 1.032 MHz
PSD 10	0kHz Plot on Chan	nel 39		N/A	
Spectrum Ref Level 20.00 dBm Offset 24.3 Att 20 dB SWT	10 dB ● RBW 100 kHz 1 ms ● VBW 300 kHz Mode Sweep				
1Pk Max 10 dBm	M1[1]	-2.94 dBm 2.47999070 GHz			
0 dBm					
-10 dBm -20 dBm					
-30 dBm					
-40 dBm					
-60 dBm					
-70 dBm CF 2.48 GHz	1001 pts	Span 1.032 MHz			
Date: 1.MAR.2022 10:00:45	Neasur	na- (1111111) 1/2			


<2Mbps>


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

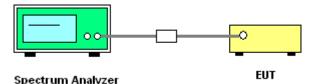
<1Mbps>

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

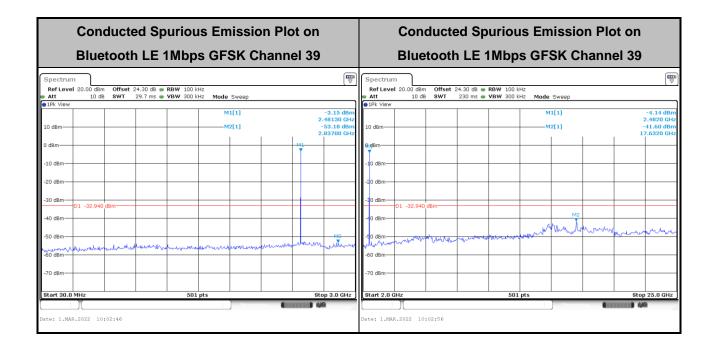
3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

Low Band Edge P	lot on Channel 00	High Band Edge Plot on Channel 39	
Spectrum RefLevel 20.00 d8m Offset 24.30 d8 • RBW 100 kH Att 20 d8 SWT 8 ms • VBW 300 kH JPk Max Image: Second seco		Spectrum Ref Level 20.00 dBm Offset 24.30 dB RBW 100 kHz Att 20 dB SWT 9 ms VBW 300 kHz Mode Sweep ● IPk Max M1[1] -42.98	dama
10 dBm		10 dBm 2,49574430 0 dBm 2,49574430 0 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -10 dBm -10 dBm) GHz
	F1	-50 dBm -60 dBm -70 dBm F1 Start 2.475 GHz But 1 2.4	

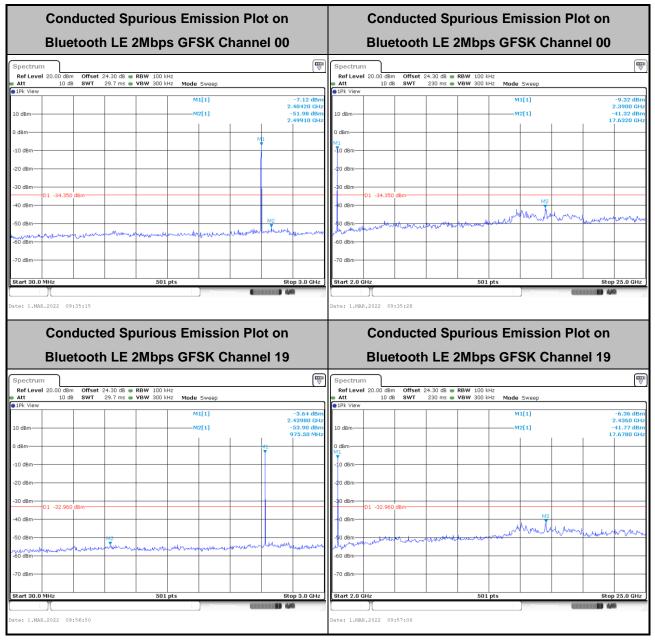
<2Mbps>

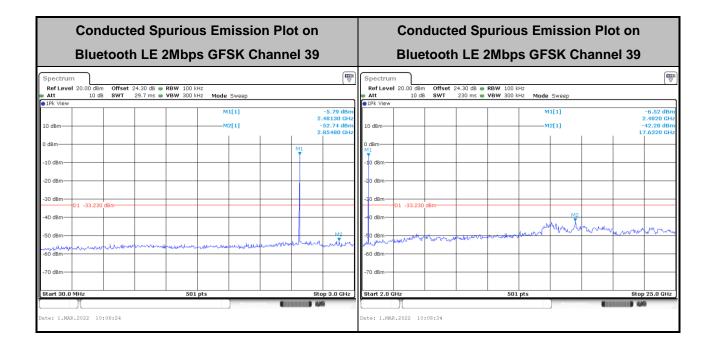
Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 39
Spectrum Image: Constraint of the system Image: Constand of the system	Spectrum (♥) Ref Level 20.00 dBm Offset 24.30 dB ● RBW 100 kHz ● Att 20 dB SWT 8 ms ● VBW 300 kHz ● JPk Max ●
0 dBm	M1[1] 3.62 dBm 0 dBm 2.48788150 GHz 0 dBm


3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>

Conducted	Conducted Spurious Emission Plot on			Conducted Spurious Emission Plot on			
Bluetooth I	Bluetooth LE 1Mbps GFSK Channel 00			Bluetooth LE 1Mbps GFSK Channel 00			
	30 dB ● RBW 100 kHz .7 ms ● VBW 300 kHz Mode Sweep	(₩) Spectr Ref Lt ● Att	vel 20.00 dBm Offset 24.30 d	B e RBW 100 kHz Is e VBW 300 kHz Mode Sweep	⊞ ⊽		
IPk View	M1[1]	-4.55 dBm		M1[1]	-5.60 dBm		
10 dBm		-4.35 dBm 2.40420 GHz -52.06 dBm 2.62360 GHz		M2[1]	-3.00 GHz 2.3900 GHz -41.92 dBm 17.6780 GHz		
0 dBm		M1 0 dBm- M1 -10 dBm					
-20 dBm		-20 dBm					
-30 dBm 01 -34.110 dBm		-30 dBm	D1 -34.110 dBm				
-50 dBm	when we we want the second	M2 -50 dBm		mon to and the second s	munununun		
-70 dBm		-60 dBm					
tee: 1.MAR.2022 09:24:19 Conducted	501 pts	Plot on	MAR. 2022 09:24:31	Spurious Emission			
Conducted Bluetooth I	Measuring	Plot on annel 19	MAR.2022 09:24:31 Conducted S Bluetooth Ll	Measuring	Plot on annel 19		
Conducted Bluetooth I Spectrum Ref Level 20.00 dbm Offset 24.3	Spurious Emission LE 1Mbps GFSK Cha	Plot on annel 19	MAR.2022 09:24:31 Conducted \$ Bluetooth Ll	Spurious Emission E 1Mbps GFSK Cha	Plot on annel 19		
Bluetooth I	A Spurious Emission LE 1Mbps GFSK Cha 30 db • RBW 100 kHz 7 ms • VBW 300 kHz Mode Sweep	Plot on annel 19	MAR.2022 09:24:31 Conducted S Bluetooth Ll um vel 20.00 dBm Offset 24.30 d 10 dB SWT 230 m	Spurious Emission E 1Mbps GFSK Cha 8 • RBW 100 kHz s • VBW 300 kHz Mode Sweep	Plot on annel 19		
Ate: 1.MAR.2022 09:24:19 Conducted Bluetooth I Ref Level 20.00 dBm Offset 24-3 Att 10 dB SWT 29.	Spurious Emission LE 1Mbps GFSK Cha	Date: 1. Date: 1.	MAR.2022 09:24:31 Conducted S Bluetooth Ll um vel 20.00 dBm Offset 24.30 d 10 dB SWT 230 m	Spurious Emission E 1Mbps GFSK Cha	Plot on annel 19		
Atte: 1.MAR.2022 09:24:19 Conducted Bluetooth I Spectrum Ref Level 20.00 dBm Offset 24:3 DIPK View D dBm D dBm D dBm	A Spurious Emission LE 1Mbps GFSK Cha 30 db • RBW 100 kHz 7 ms • VBW 300 kHz Mode Sweep M1[1]	Dete: 1. Dete: 1.	MAR.2022 09:24:31 Conducted S Bluetooth Ll um vel 20.00 dBm Offset 24.30 d 10 dB SWT 230 m	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz s • VBW 300 kHz Mode Sweep	Plot on annel 19 		
Ate: 1.MAR.2022 09:24:19 Conducted Bluetooth I Spectrum	A Spurious Emission LE 1Mbps GFSK Cha 30 db • RBW 100 kHz 7 ms • VBW 300 kHz Mode Sweep M1[1]	Dete: 1. Dete: 1.	MAR.2022 09:24:31 Conducted S Bluetooth Ll um vel 20.00 dBm Offset 24.30 d 10 dB SWT 230 m	Spurious Emission E 1Mbps GFSK Cha B • RBW 100 kHz s • VBW 300 kHz Mode Sweep	Plot on annel 19 		
te: 1.NAR.2022 09:24:19 Conducted Bluetooth I Spectrum Ref Level 20.00 dBm Offset 24:3 10 dB SWT 29: 10 dBm 10 dBm 20 dBm 01 -32.750 dBm 01 -32.750 dBm	A Spurious Emission LE 1Mbps GFSK Cha 30 db • RBW 100 kHz 7 ms • VBW 300 kHz Mode Sweep M1[1]	Date: 1. Date: 1.	MAR.2022 09:24:31 Conducted S Bluetooth Ll um vel 20.00 dBm Offset 24.30 d 10 dB SWT 230 m	Spurious Emission E 1Mbps GFSK Cha	Plot on annel 19 		
	A Spurious Emission LE 1Mbps GFSK Cha 30 db • RBW 100 kHz 7 ms • VBW 300 kHz Mode Sweep M1[1]	Dete: 1 Dete: 1	MAR.2022 09:24:31 Conducted \$ Bluetooth LI um vel 20.00 dBm Offset 24.30 d 10 dB SWT 230 m w	Spurious Emission E 1Mbps GFSK Cha B RBW 100 kHz s • VBW 300 kHz Mode Sweep	Plot on annel 19 		
Ate: 1.MAR.2022 09:24:19 Conducted Bluetooth I Spectrum Ref Level 20.00 dBm Offset 24.3 10 dB SWT 29.9 29.10 20 dBm 0 0 0 0 -10 dBm 0 0 0 0 0 -20 dBm 01 -32.750 dBm -40 dBm -50 dBm -40 dBm </td <td>A Spurious Emission LE 1Mbps GFSK Cha 30 db • RBW 100 kHz 7 ms • VBW 300 kHz Mode Sweep M1[1]</td> <td>Dete: 1 Dete: 1</td> <td>MAR.2022 09:24:31 Conducted \$ Bluetooth Ll um vel 20.00 dBm Offset 24:30 m w 01 -32.750 dBm</td> <td>Spurious Emission E 1Mbps GFSK Cha</td> <td>Plot on annel 19 </td>	A Spurious Emission LE 1Mbps GFSK Cha 30 db • RBW 100 kHz 7 ms • VBW 300 kHz Mode Sweep M1[1]	Dete: 1 Dete: 1	MAR.2022 09:24:31 Conducted \$ Bluetooth Ll um vel 20.00 dBm Offset 24:30 m w 01 -32.750 dBm	Spurious Emission E 1Mbps GFSK Cha	Plot on annel 19 		
	A Spurious Emission LE 1Mbps GFSK Cha 30 db • RBW 100 kHz 7 ms • VBW 300 kHz Mode Sweep M1[1]	Dete: 1 Dete: 1	MAR.2022 09:24:31	Spurious Emission E 1Mbps GFSK Cha	Plot on annel 19 		


: 24 of 36 : Mar. 09, 2022



<2Mbps>

3.5 Radiated Band Edges and Spurious Emission Measurement

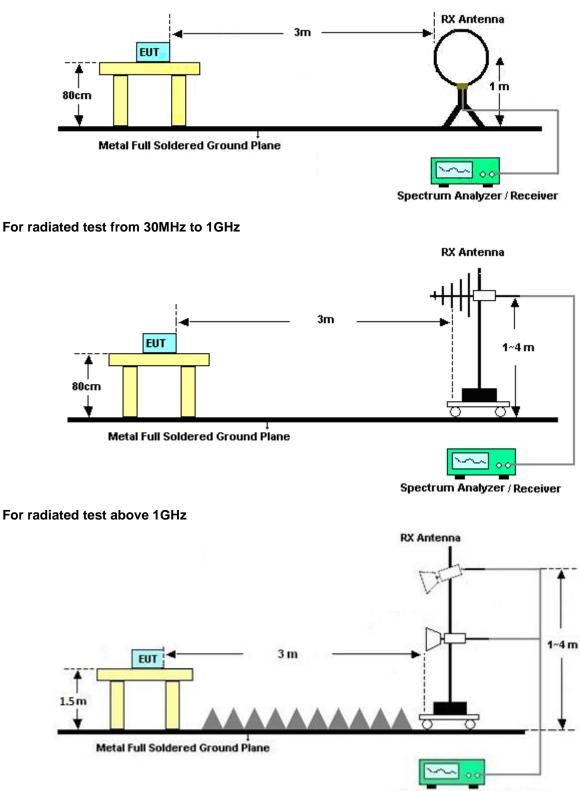
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz

Spectrum Analyzer / Receiver

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

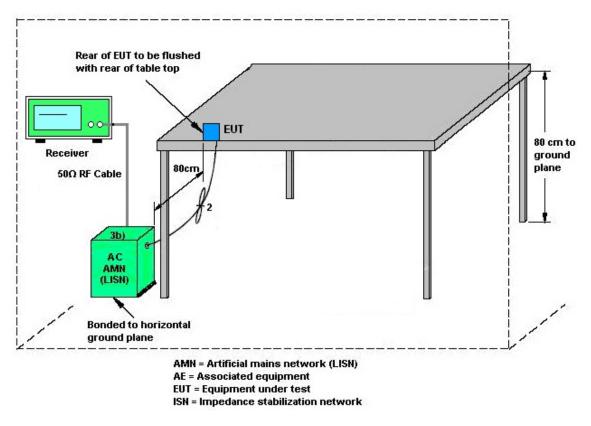
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)	
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 07, 2021	Feb. 19, 2022~ Mar. 02, 2022	Sep. 06, 2022	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz to 1GHz	Oct. 09, 2021	Feb. 19, 2022~ Mar. 02, 2022	Oct. 08, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02114	1G~18GHz	Aug. 04, 2021	Feb. 19, 2022~ Mar. 02, 2022	Aug. 03, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Oct. 12, 2021	Feb. 19, 2022~ Mar. 02, 2022	Oct. 11, 2022	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00993	18GHz ~40GHz	Nov. 30, 2021	Feb. 19, 2022~ Mar. 02, 2022	Nov. 29, 2022	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1G	Jul. 05, 2021	Feb. 19, 2022~ Mar. 02, 2022	Jul. 04, 2022	Radiation (03CH16-HY)
Amplifier	EMCI	EMC051845S E	980729	1-18GHz	Jul. 09, 2021	Feb. 19, 2022~ Mar. 02, 2022	Jul. 08, 2022	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 22, 2021	Feb. 19, 2022~ Mar. 02, 2022	Jun. 21, 2022	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 09, 2021	Feb. 19, 2022~ Mar. 02, 2022	Dec. 08, 2022	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A	MY59053012	3Hz~26.5GHz	Nov. 18, 2021	Feb. 19, 2022~ Mar. 02, 2022	Nov. 17, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11680/4P E	NA	Aug. 28, 2021	Feb. 19, 2022~ Mar. 02, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11688/4P E	NA	Aug. 28, 2021	Feb. 19, 2022~ Mar. 02, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-5 757	NA	Aug. 28, 2021	Feb. 19, 2022~ Mar. 02, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Feb. 19, 2022~ Mar. 02, 2022	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Feb. 19, 2022~ Mar. 02, 2022	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Feb. 19, 2022~ Mar. 02, 2022	N/A	Radiation (03CH16-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16, 2021	Feb. 19, 2022~ Mar. 01, 2022	Nov. 15, 2022	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Dec. 29, 2021	Feb. 19, 2022~ Mar. 01, 2022	Dec. 28, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	Feb. 19, 2022~ Mar. 01, 2022	Aug. 29, 2022	Conducted (TH05-HY)
Switch Control Manframe	E-IUSTRUME NT	ETF-1405-0	EC1900067 (BOX7)	N/A	Aug. 12, 2021	Feb. 19, 2022~ Mar. 01, 2022	Aug. 11, 2022	Conducted (TH05-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Mar. 08, 2022	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Mar. 08, 2022	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 29, 2021	Mar. 08, 2022	Oct. 28, 2022	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	N/A	Mar. 08, 2022	N/A	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Feb. 16, 2022	Mar. 08, 2022	Feb. 15, 2023	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Oct. 21, 2021	Mar. 08, 2022	Oct. 20, 2022	Conduction (CO07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.3 dB
of 95% (U = 2Uc(y))	2.3 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	5.0 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	5.2 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.8 dB
--	--------

Report Number : FR212127B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Jacob Yu/Ching Chen	Temperature:	21~25	°C
Test Date:	2022/2/19-2022/3/1	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	-3.10	30.00	-1.85	-4.95	36.00	Pass
BLE	1Mbps	1	19	2440	-1.90	30.00	-1.85	-3.75	36.00	Pass
BLE	1Mbps	1	39	2480	-2.20	30.00	-1.85	-4.05	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	-4.11	-18.62	-1.85	8.00	Pass
BLE	1Mbps	1	19	2440	-2.75	-17.28	-1.85	8.00	Pass
BLE	1Mbps	1	39	2480	-2.94	-17.52	-1.85	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

Report Number : FR212127B

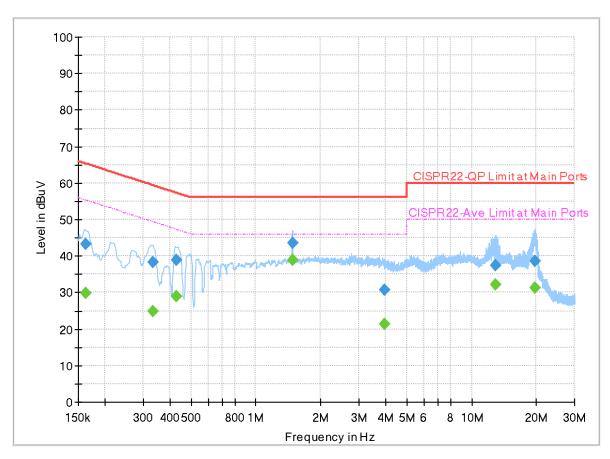
TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	-3.10	30.00	-1.85	-4.95	36.00	Pass
BLE	2Mbps	1	19	2440	-1.90	30.00	-1.85	-3.75	36.00	Pass
BLE	2Mbps	1	39	2480	-2.20	30.00	-1.85	-4.05	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	-4.35	-20.80	-1.85	8.00	Pass
BLE	2Mbps	1	19	2440	-2.96	-19.39	-1.85	8.00	Pass
BLE	2Mbps	1	39	2480	-3.23	-19.67	-1.85	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

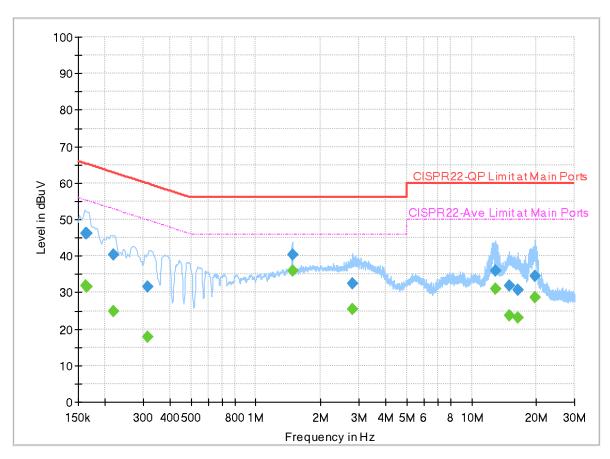


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Louis Chung	Temperature :	23.3~24.8 ℃
		Relative Humidity :	45.2~48.9%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 212127 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.162690		29.77	55.33	25.56	L1	OFF	19.7
0.162690	43.20		65.33	22.13	L1	OFF	19.7
0.334590		24.88	49.34	24.46	L1	OFF	19.7
0.334590	38.27		59.34	21.07	L1	OFF	19.7
0.429000		28.97	47.27	18.30	L1	OFF	19.7
0.429000	38.86		57.27	18.41	L1	OFF	19.7
1.474530		38.97	46.00	7.03	L1	OFF	19.7
1.474530	43.56		56.00	12.44	L1	OFF	19.7
3.927210		21.36	46.00	24.64	L1	OFF	19.8
3.927210	30.75		56.00	25.25	L1	OFF	19.8
12.964380		32.10	50.00	17.90	L1	OFF	19.9
12.964380	37.33		60.00	22.67	L1	OFF	19.9
19.587750		31.16	50.00	18.84	L1	OFF	20.0
19.587750	38.53		60.00	21.47	L1	OFF	20.0

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 212127 Mode 1 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.163140		31.77	55.30	23.53	Ν	OFF	19.7
0.163140	46.30		65.30	19.00	Ν	OFF	19.7
0.163500		31.55	55.28	23.73	Ν	OFF	19.7
0.163500	46.18		65.28	19.10	Ν	OFF	19.7
0.219120		24.83	52.85	28.02	Ν	OFF	19.7
0.219120	40.41		62.85	22.44	Ν	OFF	19.7
0.314970		17.89	49.84	31.95	Ν	OFF	19.7
0.314970	31.72		59.84	28.12	Ν	OFF	19.7
1.475520		35.91	46.00	10.09	Ν	OFF	19.7
1.475520	40.42		56.00	15.58	Ν	OFF	19.7
2.810670		25.50	46.00	20.50	Ν	OFF	19.7
2.810670	32.35		56.00	23.65	Ν	OFF	19.7
12.965190		30.93	50.00	19.07	Ν	OFF	19.9
12.965190	36.04		60.00	23.96	Ν	OFF	19.9
14.916660		23.56	50.00	26.44	Ν	OFF	19.9
14.916660	31.91		60.00	28.09	Ν	OFF	19.9
16.332000		23.19	50.00	26.81	Ν	OFF	19.9
16.332000	30.61		60.00	29.39	Ν	OFF	19.9
19.677750		28.79	50.00	21.21	Ν	OFF	19.9
19.677750	34.38		60.00	25.62	Ν	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engineer :	Andy Yang, Karl Hou and Wilson Wu	Temperature :	20~25°C
rest Engineer .		Relative Humidity :	50~60%

<1Mbps>

	BLE (Band Edge @ 3m)												
BLE	Note	Frequency	Level (dBµV/m)	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Path Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos	Peak Avg. (P/A)	
		2318.61	56.44	-17.56	74	41.31	27.14	18.08	30.09	210	135	P	н
		2360.085	46.13	-7.87	54	30.81	27.24	18.16	30.08	210	135	Α	Н
	*	2402	91.18	-	-	75.6	27.41	18.24	30.07	210	135	Р	Н
	*	2402	90.37	-	-	74.79	27.41	18.24	30.07	210	135	Α	Н
BLE CH 00													Н
2402MHz		2369.85	56.54	-17.46	74	41.16	27.28	18.18	30.08	106	113	Ρ	V
		2385.81	46.27	-7.73	54	30.79	27.34	18.21	30.07	106	113	А	V
	*	2402	92.76	-	-	77.18	27.41	18.24	30.07	106	113	Р	V
	*	2402	91.87	-	-	76.29	27.41	18.24	30.07	106	113	А	V
													V
		2386.58	55.91	-18.09	74	40.42	27.35	18.21	30.07	177	132	Р	Н
		2387	46.04	-7.96	54	30.55	27.35	18.21	30.07	177	132	А	Н
	*	2440	93.31	-	-	77.5	27.56	18.31	30.06	177	132	Р	Н
	*	2440	92.62	-	-	76.81	27.56	18.31	30.06	177	132	А	Н
BLE		2496.64	56.33	-17.67	74	40.08	27.88	18.41	30.04	177	132	Ρ	Н
CH 19		2490.9	47.25	-6.75	54	31.04	27.85	18.4	30.04	177	132	А	Н
2440MHz		2325.54	55.78	-18.22	74	40.63	27.15	18.09	30.09	100	114	Р	V
		2376.5	46.02	-7.98	54	30.6	27.31	18.19	30.08	100	114	А	V
	*	2440	95.83	-	-	80.02	27.56	18.31	30.06	100	114	Ρ	V
	*	2440	95.19	-	-	79.38	27.56	18.31	30.06	100	114	А	V
		2487.89	57.06	-16.94	74	40.87	27.83	18.4	30.04	100	114	Ρ	V
		2498.6	46.97	-7.03	54	30.7	27.89	18.42	30.04	100	114	Α	V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	93.51	-	-	77.4	27.78	18.38	30.05	221	130	Р	Н
	*	2480	92.93	-	-	76.82	27.78	18.38	30.05	221	130	Α	н
		2489.36	57.72	-16.28	74	41.52	27.84	18.4	30.04	221	130	Р	н
		2496.36	47.02	-6.98	54	30.77	27.88	18.41	30.04	221	130	А	Н
													Н
BLE													н
CH 39 2480MHz	*	2480	96.64	-	-	80.53	27.78	18.38	30.05	100	112	Р	V
240010172	*	2480	95.91	-	-	79.8	27.78	18.38	30.05	100	112	А	V
		2492	57.66	-16.34	74	41.44	27.85	18.41	30.04	100	112	Р	V
		2496.56	47.26	-6.74	54	31.01	27.88	18.41	30.04	100	112	А	V
													V
													V
	1. No	o other spurious	s found.										
Remark		results are PA		eak and	Average lim	it line.							

	-	F	-		ELE (Harm		5111)		-	F	-		-
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant		Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		4804	40.3	-33.7	74	50.78	32.41	12.35	55.24	-	-	Р	Н
													Н
BLE													н
CH 00		4804	40.44	-33.56	74	50.92	32.41	12.35	55.24	-	-	Р	V
2402MHz													V
													V
		4880	40.6	-33.4	74	51	32.62	12.32	55.34	-	-	Р	н
		7320	45.85	-28.15	74	48.86	36.76	15.88	55.65	-	-	Р	Н
BLE													Н
CH 19													Н
2440MHz		4880	39.63	-34.37	74	50.03	32.62	12.32	55.34	-	-	Ρ	V
24401112		7320	46.03	-27.97	74	49.04	36.76	15.88	55.65	-	-	Ρ	V
													V
													V
		4960	39.7	-34.3	74	49.84	33.02	12.28	55.44	-	-	Р	Н
		7440	45.74	-28.26	74	48.99	36.22	16.2	55.67	-	-	Р	Н
BLE													Н
CH 39													Н
2480MHz		4960	40.66	-33.34	74	50.8	33.02	12.28	55.44	-	-	Р	V
		7440	45.05	-28.95	74	48.3	36.22	16.2	55.67	-	-	Р	V
													V
													V
		o other spuriou											
Remark		I results are PA	-		-								
		ne emission po	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	oor only.											

<2Mbps>

				В	LE (Band	Edge @	3m)						
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	1	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor	Loss (dB)	Factor (dB)	Pos	Pos	Avg. (P/A)	
		2330.265	<u>(авруля)</u> 56.04	-17.96	<u>(авµv/ш)</u> 74	(dbµv) 40.87	(dB/m) 27.16	<u>(ub)</u> 18.1	30.09	(cm) 208	(deg) 133	P	(п/v) Н
		2380.98	48.31	-5.69	54	32.87	27.32	18.2	30.08	208	133	A	Н
	*												
		2402	90.59	-	-	75.01	27.41	18.24	30.07	208	133	P	Н
	*	2402	89.15	-	-	73.57	27.41	18.24	30.07	208	133	A	Н
BLE													Н
CH 00													Н
2402MHz		2357.985	55.68	-18.32	74	40.37	27.23	18.16	30.08	106	114	Р	V
		2387.49	48.33	-5.67	54	32.84	27.35	18.21	30.07	106	114	А	V
	*	2402	92.98	-	-	77.4	27.41	18.24	30.07	106	114	Р	V
	*	2402	91.67	-	-	76.09	27.41	18.24	30.07	106	114	А	V
													V
													V
		2316.02	56.35	-17.65	74	41.25	27.13	18.07	30.1	177	131	Р	Н
		2389.1	47.97	-6.03	54	32.46	27.36	18.22	30.07	177	131	Α	н
	*	2440	93.08	-	-	77.27	27.56	18.31	30.06	177	131	Ρ	Н
	*	2440	91.82	-	-	76.01	27.56	18.31	30.06	177	131	А	Н
		2492.65	56.52	-17.48	74	40.29	27.86	18.41	30.04	177	131	Р	Н
BLE CH 19		2491.32	48.83	-5.17	54	32.62	27.85	18.4	30.04	177	131	А	н
2440MHz		2324.7	56.32	-17.68	74	41.17	27.15	18.09	30.09	100	112	Р	V
2440101112		2346.96	48.1	-5.9	54	32.87	27.19	18.13	30.09	100	112	А	V
	*	2440	95.29	-	-	79.48	27.56	18.31	30.06	100	112	Р	V
	*	2440	94.08	-	-	78.27	27.56	18.31	30.06	100	112	А	V
		2497.27	56.84	-17.16	74	40.58	27.88	18.42	30.04	100	112	Р	V
		2484.18	49.03	-4.97	54	32.87	27.81	18.39	30.04	100	112	А	V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
	*	2480	92.88	-	-	76.77	27.78	18.38	30.05	226	142	P	H
	*	2480	91.44	-	-	75.33	27.78	18.38	30.05	226	142	Α	Н
		2495.04	56.74	-17.26	74	40.5	27.87	18.41	30.04	226	142	Р	Н
		2493.08	49.01	-4.99	54	32.78	27.86	18.41	30.04	226	142	А	Н
													Н
BLE													Н
CH 39 2480MHz	*	2480	96.77	-	-	80.66	27.78	18.38	30.05	100	113	Р	V
	*	2480	95.22	-	-	79.11	27.78	18.38	30.05	100	113	А	V
		2486.12	57.08	-16.92	74	40.9	27.82	18.4	30.04	100	113	Р	V
		2489.92	49.06	-4.94	54	32.86	27.84	18.4	30.04	100	113	А	V
													V
													V
Remark		o other spurious results are PA		eak anc	l Average lim	it line.							

	1	ſ		ſ		F	-		ſ	Γ	ſ	ſ	
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant		Peak	Pol.
		· • • • • •		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(118.0)
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	40.76	-33.24	74	51.24	32.41	12.35	55.24	-	-	Р	Н
													Н
BLE													Н
CH 00		4804	40.33	-33.67	74	50.81	32.41	12.35	55.24	-	-	Р	V
2402MHz													V
													V
		4880	41.12	-32.88	74	51.52	32.62	12.32	55.34	-	-	Р	Н
		7320	45.11	-28.89	74	48.12	36.76	15.88	55.65	-	-	Р	Н
BLE													Н
CH 19													Н
2440MHz		4880	39.85	-34.15	74	50.25	32.62	12.32	55.34	-	-	Ρ	V
		7320	45.43	-28.57	74	48.44	36.76	15.88	55.65	-	-	Р	V
													V
													V
		4960	40.62	-33.38	74	50.76	33.02	12.28	55.44	-	-	Р	Н
		7440	45.96	-28.04	74	49.21	36.22	16.2	55.67	-	-	Р	Н
BLE													Н
CH 39													Н
2480MHz		4960	40.19	-33.81	74	50.33	33.02	12.28	55.44	-	-	Р	V
		7440	46.52	-27.48	74	49.77	36.22	16.2	55.67	-	-	Р	V
													V
													V
		o other spuriou											
Remark		I results are PA	-		-								
		ne emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ticient mar	gin agai	nst limit	line or	noise
	tic	or only.											

Emission below 1GHz

	Nata	F	1	0	2.4GHZ			Dette	Duranuu	A 1	Table	Deele	Del
BLE	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	POI.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		74.62	24.85	-15.15	40	42.76	12.84	1.56	32.31	-	-	Р	Н
		270.56	27.69	-18.31	46	37.94	19.09	2.92	32.26	-	-	Р	Н
		315.18	32.24	-13.76	46	41.87	19.5	3.14	32.27	-	-	Р	н
		829.28	32.25	-13.75	46	30.73	28.54	5.05	32.07	-	-	Ρ	Н
		889.42	38.66	-7.34	46	36.17	28.87	5.25	31.63	-	-	Р	Н
		936.95	33.73	-12.27	46	29.5	30.11	5.41	31.29	-	-	Р	Н
													н
													Н
													Н
													Н
2.4GHz													Н
BLE													Н
LF		64.92	27.76	-12.24	40	46.59	12	1.44	32.27	-	-	Р	V
		74.62	28.18	-11.82	40	46.09	12.84	1.56	32.31	-	-	Р	V
		126.03	26.36	-17.14	43.5	39.14	17.48	2.01	32.27	-	-	Р	V
		711.91	37.69	-8.31	46	38.67	26.76	4.64	32.38	-	-	Р	V
		745.86	35.12	-10.88	46	34.62	28.09	4.75	32.34	-	-	Р	V
		890.39	38.49	-7.51	46	35.98	28.87	5.26	31.62	-	-	Р	V
													V
													V
													V
													V
													V
													V
		o other spuriou											
Remark		l results are PA	-										
		e emission po				pected em	ission foun	d and em	ission leve	el has at	t least 60	lB mai	rgin
	ag	ainst limit or er	mission is noi	ise floor	only.								

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

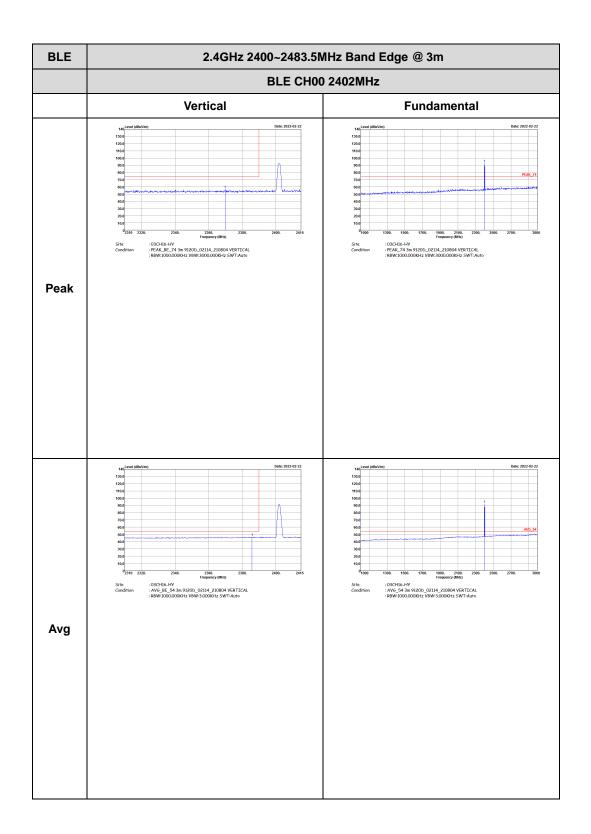
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

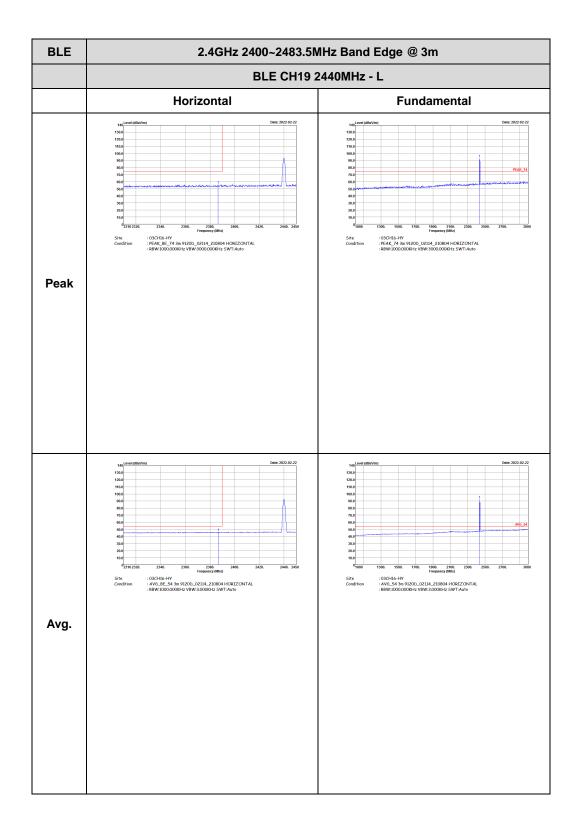
Both peak and average measured complies with the limit line, so test result is "PASS".

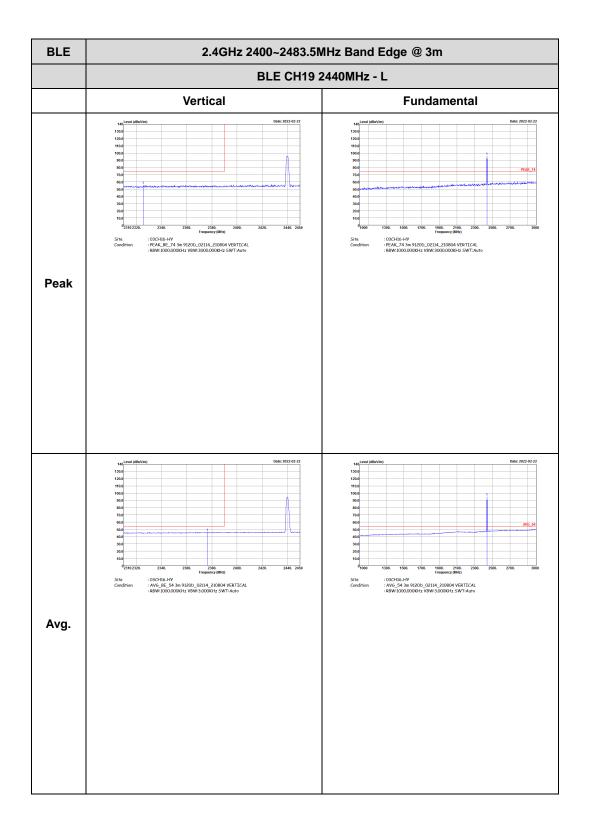
Appendix D. Radiated Spurious Emission Plots

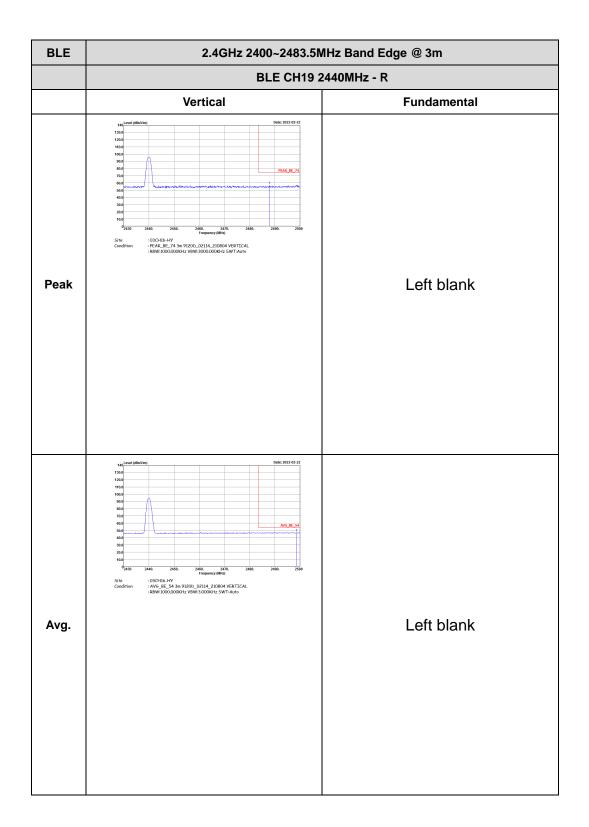

Test Engineer :	Andy Yang, Karl Hou and Wilson Wu	Temperature :	20~25°C
	Andy rang, Kan Hou and Wilson Wu	Relative Humidity :	50~60%

Note symbol

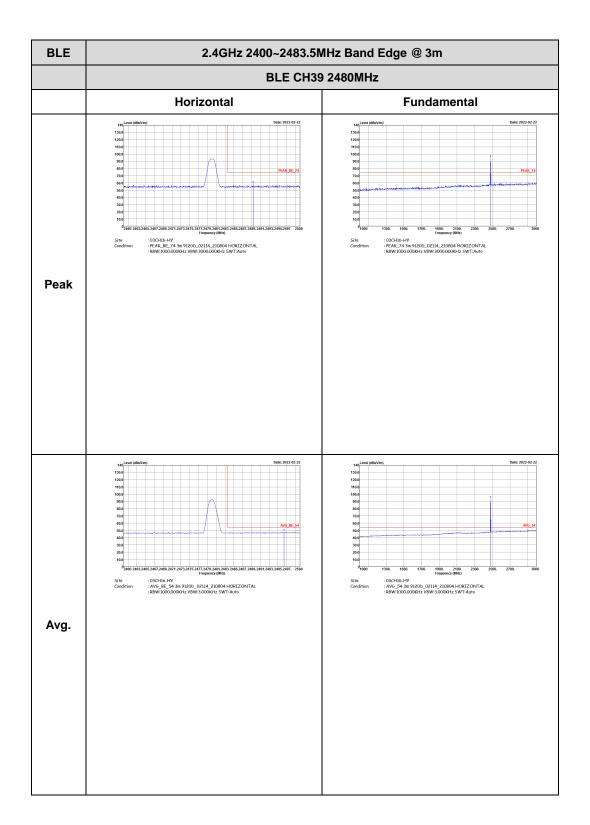

-L	Low channel location
-R	High channel location

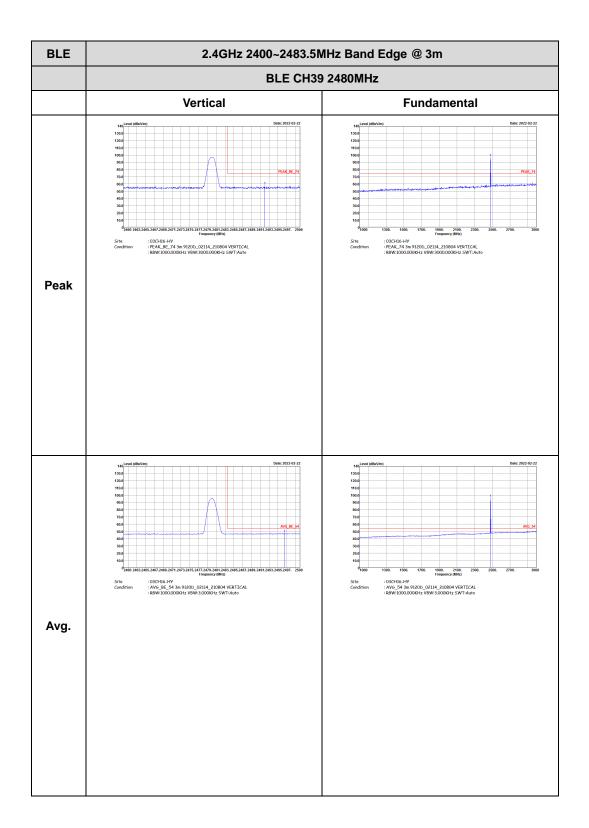

<1Mbps>

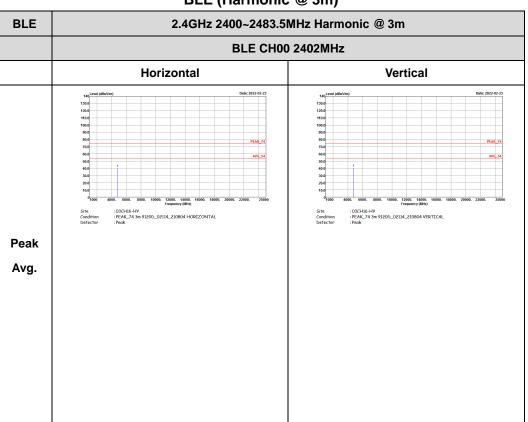


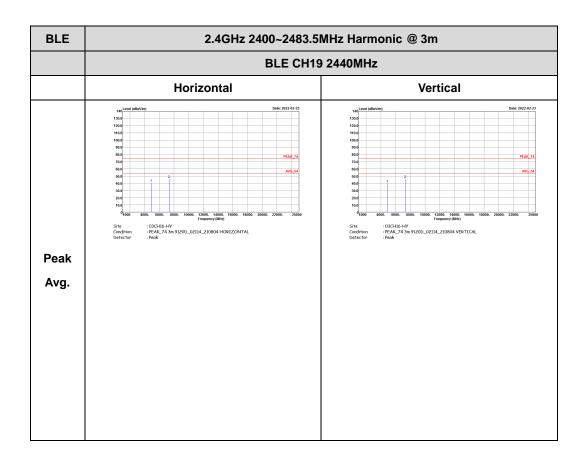


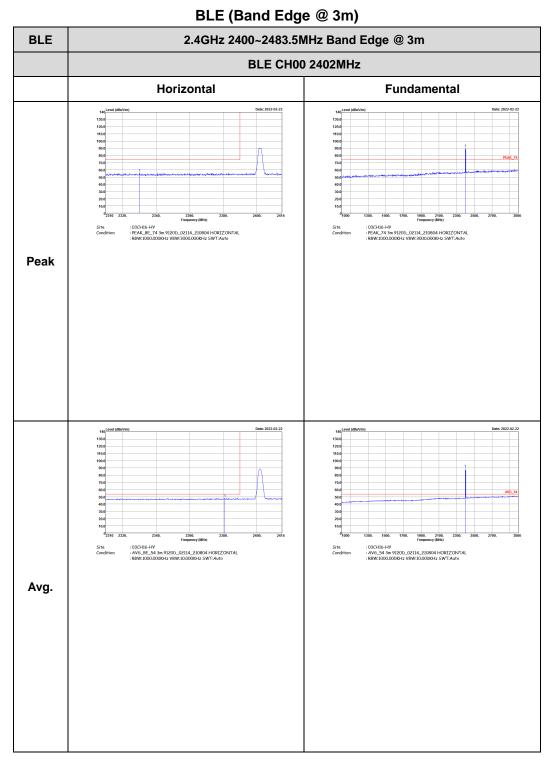
BLE	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
	BLE CH19 2440)MHz - R
	Horizontal	Fundamental
Peak	<pre>important important i</pre>	Left blank
Avg.	$M_{1} = M_{2} = M_{2}$	Left blank

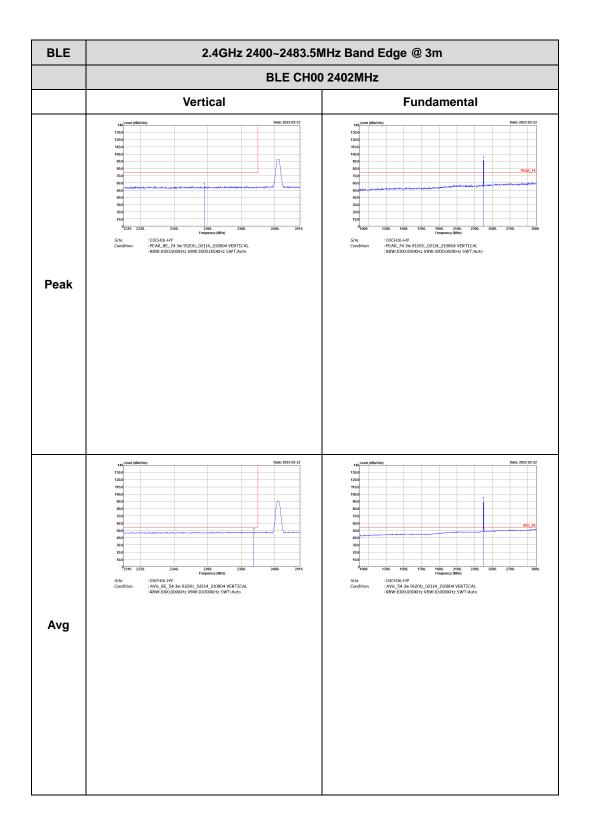


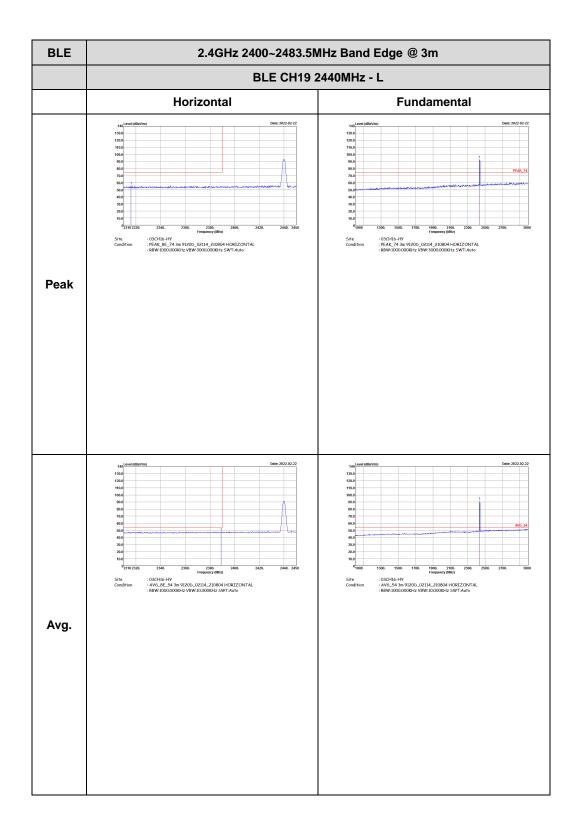


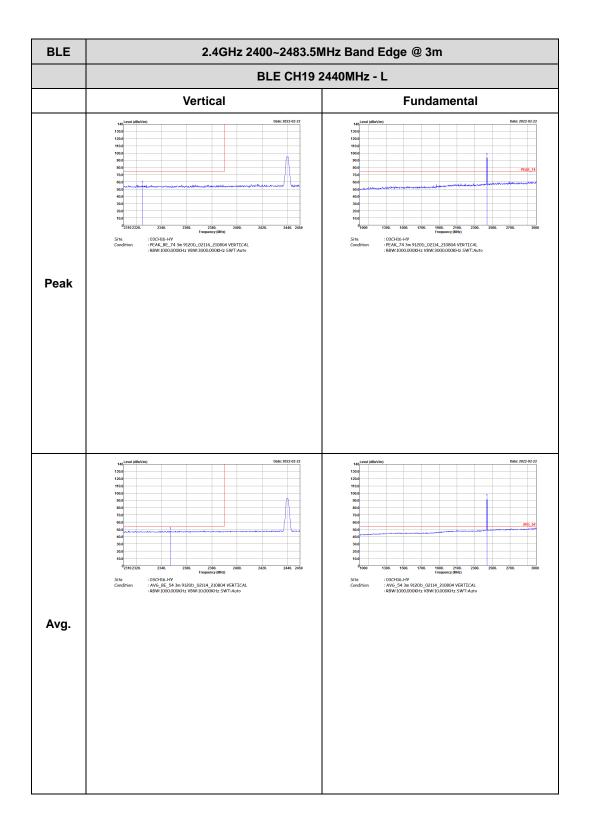




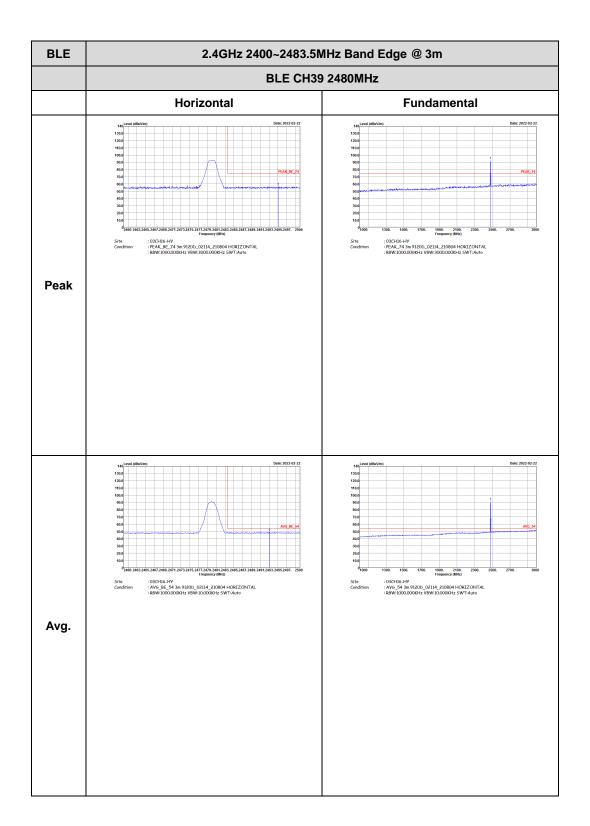


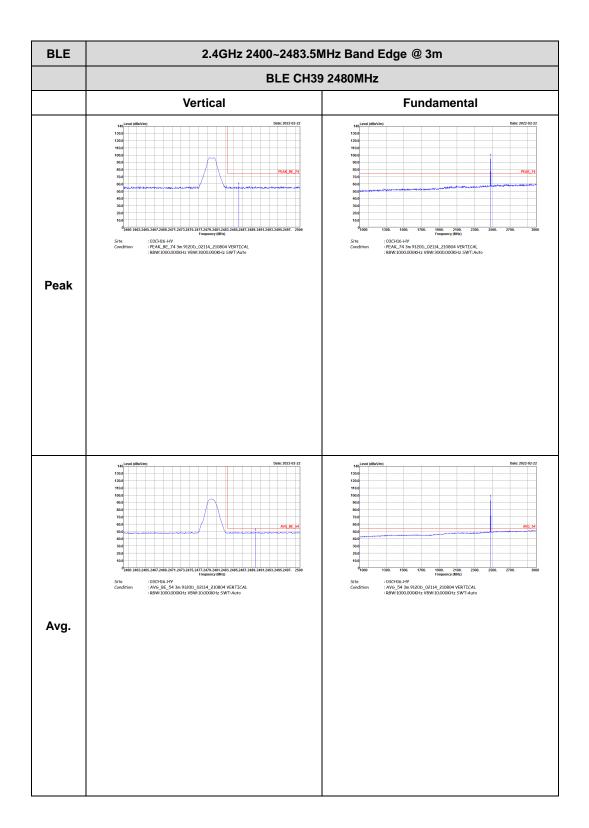

BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m										
	BLE CH39	2480MHz									
	Horizontal	Vertical									
Peak	11 11 <td< th=""><th>Here Description Description Description Description</th></td<>	Here Description Description Description Description									


<2Mbps>

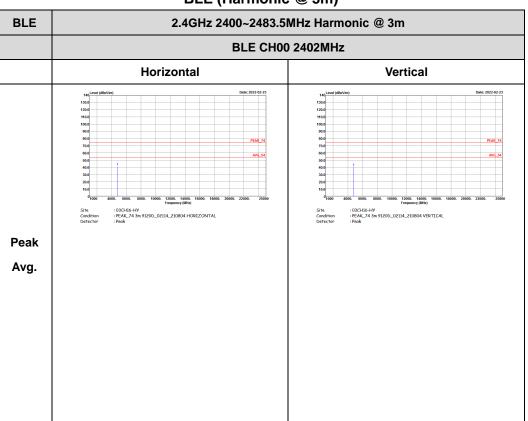


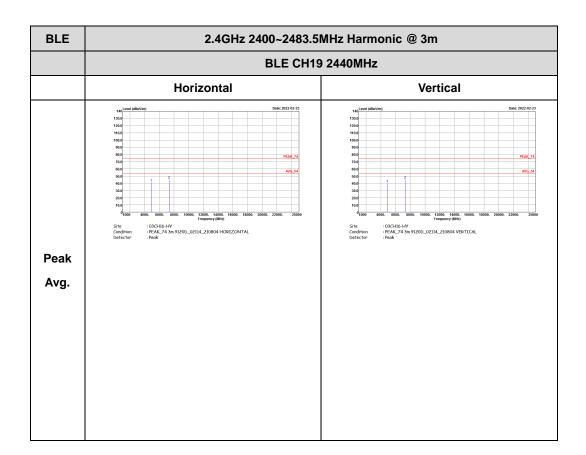
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Horizontal	Fundamental				
Peak	Image: product of the second secon	Left blank				
Avg.	serve (minitivity) Date: 2022 02.2 1000000000000000000000000000000000000	Left blank				

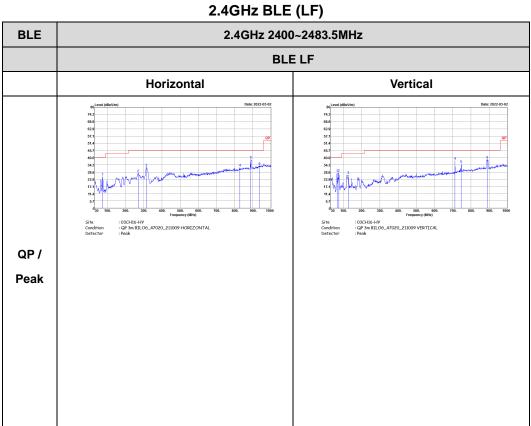




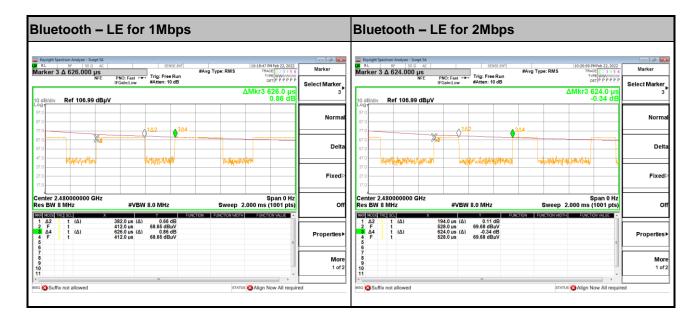
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Vertical	Fundamental				
Peak	<pre>http://www.internationality.com/ intern</pre>	Left blank				
Avg.	Market definition Definition Note of the second	Left blank				







BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m					
	BLE CH39 2480MHz					
	Horizontal	Vertical				
Peak	her H22623 her H22643 her H2	14 Image: State of the s				


Emission below 1GHz

Appendix E. Duty Cycle Plots

Band	Duty Cycle (%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	61.02	382.00	2.62	3kHz
Bluetooth - LE for 2Mbps	30.99	194.00	5.15	10kHz

