

FCC RADIO TEST REPORT

FCC ID	:	2AFZZ117SY
Equipment	:	Mobile Phone
Brand Name	:	Redmi
Model Name	:	2201117SY
Applicant	:	Xiaomi Communications Co., Ltd.
		#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Manufacturer	:	Xiaomi Communications Co., Ltd. #019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Dec. 01, 2021 and testing was performed from Dec. 09, 2021 to Dec. 21, 2021. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. Wensan Laboratory No. 58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan

Table of Contents

His	tory o	f this test report	3
Sur	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	16
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	22
	3.5	Radiated Band Edges and Spurious Emission Measurement	27
	3.6	AC Conducted Emission Measurement	31
	3.7	Antenna Requirements	33
4	List c	of Measuring Equipment	34
5	Unce	rtainty of Evaluation	36
Ар	oendix	A. Conducted Test Results	
Ар	pendix	B. AC Conducted Emission Test Result	
Ар	pendix	C. Radiated Spurious Emission	
Ар	oendix	D. Radiated Spurious Emission Plots	
Ар	oendix	E. Duty Cycle Plots	

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR1N3028B	01	Initial issue of report	Dec. 29, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	4.35 dB under the limit at 2491.280 MHz
3.6	15.207	AC Conducted Emission	Pass	9.50 dB under the limit at 0.161 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Danny Lee Report Producer: Tina Chuang

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, NFC, FM Receiver, and GNSS.

Product Feature				
Sample 1 6G+128GB with Battery 1				
Sample 2 8G+128GB with Battery 2				
Sample 3 6G+64GB with Battery 1				
	WWAN: PIFA Antenna			
	WLAN: PIFA Antenna			
Antonno Tuno	Bluetooth: PIFA Antenna			
Antenna Type	GPS/Glonass/BDS/Galileo/SBAS : PIFA Antenna			
	NFC: Planar Antenna			
	FM: Using earphone as Antenna			
	Antenna information			

	Antenna inform	nation
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-0.31

Remark: The above EUT's information is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory.			
Test Site LocationNo.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan TEL: +886-3-327-3456 FAX: +886-3-328-4978				
Test Site No.	Sporton Site No.			
	CO05-HY (TAF Code: 1190)			
Remark The Conducted Emission test item subcontracted to Sporton Interna Inc. EMC & Wireless Communications Laboratory.				

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No. TH05-HY, 03CH16-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

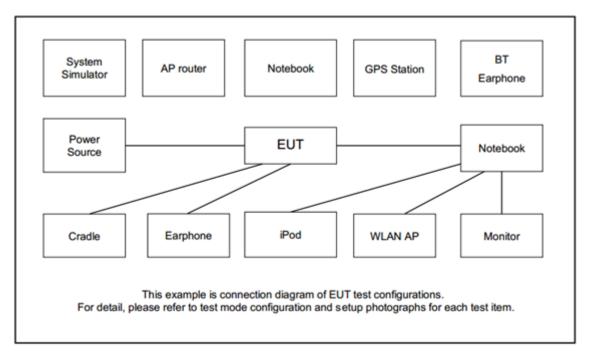
- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
Frequency Band	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
2400-2483.5 MHz	9	2420	30	2462
	10	2422	31	2464
	11 12 13 14	2424	32	2466
		2426	33	2468
		2428	34	2470
		2430	35	2472
	15	2432	36	2474
-	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape) and WPC Charging Mode, and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane.
- b. AC power line Conducted Emission was tested under maximum output power.

Summary table of Test Cases					
Test Item	Data Rate / Modulation				
	Bluetooth – LE / GFSK				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
AC Conducted	Mode 1 :LTE Band 4 Idle + Bluetooth Link + WLAN (2.4G	Hz) Link + NFC On +			
Emission Earphone + USB Cable 1 (Data Link with Notebook) for Sample 1		or Sample 1			
Remark:					
	Test Cases, the tests were performed with, USB Cable 2 and	•			
 Data Link w Notebook. 	h Notebook means data application transferred mode betwee	en EUT and			

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8m
4.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0m	N/A
5.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
7.	Earphone	MI	EM023	N/A	Unshielded, 1.2m	N/A

2.5 EUT Operation Test Setup

The RF test items, make the EUT (SW: 11 RP1A.200720.011) get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

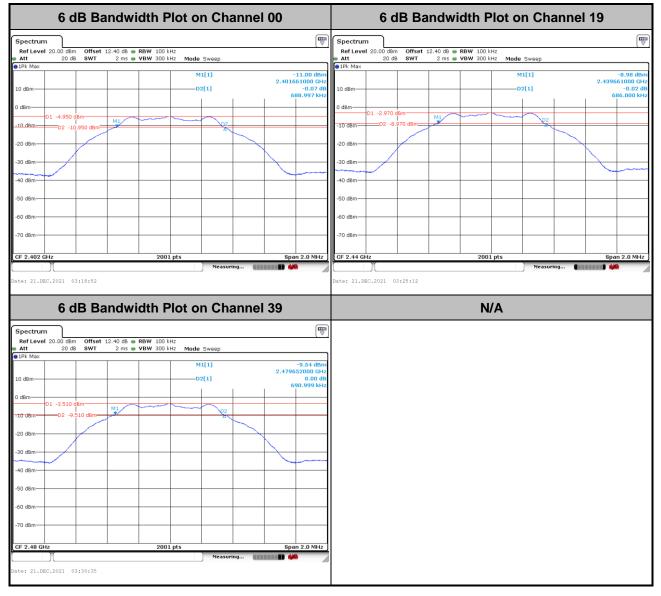
Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

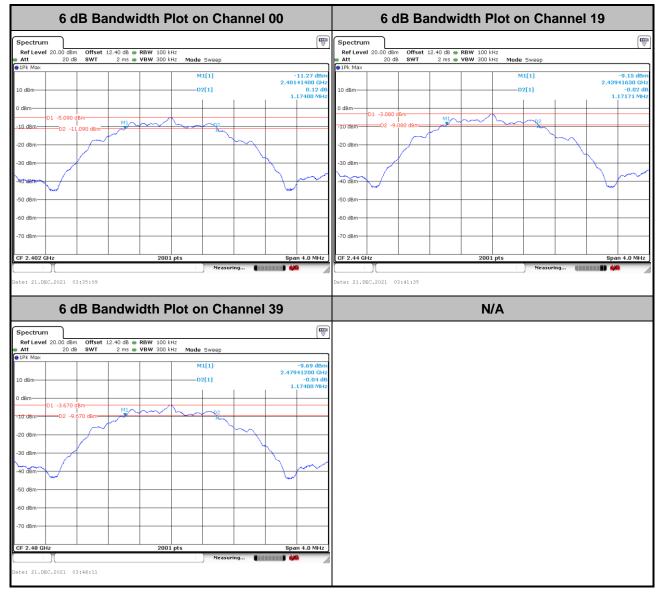
- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

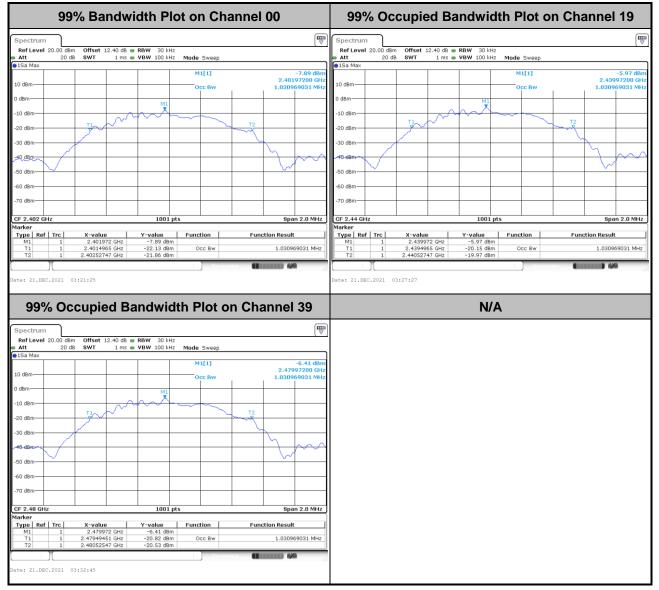

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth


Please refer to Appendix A.

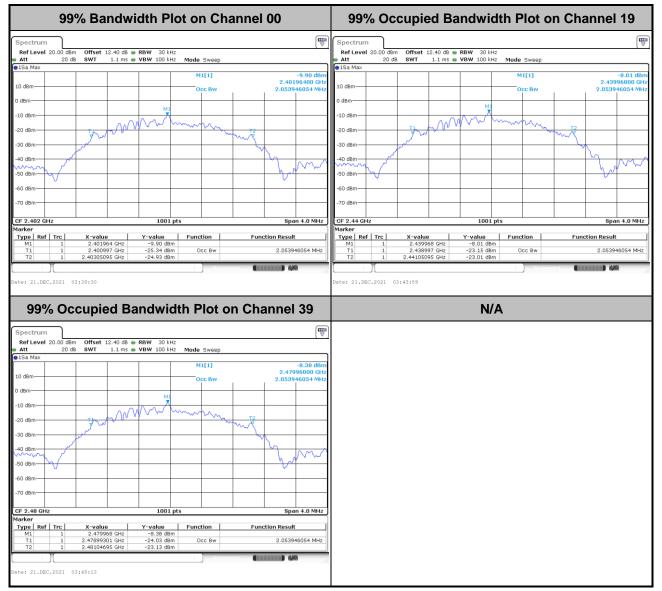
<1Mbps>

<2Mbps>



3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

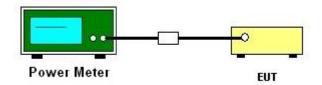
<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

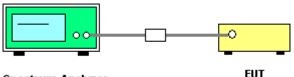
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

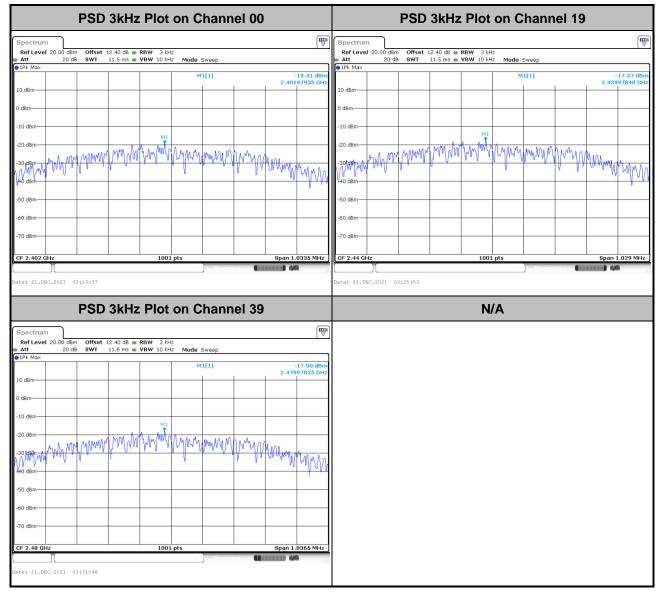
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

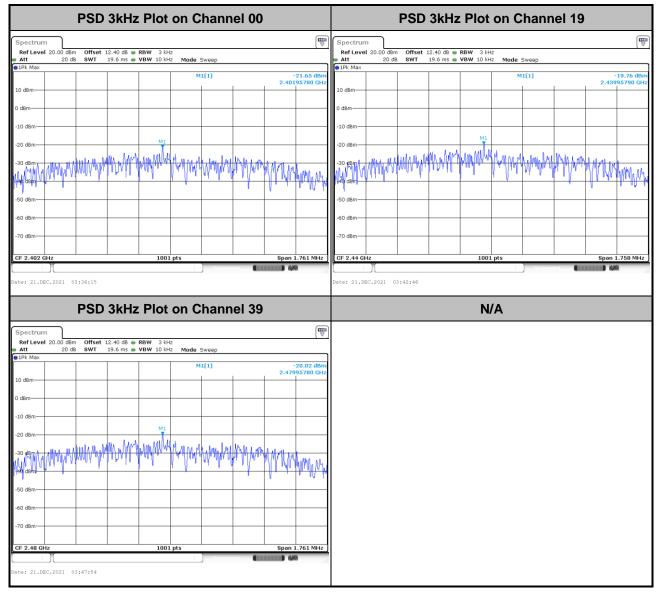
3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

Spectrum Spectrum Ref true 12.00 dfm Offset 12.40 dfm HBW 100 hHz 10 dfm 1 mm WBW 300 kHz Mode Sweep 10 dfm 1 mm WBW 300 kHz Mode Sweep 10 dfm 1 mm WBW 300 kHz Mode Sweep 10 dfm 1 mm 1 mm WBW 300 kHz Mode Sweep 10 dfm 1 mm 1 mm 1 mm N113 10 dfm 1 mm 1 mm 1 mm N113 10 dfm 1 mm 1 mm 1 mm N113 10 dfm 1 mm 1 mm 1 mm 1 mm 10 dfm 1 mm 1 mm 1 mm 1 mm 10 dfm 1 mm 1 mm 1 mm 1 mm 10 dfm 1 mm 1 mm 1 mm 1 mm 10 dfm 1 mm 1 mm 1 mm 1 mm 10 dfm 1 mm 1 mm 1 mm 1 mm 10 dfm 1 mm 1 mm 1 mm 1 mm 10 dfm 1 mm 1 mm 1 mm 1 mm 10 dfm 1 mm <th></th>	
91K Max M1[1] 9.91 dbm 10 dbm M1[1] 2.40199275 Gtd 10 dbm M1[1] 0.40199275 Gtd 10 dbm M1[1] 0.401975 Gtd 10 dbm	
0 dBm 33 10 dBm 30 20 dBm -10 dBm -30 dBm -10 dBm -40 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm -70 dBm	-3.02 dBm 2.43999490 GHz
20 dbm 30 dbm 40 dbm 30 dbm 40 dbm 30 dbm 40 dbm 50 dbm 40 dbm 50 dbm 40 dbm 50 dbm<	
30 dBm	
-50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm	
-60 dBm -70 dBm -60 dBm -60 dBm -70 dBm	
CF 2.402 GHz 1001 pts Span 1.0335 MHz CF 2.44 GHz 1001 pts Date: 21.DBC.2021 03:19:56 Date: 21.DBC.2021 03:26:05 Date: 21.DBC.2021 03:26:05 PSD 100kHz Plot on Channel 39 N/A Spectrum V Ref Level 20.00 dbm Offset 12.40 db e RBW 100 HHz V At 20 db SWT 1 ms * VBW 300 HHz Made Sweep PIP: Max M1[1] -3.42 dBm 2.47999585 GHz 2.47999585 GHz	
Date: 21.05C.2021 03:19:56 Date: 21.05C.2021 03:26:05 PSD 100kHz Plot on Channel 39 N/A Spectrum Image: Control of the control of	
PSD 100kHz Plot on Channel 39 N/A Spectrum Image: Control of the control of th	Span 1.029 MHz
RefLevel 20.00 dBm Offset 12.40 db @ RBW 100 kHz e Att 20 dB SWT 1 ms @ VBW 300 kHz Mode 5weep @ IPk Max M1[1] -3.42 dBm 2.47999585 GHz	
19k Max M1[1] -3.42 dBm 2.47999585 GHz	
-10 dBm	
-30 dBm	
-40 dBm	
-60 dBm	
-70 dBm	
CF 2.48 GHz 1001 pts Span 1.0365 MHz	


<2Mbps>

PS	D 100kHz Plot on Chan	nel 00	PSD 100kHz Plot on Channel 19
Spectrum Ref Level 20.00 dBm O	Dffset 12.40 dB 👄 RBW 100 kHz		Ref Level 20.00 dBm Offset 12.40 dB RBW 100 kHz
	WT 1 ms • VBW 300 kHz Mode Sweep		Att 20 dB SWT 1 ms • VBW 300 kHz Mode Sweep
	M1[1]	-5.18 dBm 2.40199120 GHz	M1[1] -3.32 dBn 2.43999120 GH
10 dBm			10 dBm
0 dBm	M1		0 dBm
-10 dBm			-10 dBm
-20 dBm			-20 dBm
-30 dBm			-30 dBm-
-40 dBm-			-40 dBm
-50 dBm			
			-50 d8m-
-60 dBm			-60 dBm
-70 dBm			-70 dBm
CF 2.402 GHz	1001 pts	Span 1.761 MHz	CF 2.44 GHz 1001 pts Span 1.758 MHz
	Measuri		Measuring (Managara) 44
Date: 21.DEC.2021 03:36	: 44		Date: 21.DEC.2021 03:42:58
PS	D 100kHz Plot on Chan	nel 39	N/A
Spectrum			
Ref Level 20.00 dBm O	Offset 12.40 dB 🖷 RBW 100 kHz WT 1 ms 🖷 VBW 300 kHz Mode Sweep	(*)	2
• 1Pk Max	M1[1]	-3.61 dBm	
10 dBm		2.47999120 GHz	
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
CF 2.48 GHz	1001 pts	Span 1.761 MHz	
	Measuri		
Date: 21.DEC.2021 03:48	:07		
			•


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

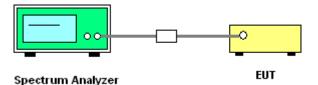
<1Mbps>

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

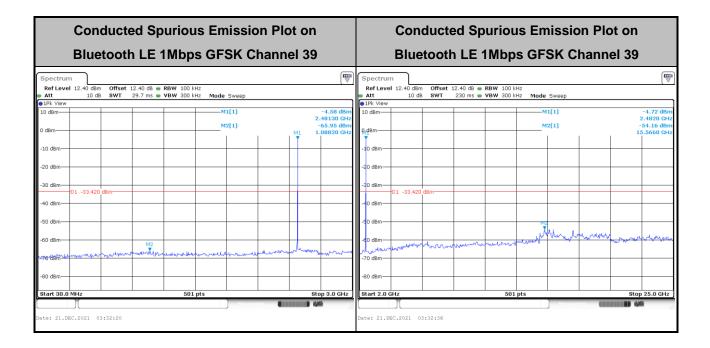
3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

Low Band Edge Pl	ot on Channel 00	High Band Edge Plot on Channel 39
Spectrum RefLevel 20.00 dBm Offset 12.40 dB @ RBW 100 kH. # Att 20 dB \$WT 8 ms @ VBW 300 kH. @ JPk Max		Spectrum V Ref Level 20.00 dBm Offset 12.40 dB RBW 100 kHz Att 20 dB SWT 8 ms
10 dBm		10 d8m 2.49676420 GHz 0 d8m
-70 dBm Start 2.375 GHz 8001 Date: 21.050.2021 03120107	F1	Start 2.475 GHz B001 pts Stop 2.505 GHz Date: 21.080.2021 03132107

<2Mbps>

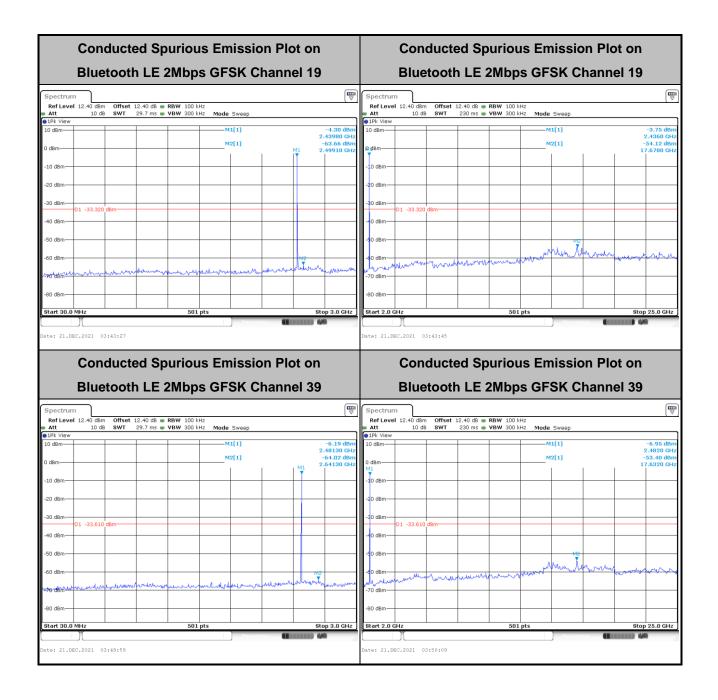
Spectrum Spectrum Ref use! 20.00 dim Offset 12.40 dis 8 BW 100 Hz Att 20 dis SWT 8 ms VBW 300 HHz Max 0 dis M1[1] -60.99 dim 10 dis 10 dis 10 dis M1[1] -55.19 dis 10 dis 10 dis 10 dis 10 dis 10 dis 10 dis -10 dis 10 dis	Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 39
10 dBm 0 <th>Ref level 20.00 dBm Offset 12.40 dB RBW 100 H2 Att 20 dB SWT 8 ms VBW 300 kHz Mode Sweep © IPK Max </th> <th>April Level 20.00 dBm Offset 12.40 dB RBW 100 kHz Att 20 dB SWT 8 ms VBW 300 kHz Mode Sweep IPIM Max </th>	Ref level 20.00 dBm Offset 12.40 dB RBW 100 H2 Att 20 dB SWT 8 ms VBW 300 kHz Mode Sweep © IPK Max	April Level 20.00 dBm Offset 12.40 dB RBW 100 kHz Att 20 dB SWT 8 ms VBW 300 kHz Mode Sweep IPIM Max
Date: 21.DEC.2021 03:36:55 Date: 21.DEC.2021 03:48:18	10 dBm 0 0 dBm 0 -10 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -30 dBm 0 -40 dBm 0 -50 dBm 0 -70 dBm 0	10 dBm 0 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -10 dB



3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>

0 Bin M11 2.4590 etcl M11 4.4590 etcl M11 M11 4.4590 etcl M11	Conducte	d Spurious Emissi	Conducted Spurious Emission Plot on				
Rate Level 12 Other 12 Johnson WW 2011H Made Scence 10	Bluetooth	LE 1Mbps GFSK	Channel 00	Bluetooth LE 1Mbps GFSK Channel 00			
Bit Merit	Ref Level 12.40 dBm Offset 12			Ref Level 12.40 dBm Off		Mode Sweep	
0.8m	1Pk View	· · · · · · · · · · · · · · · · · · ·		●1Pk View		·	
and and a an			2.40420 GHz -64.99 dBm				-6.15 dBm 2.3900 GHz -53.84 dBm 15.8870 GHz
90 0	10 dBm			-10 dBm			
00 dm 0 dm							
0 dm + 0 dm + 0 1 pt	D1 -34.910 dBm			D1 -34.910 dBm-			
00 000 00000 000000 0000000 0000000 0000000 00	30 dBm			-50 dBm		M2 Nikey Asia anada	
and and a set 20.0 Miz set 20.0		nonthe permition to make the second	manus and manus	Marine were and	monument	where the second second	the second standing the se
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 spectrum Image: Spectrum	tart 30.0 MHz	501 pts	Stop 3.0 GHz	Start 2.0 GHz	501 pts		Stop 25.0 GHz
Ref Lavel 12.40 dsm Offset 12.40 ds RBW 100 H/z Att 10 ds SWT 29.7 ms VBW 300 H/z Made Sweep HV View 0 dsm M1[1] -4.12 dsm Offset 12.40 ds RBW 100 H/z I us b WT 10 ds SWT 20 ms VBW 300 H/z Made Sweep I us b M1[1] -4.12 dsm Offset 12.40 dsm Offset 12.40 dsm VBW 300 H/z Made Sweep I us b MT 2.4300 0.41/z MI[1] -5.34 MT 2.4300 0.41/z Att Made Sweep I us b M1[1] -4.12 dsm Offset 12.40 dsm VBW 300 H/z Mode Sweep I us b M1[1] -4.12 dsm Offset 12.40 dsm VBW 300 H/z Mode Sweep I us b MT 2.4300 0.41/z MT -5.34 dsm MT 2.4300 0.41/z I us b MT 10 dsm MT -5.34 dsm MT 2.4300 0.41/z 10 dsm MT -6.44 dsm MT -6.44 dsm MT -7.0 dsm 20 dsm MT -6.44 dsm MT -6.40 dsm -6.40 dsm <th>te: 21.DEC.2021 03:20:36</th> <th>d Spurious Emissi</th> <th></th> <th>Condu</th> <th>cted Spurious</th> <th></th> <th></th>	te: 21.DEC.2021 03:20:36	d Spurious Emissi		Condu	cted Spurious		
JPK View IPK View 0 d8m M1[1] -4.12 dm M1[1] -5.34 dm -5.34 dm 2.4300 cHz -5.34 dm 2.4300 cHz -5.34 dm 2.4300 cHz -5.34 dm 2.4300 cHz -5.34 dm -5.34	Conducte Bluetooth	d Spurious Emissi	Channel 19	Condu	cted Spurious		el 19
dBm M2[1] M2[1] <t< th=""><th>Conducte Bluetooth</th><th>d Spurious Emissi LE 1Mbps GFSK (</th><th>Channel 19</th><th>Condu Bluetoo</th><th>cted Spurious oth LE 1Mbps (set 12.40 dB • RBW 100 kHz</th><th>GFSK Chann</th><th>el 19</th></t<>	Conducte Bluetooth	d Spurious Emissi LE 1Mbps GFSK (Channel 19	Condu Bluetoo	cted Spurious oth LE 1Mbps (set 12.40 dB • RBW 100 kHz	GFSK Chann	el 19
20 dem	Conducte Bluetooth Spectrum Ref Level 12.40 dBm Offset 12 Att 10 dB SWT 2	ed Spurious Emissi LE 1Mbps GFSK (2.40 db • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep	Channel 19	Conduct Bluetoo Spectrum Ref Level 12.40 dBm Off Att 10 dB SW 0 JPk View	cted Spurious oth LE 1Mbps (set 12.40 dB • RBW 100 kHz	GFSK Chann	el 19 (\vec{W}
0 dBm 01 33.020 dBm 08 0 <td>Conducte Bluetooth Ref Level 12.40 dBm Offset 12 PPK View 0 dBm</td> <td>ed Spurious Emissi LE 1Mbps GFSK (2.40 db • RBW 100 kHz 19.7 ms • VBW 300 kHz Mode Sweep MI[1]</td> <td>Channel 19</td> <td>Conduct Bluetor Spectrum Ref Level 12.40 dBm Off Att 10 dB SW 10 dBm 12.40 dBm 10 dB</td> <td>cted Spurious oth LE 1Mbps (set 12.40 dB • RBW 100 kHz</td> <td>GFSK Chann Mode Sweep</td> <td>el 19</td>	Conducte Bluetooth Ref Level 12.40 dBm Offset 12 PPK View 0 dBm	ed Spurious Emissi LE 1Mbps GFSK (2.40 db • RBW 100 kHz 19.7 ms • VBW 300 kHz Mode Sweep MI[1]	Channel 19	Conduct Bluetor Spectrum Ref Level 12.40 dBm Off Att 10 dB SW 10 dBm 12.40 dBm 10 dB	cted Spurious oth LE 1Mbps (set 12.40 dB • RBW 100 kHz	GFSK Chann Mode Sweep	el 19
0 dBm	e: 21.DEC.2021 03:20:36 Conducte Bluetooth pectrum Ref Level 12.40 dBm Offset 12 DR View 0 dBm dBm dBm	ed Spurious Emissi LE 1Mbps GFSK (2.40 db • RBW 100 kHz 19.7 ms • VBW 300 kHz Mode Sweep MI[1]	Channel 19	Conduc Bluetod	cted Spurious oth LE 1Mbps (set 12.40 dB • RBW 100 kHz	GFSK Chann Mode Sweep	el 19
	Conducte Bluetooth Cectrum Ref Level 12.40 dBm	ed Spurious Emissi LE 1Mbps GFSK (2.40 db • RBW 100 kHz 19.7 ms • VBW 300 kHz Mode Sweep MI[1]	Channel 19	Conduct Bluetod	cted Spurious oth LE 1Mbps (set 12.40 dB • RBW 100 kHz	GFSK Chann Mode Sweep	el 19 () -5.34 dBm 2.4360 GHz -54.06 dBm
0 dBm	**: 21.DEC.2021 03:20:36 Conducte Bluetooth pectrum Ref Level 12.40 dbm Offset 12 Att 10 db SWT 2 D dbm 0 dbm 0 dbm 0 dbm 0 dbm 0 1 -33.020 dbm	ed Spurious Emissi LE 1Mbps GFSK (2.40 db • RBW 100 kHz 19.7 ms • VBW 300 kHz Mode Sweep MI[1]	Channel 19	Conduc Bluetod	cted Spurious oth LE 1Mbps (set 12.40 dB • RBW 100 kHz	GFSK Chann Mode Sweep	el 19 () -5.34 dBm 2.4360 GHz -54.06 dBm
		ed Spurious Emissi LE 1Mbps GFSK (2.40 db • RBW 100 kHz 19.7 ms • VBW 300 kHz Mode Sweep MI[1]	Channel 19	Conduct Bluetoc Spectrum Att 10 dB m 10 dB m 20 dBm -10 dB m -20 dBm -30 dBm -30 dBm -30 dBm	cted Spurious oth LE 1Mbps (set 12.40 dB = RBW 100 kHz 230 ms = VBW 300 kHz	GFSK Chann	el 19 5.34 dBm 2.4360 GHz -54.06 dBm 17.6320 GHz 17.6320 GHz
Stop 3.0 GHz Stop 3.0 GHz Stop 25.0		ed Spurious Emissi LE 1Mbps GFSK (2.40 dB = PBW 100 kHz 29.7 ms = YBW 300 kHz Made Sweep M1[1] M2[1]	Channel 19	Conduc Bluetod	set 12.40 dB • RBW 100 kH2 230 ms • VBW 300 kH2	GFSK Chann	el 19 () -5.34 dBm 2.4360 GHz -54.06 dBm
	Conducte Bluetooth Conducte Bluetooth Conducte Bluetooth Conducte Dob Conducte Conducte Dob Conducte Conducte Dob Conducte Conducte Dob Conducte Conducte	ed Spurious Emissi LE 1Mbps GFSK (2.40 dB = PBW 100 kHz 29.7 ms = YBW 300 kHz Made Sweep M1[1] M2[1]	Channel 19	Conduct Bluetoc Spectrum RefLovel 12.40 dBm Off Att 10 dB m 10 dBm -0 dBm	set 12.40 dB • RBW 100 kH2 230 ms • VBW 300 kH2	GFSK Chann	el 19
e: 21.DEC.2021 03:27:01 Date: 21.DEC.2021 03:27:16		Ad Spurious Emissi LE 1Mbps GFSK (2.40 db • RBW 100 kHz 19.7 ms • VBW 300 kHz Mode Sweep MI[1] M2[1]	Channel 19	Conduct Bluetoc Spectrum Att 10 db m 10 db m 20 db m 40 db m 0 db m	cted Spurious	GFSK Chann	el 19 5.34 dBn 2.4360 GH 54.06 dBn 17.6320 GH



<2Mbps>

Conducted Spurious Emission Plot on	Conducted Spurious Emission Plot on
Bluetooth LE 2Mbps GFSK Channel 00	Bluetooth LE 2Mbps GFSK Channel 00
Spectrum Tmm Ref Level 12.40 dBm Offset 12.40 dB = RBW 100 kHz Att 10 dB 91Pk View 10 dB	Spectrum Image: Constraint of the sector of th
10 dlm 2.40420 GHz 0 dlm M2[1] -65.03 dlm -10 dlm	2.3900 GHz M2[1] -54.46 dBm
-20 dBm	-20 dBm
-50 dBm	50 dBm
-70 dBm	-70 d8m
Date: 21.DEC.2021 03:38:48	Start 2.0 GH2 Start 2.0 GH2 Start 2.0 GH2 Date: 21.DEC.2021 03:39:04 Minimum Min

3.5 Radiated Band Edges and Spurious Emission Measurement

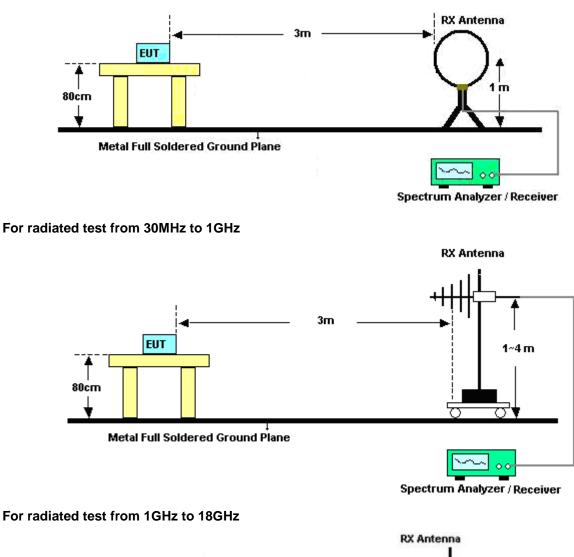
3.5.1 Limit of Radiated Band Edges and Spurious Emission

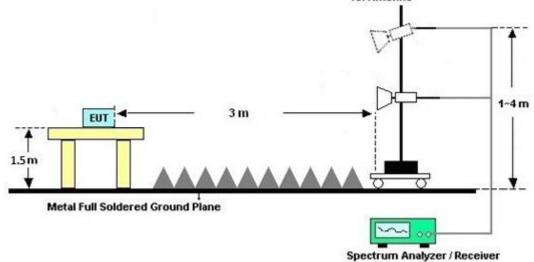
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

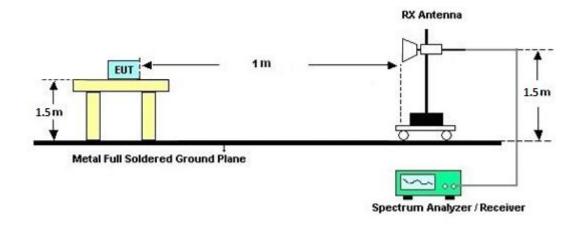
Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures


- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz



TEL : 886-3-327-0868 FAX : 886-3-327-0855 Report Template No.: BU5-FR15CBT4.0 Version 2.4

Page Number	: 29 of 36
Issue Date	: Dec. 29, 2021
Report Version	: 01

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

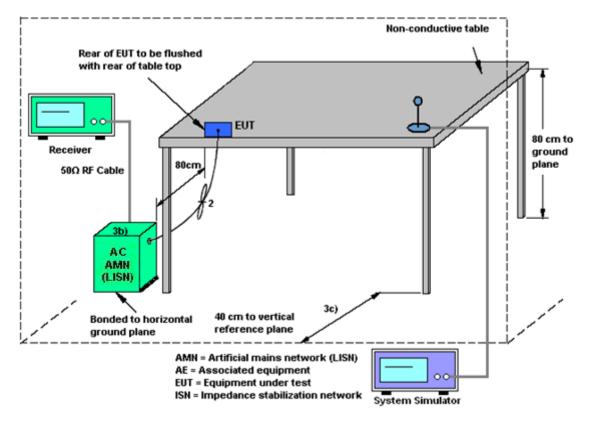
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 07, 2021	Dec. 10, 2021~ Dec. 20, 2021	Sep. 06, 2022	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz to 1GHz	Oct. 09, 2021	Dec. 10, 2021~ Dec. 20, 2021	Oct. 08, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02114	1G~18GHz	Aug. 04, 2021	Dec. 10, 2021~ Dec. 20, 2021	Aug. 03, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Oct. 12, 2021	Dec. 10, 2021~ Dec. 20, 2021	Oct. 11, 2022	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00991	18GHz ~40GHz	May 12, 2021	Dec. 10, 2021~ Dec. 20, 2021	May 11, 2022	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1G	Jul. 05, 2021	Dec. 10, 2021~ Dec. 20, 2021	Jul. 04, 2022	Radiation (03CH16-HY)
Amplifier	EMCI	EMC051845S E	980729	1-18GHz	Jul. 09, 2021	Dec. 10, 2021~ Dec. 20, 2021	Jul. 08, 2022	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 22, 2021	Dec. 10, 2021~ Dec. 20, 2021	Jun. 21, 2022	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 09, 2021	Dec. 10, 2021~ Dec. 20, 2021	Dec. 08, 2022	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A	MY59053012	3Hz~26.5GHz	Nov. 18, 2021	Dec. 10, 2021~ Dec. 20, 2021	Nov. 17, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11680/4P E	NA	Aug. 28, 2021	Dec. 10, 2021~ Dec. 20, 2021	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11688/4P E	NA	Aug. 28, 2021	Dec. 10, 2021~ Dec. 20, 2021	Aug. 27, 2022	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-5 757	NA	Aug. 28, 2021	Dec. 10, 2021~ Dec. 20, 2021	Aug. 27, 2022	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Dec. 10, 2021~ Dec. 20, 2021	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Dec. 10, 2021~ Dec. 20, 2021	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Dec. 10, 2021~ Dec. 20, 2021	N/A	Radiation (03CH16-HY)
Power Sensor	DARE	RPR3006W	13I00030SNO 31(NO:182)	10MHz~6GHz	Dec. 30, 2020	Dec. 10, 2021~ Dec. 21, 2021	Dec. 29, 2021	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	Dec. 10, 2021~ Dec. 21, 2021	Aug. 29, 2022	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW191204 (BOX8)	N/A	Jan. 07, 2021	Dec. 10, 2021~ Dec. 21, 2021	Jan. 06, 2022	Conducted (TH05-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Dec. 09, 2021	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Oct. 21, 2021	Dec. 09, 2021	Oct. 20, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2021	Dec. 09, 2021	Nov. 15, 2022	Conduction (CO05-HY)
Four Line V-Network	TESEQ	NNB 52	36122	N/A	Feb. 01, 2021	Dec. 09, 2021	Jan. 31, 2022	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Dec. 09, 2021	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Dec. 09, 2021	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020	Dec. 09, 2021	Dec. 30, 2021	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.1 dB
of 95% (U = 2Uc(y))	3.1 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5 0 dD
of 95% (U = 2Uc(y))	5.8 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2 dB
of 95% (U = 2Uc(y))	J.2 UD

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.8 dB
--	--------

Report Number : FR1N3028B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Junyu Jhou	Temperature:	22.6~23.8	°C
Test Date:	2021/12/10~2021/12/21	Relative Humidity:	48.2~52.1	%

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.031	0.689	0.50	Pass		
BLE	1Mbps	1	19	2440	1.031	0.686	0.50	Pass		
BLE	1Mbps	1	39	2480	1.031	0.691	0.50	Pass		

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u>												
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail			
BLE	1Mbps	1	0	2402	-3.90	30.00	-0.31	-4.21	36.00	Pass			
BLE	1Mbps	1	19	2440	-1.90	30.00	-0.31	-2.21	36.00	Pass			
BLE	1Mbps	1	39	2480	-2.40	30.00	-0.31	-2.71	36.00	Pass			

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	-4.91	-19.41	-0.31	8.00	Pass		
BLE	1Mbps	1	19	2440	-3.02	-17.57	-0.31	8.00	Pass		
BLE	1Mbps	1	39	2480	-3.42	-17.90	-0.31	8.00	Pass		

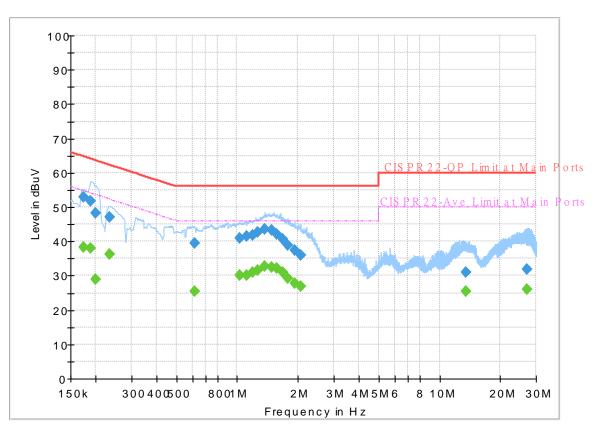
Report Number : FR1N3028B

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	-3.80	30.00	-0.31	-4.11	36.00	Pass
BLE	2Mbps	1	19	2440	-1.80	30.00	-0.31	-2.11	36.00	Pass
BLE	2Mbps	1	39	2480	-2.40	30.00	-0.31	-2.71	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>								
						,		, ,	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	-5.18	-21.65	-0.31	8.00	Pass
BLE	2Mbps	1	19	2440	-3.32	-19.76	-0.31	8.00	Pass
BLE	2Mbps	1	39	2480	-3.61	-20.02	-0.31	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.



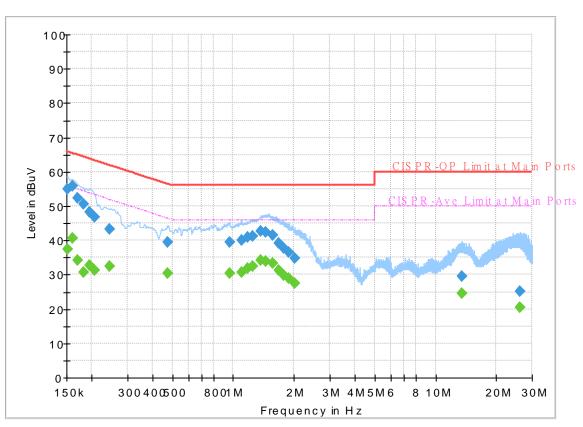
Appendix B. AC Conducted Emission Test Results

Toot Engineer	Tom Lee	Temperature :	23~26 ℃
Test Engineer.	TOIN Lee	Relative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 1N3028 Mode 1 Power From System Line

Full Spectrum


Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.174750		38.31	54.73	16.42	L1	OFF	19.6
0.174750	52.84		64.73	11.89	L1	OFF	19.6
0.188250		38.06	54.11	16.05	L1	OFF	19.6
0.188250	51.64		64.11	12.47	L1	OFF	19.6
0.199500		28.83	53.63	24.80	L1	OFF	19.6
0.199500	48.37	-	63.63	15.26	L1	OFF	19.6
0.233250		36.16	52.33	16.17	L1	OFF	19.6
0.233250	46.94		62.33	15.39	L1	OFF	19.6
0.615750		25.57	46.00	20.43	L1	OFF	19.8
0.615750	39.36		56.00	16.64	L1	OFF	19.8
1.027500		30.12	46.00	15.88	L1	OFF	20.1
1.027500	40.84		56.00	15.16	L1	OFF	20.1
1.119750		30.21	46.00	15.79	L1	OFF	20.1
1.119750	41.44		56.00	14.56	L1	OFF	20.1
1.187250		30.90	46.00	15.10	L1	OFF	20.1
1.187250	41.93		56.00	14.07	L1	OFF	20.1
1.259250		31.69	46.00	14.31	L1	OFF	20.1
1.259250	42.58		56.00	13.42	L1	OFF	20.1
1.365000		32.88	46.00	13.12	L1	OFF	20.1
1.365000	43.61		56.00	12.39	L1	OFF	20.1
1.482000		32.47	46.00	13.53	L1	OFF	20.1

43.18		56.00	12.82	L1	OFF	20.1
	32.09	46.00	13.91	L1	OFF	20.0
42.10		56.00	13.90	L1	OFF	20.0
	30.94	46.00	15.06	L1	OFF	20.0
40.67		56.00	15.33	L1	OFF	20.0
	29.10	46.00	16.90	L1	OFF	20.0
38.94		56.00	17.06	L1	OFF	20.0
	27.80	46.00	18.20	L1	OFF	20.0
37.32		56.00	18.68	L1	OFF	20.0
	26.76	46.00	19.24	L1	OFF	20.0
36.01		56.00	19.99	L1	OFF	20.0
	25.37	50.00	24.63	L1	OFF	19.9
30.88		60.00	29.12	L1	OFF	19.9
	25.99	50.00	24.01	L1	OFF	20.0
31.88		60.00	28.12	L1	OFF	20.0
	42.10 40.67 38.94 37.32 36.01 30.88 	32.09 42.10 30.94 40.67 29.10 38.94 37.32 26.76 36.01 30.88 25.37 30.88 25.99	32.09 46.00 42.10 56.00 30.94 46.00 40.67 56.00 29.10 46.00 38.94 56.00 27.80 46.00 37.32 56.00 26.76 46.00 36.01 56.00 26.76 46.00 36.01 56.00 25.37 50.00 30.88 60.00 25.99 50.00	32.09 46.00 13.91 42.10 56.00 13.90 30.94 46.00 15.06 40.67 56.00 15.33 29.10 46.00 16.90 38.94 56.00 17.06 27.80 46.00 18.20 37.32 56.00 18.68 26.76 46.00 19.24 36.01 56.00 19.99 25.37 50.00 24.63 30.88 60.00 29.12 25.99 50.00 24.01	32.09 46.00 13.91 L1 42.10 56.00 13.90 L1 30.94 46.00 15.06 L1 40.67 56.00 15.33 L1 29.10 46.00 16.90 L1 38.94 56.00 17.06 L1 27.80 46.00 18.20 L1 37.32 56.00 19.24 L1 36.01 56.00 19.24 L1 36.01 56.00 19.99 L1 25.37 50.00 24.63 L1 25.99 50.00 24.01 L1	32.09 46.00 13.91 L1 OFF 42.10 56.00 13.90 L1 OFF 30.94 46.00 15.06 L1 OFF 40.67 56.00 15.33 L1 OFF 29.10 46.00 16.90 L1 OFF 38.94 56.00 17.06 L1 OFF 37.32 56.00 18.20 L1 OFF 37.32 56.00 18.68 L1 OFF 36.01 56.00 19.24 L1 OFF 36.01 56.00 19.99 L1 OFF 30.88 25.37 50.00 24.63 L1 OFF 25.99 50.00 24.01 L1 OFF

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 1N3028 Mode 1 Power From System Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250	(abar)	37.34	55.88	18.54	N	OFF	19.6
0.152250	55.03		65.88	10.85	N	OFF	19.6
0.161250		40.50	55.40	14.90	N	OFF	19.6
0.161250	55.90		65.40	9.50	N	OFF	19.6
0.170250		34.30	54.95	20.65	Ν	OFF	19.6
0.170250	52.47		64.95	12.48	Ν	OFF	19.6
0.181500		30.69	54.42	23.73	Ν	OFF	19.6
0.181500	50.45		64.42	13.97	Ν	OFF	19.6
0.195000		32.69	53.82	21.13	Ν	OFF	19.6
0.195000	48.15		63.82	15.67	Ν	OFF	19.6
0.206250		31.27	53.36	22.09	Ν	OFF	19.6
0.206250	46.75		63.36	16.61	Ν	OFF	19.6
0.244500		32.34	51.94	19.60	Ν	OFF	19.6
0.244500	43.32		61.94	18.62	Ν	OFF	19.6
0.474000		30.35	46.44	16.09	Ν	OFF	19.7
0.474000	39.42		56.44	17.02	Ν	OFF	19.7
0.957750		30.49	46.00	15.51	Ν	OFF	20.1
0.957750	39.53		56.00	16.47	Ν	OFF	20.1
1.097250		30.75	46.00	15.25	Ν	OFF	20.1
1.097250	39.98		56.00	16.02	Ν	OFF	20.1
1.173750		31.86	46.00	14.14	Ν	OFF	20.1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
1.254750 41.31 56.00 14.69 N OFF 20.1 1.362750 34.15 46.00 11.85 N OFF 20.1 1.362750 42.79 56.00 13.21 N OFF 20.1 1.448250 34.01 46.00 11.99 N OFF 20.1 1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250	1.173750	40.80		56.00	15.20	Ν	OFF	20.1
1.362750 34.15 46.00 11.85 N OFF 20.1 1.362750 42.79 56.00 13.21 N OFF 20.1 1.448250 34.01 46.00 11.99 N OFF 20.1 1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43	1.254750		32.48	46.00	13.52	Ν	OFF	20.1
1.362750 42.79 56.00 13.21 N OFF 20.1 1.448250 34.01 46.00 11.99 N OFF 20.1 1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 33.21 46.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.783500 37.66 56.00 19.57 N OFF 20.0 1.889250	1.254750	41.31		56.00	14.69	Ν	OFF	20.1
1.448250 34.01 46.00 11.99 N OFF 20.1 1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750	1.362750		34.15	46.00	11.85	Ν	OFF	20.1
1.448250 42.49 56.00 13.51 N OFF 20.1 1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750	1.362750	42.79		56.00	13.21	Ν	OFF	20.1
1.560750 33.21 46.00 12.79 N OFF 20.0 1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 39.20 56.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69	1.448250		34.01	46.00	11.99	Ν	OFF	20.1
1.560750 41.56 56.00 14.44 N OFF 20.0 1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 39.20 56.00 16.80 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000	1.448250	42.49		56.00	13.51	Ν	OFF	20.1
1.675500 31.15 46.00 14.85 N OFF 20.0 1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58	1.560750		33.21	46.00	12.79	Ν	OFF	20.0
1.675500 39.20 56.00 16.80 N OFF 20.0 1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.560750	41.56		56.00	14.44	Ν	OFF	20.0
1.783500 29.72 46.00 16.28 N OFF 20.0 1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.675500		31.15	46.00	14.85	Ν	OFF	20.0
1.783500 37.66 56.00 18.34 N OFF 20.0 1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.675500	39.20		56.00	16.80	Ν	OFF	20.0
1.889250 28.89 46.00 17.11 N OFF 20.0 1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.783500		29.72	46.00	16.28	Ν	OFF	20.0
1.889250 36.43 56.00 19.57 N OFF 20.0 2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.783500	37.66		56.00	18.34	Ν	OFF	20.0
2.019750 27.41 46.00 18.59 N OFF 20.0 2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.889250		28.89	46.00	17.11	Ν	OFF	20.0
2.019750 34.69 56.00 21.31 N OFF 20.0 13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	1.889250	36.43		56.00	19.57	Ν	OFF	20.0
13.560000 24.58 50.00 25.42 N OFF 19.9 13.560000 29.58 60.00 30.42 N OFF 19.9	2.019750		27.41	46.00	18.59	Ν	OFF	20.0
13.560000 29.58 60.00 30.42 N OFF 19.9	2.019750	34.69		56.00	21.31	Ν	OFF	20.0
	13.560000		24.58	50.00	25.42	Ν	OFF	19.9
26.200500 20.59 50.00 29.41 N OFF 20.1	13.560000	29.58		60.00	30.42	Ν	OFF	19.9
	26.200500		20.59	50.00	29.41	Ν	OFF	20.1
26.200500 25.02 60.00 34.98 N OFF 20.1	26.200500	25.02		60.00	34.98	Ν	OFF	20.1

Appendix C. Radiated Spurious Emission

Toot Engineer	Karl Hou, Andy Yang	Temperature :	20~25°C
Test Engineer :	Kan nou, Anuy rang	Relative Humidity :	50~65%

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2384.235	56.07	-17.93	74	40.59	27.34	18.21	30.07	300	64	Ρ	Н
		2384.235	46.19	-7.81	54	30.71	27.34	18.21	30.07	300	64	А	Н
	*	2402	93.94	-	-	78.36	27.41	18.24	30.07	300	64	Р	Н
	*	2402	92.96	-	-	77.38	27.41	18.24	30.07	300	64	А	Н
BLE													Н
CH 00													Н
2402MHz		2338.35	55.8	-18.2	74	40.59	27.18	18.12	30.09	100	118	Р	V
240211112		2377.2	46.12	-7.88	54	30.7	27.31	18.19	30.08	100	118	А	V
	*	2402	93.65	-	-	78.07	27.41	18.24	30.07	100	118	Р	V
	*	2402	92.67	-	-	77.09	27.41	18.24	30.07	100	118	А	V
													V
													V
		2370.76	56.41	-17.59	74	41.03	27.28	18.18	30.08	321	63	Ρ	Н
		2373.56	46.22	-7.78	54	30.82	27.29	18.19	30.08	321	63	А	Н
	*	2440	96.19	-	-	80.38	27.56	18.31	30.06	321	63	Ρ	Н
	*	2440	95.42	-	-	79.61	27.56	18.31	30.06	321	63	А	Н
		2498.67	56.67	-17.33	74	40.4	27.89	18.42	30.04	321	63	Ρ	Н
BLE CH 19		2489.64	47.3	-6.7	54	31.1	27.84	18.4	30.04	321	63	А	Н
2440MHz		2363.34	56.43	-17.57	74	41.09	27.25	18.17	30.08	100	103	Ρ	V
2440101112		2373.84	46.24	-7.76	54	30.83	27.3	18.19	30.08	100	103	А	V
	*	2440	96.09	-	-	80.28	27.56	18.31	30.06	100	103	Р	V
	*	2440	95.3	-	-	79.49	27.56	18.31	30.06	100	103	А	V
		2489.64	57.12	-16.88	74	40.92	27.84	18.4	30.04	100	103	Р	V
		2489.92	47.08	-6.92	54	30.88	27.84	18.4	30.04	100	103	А	V

Page Number : C1 of C14

	*	2480	95.09	-	-	78.98	27.78	18.38	30.05	273	64	Р	Н
	*	2480	94.31	-	-	78.2	27.78	18.38	30.05	273	64	А	Н
		2488.84	57.49	-16.51	74	41.3	27.83	18.4	30.04	273	64	Ρ	н
		2496.56	47.15	-6.85	54	30.9	27.88	18.41	30.04	273	64	А	н
													Н
BLE CH 39													Н
2480MHz	*	2480	96.07	-	-	79.96	27.78	18.38	30.05	100	113	Ρ	V
24000012	*	2480	95.19	-	-	79.08	27.78	18.38	30.05	100	113	А	V
		2488.16	56.81	-17.19	74	40.62	27.83	18.4	30.04	100	113	Р	V
		2491.28	47.37	-6.63	54	31.16	27.85	18.4	30.04	100	113	А	V
													V
													V
Remark		o other spurious results are PA		Peak and	Average li	mit line							

2.4GHz 2400~2483.5M	MHz
---------------------	-----

	ſ			-			• ,		ſ	F	F	[Γ
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4804	41.49	-32.51	74	51.97	32.41	12.35	55.24	-	-	Р	Н
		11025	49.75	-24.25	74	46.63	38.9	19.57	55.35	-	-	Ρ	Н
		11025	38.54	-15.46	54	35.42	38.9	19.57	55.35	-	-	Α	Н
		14490	49.63	-24.37	74	41.55	40.4	22.01	54.33	-	-	Р	Н
		14490	41.72	-12.28	54	33.64	40.4	22.01	54.33	-	-	Α	Н
		17955	53.79	-20.21	74	42.68	42.64	25.04	56.57	-	-	Р	Н
		17955	44.94	-9.06	54	33.83	42.64	25.04	56.57	-	-	Α	Н
													Н
													Н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	40.61	-33.39	74	51.09	32.41	12.35	55.24	-	-	Р	V
		11280	50.08	-23.92	74	46.23	39.16	19.85	55.16	-	-	Р	V
		11280	37.95	-16.05	54	34.1	39.16	19.85	55.16	-	-	Α	V
		14505	50.91	-23.09	74	42.83	40.39	22.02	54.33	-	-	Р	V
		14505	41.85	-12.15	54	33.77	40.39	22.02	54.33	-	-	Α	V
		17895	53.48	-20.52	74	42.84	42.14	25.03	56.53	-	-	Р	V
		17895	44.2	-9.8	54	33.56	42.14	25.03	56.53	-	-	Α	V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		4880	40.16	-33.84	74	50.56	32.62	12.32	55.34	-	-	P	H
		7320	45.7	-28.3	74	48.71	36.76	15.88	55.65	-	-	Ρ	Н
		11235	50.21	-23.79	74	46.54	39.07	19.8	55.2	-	-	Ρ	н
		11235	37.25	-16.75	54	33.58	39.07	19.8	55.2	-	-	А	н
		14505	50.86	-23.14	74	42.78	40.39	22.02	54.33	-	-	Ρ	Н
		14505	42.06	-11.94	54	33.98	40.39	22.02	54.33	-	-	А	Н
		17970	53.85	-20.15	74	42.64	42.76	25.03	56.58	-	-	Ρ	н
		17970	44.63	-9.37	54	33.42	42.76	25.03	56.58	-	-	А	Н
													Н
													Н
BLE													Н
CH 19													н
2440MHz		4880	40.64	-33.36	74	51.04	32.62	12.32	55.34	-	-	Ρ	V
244011112		7320	45.74	-28.26	74	48.75	36.76	15.88	55.65	-	-	Ρ	V
		12690	49.64	-24.36	74	44.07	39.07	21	54.5	-	-	Ρ	V
		12690	39.92	-14.08	54	34.35	39.07	21	54.5	-	-	А	V
		14490	50.54	-23.46	74	42.46	40.4	22.01	54.33	-	-	Ρ	V
		14490	41.71	-12.29	54	33.63	40.4	22.01	54.33	-	-	А	V
		17895	55.18	-18.82	74	44.54	42.14	25.03	56.53	-	-	Ρ	V
		17895	44.37	-9.63	54	33.73	42.14	25.03	56.53	-	-	А	V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	41.28	-32.72	74	51.42	33.02	12.28	55.44	-	-	Р	Н
		7440	46.23	-27.77	74	49.48	36.22	16.2	55.67	-	-	Р	Н
		10800	49.24	-24.76	74	46.08	39.2	19.38	55.42	-	-	Ρ	Н
		10800	37	-17	54	33.84	39.2	19.38	55.42	-	-	А	Н
		14505	49.43	-24.57	74	41.35	40.39	22.02	54.33	-	-	Р	Н
		14505	38.74	-15.26	54	30.66	40.39	22.02	54.33	-	-	А	Н
		17895	53.76	-20.24	74	43.12	42.14	25.03	56.53	-	-	Р	Н
		17895	42.47	-11.53	54	31.83	42.14	25.03	56.53	-	-	А	Н
													Н
													Н
BLE													Н
CH 39													Н
2480MHz		4960	40.15	-33.85	74	50.29	33.02	12.28	55.44	-	-	Ρ	V
240011112		7440	46.57	-27.43	74	49.82	36.22	16.2	55.67	-	-	Р	V
		10740	50.34	-23.66	74	47.36	39.08	19.33	55.43	-	-	Р	V
		10740	37.53	-16.47	54	34.55	39.08	19.33	55.43	-	-	А	V
		14505	50.3	-23.7	74	42.22	40.39	22.02	54.33	-	-	Ρ	V
		14505	41.85	-12.15	54	33.77	40.39	22.02	54.33	-	-	А	V
		17970	54.89	-19.11	74	43.68	42.76	25.03	56.58	-	-	Р	V
		17970	43.11	-10.89	54	31.9	42.76	25.03	56.58	-	-	А	V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
		l results are PA	-		-								
Remark	3. Tł	ne emission pos	sition marked	l as "-" m	eans no sus	pected emi	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
		or only.											
	4. Tł	ne emission lev	el close to 18	BGHz is (checked that	the average	ge emissior	n level is i	noise floor	only.			

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	(Band	Edge	@ 3m)
-----	-------	------	-------

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2375.625	56.35	-17.65	74	40.94	27.3	18.19	30.08	296	69	Р	Н
		2387.7	48.02	-5.98	54	32.52	27.35	18.22	30.07	296	69	Α	н
	*	2402	92.54	-	-	76.96	27.41	18.24	30.07	296	69	Р	Н
	*	2402	91.03	-	-	75.45	27.41	18.24	30.07	296	69	А	Н
BLE													Н
CH 00													Н
2402MHz		2362.605	55.95	-18.05	74	40.61	27.25	18.17	30.08	100	118	Р	V
		2386.545	47.91	-6.09	54	32.42	27.35	18.21	30.07	100	118	А	V
	*	2402	94.1	-	-	78.52	27.41	18.24	30.07	100	118	Р	V
	*	2402	92.62	-	-	77.04	27.41	18.24	30.07	100	118	Α	V
													V
													V
		2321.06	56.37	-17.63	74	41.24	27.14	18.08	30.09	253	68	Р	н
		2381.54	47.94	-6.06	54	32.49	27.33	18.2	30.08	253	68	А	Н
	*	2440	94.85	-	-	79.04	27.56	18.31	30.06	253	68	Р	Н
	*	2440	93.57	-	-	77.76	27.56	18.31	30.06	253	68	А	Н
		2497.55	56.79	-17.21	74	40.52	27.89	18.42	30.04	253	68	Р	Н
BLE CH 19		2486.7	48.9	-5.1	54	32.72	27.82	18.4	30.04	253	68	А	Н
2440MHz		2389.24	56.27	-17.73	74	40.76	27.36	18.22	30.07	100	116	Р	V
2440101112		2346.4	48	-6	54	32.77	27.19	18.13	30.09	100	116	А	V
	*	2440	95.97	-	-	80.16	27.56	18.31	30.06	100	116	Р	V
	*	2440	94.46	-	-	78.65	27.56	18.31	30.06	100	116	А	V
		2486.84	56.49	-17.51	74	40.31	27.82	18.4	30.04	100	116	Р	V
		2498.32	49.51	-4.49	54	33.24	27.89	18.42	30.04	100	116	А	V

	*	2480	94.72	-	-	78.61	27.78	18.38	30.05	280	68	Р	Н
	*	2480	93.43	-	-	77.32	27.78	18.38	30.05	280	68	А	н
		2489.8	57.53	-16.47	74	41.33	27.84	18.4	30.04	280	68	Р	н
		2486.92	48.81	-5.19	54	32.63	27.82	18.4	30.04	280	68	А	Н
													Н
BLE													н
CH 39 2480MHz	*	2480	96.13	-	-	80.02	27.78	18.38	30.05	100	116	Ρ	V
240010172	*	2480	94.63	-	-	78.52	27.78	18.38	30.05	100	116	А	V
		2498.44	57.14	-16.86	74	40.87	27.89	18.42	30.04	100	116	Ρ	V
		2491.28	49.65	-4.35	54	33.44	27.85	18.4	30.04	100	116	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lin	nit line.							

	1	-		_				-	ſ	F	ſ		[
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	41.01	-32.99	74	51.49	32.41	12.35	55.24	-	-	Р	Н
		11400	49.78	-24.22	74	45.67	39.2	19.98	55.07	-	-	Ρ	Н
		11400	37.85	-16.15	54	33.74	39.2	19.98	55.07	-	-	А	Н
		14475	49.73	-24.27	74	41.65	40.4	22	54.32	-	-	Ρ	Н
		14475	41.7	-12.3	54	33.62	40.4	22	54.32	-	-	А	Н
		17970	54.14	-19.86	74	42.93	42.76	25.03	56.58	-	-	Ρ	Н
		17970	43.69	-10.31	54	32.48	42.76	25.03	56.58	-	-	А	Н
													Н
													Н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	40.86	-33.14	74	51.34	32.41	12.35	55.24	-	-	Ρ	V
		12525	49.64	-24.36	74	44.48	38.72	20.91	54.47	-	-	Ρ	V
		12525	38.75	-15.25	54	33.59	38.72	20.91	54.47	-	-	А	V
		14475	49.8	-24.2	74	41.72	40.4	22	54.32	-	-	Ρ	V
		14475	41.71	-12.29	54	33.63	40.4	22	54.32	-	-	А	V
		17985	54.54	-19.46	74	43.21	42.88	25.04	56.59	-	-	Ρ	V
		17985	43.74	-10.26	54	32.41	42.88	25.04	56.59	-	-	А	V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	40.88	-33.12	74	51.28	32.62	12.32	55.34	-	-	P	Н
		7320	45.81	-28.19	74	48.82	36.76	15.88	55.65	-	-	Ρ	Н
		12645	49.61	-24.39	74	44.2	38.93	20.97	54.49	-	-	Ρ	Н
		12645	37.95	-16.05	54	32.54	38.93	20.97	54.49	-	-	А	Н
		14475	49.3	-24.7	74	41.22	40.4	22	54.32	-	-	Ρ	Н
		14475	41.7	-12.3	54	33.62	40.4	22	54.32	-	-	А	Н
		17970	53.5	-20.5	74	42.29	42.76	25.03	56.58	-	-	Ρ	Н
		17970	43	-11	54	31.79	42.76	25.03	56.58	-	-	А	Н
													Н
													Н
													Н
BLE CH 19													Н
2440MHz		4880	40.34	-33.66	74	50.74	32.62	12.32	55.34	-	-	Ρ	V
244010112		7320	46.18	-27.82	74	49.19	36.76	15.88	55.65	-	-	Ρ	V
		10875	49.73	-24.27	74	46.79	38.9	19.44	55.4	-	-	Ρ	V
		10875	36.45	-17.55	54	33.51	38.9	19.44	55.4	-	-	А	V
		14475	49.36	-24.64	74	41.28	40.4	22	54.32	-	-	Ρ	V
		14475	40.62	-13.38	54	32.54	40.4	22	54.32	-	-	А	V
		17970	53.98	-20.02	74	42.77	42.76	25.03	56.58	-	-	Ρ	V
		17970	42.96	-11.04	54	31.75	42.76	25.03	56.58	-	-	А	V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	-	
		4960	40.42	-33.58	74	50.56	33.02	12.28	55.44	-	-	Р	Н
		7440	46.5	-27.5	74	49.75	36.22	16.2	55.67	-	-	Р	Н
		12555	49.67	-24.33	74	44.46	38.76	20.92	54.47	-	-	Р	Н
		12555	38.76	-15.24	54	33.55	38.76	20.92	54.47	-	-	А	Н
		14475	50.37	-23.63	74	42.29	40.4	22	54.32	-	-	Р	Н
		14475	41.93	-12.07	54	33.85	40.4	22	54.32	-	-	А	Н
		17985	53.88	-20.12	74	42.55	42.88	25.04	56.59	-	-	Р	Н
		17985	44.78	-9.22	54	33.45	42.88	25.04	56.59	-	-	А	Н
													Н
													Н
BLE													Н
CH 39													н
2480MHz		4960	40.64	-33.36	74	50.78	33.02	12.28	55.44	-	-	Р	V
240011112		7440	46.1	-27.9	74	49.35	36.22	16.2	55.67	-	-	Р	V
		10905	49.82	-24.18	74	46.94	38.81	19.46	55.39	-	-	Р	V
		10905	36.33	-17.67	54	33.45	38.81	19.46	55.39	-	-	А	V
		14490	49.47	-24.53	74	41.39	40.4	22.01	54.33	-	-	Р	V
		14490	41.92	-12.08	54	33.84	40.4	22.01	54.33	-	-	А	V
		17850	53.88	-20.12	74	43.77	41.6	25.01	56.5	-	-	Р	V
		17850	42.75	-11.25	54	32.64	41.6	25.01	56.5	-	-	А	V
													V
													V
													V
													V
	1. N	o other spuriou	s found.										
	2. A	II results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. TI	he emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	oor only.											
	4. TI	he emission lev	el close to 18	BGHz is (checked that	the average	ge emissior	ı level is ı	noise floor	only.			

Emission above 18GHz

				Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Реак	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		19128	37.7	-36.3	74	58.48	37.95	-3.66	55.07	-	-	Р	Н
													Н
													Н
													н
													н
													н
													Н
													н
													н
													н
													н
2.4GHz													н
BLE		19736	37.57	-36.43	74	58.31	37.79	-3.58	54.95	-	-	Р	V
SHF													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.							<u> </u>	<u> </u>	<u> </u>	<u> </u>
		I results are PA		eak and	Average lim	it line.							
Remark		ne emission pos					ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
		or only.								-			

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
		equeitey		Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		158.04	30.54	-12.96	43.5	43.73	16.76	2.3	32.25	-	-	Р	Н
		205.57	24.65	-18.85	43.5	39.22	15.1	2.59	32.26	-	-	Р	Н
		311.3	25.65	-20.35	46	35.37	19.43	3.13	32.28	-	-	Р	Н
		420.91	24.33	-21.67	46	30.22	22.9	3.62	32.41	-	-	Р	н
		838.98	32.02	-13.98	46	30.01	28.94	5.09	32.02	-	-	Р	Н
		947.62	34.13	-11.87	46	29.43	30.47	5.45	31.22	-	-	Р	Н
													Н
													Н
													Н
													Н
0.4011-													Н
2.4GHz													н
BLE LF		37.76	26.02	-13.98	40	36.54	20.79	0.99	32.3	-	-	Р	V
LF		100.81	23.92	-19.58	43.5	38.33	16.07	1.82	32.3	-	-	Р	V
		186.17	25.39	-18.11	43.5	40.29	14.86	2.47	32.23	-	-	Ρ	V
		312.27	23.77	-22.23	46	33.47	19.45	3.13	32.28	-	-	Ρ	V
		660.5	30.67	-15.33	46	32.46	26.19	4.49	32.47	-	-	Р	V
		951.5	34.07	-11.93	46	29.2	30.6	5.46	31.19	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.		1				1	ı <u> </u>	ı		L
Remark	2. All	results are PA	SS against F	eak and	Average lim	it line.							
Remark	3. Th	e emission pos	ition marked	as "-" m	eans no sus	pected em	ission found	d with suff	icient mar	gin agai	nst limit	line or	noise
	flo	or only.											

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

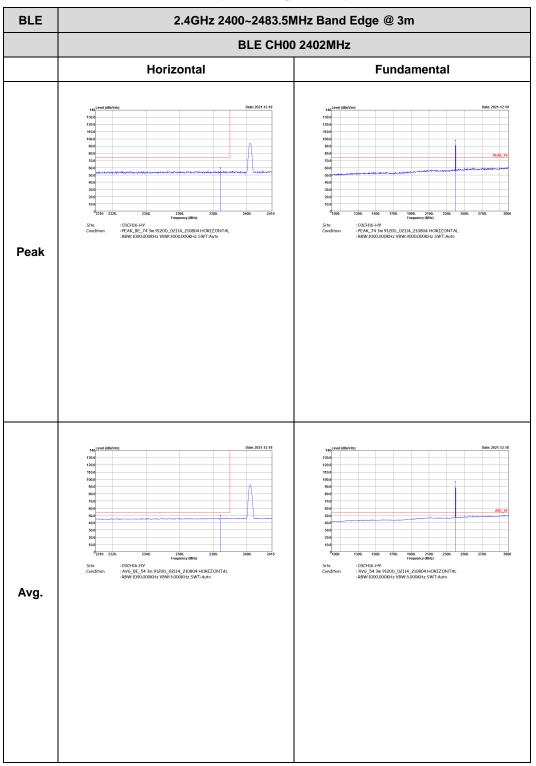
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

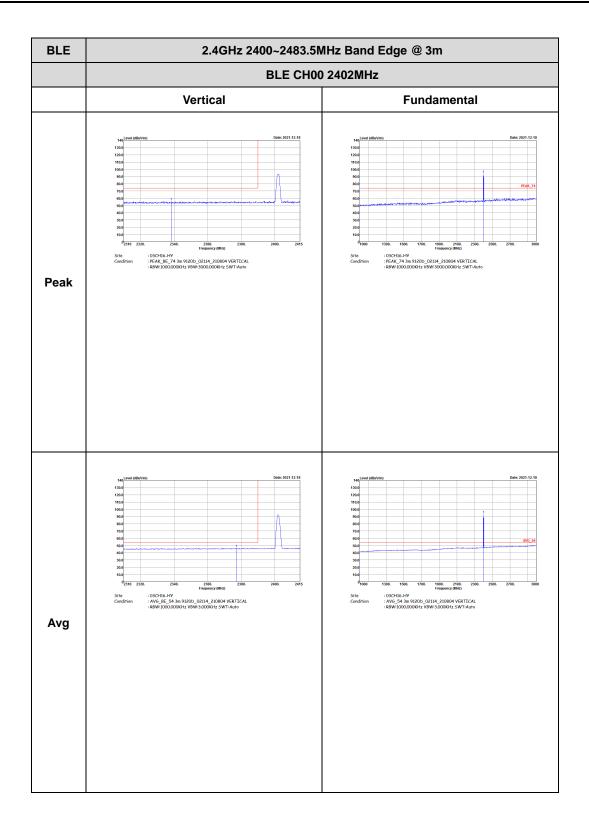
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

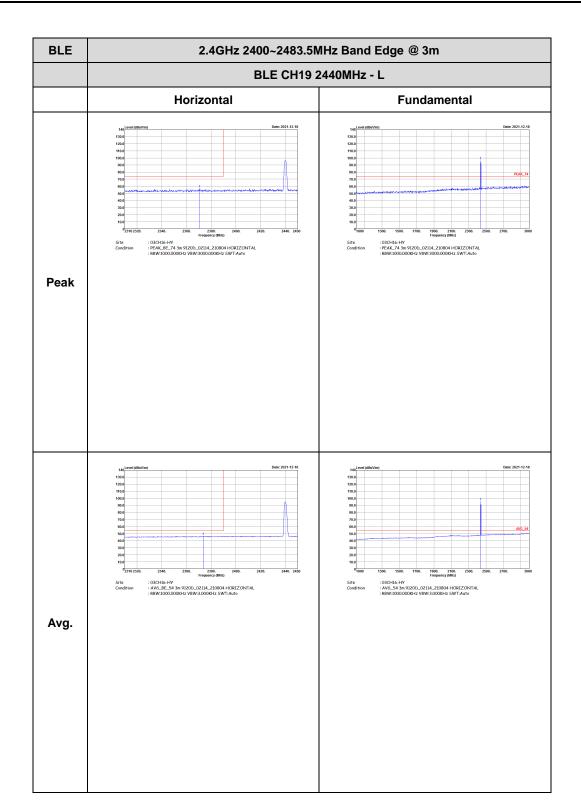
Test Engineer : Karl Hou, Andy Yang Relative Humidity : 50~65%	Toot Engineer		Temperature :	20~25°C
	Test Engineer :	Kali nou, Anuy fang	Relative Humidity :	50~65%

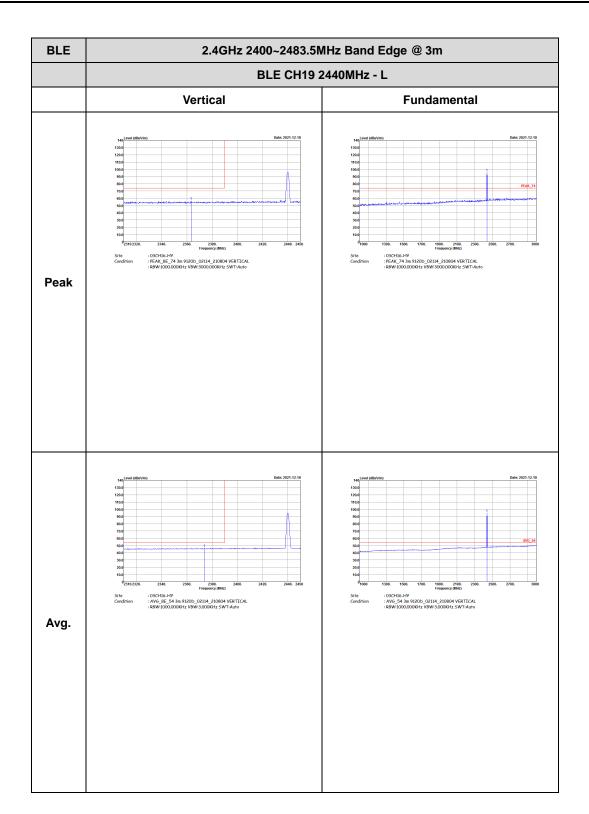
Note symbol


-L	Low channel location
-R	High channel location

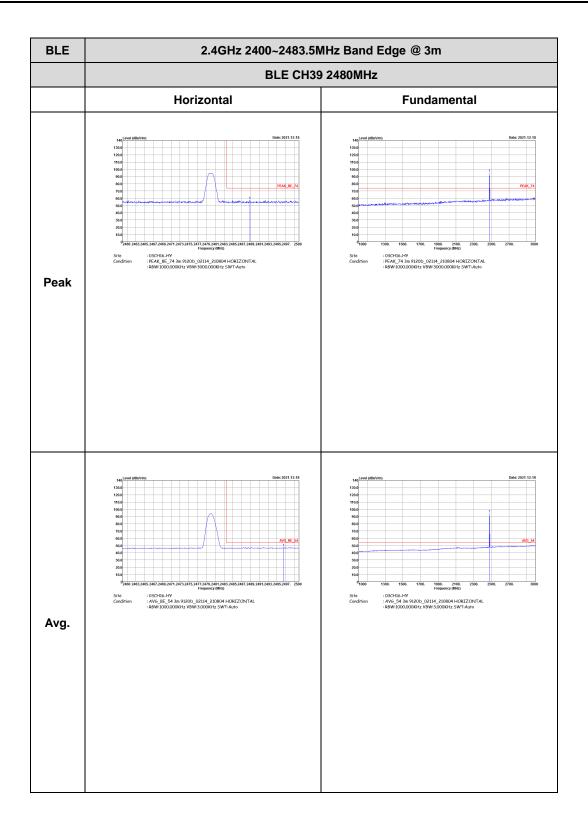

<1Mbps>

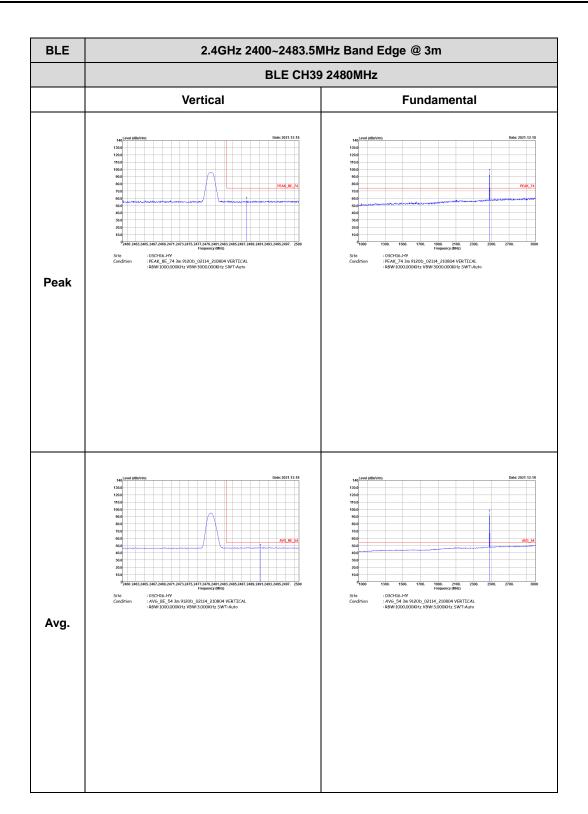
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

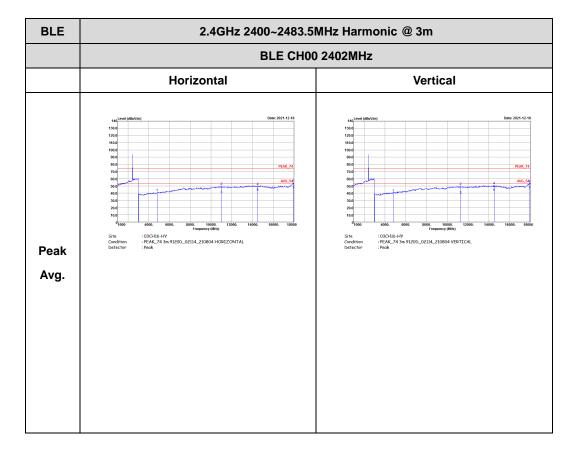


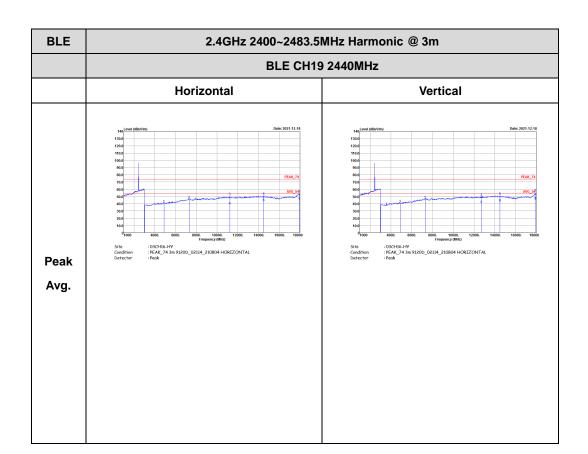
BLE	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
	BLE CH19 2440	MHz - R
	Horizontal	Fundamental
Peak	in the second	Left blank
Avg.	Image: contract of the second seco	Left blank



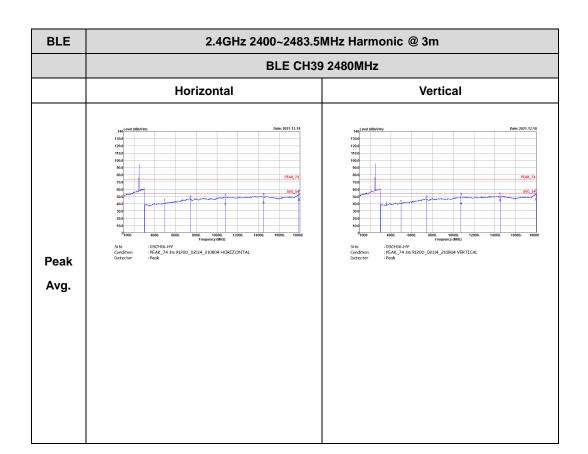


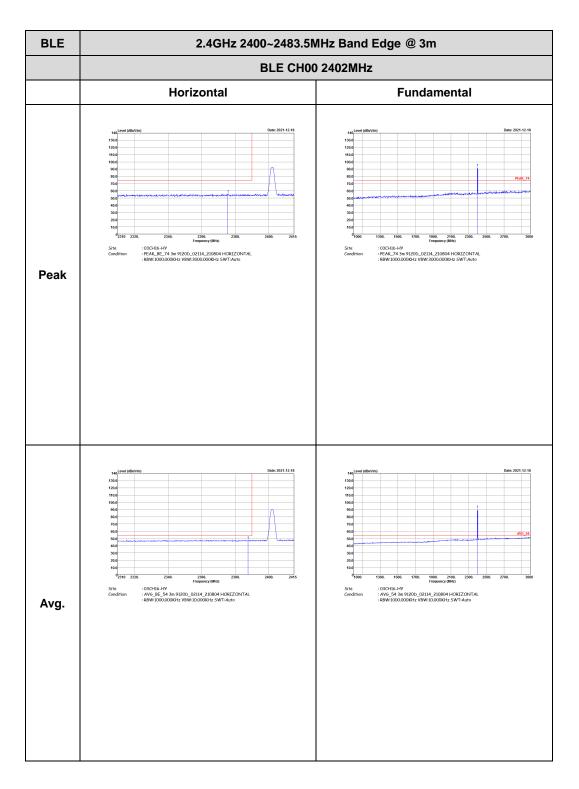
BLE	2.4GHz 2400~2483.5N	IHz Band Edge @ 3m
	BLE CH19 2	440MHz - R
	Vertical	Fundamental
Peak	image: constrained and image:	Left blank
Avg.	Image: Second	Left blank

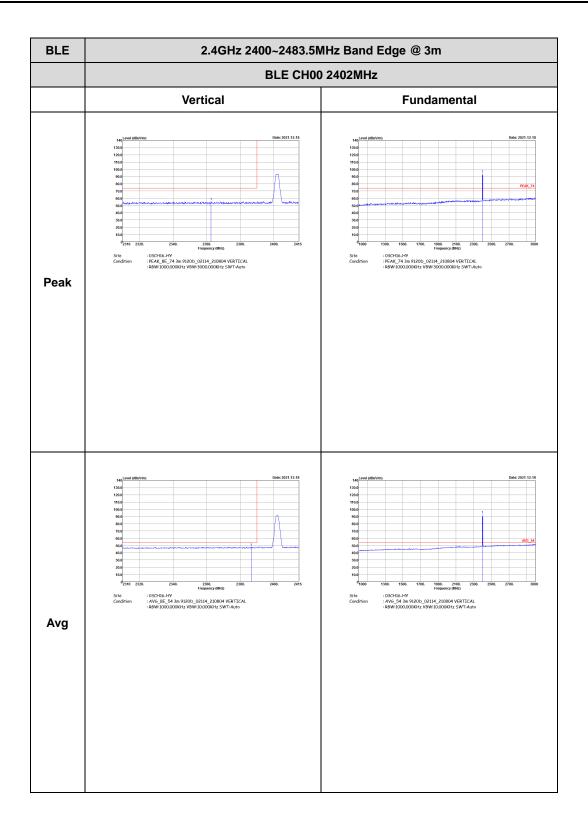




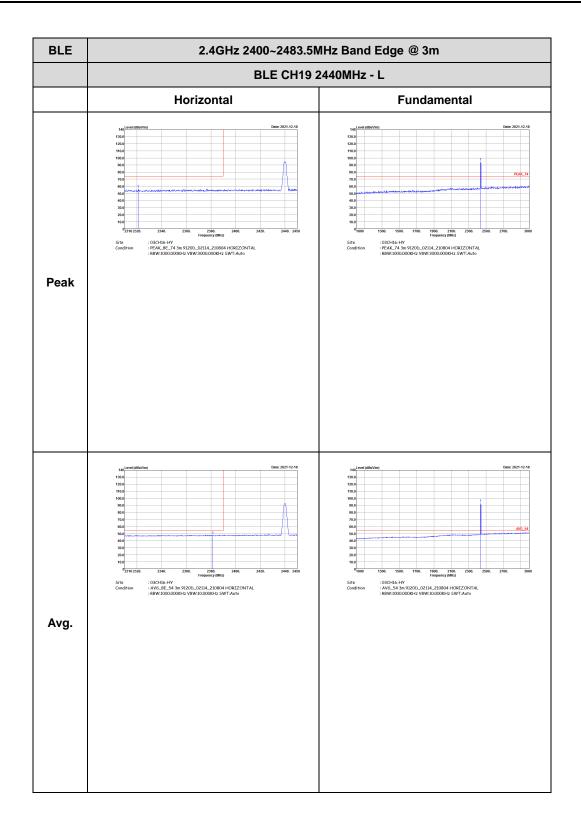
2.4GHz 2400~2483.5MHz

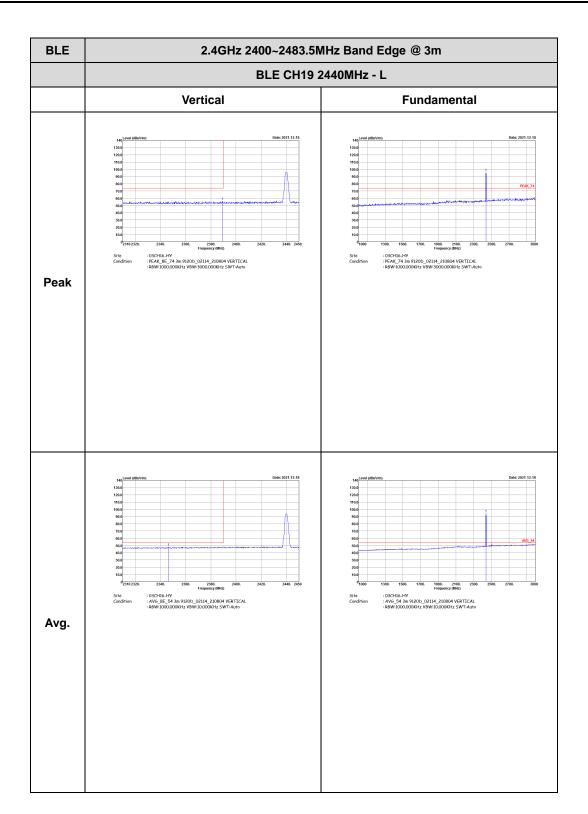

BLE (Harmonic @ 3m)



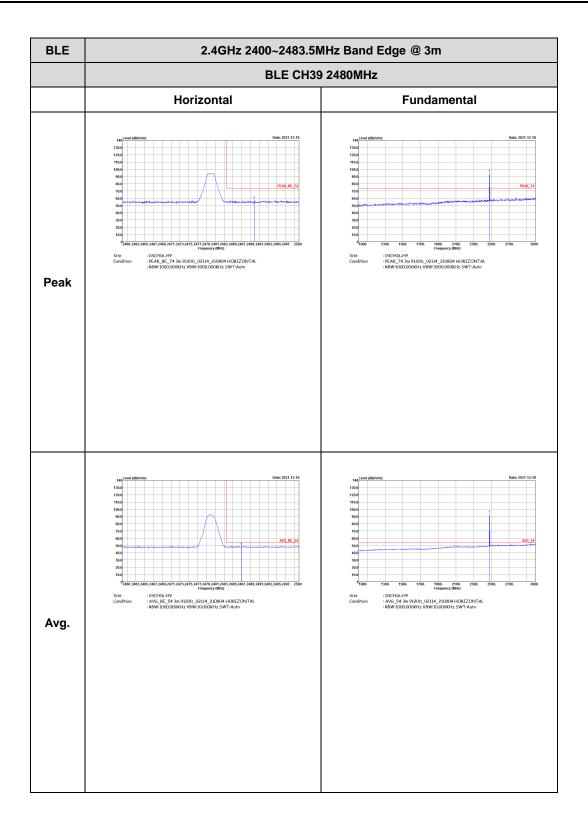

<2Mbps>

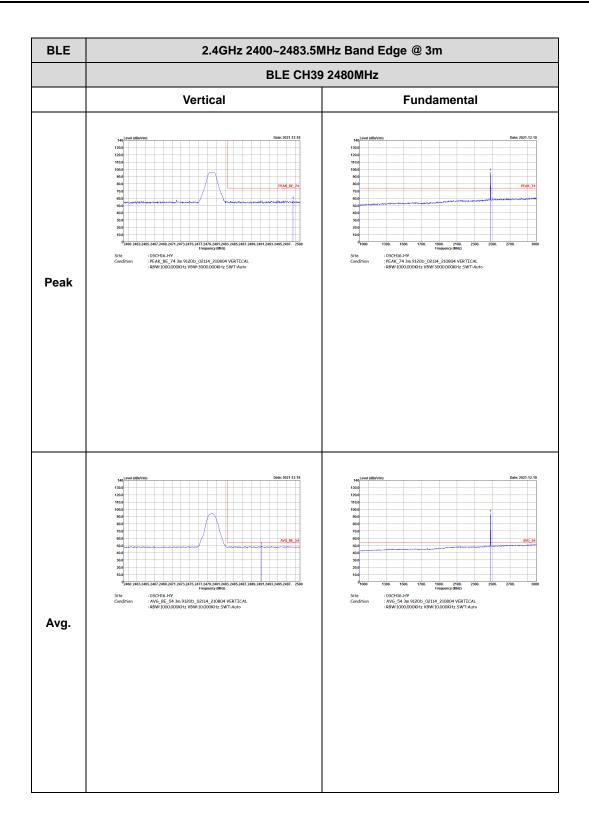
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

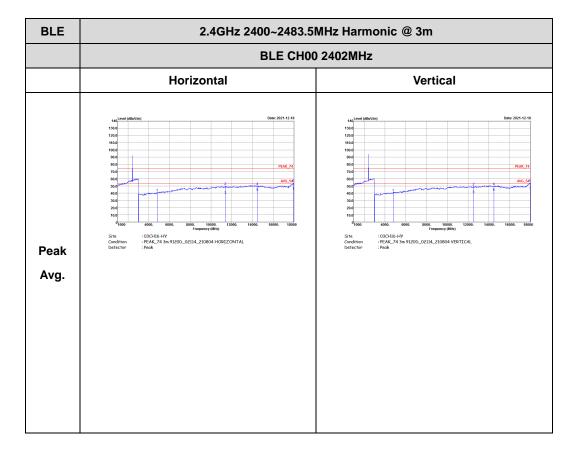


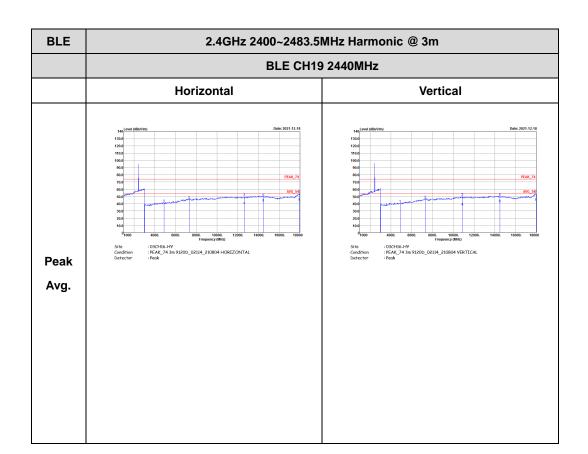
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH19 2440	MHz - R					
	Horizontal	Fundamental					
Peak	and the second	Left blank					
Avg.	1 Det 201.11 1 0 0 0	Left blank					



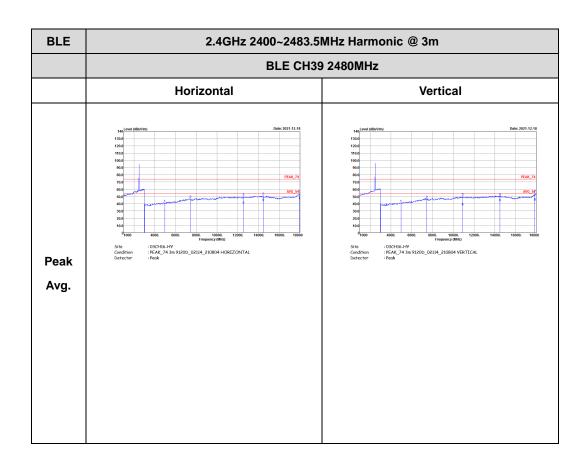


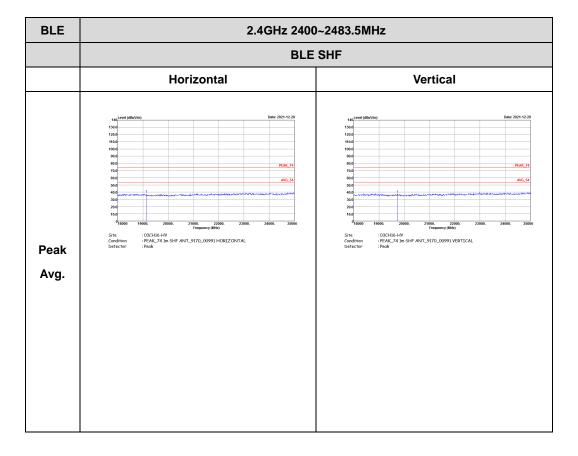
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Vertical	Fundamental				
Peak		Left blank				
Avg.	Image: Sector	Left blank				

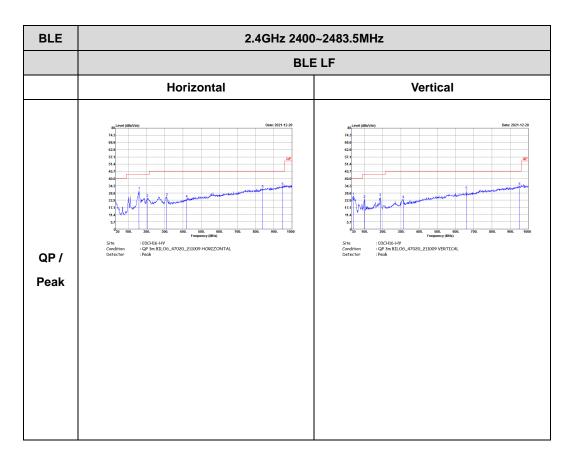




2.4GHz 2400~2483.5MHz


BLE (Harmonic @ 3m)




Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz

2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	60.96	381	2.62	3kHz
Bluetooth - LE for 2Mbps	31.57	197	5.08	10kHz

Image: Service State Topping Spectrum Analyseer: Snerget SA Service State Image: Service State Image: Snerget State Image: Service State Image: Snerget Spectrum Analyseer: Snerget SA Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State Image: Snerget State	2021
Avg Type:RMS TRACE[13:34:56 Free Run DECEMP PP PP PP DECEMP PP PP PP NEE PNO: Fast → Trig: Free Run DECEMP PP PP PP NEE PNO: Fast → Trig: Free Run DECEMP PP PP PP	
IFGainLow Priter. 2005	Select Marker
Дикг 361.0 µs 10 dB/div Ref 116.99 dBµV -0.51	JB 1
Next PK Right	Norma
	_
	Delta
Marker Dela	Fixed
	_
Span 0 Hz Center 2.480000000 GHz Span 0 MHz Sweep 2.000 ms (1001 pts) MkrCF Res BW 8 MHz #VBW 8.0 MHz Sweep 3.000 ms (1001 pts)	
1.34 dB 15 dBuV 15 dBuV 157 dB 177 dB 187 dB 197 μs (Δ) 197 μs (Δ) 0.51 dB 2 N 1 t 2.1 207ms 79.60 dBuV 3 44 1 t (Δ) 624 μs (Δ) 133 dB	
157 dB 15 dBuV Mkr→RefLvI 3 Δ4 1 t (Δ) 6240 us (Δ) -1.83 dB 2 5 dBuV 1 t 1.209 ms 79.60 dBuV	Properties
More 67	More
	1 of 2