

FCC RADIO TEST REPORT

FCC ID	:	2AFZZ1219NY
Equipment	:	Mobile Phone
Brand Name	:	Redmi
Model Name	:	22041219NY
Applicant	:	Xiaomi Communications Co., Ltd. #019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Manufacturer	:	Xiaomi Communications Co., Ltd. #019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Feb. 15, 2022 and testing was performed from Feb. 19, 2022 to Mar. 08, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. Wensan Laboratory No. 58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan

Table of Contents

tory o	f this test report	.3
nmary	v of Test Result	.4
Gene	ral Description	.5
1.1	Product Feature of Equipment Under Test	.5
1.2	Modification of EUT	.5
1.3	Testing Location	.6
1.4	Applicable Standards	.6
Test	Configuration of Equipment Under Test	.7
2.1	Carrier Frequency Channel	.7
2.2	Test Mode	.8
2.3	Connection Diagram of Test System	.9
2.4	Support Unit used in test configuration and system	.9
2.5	EUT Operation Test Setup	.9
2.6	Measurement Results Explanation Example	10
Test I	Result	11
3.1	Number of Channel Measurement	11
3.2	Hopping Channel Separation Measurement	13
3.3	Dwell Time Measurement	17
3.4	20dB and 99% Bandwidth Measurement	19
3.5	Output Power Measurement	26
3.6	Conducted Band Edges Measurement	27
3.7	Conducted Spurious Emission Measurement	32
3.8	Radiated Band Edges and Spurious Emission Measurement	39
3.9	AC Conducted Emission Measurement	13
3.10	Antenna Requirements	45
List o	of Measuring Equipment	16
Unce	rtainty of Evaluation	18
pendix	A. Conducted Test Results	
pendix	B. AC Conducted Emission Test Result	
pendix	C. Radiated Spurious Emission	
pendix	CD. Radiated Spurious Emission Plots	
	Gene 1.1 1.2 1.3 1.4 Test 2.1 2.2 2.3 2.4 2.5 2.6 Test 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 List of Dendix Dendix	General Description 1.1 Product Feature of Equipment Under Test. 1.2 Modification of EUT 1.3 Testing Location 1.4 Applicable Standards Test Configuration of Equipment Under Test 2.1 Carrier Frequency Channel 2.2 Test Mode 2.3 Connection Diagram of Test System 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example Test Result 1 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR212127A	01	Initial issue of report	Mar. 09, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	7.24 dB under the limit at 890.390 MHz
3.9	15.207	AC Conducted Emission	Pass	7.03 dB under the limit at 1.475 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards, if

measurement uncertainty is include in test results. 2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Lewis Ho

Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE/5G NR, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, FM Receiver, NFC, and GNSS.

Product Feature					
Sample 1	4+64G with battery 1				
Sample 2 6+128G with battery 2					
Sample 3	4+128G with battery 1				
Antenna Type	WWAN: PIFA Antenna WLAN: PIFA Antenna Bluetooth: PIFA Antenna GPS / Glonass / BDS / Galileo: PIFA Antenna NFC: Coil Antenna FM Receiver: Using earphone as Antenna				
Antenna information					

Antenna Information							
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi) -1.85						

Remark: The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.			
Test Sile NO.	TH05-HY, 03CH16-HY, CO07-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

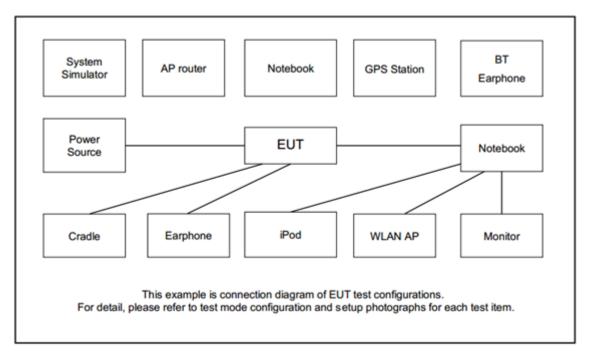
- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode


- The EUT has been associated with peripherals and configuration operated in a manner tended to a. maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

Summary table of Test Cases								
Test Item	Data Rate / Modulation							
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK					
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz					
	I	Bluetooth BR 1Mbps GFS	(
Radiated		Mode 1: CH00_2402 MHz						
Test Cases	Mode 2: CH39_2441 MHz							
		Mode 3: CH78_2480 MHz						
AC Conducted	Mode 1 :Bluetooth Link +	WLAN (2.4GHz) Link + M	PEG4 + Earphone + USB					
Emission	Cable 1 (Charging	g from Adapter) for Sample 2	2					
 Remark: 1. For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission. 								
• •	Test Cases, the tests were p	•	and Sample 2					

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Earphone	MI	EM023	N/A	Unshielded,1.25m	N/A
2.	Bluetooth Earphone	Sony	SBH20	PY7-RD0010	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,1.8m
4.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, make the EUT (SW: MIUI 13 Global 22.1.21 Beat) get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

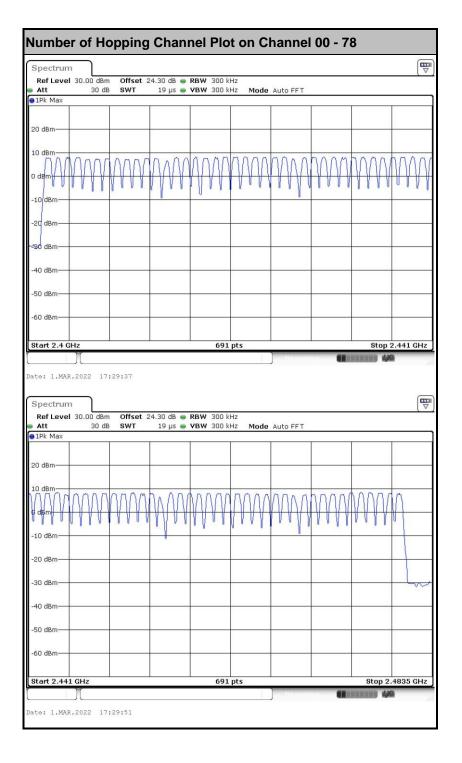
3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


Spectrum Analyzer

EUT

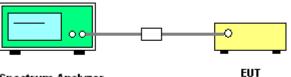
3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

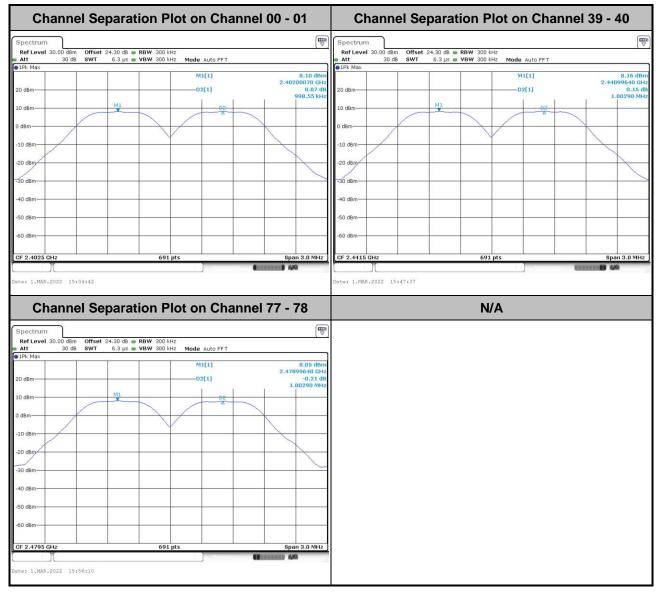

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

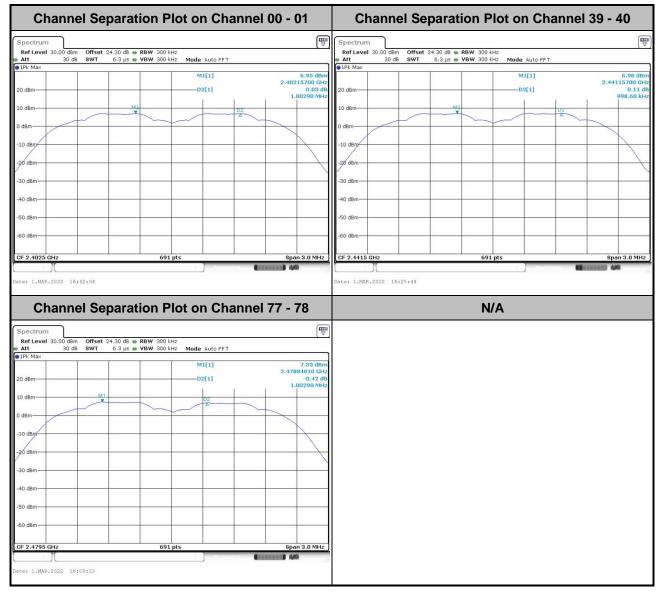
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

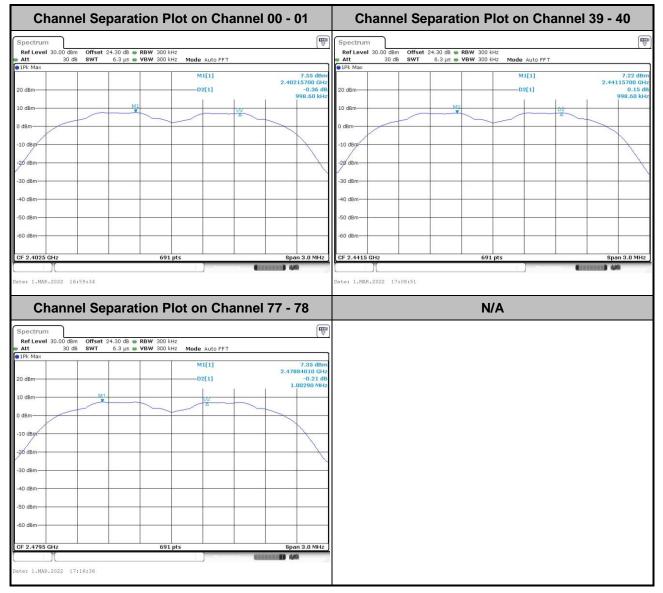

Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.



<1Mbps>



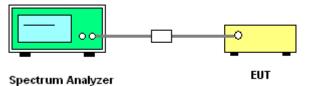
<2Mbps>

<3Mbps>

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

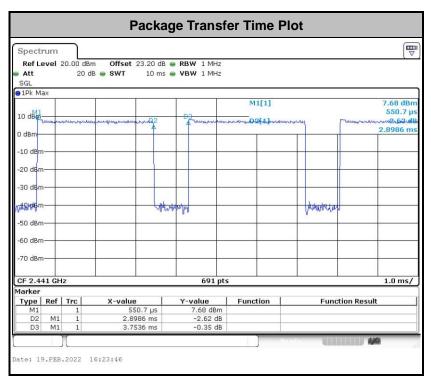
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

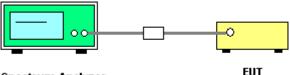
2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

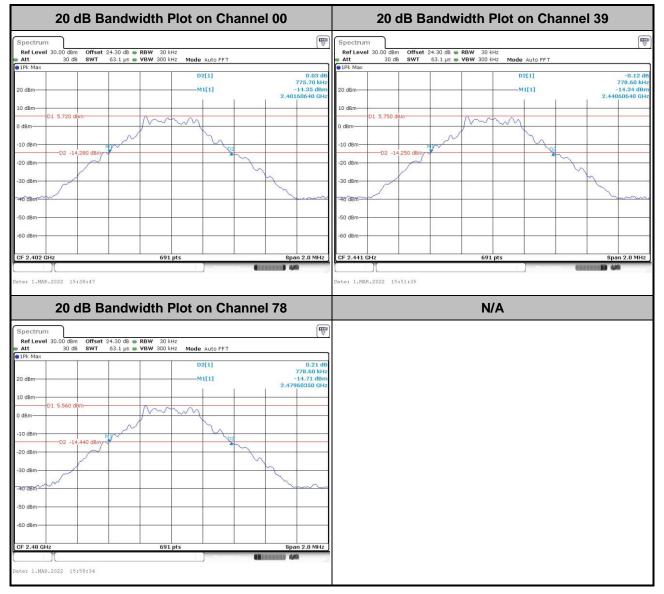

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

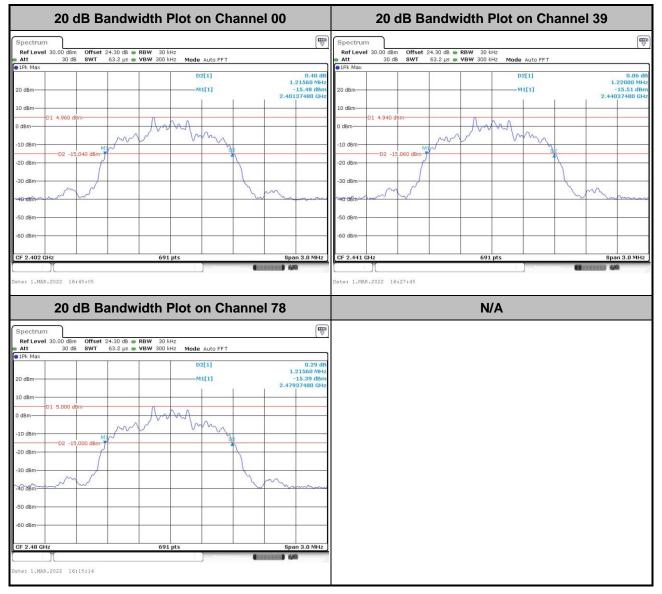
- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

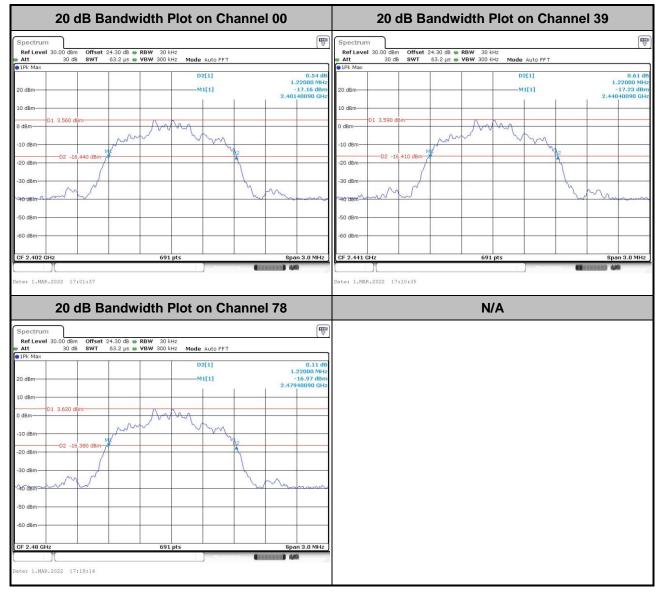

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

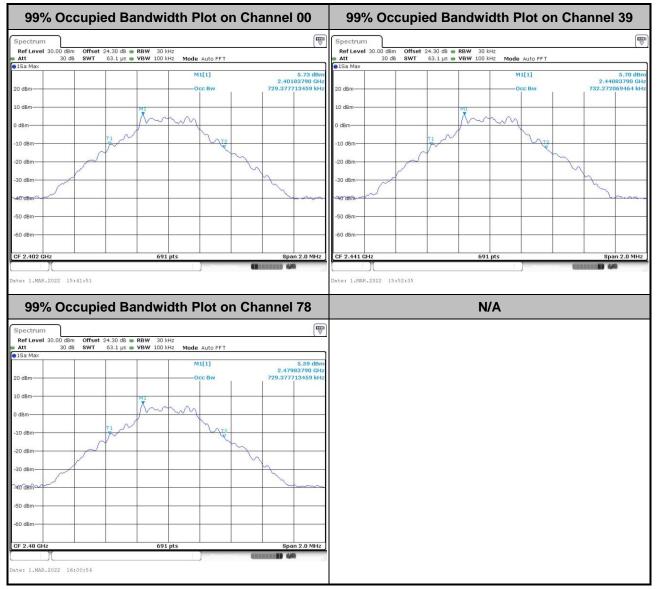


<1Mbps>



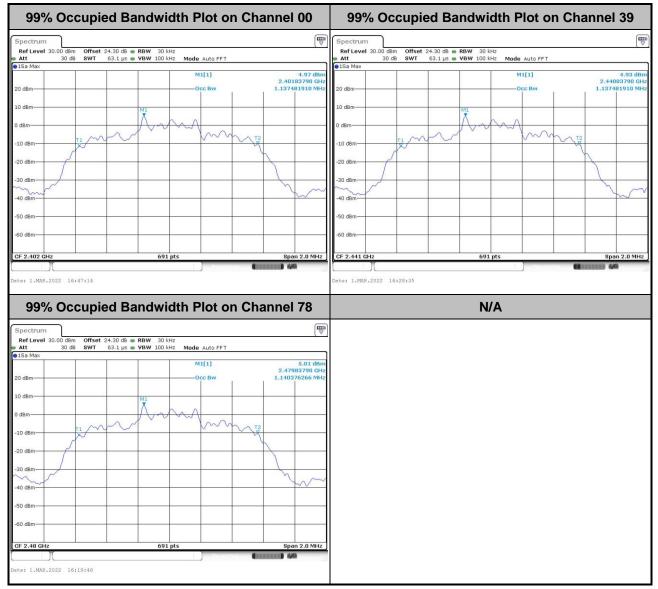
<2Mbps>

<3Mbps>

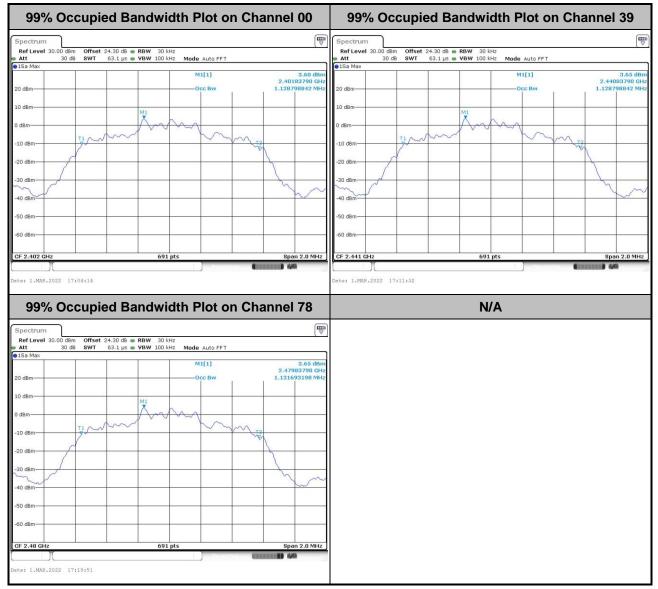


3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

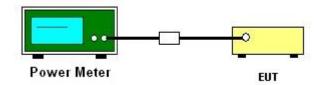
<3Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

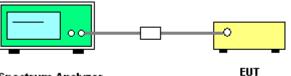
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

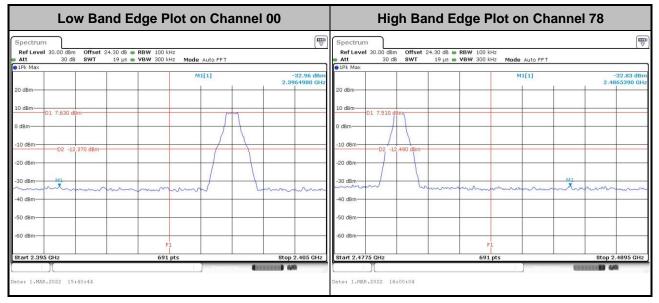

3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup



Spectrum Analyzer

3.6.5 Test Result of Conducted Band Edges

<1Mbps>

<2Mbps>

Low Band Edg	e Plot on Chann	el 00	ŀ	ligh Band	Edge Plot	on Chann	el 78
Spectrum RefLevel 30.00 dBm Offset 24.30 dB RBW Att 30 dB SWT 19 μs VBW - IPk Max 30 dB SWT 19 μs VBW			Spectrum Ref Level 30.00 Att		dB — RBW 100 kHz µs — VBW 300 kHz M @	ode Auto FFT	
20 dBm 20 dBm 10 dBm D1 6.850 dBm 0 dBm 0 dBm -10 dBm -02 -13,150 dBm -20 dBm -02 -13,150 dBm -30 dBm -02 -13,150 dBm -50 dBm -00 dBm -60 dBm -00 dBm -50 dBm -00 dBm -80 dBm -00 dBm	M1[1]	Stop 2.405 GHz	20 dBm 10 dBm 0 dBm -10 dBm		F1 691 pts		-32.68 dBm 2.4847500 GHz
Date: 1.MAR.2022 16:46:36	Streeting	CITIZEN 44	Date: 1.MAR.2022	16:17:18		Measuring	(

<3Mbps>

Low Band Edge Plot	on Channel 00	High Band Edge Plot on Channel 78			
Spectrum Ref Level 30.00 dBm Offset 24.30 dB RBW 100 kHz Att 30 dB SWT 19 µs VBW 300 kHz Mo	(₩)	Spectrum Ref Level 30.00 dBm Offset Att 30 dB SWT	24.30 dB B RBW 100 kHz 19 μs B VBW 300 kHz Mode Auto FFT	(m ∀	
20 dBm	M1[1] -33.11 dBm 2.3954850 GHz	20 dBm	M1[1]	-32.41 dBm 2.4877370 GHz	
10 dBm 01 7.070 dBm 01 7.070 dBm	/ my	10 dBm 01 7.150 dBm			
-10 dBm		-10 dBm			
-30 Ugm	- Marine	-30 dBm	hummunn	MI	
-50 dBm		-50 dBm			
Start 2.395 GHz 691 pts	Stop 2.405 GHz	Start 2.4775 GHz	691 pts	Stop 2.4895 GHz	
Date: 1.MAR.2022 17:03:31		Date: 1.MAR.2022 17:19:00			

3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>

Hopping Mode Low Band Edge Plot		Hopping Mode High Band Edge Plot				
Spectrum RefLevel 30.00 dBm Offset 24.30 dB = RBW 100 kHz Att 30 dB SWT 19 µs = VBW 300 kHz		Spectrum RefLevel 30.00 dBm Offset 24.30 dB RBW 100 kHz Att 30 dB SWT 19 µs VBW 300 kHz	₩ode Auto FFT			
20 dBm 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm	-32.93 dBm .3953400 GHz	40 d8m	M1[1] -33.02 dBm 2.4883100 GHz			
-60 dBm F1 Start 2.395 GHz 691 pts St Date: 1.MAR.2022 17:30:36	449	60 dBm F1 itart 2.4775 GHz 691 pts te: 1.MA8.2022 17;31:27	Stop 2.4895 GHz			

<2Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot
Spectrum Image: Constraint of the sector of t	Spectrum Image: Constraint of the second seco
● Att 30 dB SWT 19 µs ● VBW 300 kHz Mode Auto FFT ● 1Pk Max	Att 30 dB SWT 19 µs
20 dBm	20 dBm M1[1] -31.73 dBm 20 dBm
10 dBm 01 7.230 dBm 02 -12,770 dBm 02 -12,770 dBm 02 -12,770 dBm 02 -13,770 dBm 02 -13,0 dBm 04 - 04 - 04 - 04 - 04 - 04 - 04 - 04	10 dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm
-40 dBm	-40 dBm
Start 2.395 GHz 691 pts Stop 2.405 GHz	Start 2.4775 GHz 691 pts Stop 2.4895 GHz
Date: I.MAR.2022 17:33:11	Date: 1.MAR.2022 17:32:34

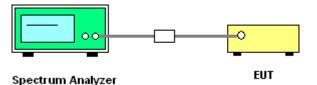
<3Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot				
Spectrum Ref Lavel 30.00 dBm Offset 24.30 dB • RBW 100 kHz • Att 30 dB • SWT 19 µs • VBW 300 kHz • DFk Max • Mode Auto FFT	Time Spectrum Time Ref Level 30.00 dBm Offset 24.30 dB = RBW 100 kHz W Att 30 dB SWT 19 µs = VBW 300 kHz Mode Auto FFT				
	2.44 dBm 9040 GHz 20 dBm 10 dBm 0. //γ 10 dBm 10 dBm				
0 dBm	-10 dBm				
-30 dBm M3	-30 dBm				
-50 dBm	-50 dBm				
Start 2.395 GHz 691 pts Stop 2.4 Date: 1.MAR.2022 17;33:59 000000000000000000000000000000000000	405 GHz] Stort 2.4775 GHz 691 pts Stop 2.4895 GHz Date: I.MAR.2022 17:34:55				

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

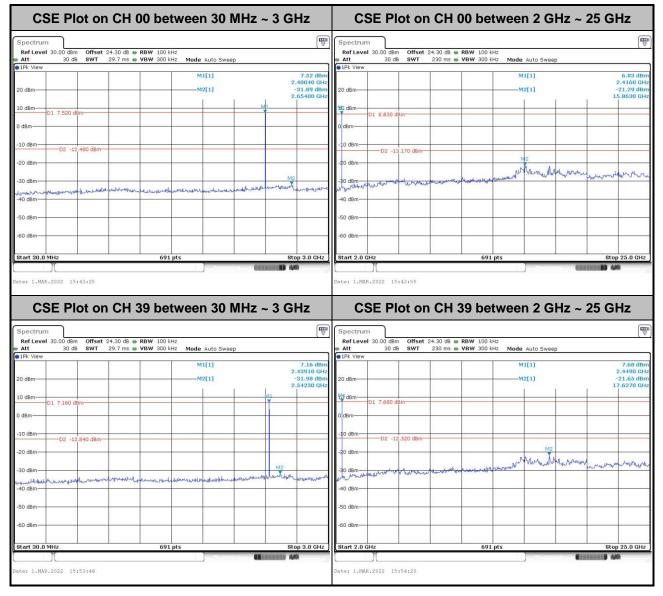
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

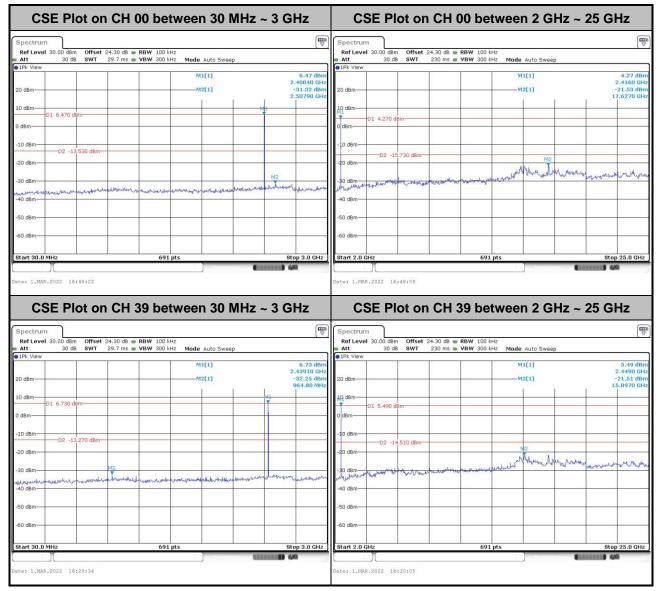
Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

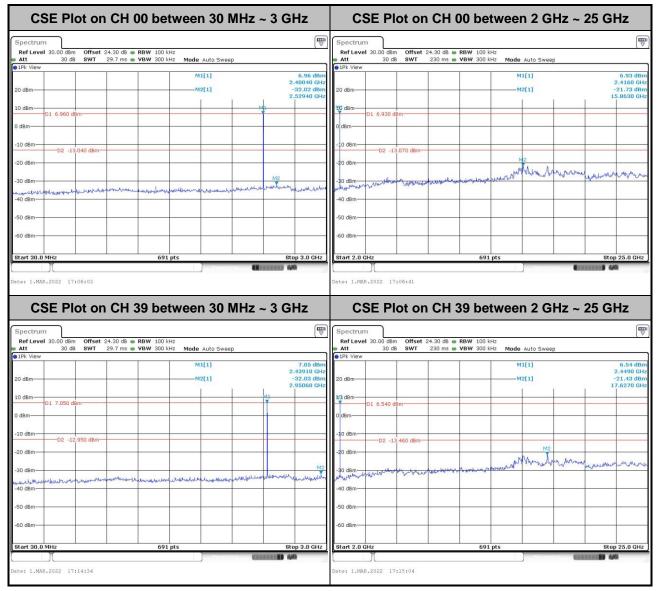
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on CH 78	8 between 30 MH	lz ~ 3 GHz	CS	SE Plot on	CH 78 be	etween 2 C	GHz ~ 2	5 GHz
Spectrum Ref Level 30.00 dBm Offset 24.30 dB Att 30 dB SWT 29.7 ms			Spectrum Ref Level	30.00 dBm Offset 2	4.30 dB ● RBW 100 230 ms ● VBW 300			
Pk View	BW 300 KH2 Mode Auto Sweep		Att IPk View	30 UB 3141	250 ms 🖶 VBW 500	KH2 MODE AUTO SW	eep	
20 dBm-	M1[1] M2[1]	7.44 dBm 2.48210 GHz -32.42 dBm 2.49930 GHz	20 dBm-			M1[1] M2[1]		7.40 dBn 2.4830 GH: -21.91 dBn 15.8970 GH:
10 dBm 01 7.440 dBm		MI	to dBm	D1 7.400 dBm				
-10 dBm D2 -12.560 dBm			-10 dBm			140		
-20 dBm-		1912	-20 dBm	un more and with the	burnerturation	and the second the second	Marusensensensensensensensensensensensensens	Lynney or yeller Mary Ho
-40 dBm			-40 dBm					
-50 dBm			-50 dBm					_
-60 dBm-			-60 dBm					
Start 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 G	Hz	69	1 pts	6 0000	Stop 25.0 GHz
Jate: 1.MAR.2022 10:04:11			Date: 1.MAP	.2022 10:04:41				


<2Mbps>

CSE Plot on CH	78 between 30 MI	Hz ~ 3 GHz	CSE Plo	ot on CH 78 b	etween 2 GH	lz ~ 25 GHz
Spectrum Ref Level 30.00 dBm Offset 24.30 dB @	RBW 100 kHz		Spectrum Ref Level 30.00 dBm	Offset 24.30 dB - RBW 10	0 kHz	
	VBW 300 kHz Mode Auto Sweep		Att 30 dB	SWT 230 ms 🖷 VBW 30	0 kHz Mode Auto Sweep	
1Pk View 20 dBm	M1[1] M2[1]	6.60 dBm 2.47780 GHz -32.17 dBm 2.52510 GHz	e 1Pk View 20 dBm		M1[1] M2[1]	4.81 dBn 2.4830 GH -21.36 dBn 17.6610 GH
10 dBm		M2	10 dBm 0 dBm 0 dBm	n		
-10 dBm			-10 dBm		M2	
-30 dBm-	have been provided and the manual barrows	M2	-30 dBm	an martin and second second second second	amuna har her was	and and a start war
-40 dBm			-40 dBm			
-60 dBm			-60 dBm			
Start 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz	6	91 pts	Stop 25.0 GHz
Date: 1.MAR.2022 16:23:09	Messurina	C	Date: 1.MAR.2022 16:2	23:40	<u>Meaning</u>	General 44

<3Mbps>

CS	SE Plot on O	CH 78 between 30	MHz ~ 3 GHz	C	SE Plot on	CH 78 b	etween 2	GHz ~	25 GHz
Spectrun Ref Level	200 Barrier Ba	0 dB 👄 RBW 100 kHz		Spectrun		24.30 dB 👄 RBW 100	1 kHz		
Att		7 ms 🖶 VBW 300 kHz Mode Auto Swee	ep	👄 Att	30 dB SWT	230 ms 🖶 VBW 300		Sweep	
1Pk View				1Pk View				210	
20 dBm		M1[1] M2[1]	7.00 dBm 2.47780 GHz -31.29 dBm 2.58950 GHz	20 dBm			M1[1] M2[1]		6.57 dBr 2.4830 GH -20.90 dBr 15.8970 GH
10 dBm	D1 7.000 dBm		M1	BCLdBm-	01 6.570 dBm				
0 dBm				0 dBm					
-10 dBm	D2 -13.000 dBm			-10 dBm-	D2 -13,430 dBm-		M2	-	
-30 dBm			M2	-30 dBm	www.white		show work the	moladion	Vigunations
-40 dBm	mount we are maintained	Mannaspellenderstanderstation	have been and a second been and the second of the	-40 dBm					
-50 dBm				-50 dBm					
-60 dBm				-60 dBm					
Start 30.0	MHz	691 pts	Stop 3.0 GHz	Start 2.0 (Hz	6	01 pts	1	Stop 25.0 GHz
Date: 1.MAF	R.2022 17;20:53	Mexan	(11111) 44	Date: 1.MA	3.2022 17:21:25			le serietad	44

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

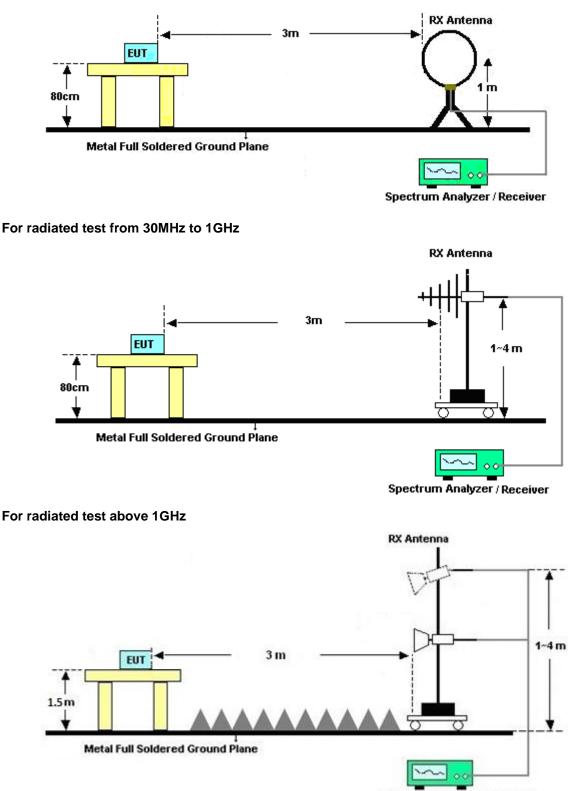
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 - 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.8.3 Test Procedures


- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log (Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup

For radiated test below 30MHz

Spectrum Analyzer / Receiver

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 AC Conducted Emission Measurement

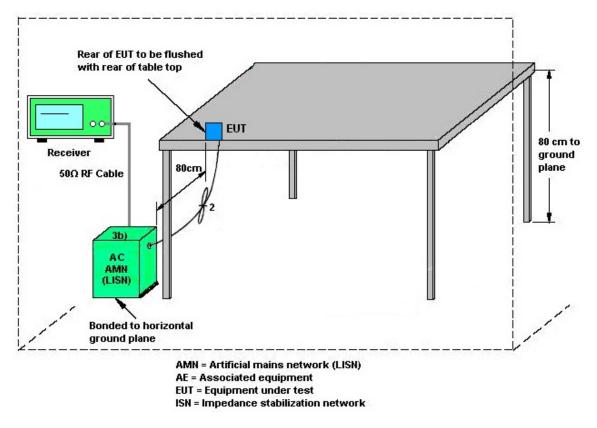
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16, 2021	Feb. 19, 2022~ Mar. 01, 2022	Nov. 15, 2022	Conducted (TH05-HY)
Power Meter	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Dec. 29, 2021	Feb. 19, 2022~ Mar. 01, 2022	Dec. 28, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	Feb. 19, 2022~ Mar. 01, 2022	Aug. 29, 2022	Conducted (TH05-HY)
Switch Control Manframe	E-IUSTRUME NT	ETF-1405-0	EC1900067 (BOX7)	N/A	Aug. 12, 2021	Feb. 19, 2022~ Mar. 01, 2022	Aug. 11, 2022	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 07, 2021	Feb. 19, 2022~ Mar. 02, 2022	Sep. 06, 2022	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz to 1GHz	Oct. 09, 2021	Feb. 19, 2022~ Mar. 02, 2022	Oct. 08, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02114	1G~18GHz	Aug. 04, 2021	Feb. 19, 2022~ Mar. 02, 2022	Aug. 03, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Oct. 12, 2021	Feb. 19, 2022~ Mar. 02, 2022	Oct. 11, 2022	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00993	18GHz ~40GHz	Nov. 30, 2021	Feb. 19, 2022~ Mar. 02, 2022	Nov. 29, 2022	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1G	Jul. 05, 2021	Feb. 19, 2022~ Mar. 02, 2022	Jul. 04, 2022	Radiation (03CH16-HY)
Amplifier	EMCI	EMC051845S E	980729	1-18GHz	Jul. 09, 2021	Feb. 19, 2022~ Mar. 02, 2022	Jul. 08, 2022	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 22, 2021	Feb. 19, 2022~ Mar. 02, 2022	Jun. 21, 2022	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 09, 2021	Feb. 19, 2022~ Mar. 02, 2022	Dec. 08, 2022	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A	MY59053012	3Hz~26.5GHz	Nov. 18, 2021	Feb. 19, 2022~ Mar. 02, 2022	Nov. 17, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11680/4P E	NA	Aug. 28, 2021	Feb. 19, 2022~ Mar. 02, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11688/4P E	NA	Aug. 28, 2021	Feb. 19, 2022~ Mar. 02, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-5 757	NA	Aug. 28, 2021	Feb. 19, 2022~ Mar. 02, 2022	Aug. 27, 2022	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Feb. 19, 2022~ Mar. 02, 2022	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Feb. 19, 2022~ Mar. 02, 2022	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Feb. 19, 2022~ Mar. 02, 2022	N/A	Radiation (03CH16-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Mar. 08, 2022	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Mar. 08, 2022	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 29, 2021	Mar. 08, 2022	Oct. 28, 2022	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	N/A	Mar. 08, 2022	N/A	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Feb. 16, 2022	Mar. 08, 2022	Feb. 15, 2023	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Oct. 21, 2021	Mar. 08, 2022	Oct. 20, 2022	Conduction (CO07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.3 dB
of 95% (U = 2Uc(y))	2.3 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	5.0 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	5.2 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.8 dB
--	--------

Report Number : FR212127A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Jacob Yu/Ching Chen	Temperature:	21~25	°C
Test Date:	2022/2/19-2022/3/1	Relative Humidity:	51~54	%

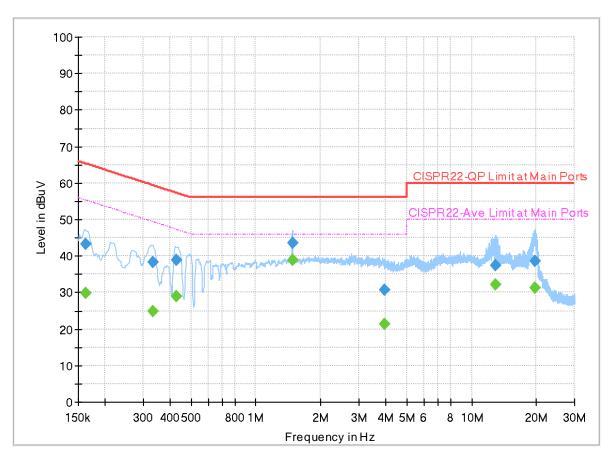
<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail	
DH	1Mbps	1	0	2402	0.776	0.729	0.999	0.5171	Pass	
DH	1Mbps	1	39	2441	0.779	0.732	1.003	0.5191	Pass	
DH	1Mbps	1	78	2480	0.779	0.729	1.003	0.5191	Pass	
2DH	2Mbps	1	0	2402	1.216	1.137	1.003	0.8104	Pass	
2DH	2Mbps	1	39	2441	1.220	1.138	0.999	0.8133	Pass	
2DH	2Mbps	1	78	2480	1.216	1.140	1.003	0.8104	Pass	
3DH	3Mbps	1	0	2402	1.220	1.129	0.999	0.8133	Pass	
3DH	3Mbps	1	39	2441	1.220	1.129	0.999	0.8133	Pass	
3DH	3Mbps	1	78	2480	1.220	1.132	1.003	0.8133	Pass	

				RESULTS Well Time			
Mod.	Hopping Channel Number Rate	Hops Over Occupanc y Time (hops)	•	Dwell Time (sec)	Limits (sec)	Pass/Fail	
3DH5	79	106.670	2.90	0.31	0.4	Pass	
3DH5 (AFH)	20	53.330	2.90	0.15	0.4	Pass	

	<u>TEST RESULTS DATA</u> Peak Power Table										
DH	CH.	NTX	Peak Power	Power Limit	Test						
	0	1	(dBm) 9.15	(dBm) 30.00	Result Pass						
DH1	39	1	8.95	30.00	Pass						
	78	1	8.90	30.00	Pass						
	0	1	8.04	20.97	Pass						
2DH1	39	1	8.03	20.97	Pass						
	78	1	8.02	20.97	Pass						
	0	1	8.09	20.97	Pass						
3DH1	39	1	7.93	20.97	Pass						
	78	1	8.03	20.97	Pass						

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>												
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)									
	0	1	8.29	5.25									
DH1	39	1	8.04	5.25									
	78	1	7.99	5.25									
	0	1	5.35	5.15									
2DH1	39	1	5.34	5.15									
	78	1	5.32	5.15									
	0	1	5.15	5.15									
3DH1	39	1	5.11	5.15									
	78	1	5.10	5.15									

TEST RESULTS DATA Number of Hopping Frequency											
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail								
79	20	> 15	Pass								

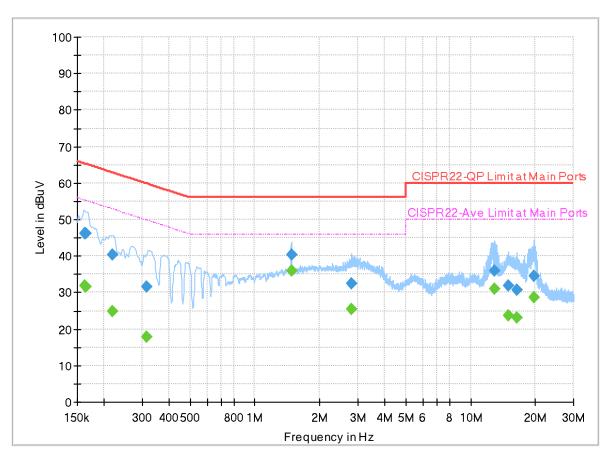


Appendix B. AC Conducted Emission Test Results

Test Engineer :		Temperature :	23.3~24.8 ℃
Test Engineer .		Relative Humidity :	45.2~48.9%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 212127 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.162690		29.77	55.33	25.56	L1	OFF	19.7
0.162690	43.20		65.33	22.13	L1	OFF	19.7
0.334590		24.88	49.34	24.46	L1	OFF	19.7
0.334590	38.27		59.34	21.07	L1	OFF	19.7
0.429000		28.97	47.27	18.30	L1	OFF	19.7
0.429000	38.86		57.27	18.41	L1	OFF	19.7
1.474530		38.97	46.00	7.03	L1	OFF	19.7
1.474530	43.56		56.00	12.44	L1	OFF	19.7
3.927210		21.36	46.00	24.64	L1	OFF	19.8
3.927210	30.75		56.00	25.25	L1	OFF	19.8
12.964380		32.10	50.00	17.90	L1	OFF	19.9
12.964380	37.33		60.00	22.67	L1	OFF	19.9
19.587750		31.16	50.00	18.84	L1	OFF	20.0
19.587750	38.53		60.00	21.47	L1	OFF	20.0

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 212127 Mode 1 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.163140		31.77	55.30	23.53	Ν	OFF	19.7
0.163140	46.30		65.30	19.00	Ν	OFF	19.7
0.163500		31.55	55.28	23.73	Ν	OFF	19.7
0.163500	46.18		65.28	19.10	Ν	OFF	19.7
0.219120		24.83	52.85	28.02	Ν	OFF	19.7
0.219120	40.41		62.85	22.44	Ν	OFF	19.7
0.314970		17.89	49.84	31.95	Ν	OFF	19.7
0.314970	31.72		59.84	28.12	Ν	OFF	19.7
1.475520		35.91	46.00	10.09	Ν	OFF	19.7
1.475520	40.42		56.00	15.58	Ν	OFF	19.7
2.810670		25.50	46.00	20.50	Ν	OFF	19.7
2.810670	32.35		56.00	23.65	Ν	OFF	19.7
12.965190		30.93	50.00	19.07	Ν	OFF	19.9
12.965190	36.04		60.00	23.96	Ν	OFF	19.9
14.916660		23.56	50.00	26.44	Ν	OFF	19.9
14.916660	31.91		60.00	28.09	Ν	OFF	19.9
16.332000		23.19	50.00	26.81	Ν	OFF	19.9
16.332000	30.61		60.00	29.39	Ν	OFF	19.9
19.677750		28.79	50.00	21.21	Ν	OFF	19.9
19.677750	34.38		60.00	25.62	Ν	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engin	00r ·	Andy Yang, Karl Hou and Wilson Wu	Temperature :	20~25°C
iest Engli			Relative Humidity :	50~60%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2374.995	45.76	-28.24	74	40.27	27.3	8.27	30.08	206	131	Ρ	Н
		2374.995	20.97	-33.03	54	-	-	-	-	-	-	А	Н
	*	2402	101.96	-	-	96.3	27.41	8.32	30.07	206	131	Р	Н
	*	2402	77.17	-	-	-	-	-	-	-	-	А	Н
вт													Н
CH00													Н
2402MHz		2389.38	47.14	-26.86	74	41.55	27.36	8.3	30.07	107	103	Р	V
		2389.38	22.35	-31.65	54	-	-	-	-	-	-	А	V
	*	2402	103.26	-	-	97.6	27.41	8.32	30.07	107	103	Р	V
	*	2402	78.47	-	-	-	-	-	-	-	-	А	V
													V
													V
		2328.62	45.99	-28.01	74	40.74	27.16	8.18	30.09	176	131	Ρ	Н
		2328.62	21.2	-32.8	54	-	-	-	-	-	-	А	Н
	*	2441	102.26	-	-	96.37	27.56	8.39	30.06	176	131	Ρ	н
	*	2441	77.47	-	-	-	-	-	-	-	-	А	Н
DT.		2487.54	46.85	-27.15	74	40.58	27.83	8.48	30.04	176	131	Ρ	Н
ВТ СН 39		2487.54	22.06	-31.94	54	-	-	-	-	-	-	А	н
сп зэ 2441MHz		2342.48	45.77	-28.23	74	40.48	27.18	8.2	30.09	100	114	Ρ	V
2441101112		2342.48	20.98	-33.02	54	-	-	-	-	-	-	А	V
	*	2441	104.94	-	-	99.05	27.56	8.39	30.06	100	114	Р	V
	*	2441	80.15	-	-	-	-	-	-	-	-	А	V
		2487.12	47.4	-26.6	74	41.14	27.82	8.48	30.04	100	114	Р	V
		2487.12	22.61	-31.39	54	-	-	-	-	-	-	А	V

	*	2480	101.58	-	-	95.39	27.78	8.46	30.05	139	127	Р	Н
	*	2480	76.79	-	-	-	-	-	-	-	-	А	Н
		2487.96	47.24	-26.76	74	40.97	27.83	8.48	30.04	139	127	Р	Н
		2487.96	22.45	-31.55	54	-	-	-	-	-	-	А	Н
DT													Н
ВТ СН 78													Н
СП 78 2480MHz	*	2480	104.7	-	-	98.51	27.78	8.46	30.05	100	96	Р	V
240010112	*	2480	79.91	-	-	-	-	-	-	-	-	А	V
		2486.84	48.36	-25.64	74	42.1	27.82	8.48	30.04	100	96	Р	V
		2486.84	23.57	-30.43	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lir	nit line.							

2.4GHz 2400~2483.5MHz

													r
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		4804	44.79	-29.21	74	55.27	32.41	12.35	55.24	-	-	Р	Н
		4804	20	-34	54	-	-	-	-	-	-	А	н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
вт													Н
CH 00		4004	40.05	07.05	74	50.00	22.44	40.05	55.04	-		Р	H
2402MHz		4804	46.35	-27.65	74	56.83	32.41	12.35	55.24		-		V
		4804	21.56	-32.44	54	-	-	-	-	-	-	A	V
													V
													V V
													V
													V
													v
													V
													V
													V
													V
						I							

BT (Harmonic @ 3m)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4882	42.06	-31.94	74	52.45	32.63	12.32	55.34	-	-	P	Н
		4882	17.27	-36.73	54	-	-	-	-	-	-	А	Н
		7323	46.27	-27.73	74	49.28	36.75	15.89	55.65	-	-	Ρ	Н
		7323	21.48	-32.52	54	-	-	-	-	-	-	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
вт													Н
CH 39													Н
2441MHz		4882	43.02	-30.98	74	53.41	32.63	12.32	55.34	-	-	Р	V
24411112		4882	18.23	-35.77	54	-	-	-	-	-	-	А	V
		7323	45.5	-28.5	74	48.51	36.75	15.89	55.65	-	-	Р	V
		7323	20.71	-33.29	54	-	-	-	-	-	-	А	V
													V
													V
													V
													V
													V
													V
													V
													V

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	40.67	-33.33	74	50.81	33.02	12.28	55.44	-	-	Р	Н
		4960	15.88	-38.12	54	-	-	-	-	-	-	Α	Н
		7440	45.19	-28.81	74	48.44	36.22	16.2	55.67	-	-	Р	Н
		7440	20.4	-33.6	54	-	-	-	-	-	-	Α	н
													Н
													Н
													Н
													Н
													Н
													Н
вт													Н
CH 78													Н
2480MHz		4960	42.8	-31.2	74	52.94	33.02	12.28	55.44	-	-	Р	V
		4960	18.01	-35.99	54	-	-	-	-	-	-	A	V
		7440	45.68	-28.32	74	48.93	36.22	16.2	55.67	-	-	Р	V
		7440	20.89	-33.11	54	-	-	-	-	-	-	A	V
													V
													V
													V
													V
													V
													V
													V
			· · ·										V
		lo other spuriou		De els	A	it line							
Remark		Il results are PA	-		-		ission found	h with out	ficient mar	ain agai	net limit	line or	noice
		oor only.	Suon marked	ids - 11	ieans no sus	pected em	1991011 100110	a with SUF	ncient mar	yin agai	1151 111111	inie of	noise
	1	oor only.											

Emission below 1GHz

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		149.31	24.38	-19.12	43.5	37.14	17.27	2.23	32.26	-	-	Р	Н
		268.62	28.28	-17.72	46	38.29	19.35	2.9	32.26	-	-	Р	Н
		316.15	32.06	-13.94	46	41.65	19.53	3.15	32.27	-	-	Р	Н
		886.51	37.39	-8.61	46	34.95	28.86	5.23	31.65	-	-	Ρ	Н
		890.39	38.76	-7.24	46	36.25	28.87	5.26	31.62	-	-	Ρ	Н
		901.06	38.75	-7.25	46	35.98	29.02	5.28	31.53	-	-	Р	H H
													н
													н
													Н
2.4GHz													H H
BT		64.92	28.66	-11.34	40	47.49	12	1.44	32.27	-	-	Р	V
LF		74.62	28.15	-11.85	40	46.06	12.84	1.56	32.31	-	-	Ρ	V
		124.09	26.39	-17.11	43.5	39.14	17.53	1.99	32.27	-	-	Ρ	V
		741.98	37.37	-8.63	46	36.94	28.05	4.73	32.35	-	-	Ρ	V
		889.42	38.5	-7.5	46	36.01	28.87	5.25	31.63	-	-	Ρ	V
		902.03	37.74	-8.26	46	34.94	29.04	5.29	31.53	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
Remark	2. All	o other spurious results are PA e emission pos	SS against li		eans no sus	pected err	nission foun	d and em	ission leve	el has a	t least 60	dB ma	rgin
		ainst limit or er											-

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

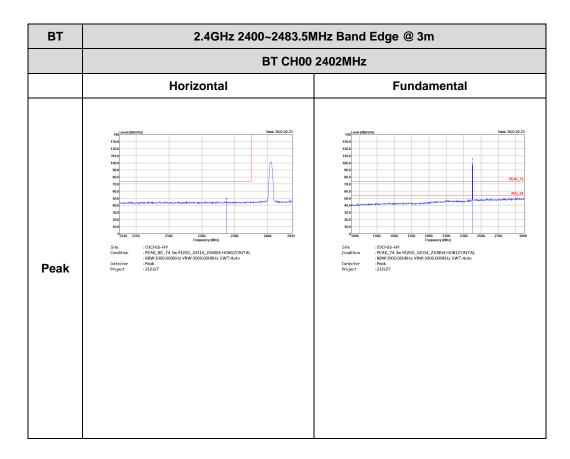
Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

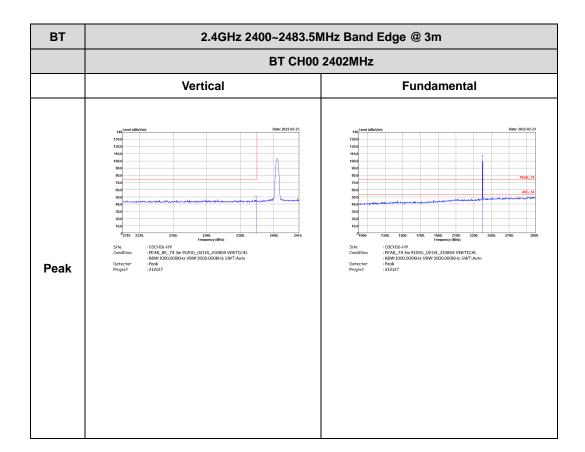
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

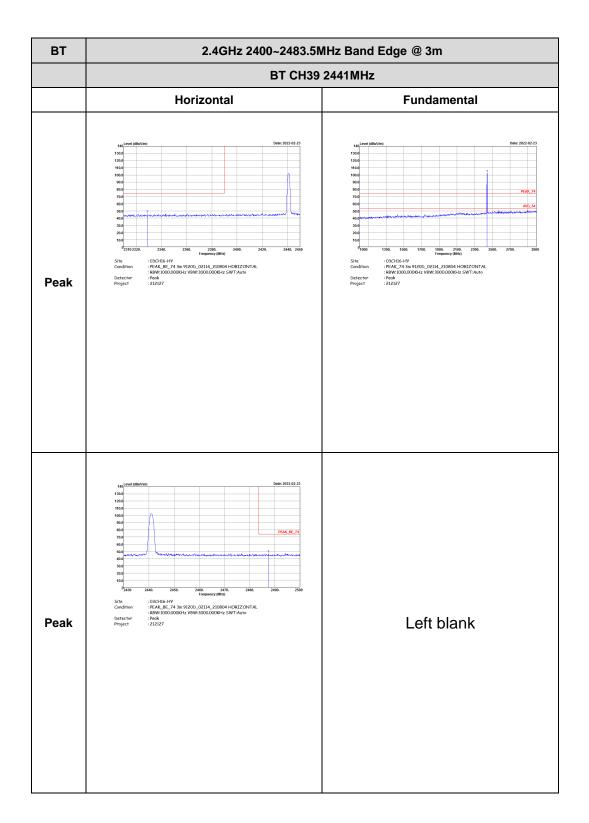
Peak measured complies with the limit line, so test result is "PASS".

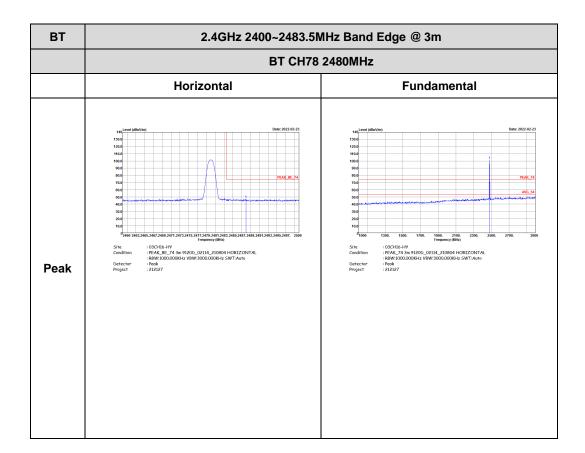


Appendix D. Radiated Spurious Emission Plots


Test Engineer :	Andy Yang, Karl Hou and Wilson Wu	Temperature :	20~25°C
Test Engineer .		Relative Humidity :	50~60%

2.4GHz 2400~2483.5MHz


BT (Band Edge @ 3m)

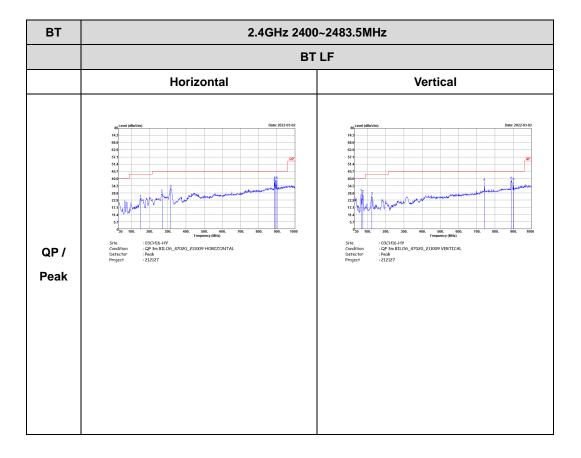


2.4GHz 2400~2483.5MHz

ΒT 2.4GHz 2400~2483.5MHz Harmonic @ 3m BT CH00 2402MHz Horizontal Vertical 130.0 120.0 110.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 12000. 14000. 14000. : 03CH16-I : PEAK_74 : Peak : 212127 : 03CH16-H : PEAK_74 : Peak : 212127 Site Condition Detector Project Site Condition Detector _02114_210804 HORIZONTA 02114_210804 VERTICA Peak Avg.

BT (Harmonic @ 3m)

ВТ	2.4GHz 2400~2483.5MHz Harmonic @ 3m BT CH39 2441MHz							
	Horizontal	Vertical						
Peak Avg.	<text></text>	<text></text>						



вт	2.4GHz 2400~2483.5MHz Harmonic @ 3m								
	BT CH78 2480MHz								
	Horizontal	Vertical							
Peak Avg.	MeridiationDescriptionImage: constrained a state of the state of t	<text></text>							

Emission below 1GHz

2.4GHz BT (LF)

Appendix E. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39	on time (Count Pulses) Plot on Channel 39
RF 50 Ω AC SENSE:INT 12:49:32 AM Feb 23, 2022 Mark cer 3 Δ 3, 75000 ms #Avg Type: RMS TRACE 12:33:45.6 Mark	
NFE PND: Fast Trig: Free Run iFGaint.cow Trig: Free Run & Atten: 10 dB Trig: Www.www. ceil P P P P P P P AMkr3 3,750 ms Bidliv Ref 106.99 dBμV 0.06 dB	arker 3 3 10 dB/div Ref 106.99 dBµV PRO Fail → Trig: Free Run IFGaint.ow #Atten: 10 dB 10 dB/div Ref 106.99 dBµV PRO Fail → Trig: Free Run IFGaint.ow #Atten: 10 dB Mkr1 19.70 ms 98.96 dBµV
	lormal group Peak
	Delta 000 Cont 77.0 Cont 000 C
	Fixed?
er 2.44 000000 GHz Span 0 Hz BW 1.0 MHz \$\$\$\$ \$\$\$\$\$ \$	on so phythy and my and the set of the set o
Δ2 t (Δ) 2.880 ms (Δ) 2.91 dB F t 2.500 ms (Δ) 3.840 μ/ Δ4 t (Δ) 3.750 ms (Δ) 0.06 dB F t 2.590 ms (Δ) 95.83 dBμ/ =	erties> 270 Min 1
	More 1 of 2 Center 2.441000000 GHz Span 0 Hz
Suffix not allowed	Res BW 1.0 MHz #VBW 1.0 MHz Sweep 100.0 ms (1001 pts)

Note:

1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %

- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$