

FCC RADIO TEST REPORT

FCC ID	:	2AFZZ117SY
Equipment	:	Mobile Phone
Brand Name	:	Redmi
Model Name	:	2201117SY
Applicant	:	Xiaomi Communications Co., Ltd.
		#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Manufacturer	:	Xiaomi Communications Co., Ltd.
		#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Dec. 01, 2021 and testing was performed from Dec. 09, 2021 to Dec. 21, 2021. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. Wensan Laboratory No. 58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan

Table of Contents

Summary of Test Result	His	tory o	f this test report	3
1.1 Product Feature of Equipment Under Test. 1.2 Modification of EUT 1.3 Testing Location 1.4 Applicable Standards. 2 Test Configuration of Equipment Under Test 2.1 Carrier Frequency Channel 2.2 Test Mode 2.3 Connection Diagram of Test System 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Band Edges and Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements	Sur	mmary	/ of Test Result	4
1.2 Modification of EUT 1.3 Testing Location 1.4 Applicable Standards. 2 Test Configuration of Equipment Under Test 2.1 Carrier Frequency Channel 2.2 Test Mode 2.3 Connection Diagram of Test System 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements	1	Gene	ral Description	5
1.3 Testing Location 1.4 Applicable Standards. 2 Test Configuration of Equipment Under Test 2.1 Carrier Frequency Channel 2.2 Test Mode 2.3 Connection Diagram of Test System 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements		1.1	Product Feature of Equipment Under Test	5
1.4 Applicable Standards. 2 Test Configuration of Equipment Under Test. 2.1 Carrier Frequency Channel 2.2 Test Mode. 2.3 Connection Diagram of Test System. 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements		1.2	Modification of EUT	5
2 Test Configuration of Equipment Under Test 2.1 Carrier Frequency Channel 2.2 Test Mode 2.3 Connection Diagram of Test System 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements 4 List of Measuring Equipment		1.3	Testing Location	6
2.1 Carrier Frequency Channel 2.2 Test Mode 2.3 Connection Diagram of Test System 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements		1.4	Applicable Standards	6
2.2 Test Mode. 2.3 Connection Diagram of Test System 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements	2	Test	Configuration of Equipment Under Test	7
2.3 Connection Diagram of Test System 2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements		2.1	Carrier Frequency Channel	7
2.4 Support Unit used in test configuration and system 2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements		2.2	Test Mode	8
2.5 EUT Operation Test Setup 2.6 Measurement Results Explanation Example 3 Test Result 3.1 Number of Channel Measurement 3.2 Hopping Channel Separation Measurement 3.3 Dwell Time Measurement 3.4 20dB and 99% Bandwidth Measurement 3.5 Output Power Measurement 3.6 Conducted Band Edges Measurement 3.7 Conducted Spurious Emission Measurement 3.8 Radiated Band Edges and Spurious Emission Measurement 3.9 AC Conducted Emission Measurement 3.10 Antenna Requirements 4 List of Measuring Equipment		2.3	Connection Diagram of Test System	9
2.6 Measurement Results Explanation Example 1 3 Test Result 1 3.1 Number of Channel Measurement 1 3.2 Hopping Channel Separation Measurement 1 3.3 Dwell Time Measurement 1 3.4 20dB and 99% Bandwidth Measurement 1 3.5 Output Power Measurement 1 3.6 Conducted Band Edges Measurement 2 3.7 Conducted Spurious Emission Measurement 2 3.8 Radiated Band Edges and Spurious Emission Measurement 2 3.9 AC Conducted Emission Measurement 2 3.10 Antenna Requirements 2 4 List of Measuring Equipment 4		2.4	Support Unit used in test configuration and system	9
3 Test Result		2.5	EUT Operation Test Setup	9
3.1 Number of Channel Measurement 1 3.2 Hopping Channel Separation Measurement 1 3.3 Dwell Time Measurement 1 3.4 20dB and 99% Bandwidth Measurement 1 3.5 Output Power Measurement 1 3.6 Conducted Band Edges Measurement 2 3.7 Conducted Spurious Emission Measurement 2 3.8 Radiated Band Edges and Spurious Emission Measurement 3 3.9 AC Conducted Emission Measurement 2 3.10 Antenna Requirements 2		2.6	Measurement Results Explanation Example	10
 3.2 Hopping Channel Separation Measurement	3	Test	Result	11
3.3 Dwell Time Measurement 1 3.4 20dB and 99% Bandwidth Measurement 1 3.5 Output Power Measurement 1 3.6 Conducted Band Edges Measurement 2 3.7 Conducted Spurious Emission Measurement 2 3.8 Radiated Band Edges and Spurious Emission Measurement 3 3.9 AC Conducted Emission Measurement 2 3.10 Antenna Requirements 2 4 List of Measuring Equipment 2		3.1	Number of Channel Measurement	11
 3.4 20dB and 99% Bandwidth Measurement		3.2	Hopping Channel Separation Measurement	13
 3.5 Output Power Measurement		3.3	Dwell Time Measurement	17
 3.6 Conducted Band Edges Measurement. 3.7 Conducted Spurious Emission Measurement		3.4	20dB and 99% Bandwidth Measurement	19
 3.7 Conducted Spurious Emission Measurement		3.5	Output Power Measurement	26
 3.8 Radiated Band Edges and Spurious Emission Measurement		3.6	Conducted Band Edges Measurement	27
 3.9 AC Conducted Emission Measurement		3.7	Conducted Spurious Emission Measurement	32
 3.10 Antenna Requirements		3.8	Radiated Band Edges and Spurious Emission Measurement	39
4 List of Measuring Equipment		3.9	AC Conducted Emission Measurement	43
		3.10	Antenna Requirements	45
	4	List c	of Measuring Equipment	46
5 Uncertainty of Evaluation	5	Unce	rtainty of Evaluation	48
Appendix A. Conducted Test Results	Арј	pendix	A. Conducted Test Results	
Appendix B. AC Conducted Emission Test Result	Ap	pendix	B. AC Conducted Emission Test Result	
Appendix C. Radiated Spurious Emission	Арј	pendix	C. Radiated Spurious Emission	
Appendix D. Radiated Spurious Emission Plots	Арј	pendix	CD. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR1N3028A	01	Initial issue of report	Dec. 29, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	9.04 dB under the limit at 17955.000 MHz
3.9	15.207	AC Conducted Emission	Pass	9.50 dB under the limit at 0.161 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Danny Lee

Report Producer: Amy Chen

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, NFC, FM Receiver, and GNSS.

Product Feature			
Sample 1 6G+128GB with Battery 1			
Sample 2	8G+128GB with Battery 2		
Sample 3	6G+64GB with Battery 1		
Antenna Type	WWAN: PIFA Antenna WLAN: PIFA Antenna Bluetooth: PIFA Antenna GPS/Glonass/BDS/Galileo/SBAS : PIFA Antenna NFC: Planar Antenna FM: Using earphone as Antenna		
Antenna Information			

2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-0.31	

Remark: The above EUT's information is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
Test Sile No.	CO05-HY (TAF Code: 1190)		
Remark	The Conducted Emission test item subcontracted to Sporton International		
Kelliark	Inc. EMC & Wireless Communications Laboratory.		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Sporton Site No. TH05-HY, 03CH16-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

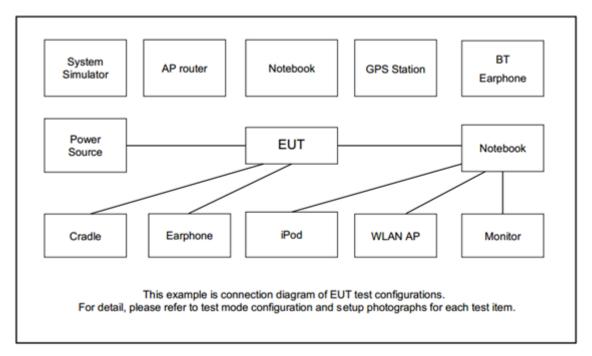
- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	Bluetooth BR 1Mbps GFSK					
Radiated		Mode 1: CH00_2402 MHz				
Test Cases		Mode 2: CH39_2441 MHz				
		Mode 3: CH78_2480 MHz				
AC Conducted	Mode 1: LTE Band 4 Idle + E	Bluetooth Link + WLAN (2.4GH	z) Link + NFC On + Earphone			
Emission	+ USB Cable 1 (Da	ta Link with Notebook) for Sam	ple 1			
 Remark: For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission. For Radiated Test Cases, the tests were performed with USB Cable 2 and Sample 1. Data Link with Notebook means data application transferred mode between EUT and Notebook. 						

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8m
4.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0m	N/A
		Dell	Latitude 3400	FCC DoC	N/A	AC I/P:
5.	Notebook					Unshielded, 1.2m
5.						DC O/P:
						Shielded, 1.8m
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
7.	Earphone	MI	EM023	N/A	UnShielded, 1.2m	N/A
8.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, make the EUT (SW: 11 RP1A.200720.011) get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

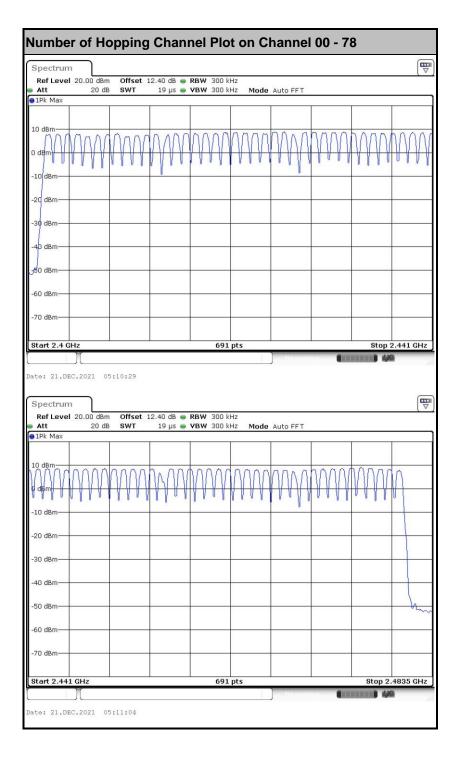
3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


Spectrum Analyzer

EUT

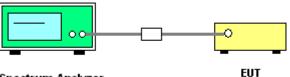
3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

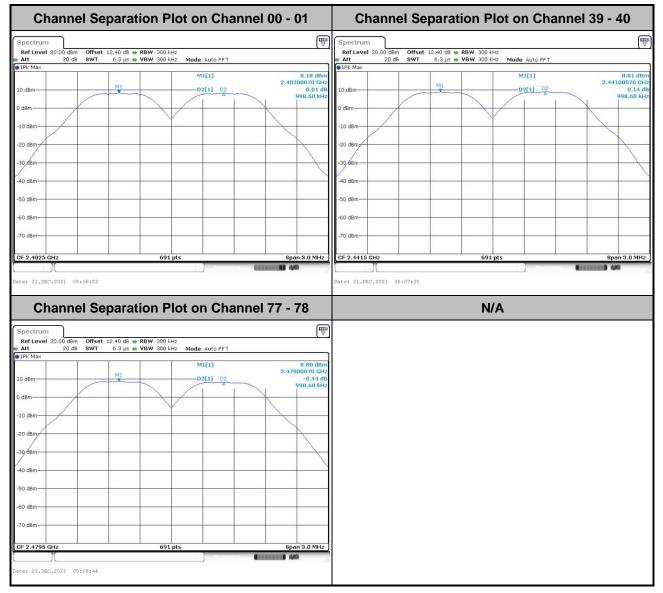

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

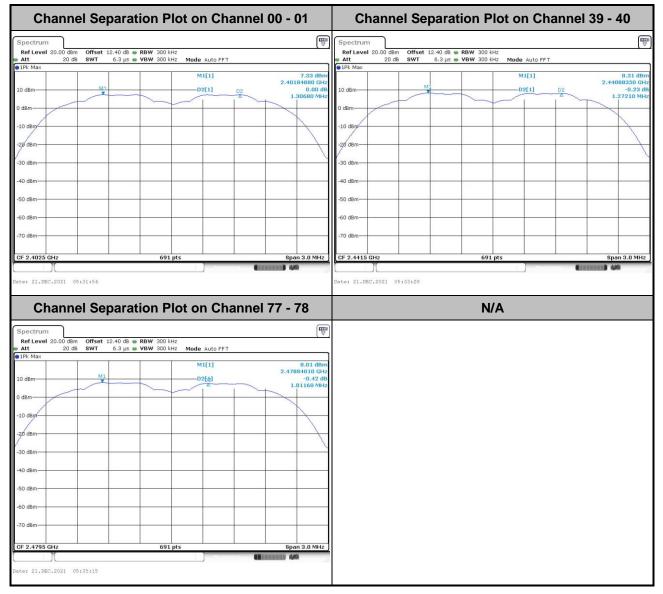
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

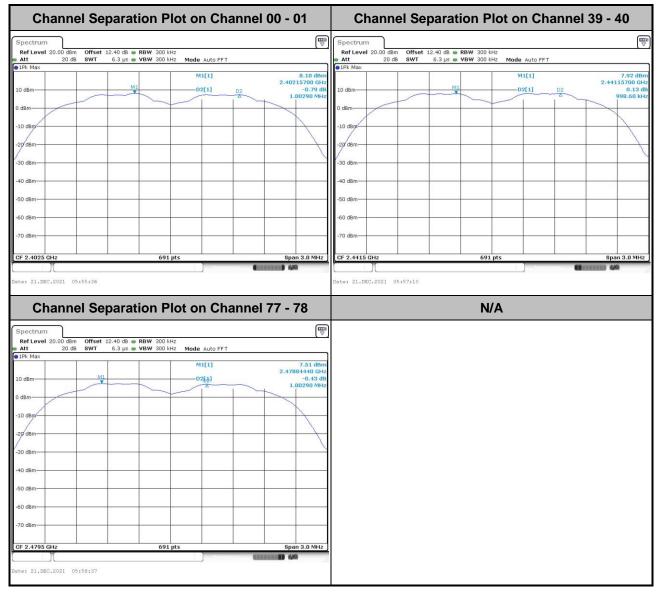

Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.



<1Mbps>



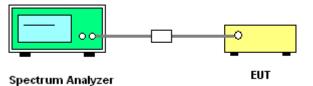
<2Mbps>

<3Mbps>

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

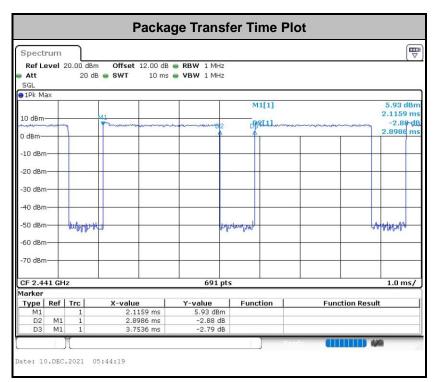
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

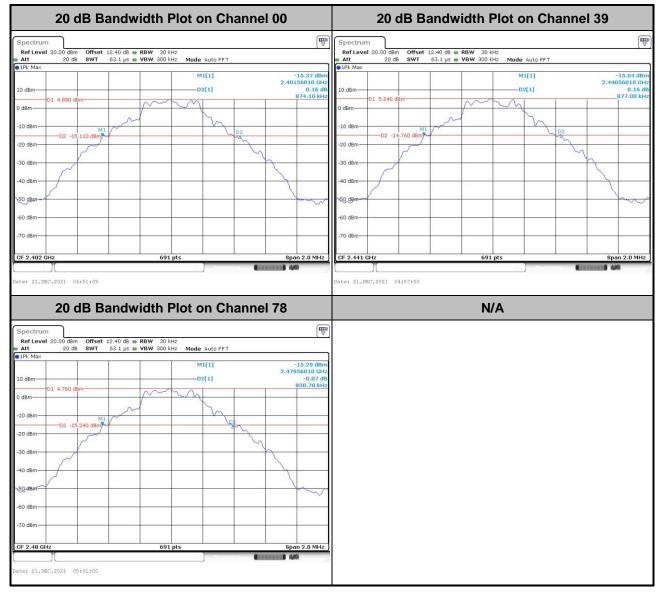
3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

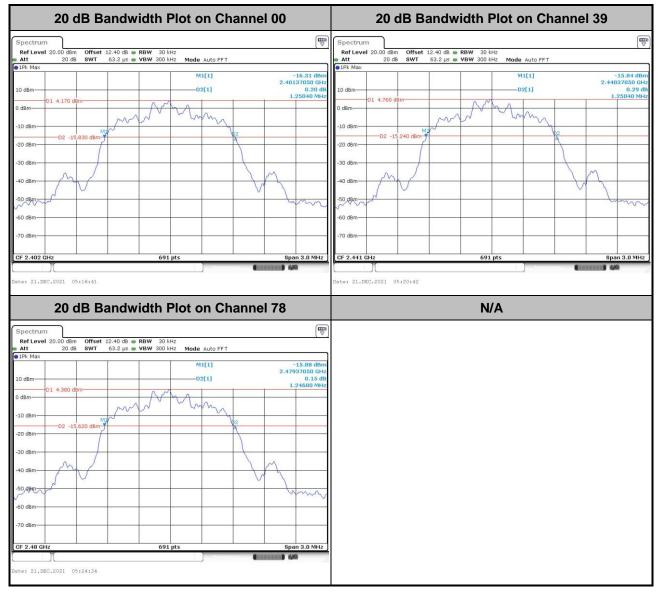
3.4.4 Test Setup


Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

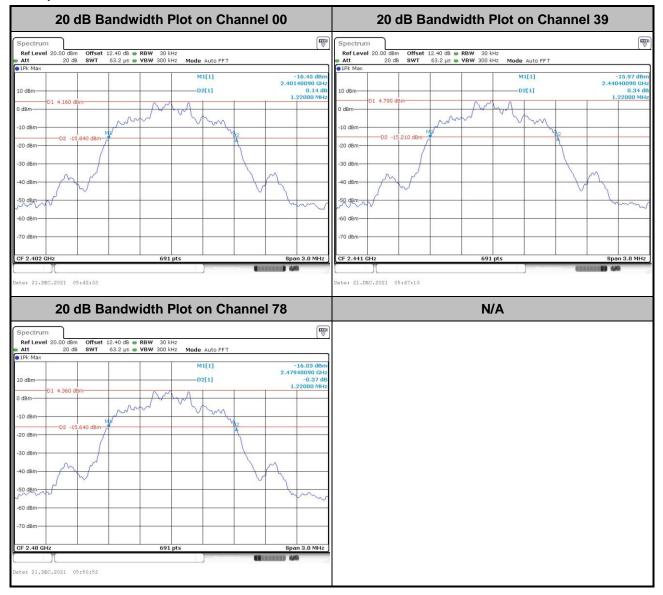
Please refer to Appendix A.

<1Mbps>



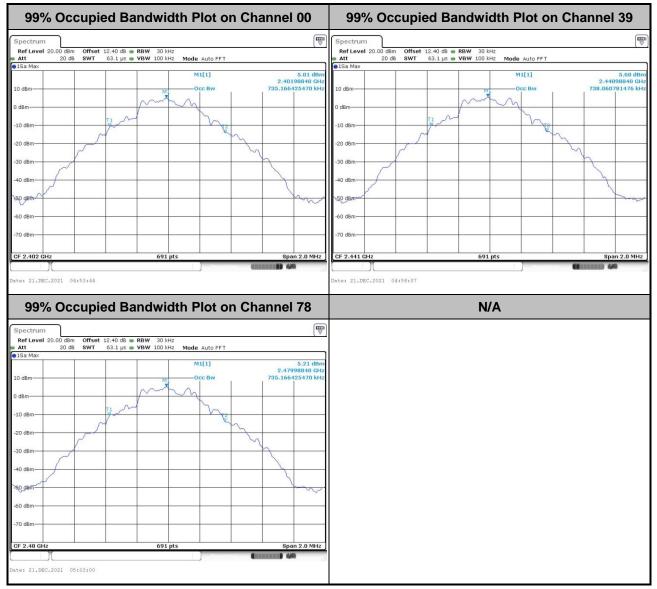
: 21 of 48

: 01


: Dec. 29, 2021

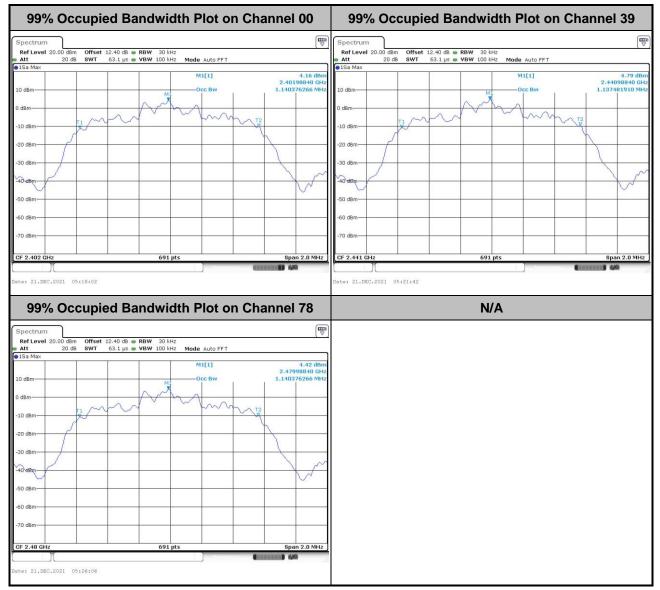
<2Mbps>

<3Mbps>

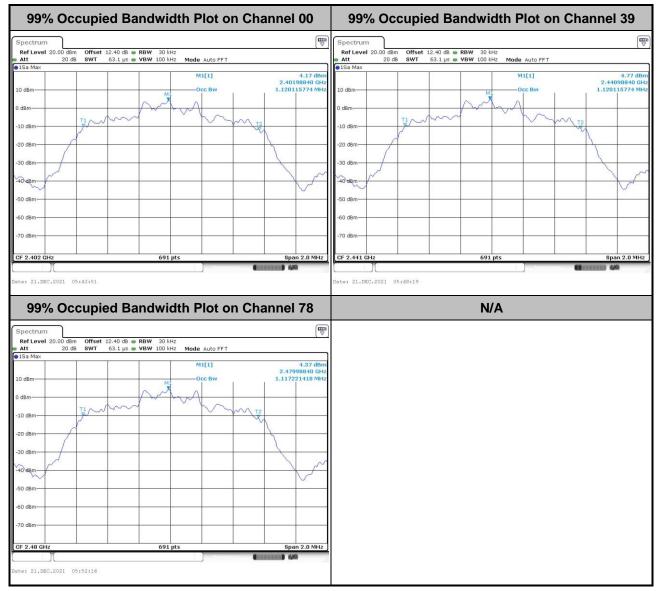


3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

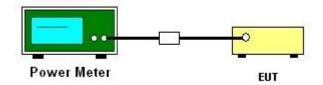
<3Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

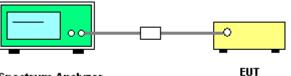
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

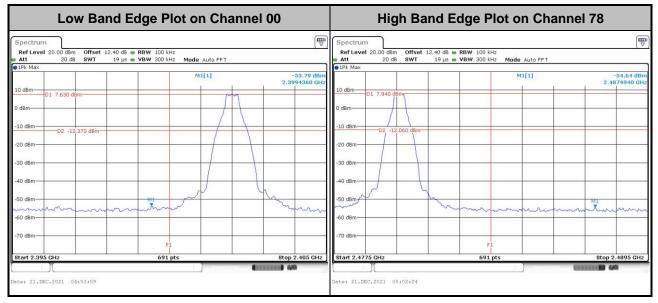

3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup



Spectrum Analyzer

3.6.5 Test Result of Conducted Band Edges

<1Mbps>

<2Mbps>

Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 78
Ref Lavel 20.00 dBm Offset 12.40 dB ■ RBW 100 kHz	Spectrum Image: Constraint of the second seco
10 d6m 52.15 d6m 10 d6m 2.3994930 GHz 0 d8m - -10 d8m - -20 d8m - -30 d8m - -30 d8m - -70 d8m - -70 d8m - -70 d8m -	M1[1] -50 dBm -70 dBm
Start 2.395 GHz 691 pts Stop 2.405 GHz Date: 21.0EC.2021 05:17:26	Start 2.4775 GHz 691 pts Stop 2.4895 GHz Date: 21.DBC.2021 05:25:23

<3Mbps>

Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 78				
Spectrum The sector of the secto	Spectrum Image: Construction of the sector of				
	PPk Max M1[1] -54.71 dBm 2.4872860 GHz 01 7.480 dBm 01 7.480 dBm				
0 dBm	o dBm				
-10 dBm 02 -12.810 dBm	-10 dBm				
-30 d8m-	-30 dBm / / / / / / / / / / / / / / / / / / /				
-50 d8m	-50 d8m				
-70 dBm F1	-70 dBm F1				
start 2.395 GHz 691 pts Stop 2.405 GHz	Start 2.4775 GHz 691 pts Stop 2.4895 GHz				
Date: 21.DEC.2021 05:43:16	Date: 21.DEC.2021 05:51:40				

3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>

Spectrum Spectrum	Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot					
-30 dem	Spectrum Image: Constraint of the sector of th	Spectrum Image: Constraint of the second seco					
-70 dBm	-30 dBm	-30 dbm					
	-70 dBm F1 Start 2.395 CHz 691 pts Stop 2.405 CHz	-70 dBm F1 Start 2.4775 GHz 691 pts Stop 2.4895 GHz					

<2Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot					
Spectrum Image: Constraint of the sector of t	Spectrum TTD Ref Level 20.00 dBm Offset 12.40 dB = RBW 100 kHz Att 20 dB SWT 9 JPk Max Mode Auto FFT 0 dBm M1[1] -54.44 dBm 10 dBm					
01 7.240 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm 02 -12 110 dBm					
Terrete (Internet 49	-50 dBm -60 dBm -70					

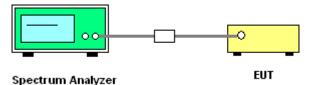
<3Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot					
Spectrum The sector of the secto	Spectrum Image: Construction of the sector of					
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm	10 dbm 01 7.690 dbm d dbm 02 -12.310 dbm -20 dbm -30 dbm -50 d					
-60 dBm -70 dBm -70 dBm -70 dBm F1 Start 2.395 GHz Stop 2.405 GHz Date: 21.DEC.2021 06:00:24	-60 dBm -70 dBm F1 Start 2.4775 GHz 691 pts Stop 2.4895 GHz Cate: 21.DBC.2021 06:01:07					

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

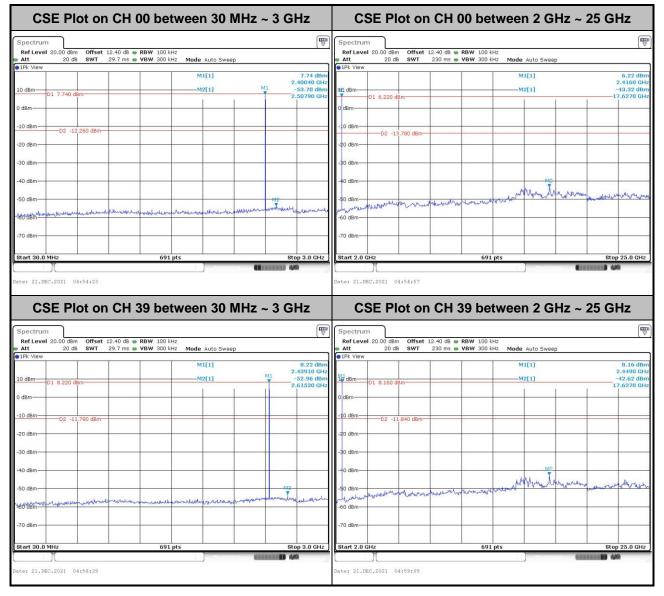

3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

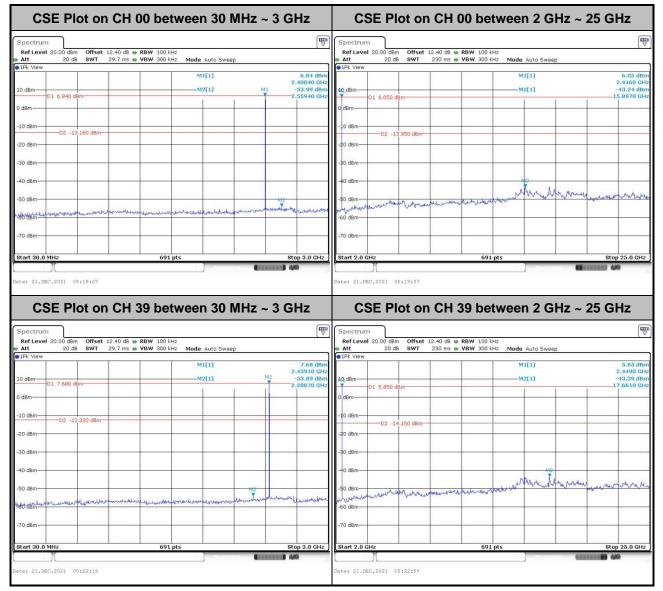
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

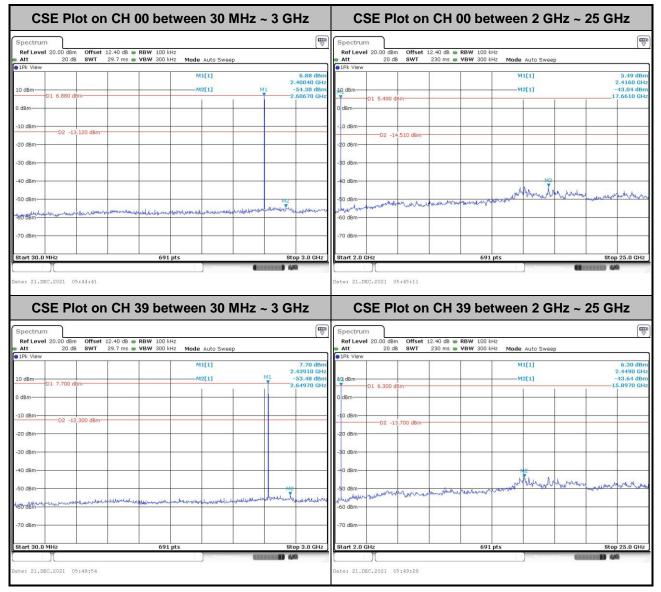


TEL : 886-3-327-0868 FAX : 886-3-327-0855 Report Template No.: BU5-FR15CBT Version 2.4

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on CH 7	8 between 30 MH	lz ~ 3 GHz	CSE	Plot on CH	78 betwee	en 2 GHz	~ 25 GHz
Spectrum Ref Level 20.00 dBm Offset 12.40 dB Att 20 dB SWT 29.7 ms			Spectrum Ref Level 20.0		 RBW 100 kHz VBW 300 kHz Mod 		
1Pk View	BW 300 KH2 Mode Auto Sweep		1Pk View	20 00 3W1 250 ms	. YOW SUU KH2 MOC	e Auto Sweep	
10 dBm 01 7.680 dBm	M1[1] M2[1] M		10 dBm	230 dBm		7.23 dBn 2.4830 GH -43.73 dBn 15.8630 GH	
0 dBm			0 dBm				
-10 dBm D2 -12.320 dBm			-10 dBm	02 -12.770 dBm			
-20 dBm			-20 dBm				
-30 dBm			-30 dBm				
-40 dBm			-40 dBm			which the w	Ka sanata
-50 dBm	الملاز المحادث المداعين والمعاد المحادث والمحادث المحادث المحاد	were were the orthogen adjuster	-SO dBm-	wasselywardenaut	and the state of the second second	a lader the state	mul warman and
"\$60'dBm-			-60 dBm				
-70 dBm			-70 dBm				
Start 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz		691 pts		Stop 25.0 GHz
Date: 21.DEC.2021 05:03:36		(mmm) 44	Date: 21.DEC.202	21 05:04:12		Messining	······································
			termine and the second s	en an - Long Provincementer Frank III			


<2Mbps>

CSE Plot on CH 7	78 between 30 M	Hz ~ 3 GHz	CSE	E Plot on C	H 78 bet	ween 2 G	Hz ~ 25	GHz
	RBW 100 kHz VBW 300 kHz Mode Auto Sweep		Spectrum Ref Level 20 Att		dB - RBW 100 kHz ms - VBW 300 kHz)	
10 dBm 01 7.310 dBm 0 dBm 01 7.310 dBm 0 dBm 02 -12.690 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm	M1[1] 	2.64970 GHz	0 dBm	-02 -13,660 dBm	and the second sec	M1[1] M2[1]	And Marken and a star	6.34 dBn 2.4830 GH: -42.45 dBn -17.6270 GH:
Start 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz	2021 05:29:49	691 p	ts Measured		Stop 25.0 GHz

<3Mbps>

CSE Plot on CH 7	78 between 30 M	Hz ~ 3 GHz	CSE Plot o	on CH 78 betweer	n 2 GHz ~ 25 GHz
Spectrum Ref Level 20.00 dBm Offset 12.40 dB .	28W 100 kHz		Spectrum Ref Level 20.00 dBm Offs	set 12.40 dB 👄 RBW 100 kHz	(The second seco
	VBW 300 kHz Mode Auto Sweep		Att 20 dB SW		Auto Sweep
●1Pk View			1Pk View		
10 dBm 01 6.630 dBm	M1[1] M2[1]	6.63 dBm 2.48210 GHz M1 -53.96 dBm 7 2.56370 GHz	10 dBm		1[1] 5.07 dBr 2.4830 GH 2[1] -42.80 dBr 17.6270 GH
0 dBm			0 dBm		
-10 dBm			-10 dBm	Bm	
-30 dBm			-30 dBm		
-40 dBm		M2	-40 dBm	reversion was and a second and a second	Noe Mummun manus marine
-50 dBm-	Auranneterschalterson and and	molden and the second	-60 dBm		
-70 dBm			-70 dBm		
Start 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz	691 pts	Stop 25.0 GHz
Date: 21.DEC.2021 05:53:19	Ziewinder	(IIIII) 49	Date: 21.DEC.2021 05:53:5	3	Manager (Internet) 4/9

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

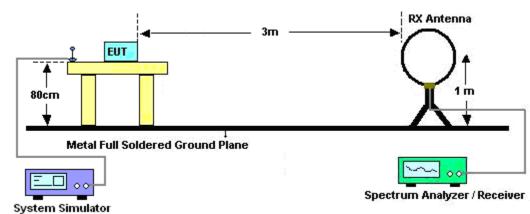
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

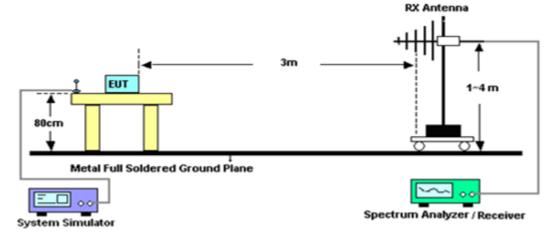
3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

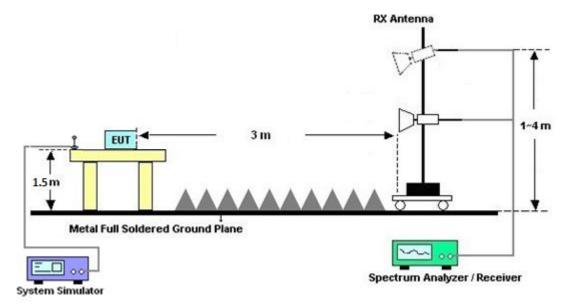
3.8.3 Test Procedures

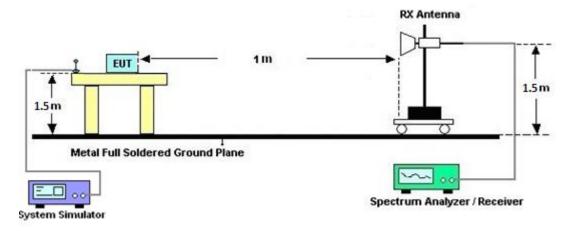

- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log (Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.81dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated test below 30MHz



For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 AC Conducted Emission Measurement

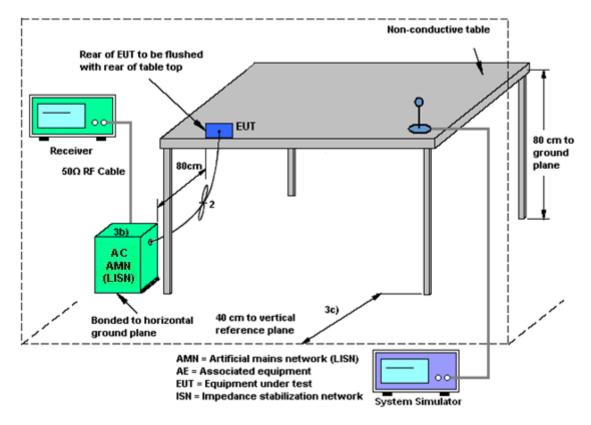
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

	D				Calibration			
Instrument	Brand Name	Model No.	Serial No.	Characteristics	Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 07, 2021	Dec. 10, 2021~ Dec. 20, 2021	Sep. 06, 2022	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N-06	47020 & 06	30MHz to 1GHz	Oct. 09, 2021	Dec. 10, 2021~ Dec. 20, 2021	Oct. 08, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	9120D-02114	1G~18GHz	Aug. 04, 2021	Dec. 10, 2021~ Dec. 20, 2021	Aug. 03, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	9120D-1522	1G~18GHz	Oct. 12, 2021	Dec. 10, 2021~ Dec. 20, 2021	Oct. 11, 2022	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZB ECK	BBHA 9170	00991	18GHz ~40GHz	May 12, 2021	Dec. 10, 2021~ Dec. 20, 2021	May 11, 2022	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1G	Jul. 05, 2021	Dec. 10, 2021~ Dec. 20, 2021	Jul. 04, 2022	Radiation (03CH16-HY)
Amplifier	EMCI	EMC051845SE	980729	1-18GHz	Jul. 09, 2021	Dec. 10, 2021~ Dec. 20, 2021	Jul. 08, 2022	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 22, 2021	Dec. 10, 2021~ Dec. 20, 2021	Jun. 21, 2022	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 09, 2021	Dec. 10, 2021~ Dec. 20, 2021	Dec. 08, 2022	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A	MY59053012	3Hz~26.5GHz	Nov. 18, 2021	Dec. 10, 2021~ Dec. 20, 2021	Nov. 17, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11680/4PE	NA	Aug. 28, 2021	Dec. 10, 2021~ Dec. 20, 2021	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11688/4PE	NA	Aug. 28, 2021	Dec. 10, 2021~ Dec. 20, 2021	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-57 57	NA	Aug. 28, 2021	Dec. 10, 2021~ Dec. 20, 2021	Aug. 27, 2022	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Dec. 10, 2021~ Dec. 20, 2021	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Dec. 10, 2021~ Dec. 20, 2021	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Dec. 10, 2021~ Dec. 20, 2021	N/A	Radiation (03CH16-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Jan. 14, 2021	Dec. 10, 2021~ Dec. 21, 2021	Jan. 13, 2022	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Jan. 14, 2021	Dec. 10, 2021~ Dec. 21, 2021	Jan. 13, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	Dec. 10, 2021~ Dec. 21, 2021	Aug. 29, 2022	Conducted (TH05-HY)
BT Base Station (Measure)	Rohde & Schwarz	CBT	101136	BT 3.0	Oct. 17, 2021	Dec. 10, 2021~ Dec. 21, 2021	Oct. 16, 2022	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW191204 (BOX8)	N/A	Jan. 07, 2021	Dec. 10, 2021~ Dec. 21, 2021	Jan. 06, 2022	Conducted (TH05-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Dec. 09, 2021	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Oct. 21, 2021	Dec. 09, 2021	Oct. 20, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2021	Dec. 09, 2021	Nov. 15, 2022	Conduction (CO05-HY)
Four Line V-Network	TESEQ	NNB 52	36122	N/A	Feb. 01, 2021	Dec. 09, 2021	Jan. 31, 2022	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Dec. 09, 2021	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Dec. 09, 2021	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020	Dec. 09, 2021	Dec. 30, 2021	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.1 dB
of 95% (U = 2Uc(y))	3.1 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	5.0 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

5.2 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.8 dB
--	--------

Report Number : FR1N3028A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Junyu Jhou	Temperature:	22.6~23.8	°C
Test Date:	2021/12/10~2021/12/21	Relative Humidity:	48.2~52.1	%

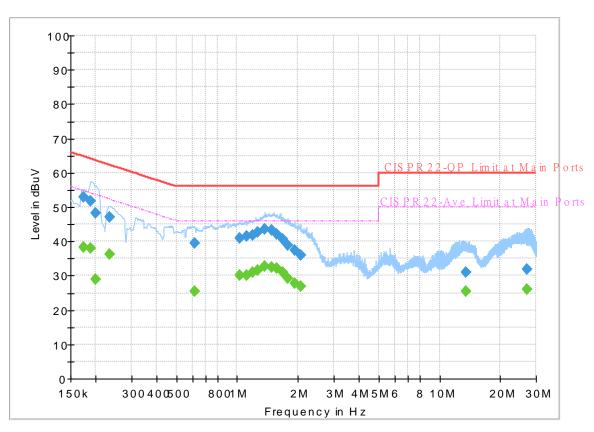
			20dB a	and 99	% Occup		<u>SULTS DATA</u> Ith and Hopping	Channel Sepai	ration
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.874	0.735	0.999	0.5827	Pass
DH	1Mbps	1	39	2441	0.877	0.738	0.999	0.5847	Pass
DH	1Mbps	1	78	2480	0.831	0.735	0.999	0.5538	Pass
2DH	2Mbps	1	0	2402	1.250	1.140	1.307	0.8336	Pass
2DH	2Mbps	1	39	2441	1.250	1.137	1.272	0.8336	Pass
2DH	2Mbps	1	78	2480	1.246	1.140	1.012	0.8307	Pass
3DH	3Mbps	1	0	2402	1.220	1.120	1.003	0.8133	Pass
3DH	3Mbps	1	39	2441	1.220	1.120	0.999	0.8133	Pass
3DH	3Mbps	1	78	2480	1.220	1.117	1.003	0.8133	Pass

	<u>TEST RESULTS DATA</u> Dwell Time							
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail		
Nomal	79	106.67	2.90	0.31	0.4	Pass		
AFH	20	53.33	2.90	0.15	0.4	Pass		

	<u>TEST RESULTS DATA</u> Peak Power Table									
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result					
	0	1	9.00	20.97	Pass					
DH1	39	1	9.63	20.97	Pass					
[[78	1	9.14	20.97	Pass					
	0	1	8.10	20.97	Pass					
2DH1	39	1	8.76	20.97	Pass					
I T	78	1	8.34	20.97	Pass					
	0	1	8.04	20.97	Pass					
3DH1	39	1	8.69	20.97	Pass					
i T	78	1	8.25	20.97	Pass					

	TEST RESULTS DATA <u>Average Power Table</u> (Reporting Only)										
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)							
	0	1	8.48	5.22							
DH1	39	1	9.12	5.22							
	78	1	8.62	5.22							
	0	1	6.12	5.15							
2DH1	39	1	6.75	5.15							
	78	1	6.18	5.15							
	0	1	6.06	5.18							
3DH1	39	1	6.71	5.18							
	78	1	6.24	5.18							

<u>TEST RESULTS DATA</u> Number of Hopping Frequency									
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail						
79	20	> 15	Pass	1					



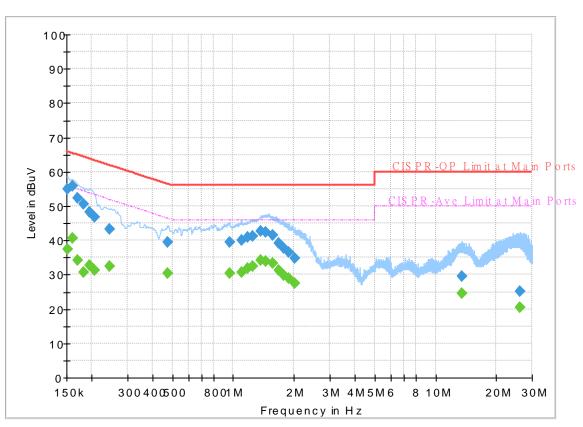
Appendix B. AC Conducted Emission Test Results

Test Engineer :	Tom Loo	Temperature :	23~26 ℃
	Tom Lee	Relative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 1N3028 Mode 1 Power From System Line

Full Spectrum


Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.174750		38.31	54.73	16.42	L1	OFF	19.6
0.174750	52.84		64.73	11.89	L1	OFF	19.6
0.188250		38.06	54.11	16.05	L1	OFF	19.6
0.188250	51.64		64.11	12.47	L1	OFF	19.6
0.199500		28.83	53.63	24.80	L1	OFF	19.6
0.199500	48.37	-	63.63	15.26	L1	OFF	19.6
0.233250		36.16	52.33	16.17	L1	OFF	19.6
0.233250	46.94		62.33	15.39	L1	OFF	19.6
0.615750		25.57	46.00	20.43	L1	OFF	19.8
0.615750	39.36		56.00	16.64	L1	OFF	19.8
1.027500		30.12	46.00	15.88	L1	OFF	20.1
1.027500	40.84		56.00	15.16	L1	OFF	20.1
1.119750		30.21	46.00	15.79	L1	OFF	20.1
1.119750	41.44		56.00	14.56	L1	OFF	20.1
1.187250		30.90	46.00	15.10	L1	OFF	20.1
1.187250	41.93		56.00	14.07	L1	OFF	20.1
1.259250		31.69	46.00	14.31	L1	OFF	20.1
1.259250	42.58		56.00	13.42	L1	OFF	20.1
1.365000		32.88	46.00	13.12	L1	OFF	20.1
1.365000	43.61		56.00	12.39	L1	OFF	20.1
1.482000		32.47	46.00	13.53	L1	OFF	20.1

43.18		56.00	12.82	L1	OFF	20.1
	32.09	46.00	13.91	L1	OFF	20.0
42.10		56.00	13.90	L1	OFF	20.0
	30.94	46.00	15.06	L1	OFF	20.0
40.67		56.00	15.33	L1	OFF	20.0
	29.10	46.00	16.90	L1	OFF	20.0
38.94		56.00	17.06	L1	OFF	20.0
	27.80	46.00	18.20	L1	OFF	20.0
37.32		56.00	18.68	L1	OFF	20.0
	26.76	46.00	19.24	L1	OFF	20.0
36.01		56.00	19.99	L1	OFF	20.0
	25.37	50.00	24.63	L1	OFF	19.9
30.88		60.00	29.12	L1	OFF	19.9
	25.99	50.00	24.01	L1	OFF	20.0
31.88		60.00	28.12	L1	OFF	20.0
	42.10 40.67 38.94 37.32 36.01 30.88 	32.09 42.10 30.94 40.67 29.10 38.94 37.32 26.76 36.01 30.88 25.37 30.88 25.99	32.09 46.00 42.10 56.00 30.94 46.00 40.67 56.00 29.10 46.00 38.94 56.00 27.80 46.00 37.32 56.00 26.76 46.00 36.01 56.00 26.76 46.00 36.01 56.00 25.37 50.00 30.88 60.00 25.99 50.00	32.09 46.00 13.91 42.10 56.00 13.90 30.94 46.00 15.06 40.67 56.00 15.33 29.10 46.00 16.90 38.94 56.00 17.06 27.80 46.00 18.20 37.32 56.00 18.68 26.76 46.00 19.24 36.01 56.00 19.99 25.37 50.00 24.63 30.88 60.00 29.12 25.99 50.00 24.01	32.09 46.00 13.91 L1 42.10 56.00 13.90 L1 30.94 46.00 15.06 L1 40.67 56.00 15.33 L1 29.10 46.00 16.90 L1 38.94 56.00 17.06 L1 27.80 46.00 18.20 L1 37.32 56.00 19.24 L1 36.01 56.00 19.24 L1 36.01 56.00 19.99 L1 25.37 50.00 24.63 L1 25.99 50.00 24.01 L1	32.09 46.00 13.91 L1 OFF 42.10 56.00 13.90 L1 OFF 30.94 46.00 15.06 L1 OFF 40.67 56.00 15.33 L1 OFF 29.10 46.00 16.90 L1 OFF 38.94 56.00 17.06 L1 OFF 37.32 56.00 18.20 L1 OFF 37.32 56.00 18.68 L1 OFF 36.01 56.00 19.24 L1 OFF 36.01 56.00 19.99 L1 OFF 30.88 25.37 50.00 24.63 L1 OFF 25.99 50.00 24.01 L1 OFF

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 1N3028 Mode 1 Power From System Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250	(abar)	37.34	55.88	18.54	N	OFF	19.6
0.152250	55.03		65.88	10.85	N	OFF	19.6
0.161250		40.50	55.40	14.90	N	OFF	19.6
0.161250	55.90		65.40	9.50	N	OFF	19.6
0.170250		34.30	54.95	20.65	Ν	OFF	19.6
0.170250	52.47		64.95	12.48	Ν	OFF	19.6
0.181500		30.69	54.42	23.73	Ν	OFF	19.6
0.181500	50.45		64.42	13.97	Ν	OFF	19.6
0.195000		32.69	53.82	21.13	Ν	OFF	19.6
0.195000	48.15		63.82	15.67	Ν	OFF	19.6
0.206250		31.27	53.36	22.09	Ν	OFF	19.6
0.206250	46.75		63.36	16.61	Ν	OFF	19.6
0.244500		32.34	51.94	19.60	Ν	OFF	19.6
0.244500	43.32		61.94	18.62	Ν	OFF	19.6
0.474000		30.35	46.44	16.09	Ν	OFF	19.7
0.474000	39.42		56.44	17.02	Ν	OFF	19.7
0.957750		30.49	46.00	15.51	Ν	OFF	20.1
0.957750	39.53		56.00	16.47	Ν	OFF	20.1
1.097250		30.75	46.00	15.25	Ν	OFF	20.1
1.097250	39.98		56.00	16.02	Ν	OFF	20.1
1.173750		31.86	46.00	14.14	Ν	OFF	20.1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
1.254750 41.31 56.00 14.69 N OFF 20.1 1.362750 34.15 46.00 11.85 N OFF 20.1 1.362750 42.79 56.00 13.21 N OFF 20.1 1.448250 34.01 46.00 11.99 N OFF 20.1 1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250	1.173750	40.80		56.00	15.20	Ν	OFF	20.1
1.362750 34.15 46.00 11.85 N OFF 20.1 1.362750 42.79 56.00 13.21 N OFF 20.1 1.448250 34.01 46.00 11.99 N OFF 20.1 1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43	1.254750		32.48	46.00	13.52	Ν	OFF	20.1
1.362750 42.79 56.00 13.21 N OFF 20.1 1.448250 34.01 46.00 11.99 N OFF 20.1 1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 33.21 46.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.783500 37.66 56.00 19.57 N OFF 20.0 1.889250	1.254750	41.31		56.00	14.69	Ν	OFF	20.1
1.448250 34.01 46.00 11.99 N OFF 20.1 1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750	1.362750		34.15	46.00	11.85	Ν	OFF	20.1
1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750	1.362750	42.79		56.00	13.21	Ν	OFF	20.1
1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 39.20 56.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69	1.448250		34.01	46.00	11.99	Ν	OFF	20.1
1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 39.20 56.00 16.80 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000	1.448250	42.49		56.00	13.51	Ν	OFF	20.1
1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58	1.560750		33.21	46.00	12.79	Ν	OFF	20.0
1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.560750	41.56		56.00	14.44	Ν	OFF	20.0
1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.675500		31.15	46.00	14.85	Ν	OFF	20.0
1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.675500	39.20		56.00	16.80	Ν	OFF	20.0
1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.783500		29.72	46.00	16.28	Ν	OFF	20.0
1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.783500	37.66		56.00	18.34	Ν	OFF	20.0
2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.889250		28.89	46.00	17.11	Ν	OFF	20.0
2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.889250	36.43		56.00	19.57	Ν	OFF	20.0
13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	2.019750		27.41	46.00	18.59	Ν	OFF	20.0
13.560000 29.58 60.00 30.42 N OFF 19.9	2.019750	34.69		56.00	21.31	Ν	OFF	20.0
	13.560000		24.58	50.00	25.42	Ν	OFF	19.9
26.200500 20.59 50.00 29.41 N OFF 20.1	13.560000	29.58		60.00	30.42	Ν	OFF	19.9
	26.200500		20.59	50.00	29.41	Ν	OFF	20.1
26.200500 25.02 60.00 34.98 N OFF 20.1	26.200500	25.02		60.00	34.98	Ν	OFF	20.1

Appendix C. Radiated Spurious Emission

Test Engineer :	Karl Hou and Andy Yang	Temperature :	20~25°C
lest Engineer .		Relative Humidity :	50~65%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2383.08	47.28	-26.72	74	41.74	27.33	8.29	30.08	304	63	Р	Н
		2383.08	22.47	-31.53	54	-	-	-	-	-	-	А	Н
	*	2402	103.93	-	-	98.27	27.41	8.32	30.07	304	63	Р	н
	*	2402	79.12	-	-	-	-	-	-	-	-	Α	Н
вт													Н
СН00													Н
2402MHz		2376.045	45.87	-28.13	74	40.38	27.3	8.27	30.08	100	105	Р	V
		2376.045	21.06	-32.94	54	-	-	-	-	-	-	Α	V
	*	2402	103.97	-	-	98.31	27.41	8.32	30.07	100	105	Р	V
	*	2402	79.16	-	-	-	-	-	-	-	-	Α	V
													V
													V
		2388.96	47.01	-26.99	74	41.42	27.36	8.3	30.07	258	63	Ρ	Н
		2388.96	22.2	-31.8	54	-	-	-	-	-	-	А	Н
	*	2441	106.07	-	-	100.18	27.56	8.39	30.06	258	63	Р	Н
	*	2441	81.26	-	-	-	-	-	-	-	-	А	н
57		2484.46	46.92	-27.08	74	40.68	27.81	8.47	30.04	258	63	Р	н
ВТ СН 39		2484.46	22.11	-31.89	54	-	-	-	-	-	-	А	н
СН 39 2441MHz		2369.78	46.44	-27.56	74	40.98	27.28	8.26	30.08	100	103	Р	V
244 IVIF1Z		2369.78	21.63	-32.37	54	-	-	-	-	-	-	А	V
	*	2441	105.72	-	-	99.83	27.56	8.39	30.06	100	103	Р	V
	*	2441	80.91	-	-	-	-	-	-	-	-	А	V
		2498.67	46.71	-27.29	74	40.36	27.89	8.5	30.04	100	103	Р	V
		2498.67	21.9	-32.1	54	-	-	-	-	-	-	А	V

	*	2480	106.9	-	-	100.71	27.78	8.46	30.05	282	62	Р	Н
	*	2480	82.09	-	-	-	-	-	-	-	-	А	Н
		2484.2	48.58	-25.42	74	42.34	27.81	8.47	30.04	282	62	Ρ	Н
		2484.2	23.77	-30.23	54	-	-	-	-	-	-	А	Н
вт													Н
ВТ СН 78													Н
2480MHz	*	2480	106.15	-	-	99.96	27.78	8.46	30.05	100	103	Р	V
240011112	*	2480	81.34	-	-	-	-	-	-	-	-	А	V
		2484.04	48.73	-25.27	74	42.5	27.8	8.47	30.04	100	103	Р	V
		2484.04	23.92	-30.08	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lir	nit line.							

	[ſ		•	ST (Hanne			-		-	-	ſ	
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)	-	
		4804	42.38	-31.62	74	52.86	32.41	12.35	55.24	-	-	Р	Н
		4804	17.57	-36.43	54	-	-	-	-	-	-	Α	Н
		10770	49.17	-24.83	74	46.11	39.14	19.35	55.43	-	-	Р	Н
		10770	38.93	-15.07	54	35.87	39.14	19.35	55.43	-	-	А	Н
		14505	49.43	-24.57	74	41.35	40.39	22.02	54.33	-	-	Р	Н
		14505	40.73	-13.27	54	32.65	40.39	22.02	54.33	-	-	А	Н
		17955	54.05	-19.95	74	42.94	42.64	25.04	56.57	-	-	Р	Н
		17955	44.96	-9.04	54	33.85	42.64	25.04	56.57	-	-	А	Н
													Н
													Н
BT													Н
CH 00													н
2402MHz		4804	45.5	-28.5	74	55.98	32.41	12.35	55.24	-	-	Р	V
240210112		4804	20.69	-33.31	54	-	-	-	-	-	-	А	V
		10950	49.13	-24.87	74	46.17	38.85	19.49	55.38	-	-	Р	V
		10950	38.63	-15.37	54	35.67	38.85	19.49	55.38	-	-	А	V
		14490	49.33	-24.67	74	41.25	40.4	22.01	54.33	-	-	Р	V
		14490	40.16	-13.84	54	32.08	40.4	22.01	54.33	-	-	Α	V
		17880	54.32	-19.68	74	43.86	41.96	25.02	56.52	-	-	Р	V
		17880	43.93	-10.07	54	33.47	41.96	25.02	56.52	-	-	А	V
													V
													V
													V
													V

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4882	42.19	-31.81	74	52.58	32.63	12.32	55.34	-	-	Р	Н
		4882	17.38	-36.62	54	-	-	-	-	-	-	А	Н
		7323	45.97	-28.03	74	48.98	36.75	15.89	55.65	-	-	Р	Н
		7323	21.16	-32.84	54	-	-	-	-	-	-	А	Н
		10695	49.94	-24.06	74	47.09	39	19.29	55.44	-	-	Р	Н
		10695	37.6	-16.4	54	34.75	39	19.29	55.44	-	-	А	Н
		14475	49.81	-24.19	74	41.73	40.4	22	54.32	-	-	Р	Н
		14475	41.6	-12.4	54	33.52	40.4	22	54.32	-	-	А	Н
		17880	53.65	-20.35	74	43.19	41.96	25.02	56.52	-	-	Р	Н
		17880	44.09	-9.91	54	33.63	41.96	25.02	56.52	-	-	А	Н
													Н
BT													Н
CH 39		4882	47.05	-26.95	74	57.44	32.63	12.32	55.34	-	-	Р	V
2441MHz		4882	22.24	-31.76	54	-	-	-	-	-	-	А	V
		7323	46.42	-27.58	74	49.43	36.75	15.89	55.65	-	-	Р	V
		7323	21.61	-32.39	54	-	-	-	-	-	-	А	V
		11505	49.95	-24.05	74	46.05	38.8	20.1	55	-	-	Р	V
		11505	38.23	-15.77	54	34.33	38.8	20.1	55	-	-	А	V
		14475	49.46	-24.54	74	41.38	40.4	22	54.32	-	-	Р	V
		14475	41.3	-12.7	54	33.22	40.4	22	54.32	-	-	А	V
		17970	53.93	-20.07	74	42.72	42.76	25.03	56.58	-	-	Р	V
		17970	44.74	-9.26	54	33.53	42.76	25.03	56.58	-	-	А	V
													V
													V

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	. ,	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	42.17	-31.83	74	52.31	33.02	12.28	55.44	-	-	Р	Н
		4960	17.36	-36.64	54	-	-	-	-	-	-	А	Н
		7440	46.08	-27.92	74	49.33	36.22	16.2	55.67	-	-	Р	Н
		7440	21.27	-32.73	54	-	-	-	-	-	-	А	Н
		11235	49.73	-24.27	74	46.06	39.07	19.8	55.2	-	-	Ρ	Н
		11235	38.19	-15.81	54	34.52	39.07	19.8	55.2	-	-	А	Н
		14505	49.66	-24.34	74	41.58	40.39	22.02	54.33	-	-	Ρ	Н
		14505	41.87	-12.13	54	33.79	40.39	22.02	54.33	-	-	А	Н
		17970	53.8	-20.2	74	42.59	42.76	25.03	56.58	-	-	Ρ	Η
		17970	44.85	-9.15	54	33.64	42.76	25.03	56.58	-	-	А	Η
													Н
BT													Н
CH 78 2480MHz		4960	46.29	-27.71	74	56.43	33.02	12.28	55.44	-	-	Р	V
		4960	21.48	-32.52	54	-	-	-	-	-	-	А	V
		7440	45.54	-28.46	74	48.79	36.22	16.2	55.67	-	-	Р	V
		7440	20.73	-33.27	54	-	-	-	-	-	-	А	V
		10725	49.86	-24.14	74	46.94	39.05	19.31	55.44	-	-	Ρ	V
		10725	37.23	-16.77	54	34.31	39.05	19.31	55.44	-	-	А	V
		14475	49.78	-24.22	74	41.7	40.4	22	54.32	-	-	Р	V
		14475	41.86	-12.14	54	33.78	40.4	22	54.32	-	-	А	V
		17985	53.5	-20.5	74	42.17	42.88	25.04	56.59	-	-	Р	V
		17985	44.94	-9.06	54	33.61	42.88	25.04	56.59	-	-	А	V
													V
													V
	1. N	o other spuriou	s found.	1	1	1	1						
	2. A	II results are PA	.SS against F	Peak and	l Average lim	it line.							
Remark	3. Т	he emission pos	sition marked	las "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	fle	oor only.											
	4. T	he emission lev	el close to 18	BGHz is	checked that	the average	ge emissior	n level is i	noise floor	only.			

Emission above 18GHz

	[-	ſ	-	2.4GHz	-		-	Γ	[[[1
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	1	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		19960	38.2	-35.8	74	58.93	37.72	-3.54	54.91	-	-	Р	Н
													н
													Н
													Н
													Н
													н
													н
													Н
													н
													н
													н
2.4GHz													н
вт		20000	37.9	-36.1	74	58.63	37.7	-3.53	54.9	_	-	Р	V
SHF		20000	01.0	00.1		00.00	01.1	0.00	01.0			•	v
													V
													v
													V
													v
													v
													v
													V
													V
													V
	1 N-	othor couries	found										V
		o other spurious results are PA		mit line									
Remark		e emission pos			eans no sus	nected em	ission found	d with suf	ficient mar	nin ana	inst limit	line or	noise
		or only.		us - II					noiont mai	yn aya			10136
	10	or only.											

2.4GHz BT (SHF)

	-	F	-	F	2.4GHz	BI (LF)		-	r	-	F	-	
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		100.81	25.45	-18.05	43.5	39.86	16.07	1.82	32.3	-	-	P	H
		159.01	30.3	-13.2	43.5	43.58	16.67	2.3	32.25	-	-	Р	Н
		266.68	26.08	-19.92	46	35.78	19.67	2.89	32.26	-	-	Р	Н
		663.41	29.23	-16.77	46	31.03	26.17	4.49	32.46	-	-	Р	Н
		777.87	31.75	-14.25	46	31.08	28.09	4.87	32.29	-	-	Р	Н
		946.65	34.47	-11.53	46	29.81	30.43	5.45	31.22	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BT													Н
LF		37.76	26.38	-13.62	40	36.9	20.79	0.99	32.3	-	-	Р	V
		99.84	23.25	-20.25	43.5	37.87	15.87	1.81	32.3	-	-	Р	V
		187.14	24.7	-18.8	43.5	39.63	14.83	2.47	32.23	-	-	Р	V
		507.24	27.19	-18.81	46	31.49	24.05	4.01	32.36	-	-	Р	V
		710.94	30.11	-15.89	46	31.13	26.72	4.64	32.38	-	-	Р	V
		951.5	34.35	-11.65	46	29.48	30.6	5.46	31.19	-	-	Р	V
													V
													V
													V
													V
													V
		·											V
		o other spurious I results are PA		mit line									
Remark		ne emission pos	-		eans no sus	pected em	ission found	d with suf	ficient mar	ain adai	inst limit	line or	noise
		oor only.		i uo - i ii	001010000				noiont mai	yin ayai			10130
		· · · · · · · · · · · · · · · · · · ·											

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

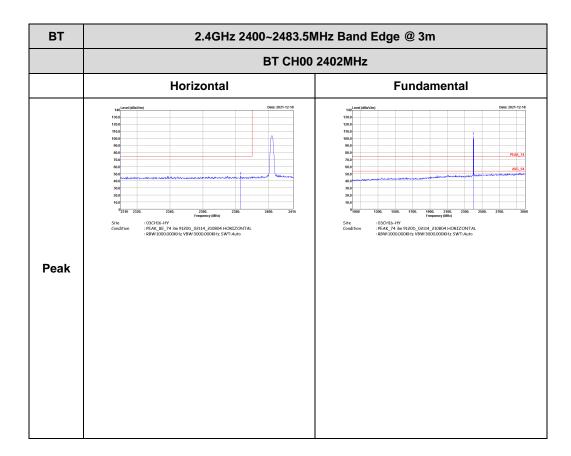
Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

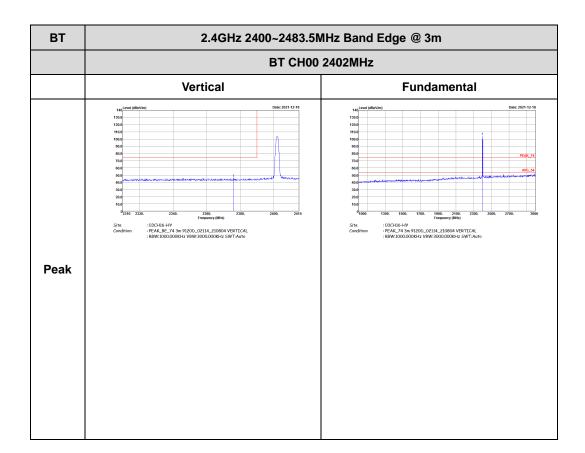
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

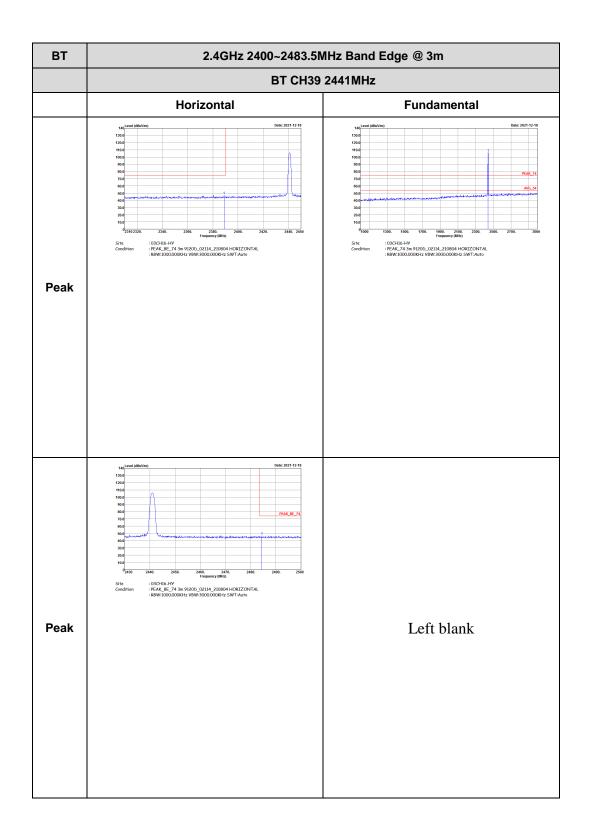
Both peak and average measured complies with the limit line, so test result is "PASS".

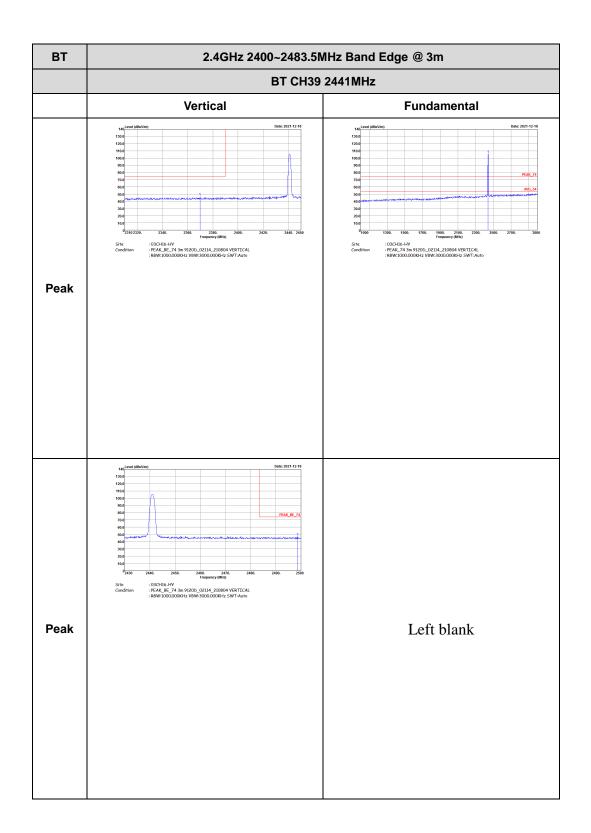


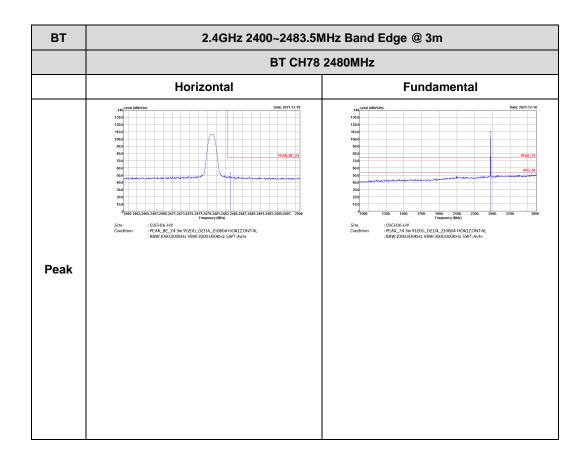
Appendix D. Radiated Spurious Emission Plots

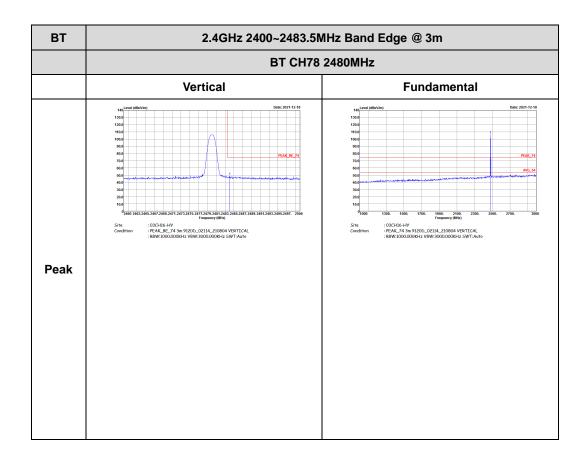

Test Engineer :	Karl Hou and Andy Yang	Temperature :	20~25°C
lest Engineer .		Relative Humidity :	50~65%

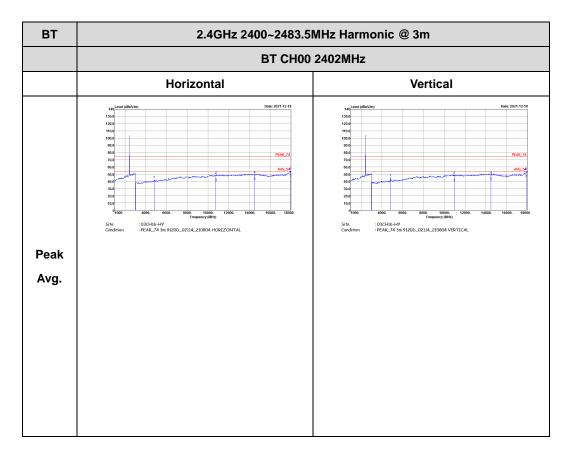
2.4GHz 2400~2483.5MHz

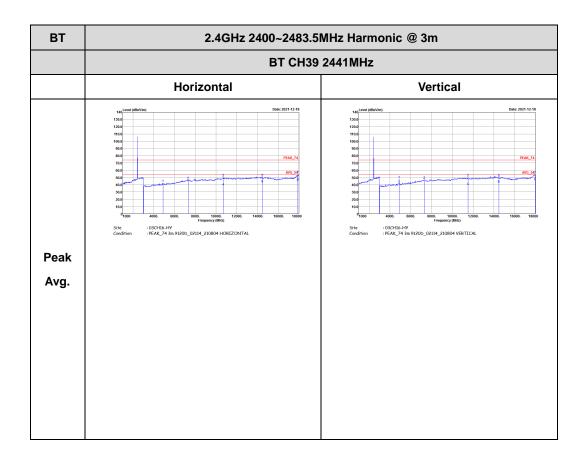

BT (Band Edge @ 3m)



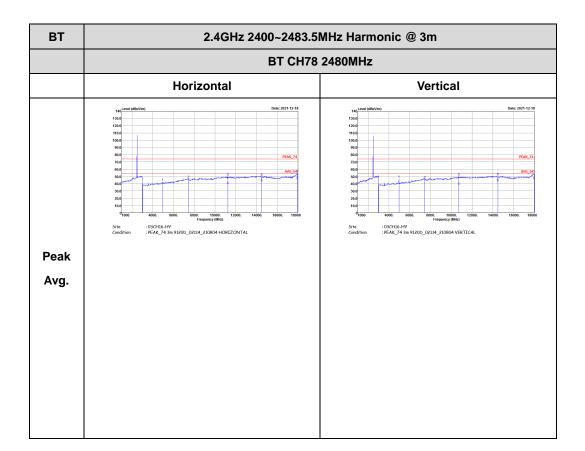




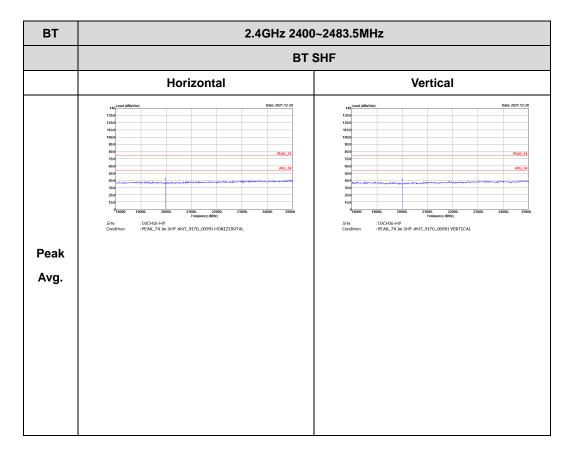


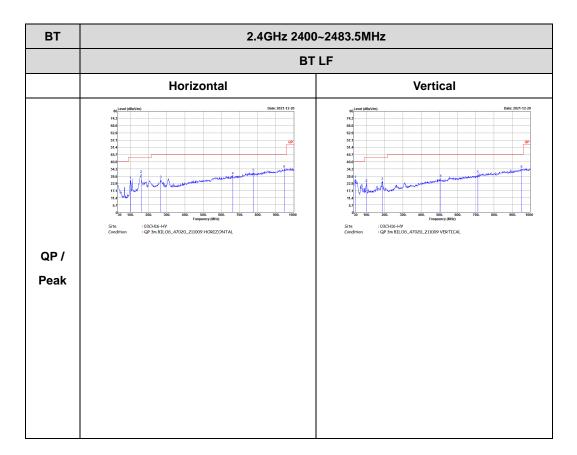


2.4GHz 2400~2483.5MHz



BT (Harmonic @ 3m)




Emission above 18GHz

2.4GHz BT (SHF @ 1m)

Emission below 1GHz

2.4GHz BT (LF)

Appendix E. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Chan	nel 39	on time (Count Pulses) Plot on Channel 39
🔤 Keysight Spectrum Analyzer - Swept SA		🔤 Keysight Spectrum Analyzer - Swept SA
Image: Set	6 Frequency	DI RL RF PRESEL SS0.4C SENSE.INT db 4/100.0FF 12/26/19 MPG [6], 3/221 Frequency Center Freq 2.44100.0000 GHz #Avg Type: RMS TRACE [7], 3/4.5 6 Frequency NFE PN0: Fast →+ Trig: Free Run Trig: WWWWWWW
NFE PNO: Fast DET N P P PI	<u>P</u>	IFGainLow #Atten: 20 dB DET PPPPP
Mkr4 1,405 m 10 dB/div Ref 116.99 dBμV 99.99 dBμ		Мкr1 38.30 ms 10 dB/div Ref 116.99 dBµV 100.03 dBµV
	Center Freq 2.441000000 GHz	107 Center Freq 2.44100000 GHz
	Start Freq 2.441000000 GHz	870 Start Freq 2.44100000 GHz
470	Stop Freq 2.441000000 GHz	77.0 Stop Freq 2.44100000 GHz
Center 2.441000000 GHz Span 0 F Res BW 1.0 MHz VBW 1.0 MHz Sweep 10.00 ms (1001 pt Two process the set x Y Process F Process F		50 CF Step 1.00000 MHz Auto Man
1 Δ 2 1 t (Δ) 2.875 ms (Δ) -1.30 dB 2 N 1 t 1.406 ms 99.99 dBμV 3 Δ4 1 t (Δ) 3.745 ms (Δ) 0.01 dB 4 N 1 t 1.405 ms 99.99 dBμV 5	Freq Offset 0 Hz	20 - Heline Lehler Hald helith the use for the heliter and word word with heliter heliter or
6 7 8 9	Scale Type	27.0 Scale Type
10 11	, Log <u>Lin</u>	Center 2.441000000 GHz Span 0 Hz Log Lin Res BW 1.0 MHz #VBW 1.0 MHz Sweep 100.0 ms (1001 pts)
I < Status Align Now All rec	uired	MSG 68 Suffix not allowed STATUS 68 Align Now All required

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.875 / 100 = 5.75 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.81 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

2.875 ms x 20 channels = 57.5 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.5 ms] = 2 hops Thus, the maximum possible ON time:

2.875 ms x 2 = 5.75 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.75 \text{ ms}/100 \text{ ms}) = -24.81 \text{ dB}$