

Report No.: FR181632A

FCC RADIO TEST REPORT

FCC ID : 2AFZZ116AG Equipment : Mobile Phone

Brand Name : POCO

Model Name : 21091116AG

Applicant : Xiaomi Communications Co., Ltd.

#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085

Manufacturer : Xiaomi Communications Co., Ltd.

#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085

Standard : FCC Part 15 Subpart C §15.247

The product was received on Aug. 19, 2021 and testing was started from Aug. 23, 2021 and completed on Sep. 10, 2021. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

TEL: 886-3-327-0868

Lunis Win

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number

: 1 of 47

FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021 Report Template No.: BU5-FR15CBT Version 2.4 Report Version : 01

Table of Contents

Report No.: FR181632A

His	tory o	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	
3	Test	Result	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	13
	3.3	Dwell Time Measurement	17
	3.4	20dB and 99% Bandwidth Measurement	19
	3.5	Output Power Measurement	26
	3.6	Conducted Band Edges Measurement	27
	3.7	Conducted Spurious Emission Measurement	32
	3.8	Radiated Band Edges and Spurious Emission Measurement	38
	3.9	AC Conducted Emission Measurement	42
	3.10	Antenna Requirements	44
4	List c	of Measuring Equipment	45
5	Unce	rtainty of Evaluation	47
App	endix	A. Conducted Test Results	
App	endix	B. AC Conducted Emission Test Result	
App	endix	C. Radiated Spurious Emission	
App	endix	D. Radiated Spurious Emission Plots	
App	endix	E. Duty Cycle Plots	
App	endix	F. Setup Photographs	

TEL: 886-3-327-0868 Page Number : 2 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

History of this test report

Report No. : FR181632A

Report No. Version		Description	Issued Date
FR181632A	01	Initial issue of report	Sep. 24, 2021

TEL: 886-3-327-0868 Page Number : 3 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

Summary of Test Result

Report No.: FR181632A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 11.88 dB at 46.490 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 21.21 dB at 0.152 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Danny Lee Report Producer: Amy Chen

TEL: 886-3-327-0868 Page Number : 4 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE/5G NR, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, NFC, FM Receiver, and GNSS.

Report No.: FR181632A

Product Specification subjective to this standard					
Sample 1	6G+128GB with Battery 1				
Sample 2	4G+64GB with Battery 2				
	WWAN: PIFA Antenna				
	WLAN: PIFA Antenna				
Antonno Typo	Bluetooth: PIFA Antenna				
Antenna Type	GPS / Glonass / BDS / Galileo: PIFA Antenna				
	NFC: FPC Antenna				
	FM: Using Earphone as Antenna				

Antenna information				
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-2.60		

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
Test one NO.	TH05-HY, 03CH13-HY, CO07-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

TEL: 886-3-327-0868 Page Number : 5 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR181632A

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-0868 Page Number : 6 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

2 Test Configuration of Equipment Under Test

Report No.: FR181632A

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-0868 Page Number : 7 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

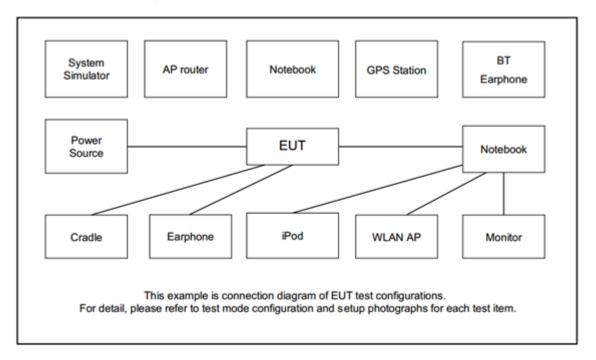
2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z Plane as worst plane and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

Report No.: FR181632A

b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases Test Item Data Rate / Modulation						
Test Item							
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
	Bluetooth BR 1Mbps GFSK						
Radiated	Mode 1: CH00_2402 MHz						
Test Cases	Mode 2: CH39_2441 MHz						
		Mode 3: CH78_2480 MHz					
AC Conducted	Mode 1: GSM850 (Middle Channel) Idle + Bluetooth Link + WLAN (2.4GHz) Link						
AC Conducted Emission	+ GNSS Rx + Earphone + USB Cable 1 (Data Link with Notebook) for						
Ellission	Sample 1						

Remark:

- For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, the tests were performed with USB Cable 2 and Sample 1.
- 3. Data Link with Notebook means data application transferred mode between EUT and Notebook.

TEL: 886-3-327-0868 Page Number : 8 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

2.3 Connection Diagram of Test System

Report No.: FR181632A

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
5.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
6.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
7.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
8.	Earphone	MI	EM023	N/A	Unshielded, 1.0m	N/A
9.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, make the EUT (SW: MIUI 12.5 Global 0.0.0) get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-0868 Page Number : 9 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Report No.: FR181632A

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$4.2 + 10 = 14.2$$
 (dB)

TEL: 886-3-327-0868 Page Number : 10 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

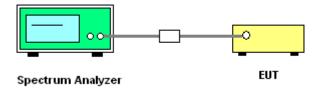
3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

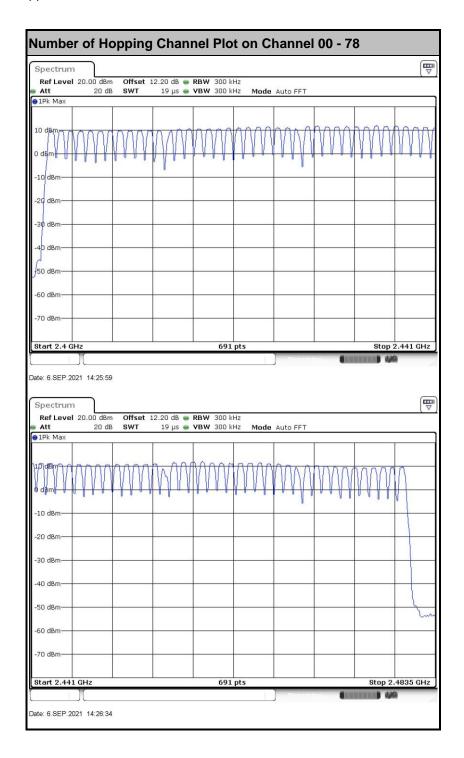
Report No.: FR181632A


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.


3.1.4 Test Setup

TEL: 886-3-327-0868 Page Number : 11 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Report No.: FR181632A

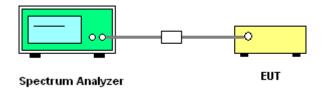
TEL: 886-3-327-0868 Page Number : 12 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR181632A

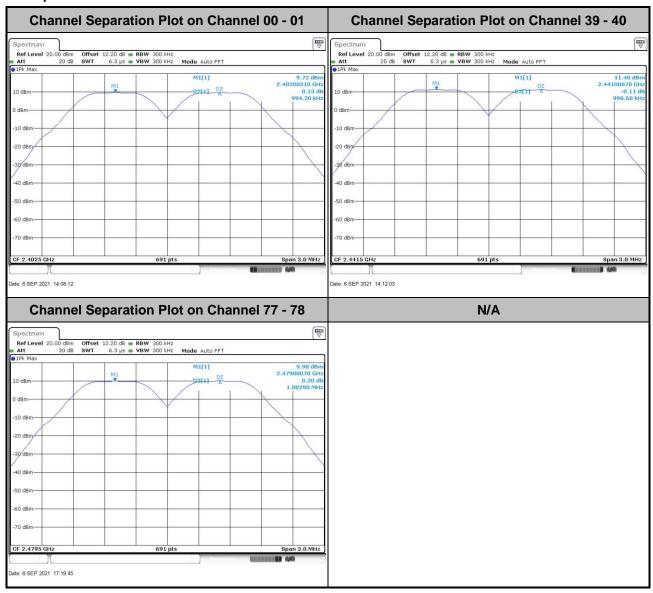

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

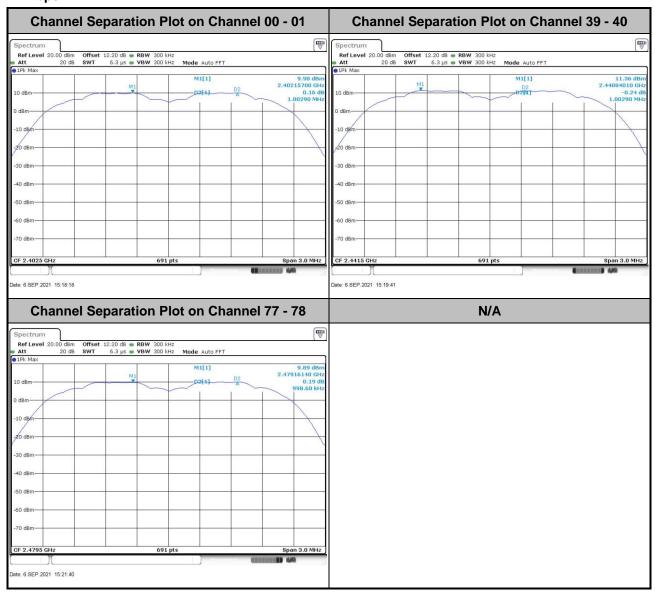
3.2.4 Test Setup



3.2.5 Test Result of Hopping Channel Separation

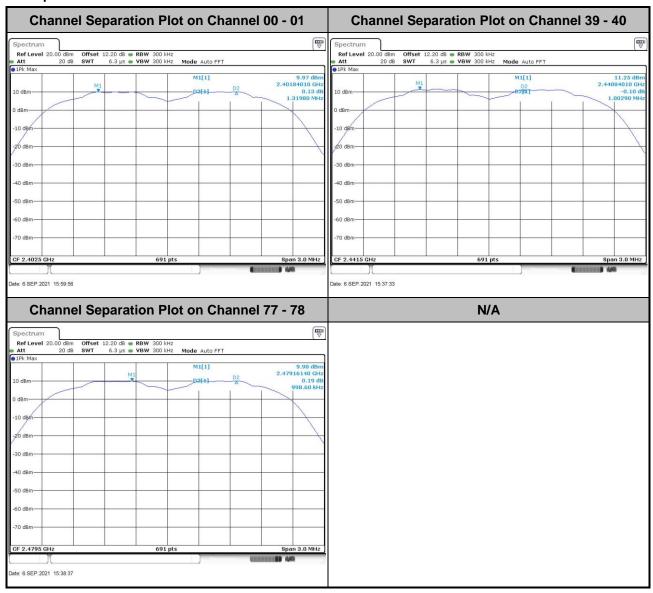
Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 13 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021


<1Mbps>

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : 14 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021


<2Mbps>

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : 15 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

<3Mbps>

Report No.: FR181632A

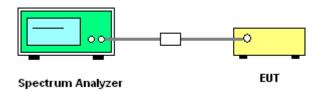
TEL: 886-3-327-0868 Page Number : 16 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

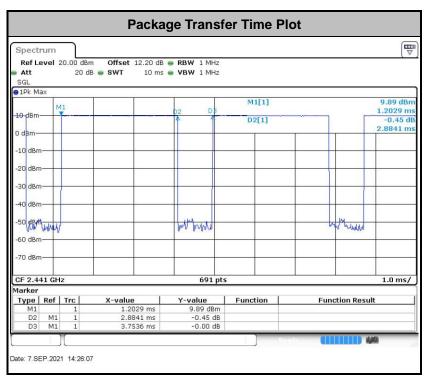
Report No.: FR181632A


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 17 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

Report No.: FR181632A

Remark:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-0868 Page Number : 18 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

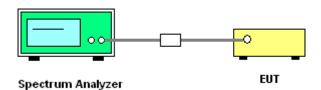
See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR181632A

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;

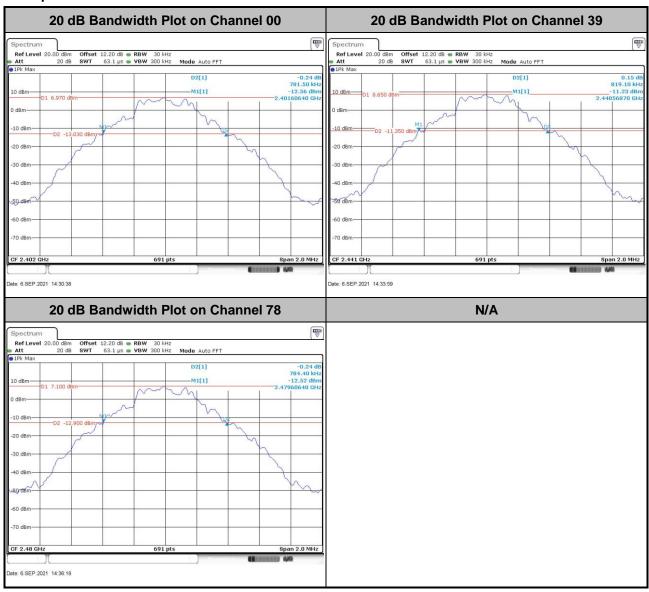

Trace = \max hold.

- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

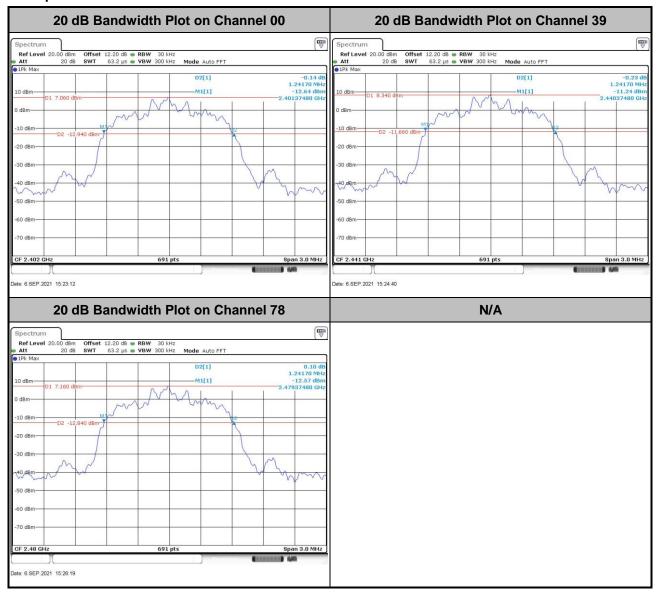
3.4.4 Test Setup



3.4.5 Test Result of 20dB Bandwidth

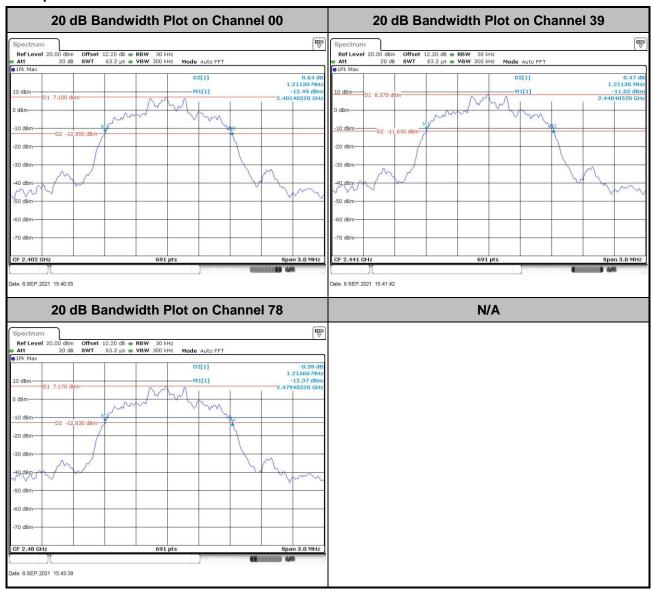
Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 19 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021


<1Mbps>

Report No.: FR181632A

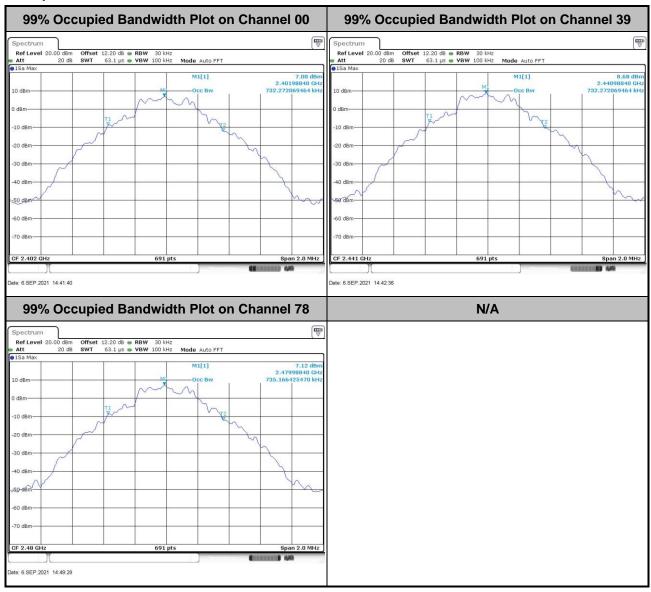
TEL: 886-3-327-0868 Page Number : 20 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021


<2Mbps>

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : 21 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

<3Mbps>

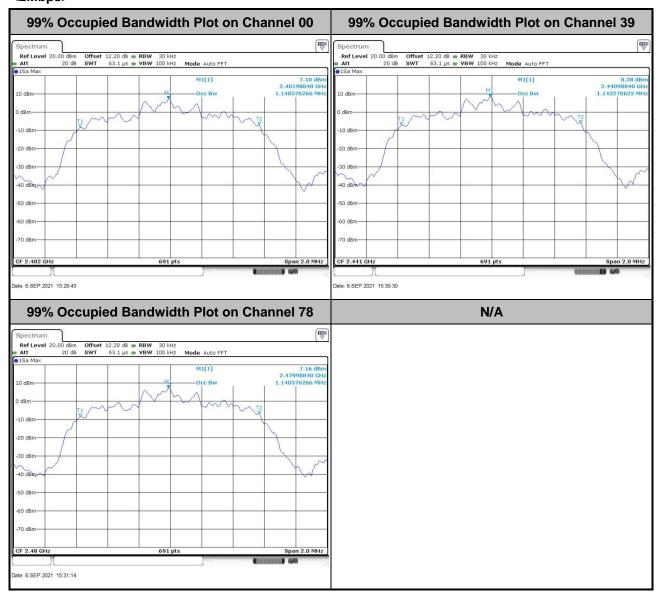

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : 22 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

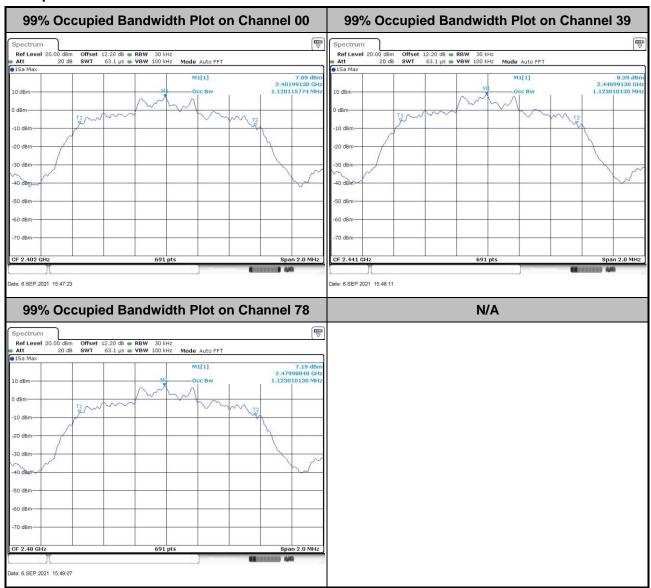


Report No.: FR181632A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 23 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

<2Mbps>



Report No.: FR181632A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 24 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

<3Mbps>

Report No.: FR181632A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

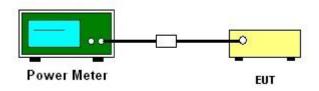
TEL: 886-3-327-0868 Page Number : 25 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR181632A


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

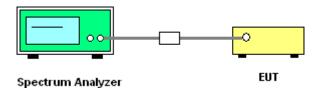
TEL: 886-3-327-0868 Page Number : 26 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

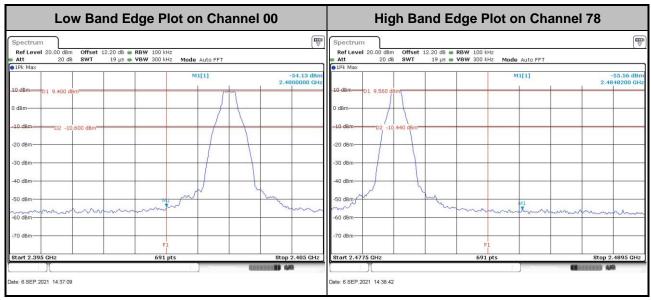
Report No.: FR181632A


3.6.2 Measuring Instruments

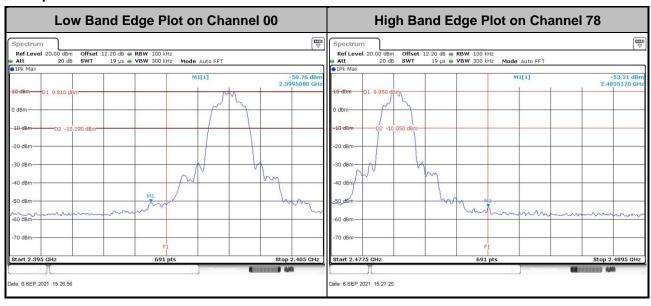
See list of measuring equipment of this test report.

3.6.3 Test Procedures

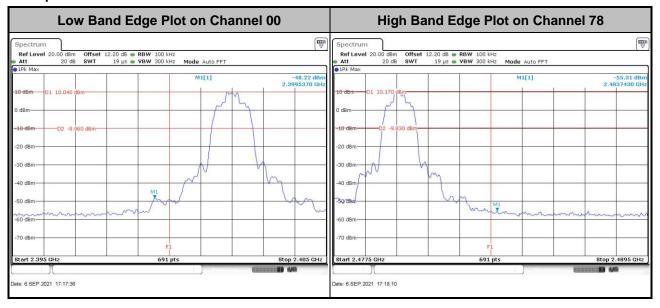
- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.


3.6.4 Test Setup

TEL: 886-3-327-0868 Page Number : 27 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021


3.6.5 Test Result of Conducted Band Edges

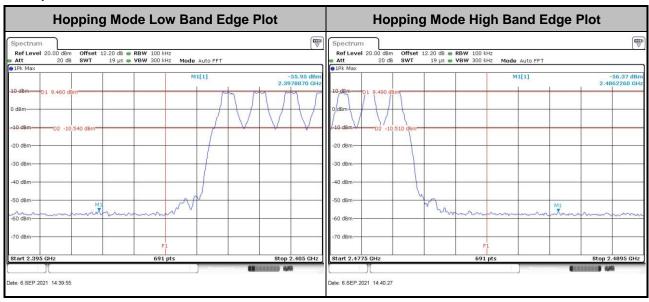
<1Mbps>


Report No.: FR181632A

<2Mbps>

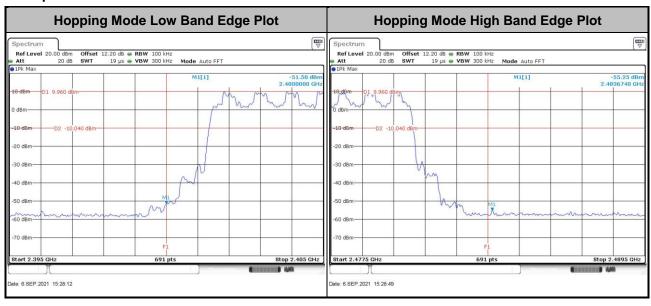
TEL: 886-3-327-0868 Page Number : 28 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

<3Mbps>

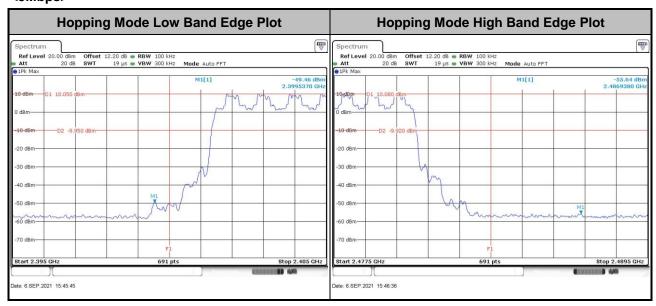


Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : 29 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021


3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>


Report No.: FR181632A

<2Mbps>

TEL: 886-3-327-0868 Page Number : 30 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

<3Mbps>

Report No.: FR181632A

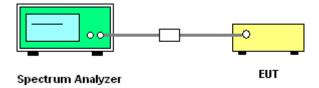
TEL: 886-3-327-0868 Page Number : 31 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

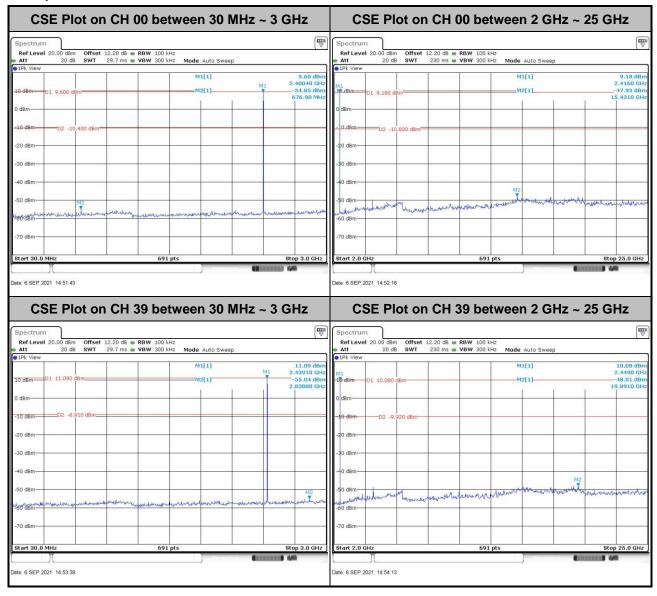
Report No.: FR181632A


3.7.2 Measuring Instruments

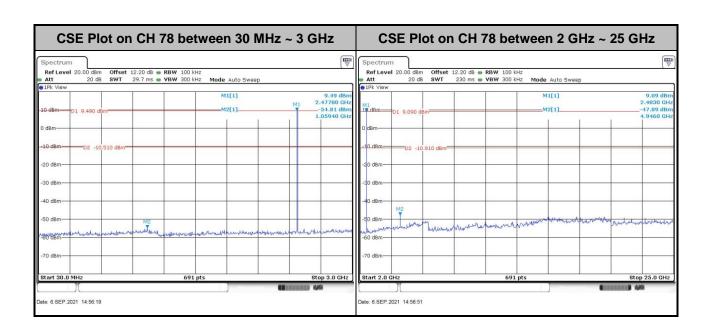
See list of measuring equipment of this test report.

3.7.3 Test Procedure

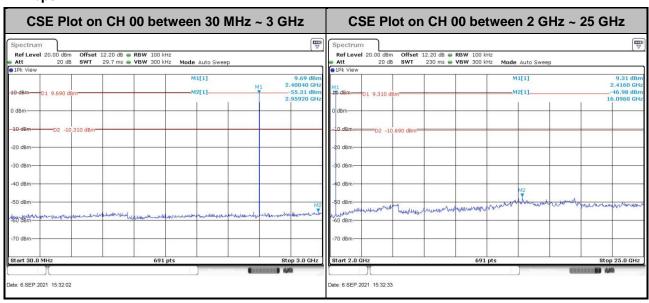
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

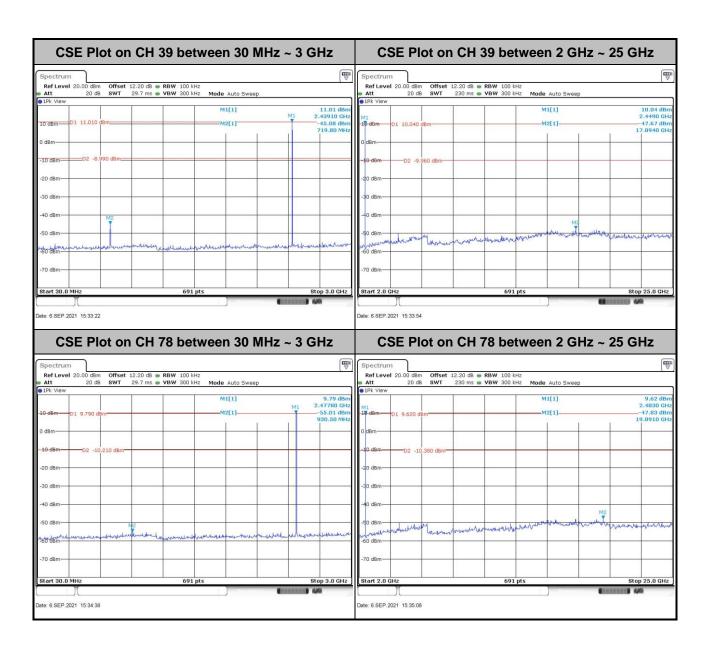
TEL: 886-3-327-0868 Page Number : 32 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021


3.7.5 Test Result of Conducted Spurious Emission

<1Mbps>

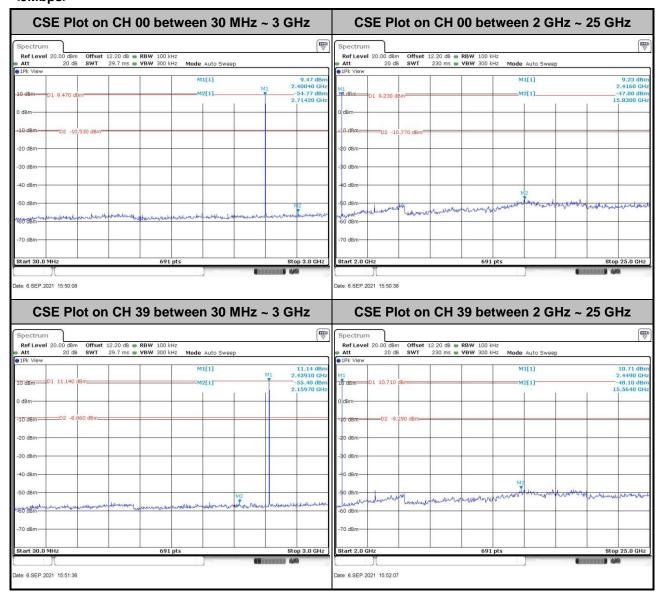

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : 33 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

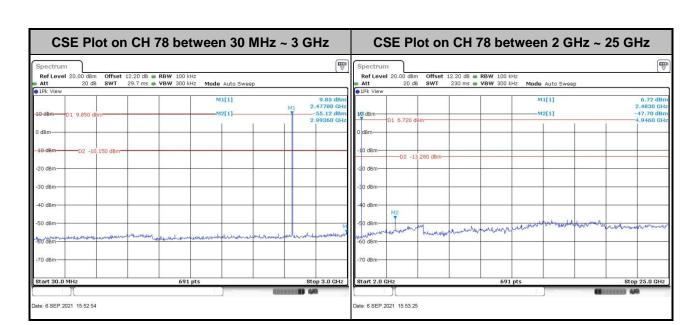


Report No.: FR181632A

<2Mbps>


TEL: 886-3-327-0868 Page Number : 34 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

Report No.: FR181632A


TEL: 886-3-327-0868 Page Number : 35 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

<3Mbps>

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : 36 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

TEL: 886-3-327-0868 Page Number : 37 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR181632A

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-0868 Page Number : 38 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.8.3 Test Procedures

 The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.

Report No.: FR181632A

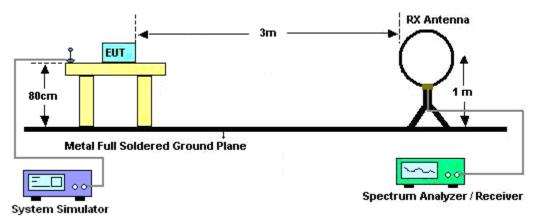
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

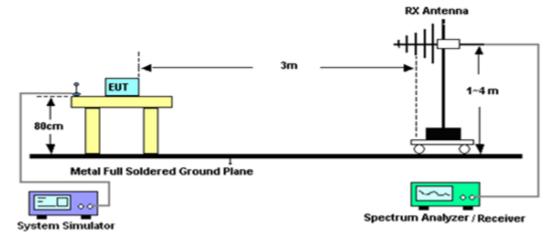
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

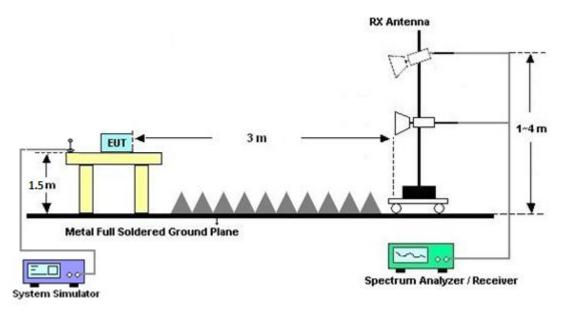

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1GHz was performed by adjusting the antenna tower from 1m to 4m and by rotating the turn table from 0degree to 360 degree to find the peak maximum hold reading. When there is no suspected emission found, or the peak measurement instead of QP measurement as alternative complies with the QP limit, the test position is marked as "-".
- 8. Radiated testing above 1GHz was performed by adjusting the antenna tower from 1m to 4m and by rotating the turn table from 0degree to 360 degree to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found or the peak emission level complies with the average limit and no further average measurement (*) is required, the test position is marked as "-".
 - * The ANSI C63.10, Section 6.6.4.3, NOTE 1— where limits are specified by regulations for both average and peak detection, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-0868 Page Number : 39 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

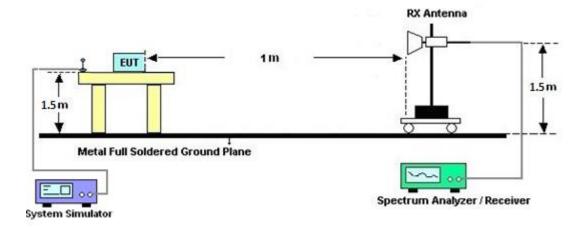

3.8.4 Test Setup

For radiated test below 30MHz



Report No.: FR181632A

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-0868 Page Number : 40 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

For radiated test above 18GHz

Report No.: FR181632A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-0868 Page Number : 41 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

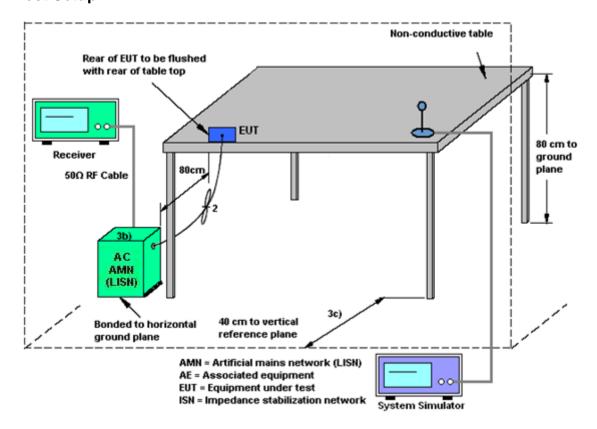
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR181632A

Frequency of emission (MHz)	Conducted limit (dBμV)			
r requericy or enhission (minz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-0868 Page Number : 42 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.9.4 Test Setup

Report No.: FR181632A

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-0868 Page Number : 43 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR181632A

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-0868 Page Number : 44 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Aug. 23, 2021~ Sep. 10, 2021	Jan. 03, 2022	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1241	1GHz ~ 18GHz	Jul. 13, 2021	Aug. 23, 2021~ Sep. 10, 2021	Jul. 12, 2022	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02294	1GHz ~ 18GHz	Jun. 23, 2021	Aug. 23, 2021~ Sep. 10, 2021	Jun. 22, 2022	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170584	18GHz- 40GHz	Dec. 11, 2020	Aug. 23, 2021~ Sep. 10, 2021	Dec. 10, 2021	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Dec. 16, 2020	Aug. 23, 2021~ Sep. 10, 2021	Dec. 15, 2021	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-00101 800-30-10P	1590074	1GHz~18GHz	May 18, 2021	Aug. 23, 2021~ Sep. 10, 2021	May 17, 2022	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Oct. 28, 2020	Aug. 23, 2021~ Sep. 10, 2021	Oct. 27, 2021	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 11, 2020	Aug. 23, 2021~ Sep. 10, 2021	Dec. 10, 2021	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Mar. 18, 2021	Aug. 23, 2021~ Sep. 10, 2021	Mar. 17, 2022	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Aug. 23, 2021~ Sep. 10, 2021	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Aug. 23, 2021~ Sep. 10, 2021	N/A	Radiation (03CH13-HY)
Software	Audix	E3 6.2009-8-24	RK-000992	N/A	N/A	Aug. 23, 2021~ Sep. 10, 2021	N/A	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30M-18G	Feb. 10, 2021	Aug. 23, 2021~ Sep. 10, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30M-18G	Feb. 10, 2021	Aug. 23, 2021~ Sep. 10, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Feb. 22, 2021	Aug. 23, 2021~ Sep. 10, 2021	Feb. 21, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz~40GHz	Mar. 11, 2021	Aug. 23, 2021~ Sep. 10, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30M-18G	Feb. 10, 2021	Aug. 23, 2021~ Sep. 10, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 11, 2021	Aug. 23, 2021~ Sep. 10, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN12	1.53GHz Low Pass Filter	Sep. 15, 2020	Aug. 23, 2021~ Sep. 10, 2021	Sep. 14, 2021	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN2	3GHz High Pass Filter	Jul. 12, 2021	Aug. 23, 2021~ Sep. 10, 2021	Jul. 11, 2022	Radiation (03CH13-HY)

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : 45 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB41292344	N/A	Jan. 14, 2021	Aug. 25, 2021~ Sep. 07, 2021	Jan. 13, 2022	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Jan. 14, 2021	Aug. 25, 2021~ Sep. 07, 2021	Jan. 13, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101565	10Hz ~ 40GHz	Nov. 13, 2020	Aug. 25, 2021~ Sep. 07, 2021	Nov. 12, 2021	Conducted (TH05-HY)
BT Base Station	Rohde & Schwarz	CBT	101135	BT 3.0	Sep. 15, 2020	Aug. 25, 2021~ Sep. 07, 2021	Sep. 14, 2022	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	Aug. 25, 2021~ Sep. 07, 2021	Mar. 16, 2022	Conducted (TH05-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Sep. 07, 2021	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 07, 2021	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Nov. 02, 2020	Sep. 07, 2021	Nov. 01, 2021	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	N/A	Sep. 07, 2021	N/A	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Feb. 01, 2021	Sep. 07, 2021	Jan. 31, 2022	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 52	36122	N/A	Feb. 01, 2021	Sep. 07, 2021	Jan. 31, 2022	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 11, 2020	Sep. 07, 2021	Sep. 10, 2021	Conduction (CO07-HY)

TEL: 886-3-327-0868 Page Number : 46 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2.40
of 95% (U = 2Uc(y))	2.2 dB

Report No.: FR181632A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	3.3 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	5.6 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	0.0 ID
of 95% (U = 2Uc(y))	3.9 dB

TEL: 886-3-327-0868 Page Number : 47 of 47
FAX: 886-3-327-0855 Issued Date : Sep. 24, 2021

Report Number : FR181632A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Benny Ku	Temperature:	21~25	°C
Test Date:	2021/8/25~2021/9/7	Relative Humidity:	51~54	%

TEST RESULTS DATA 20dB and 99% Occupied Bandwidth and Hopping Channel Separation

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.782	0.732	0.994	0.5213	Pass
DH	1Mbps	1	39	2441	0.819	0.732	0.999	0.5460	Pass
DH	1Mbps	1	78	2480	0.784	0.735	1.003	0.5227	Pass
2DH	2Mbps	1	0	2402	1.242	1.140	1.003	0.8280	Pass
2DH	2Mbps	1	39	2441	1.242	1.143	1.003	0.8280	Pass
2DH	2Mbps	1	78	2480	1.242	1.140	0.999	0.8280	Pass
3DH	3Mbps	1	0	2402	1.211	1.120	1.320	0.8073	Pass
3DH	3Mbps	1	39	2441	1.211	1.123	1.003	0.8073	Pass
3DH	3Mbps	1	78	2480	1.216	1.123	0.999	0.8107	Pass

TEST RESULTS DATA

Dwell Time

Mod.	Hopping Channel Number Rate Hops Over Occupancy Time(hops)		Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.88	0.31	0.4	Pass
AFH	20	53.33	2.88	0.15	0.4	Pass

TEST RESULTS DATA

Peak Power Table

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	9.83	20.97	Pass
DH1	39	1	11.63	20.97	Pass
	78	1	9.90	20.97	Pass
	0	1	9.80	20.97	Pass
2DH1	39	1	11.10	20.97	Pass
	78	1	9.90	20.97	Pass
	0	1	9.65	20.97	Pass
3DH1	39	1	11.10	20.97	Pass
	78	1	9.89	20.97	Pass

TEST RESULTS DATA

Average Power Table (Reporting Only)

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	9.40	5.25
DH1	39	1	11.02	5.25
	78	1	9.48	5.25
	0	1	8.56	5.15
2DH1	39	1	9.36	5.15
	78	1	8.70	5.15
	0	1	8.27	5.15
3DH1	39	1	9.35	5.15
	78	1	8.73	5.15

TEST RESULTS DATA

Number of Hoppina Frequency

	Adaptive		
Number of Hopping	Frequency	Limits	Pass/Fail
(Channel)	Hopping	(Channel)	Pass/Fall
	(Channel)		
79	20	> 15	Pass

Appendix B. AC Conducted Emission Test Results

Tost Engineer :	Tom Loo	Temperature :	23~26℃
Test Engineer :	Tom Lee	Relative Humidity :	40~50%

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : B1 of B1


EUT Information

Report NO: 181632 Test Mode: Mode 1

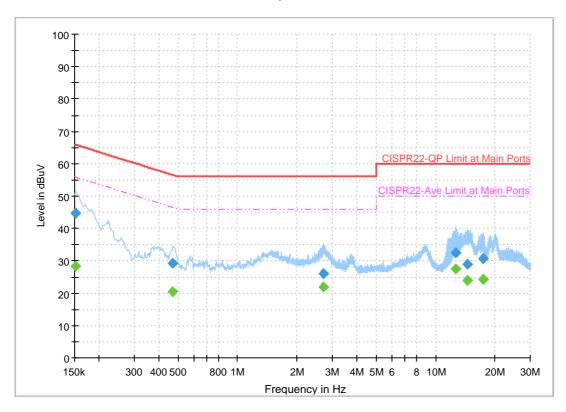
Test Voltage : Power From System

Phase: Line

Full Spectrum

Final Result

<u>i iiiai_i\cs</u>	uit						
Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250	44.52		65.88	21.36	L1	OFF	20.0
0.152250		28.72	55.88	27.16	L1	OFF	20.0
0.390750	28.74		58.05	29.30	L1	OFF	20.0
0.390750	-	19.23	48.05	28.82	L1	OFF	20.0
2.733000	28.65		56.00	27.35	L1	OFF	20.1
2.733000		24.28	46.00	21.72	L1	OFF	20.1
12.574500	33.93		60.00	26.07	L1	OFF	20.2
12.574500		28.33	50.00	21.67	L1	OFF	20.2
14.705250	29.68		60.00	30.32	L1	OFF	20.2
14.705250		24.39	50.00	25.61	L1	OFF	20.2
19.961250	30.99		60.00	29.01	L1	OFF	20.2
19.961250		25.96	50.00	24.04	L1	OFF	20.2


EUT Information

Report NO: 181632 Test Mode : Test Voltage : Mode 1

Power From System

Phase: Neutral

Full Spectrum

Final Result

i iiiai_i\c3	uit						
Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		28.49	55.88	27.39	N	OFF	20.0
0.152250	44.67		65.88	21.21	N	OFF	20.0
0.469500		20.48	46.52	26.05	N	OFF	20.0
0.469500	29.38		56.52	27.14	N	OFF	20.0
2.724000		21.99	46.00	24.01	N	OFF	20.1
2.724000	26.17		56.00	29.83	N	OFF	20.1
12.669000	-	27.43	50.00	22.57	N	OFF	20.2
12.669000	32.56		60.00	27.44	N	OFF	20.2
14.401500		23.91	50.00	26.09	N	OFF	20.2
14.401500	28.87		60.00	31.13	N	OFF	20.2
17.342250		24.29	50.00	25.71	N	OFF	20.3
17.342250	30.77		60.00	29.23	N	OFF	20.3

Appendix C. Radiated Spurious Emission

Test Engineer :	Yuan Lee, Jacky Hong, and Wilson Wu	Temperature :	20~25°C
		Relative Humidity :	50~60%

Report No.: FR181632A

2.4GHz 2400~2483.5Hz BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2348.745	45.03	-28.97	74	40.92	27.81	4.15	27.85	385	52	Р	Н
		2348.745	20.24	-33.76	54	-	-	-	-	-	-	Α	Н
	*	2402	101.88	-	-	97.82	27.7	4.2	27.84	385	52	Р	Н
	*	2402	77.09	-	-	-	-	-	-	-	-	Α	Н
ВТ													Н
CH00													Н
2402MHz		2342.865	44.87	-29.13	74	40.72	27.86	4.14	27.85	102	95	Р	V
2402WII 12		2342.865	20.08	-33.92	54	-	-	ı	-	-	-	Α	V
	*	2402	102.9	-	-	98.84	27.7	4.2	27.84	102	95	Р	V
	*	2402	78.11	-	-	-	-	1	-	-	-	Α	٧
													V
													V
		2322.04	45.19	-28.81	74	40.91	28.02	4.12	27.86	372	51	Р	Н
		2322.04	20.4	-33.6	54	-	-	-	-	-	-	Α	Н
	*	2441	104.08	-	-	100.06	27.62	4.23	27.83	372	51	Р	Н
	*	2441	79.29	-	-	-	-	1	-	-	-	Α	Н
DT		2489.22	45.01	-28.99	74	40.88	27.68	4.27	27.82	372	51	Р	Н
BT CH 39		2489.22	20.22	-33.78	54	-	-	ı	-	-	-	Α	Н
2441MHz		2318.12	44.69	-29.31	74	40.37	28.06	4.12	27.86	100	81	Р	٧
2441111112		2318.12	19.9	-34.1	54	-	-	1	-	-	-	Α	V
	*	2441	105.84	-	-	101.82	27.62	4.23	27.83	100	81	Р	٧
	*	2441	81.05	-	-	-	-	-	-	-	-	Α	V
		2492.02	44.89	-29.11	74	40.76	27.68	4.27	27.82	100	81	Р	V
		2492.02	20.1	-33.9	54	-	-	-	-	-	-	Α	V

TEL: 886-3-327-0868 Page Number : C1 of C8

* 2480 102.37 98.27 27.66 4.26 27.82 358 51 Ρ Н * 2480 77.58 ----Α Н -Ρ 2483.8 45.83 -28.17 74 41.71 27.67 4.27 27.82 358 51 Н 2483.8 21.04 -32.96 Н 54 Α Η BT Н **CH 78** Ρ ٧ 2480 104.18 100.08 27.66 4.26 27.82 100 80 2480MHz -2480 79.39 --٧ Α -27.15 42.73 4.27 ٧ 2484.08 46.85 74 27.67 27.82 100 80 2484.08 22.06 -31.94 Α ٧ 54 ٧ ٧ No other spurious found. Remark All results are PASS against Peak and Average limit line.

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : C2 of C8

2.4GHz 2400~2483.5MHz

Report No. : FR181632A

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	41.35	-32.65	74	60.55	31.41	6.48	57.09	-	-	Р	Н
		4804	16.56	-37.44	54	-	-	-	-	-	-	Α	Н
D.T.		17970	55.23	-18.77	74	51.31	47.69	12.95	56.72	-	-	Р	Н
BT		17970	30.44	-23.56	54	-	-	-	-	-	-	Α	Н
CH 00 2402MHz		4804	44.01	-29.99	74	63.21	31.41	6.48	57.09	-	-	Р	٧
2402WII 12		4804	19.22	-34.78	54	ı	-	-	-	-	-	Α	٧
		17955	55.94	-18.06	74	52.44	47.28	12.94	56.72	-	-	Р	V
		17955	31.15	-22.85	54	-	-	-	-	-	-	Α	V
		4882	42.61	-31.39	74	61.31	31.44	6.81	56.95	-	-	Р	Н
		4882	17.82	-36.18	54	-	-	-	-	-	-	Α	Н
		7323	45.48	-28.52	74	56.71	37.05	8.64	56.92	-	-	Р	Τ
		7323	20.69	-33.31	54	•	-	-	-	-	-	Α	Τ
		17985	56.46	-17.54	74	52.12	48.1	12.96	56.72	-	-	Р	Н
BT CH 39		17985	31.67	-22.33	54	-	-	-	-	-	-	Α	H
2441MHz		4882	45.77	-28.23	74	64.47	31.44	6.81	56.95	-	-	Р	٧
244 I WIFI2		4882	20.98	-33.02	54	-	-	-	-	-	-	Α	٧
		7323	45.21	-28.79	74	56.44	37.05	8.64	56.92	-	-	Р	V
		7323	20.42	-33.58	54	-	-	-	-	-	-	Α	V
		17970	56.11	-17.89	74	52.19	47.69	12.95	56.72	-	-	Р	V
		17970	31.32	-22.68	54	-	-	-	-	-	-	Α	V

TEL: 886-3-327-0868 Page Number : C3 of C8

	4960	45.03	-28.97	74	62.98	31.72	7.14	56.81	-	-	Р	Н
	4960	20.24	-33.76	54	-	-	-	-	-	-	Α	Н
	7440	44.97	-29.03	74	56.5	37.02	8.62	57.17	-	-	Р	Н
	7440	20.18	-33.82	54	-	-	-	-	-	-	Α	Н
	18000	56.68	-17.32	74	51.93	48.5	12.97	56.72	-	-	Р	Н
BT CH 79	18000	31.89	-22.11	54	-	-	-	-	-	-	Α	Н
CH 78 2480MHz	4960	47.83	-26.17	74	65.78	31.72	7.14	56.81	-	-	Р	V
2400WITI2	4960	23.04	-30.96	54	-	-	-	-	-	-	Α	V
	7440	44.24	-29.76	74	55.77	37.02	8.62	57.17	-	-	Р	V
	7440	19.45	-34.55	54	-	-	-	•	-	-	Α	V
	17955	56.17	-17.83	74	52.67	47.28	12.94	56.72	-	-	Р	V
	17955	31.38	-22.62	54	-	-	-	-	-	-	А	٧

2. All results are PASS against Peak and Average limit line.

Remark

3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

4. The emission level close to 18GHz is checked that the average emission level is noise floor only.

TEL: 886-3-327-0868 Page Number : C4 of C8

^{1.} No other spurious found.

Emission above 18GHz

Report No.: FR181632A

2.4GHz BT (SHF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table		Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		23691	42.07	-31.93	74	43	39.97	12.6	53.5	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
вт													Н
SHF		24860	41.57	-32.43	74	41.7	39.88	13.39	53.4	-	-	Р	V
													V
													V
													V
													٧
													V
													V
													V
													V
													V
													V
													V

Remark

- 3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

: C5 of C8 TEL: 886-3-327-0868 Page Number

Emission below 1GHz

Report No.: FR181632A

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		30	25.2	-14.8	40	30.23	24.57	0.5	32.22	-	-	Р	Н
		97.9	28.36	-15.14	43.5	43.65	15.72	0.87	32.23	-	-	Р	Н
		183.26	23.21	-20.29	43.5	39.09	14.82	1.17	32.26	-	-	Р	Н
		582.9	26.25	-19.75	46	30.62	25.54	2.06	32.47	-	-	Р	Н
		765.26	30.39	-15.61	46	31.55	27.73	2.35	31.58	-	-	Р	Н
		959.26	32.85	-13.15	46	29.91	30.79	2.6	30.74	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BT													Н
LF		31.94	24.77	-15.23	40	31.33	23.36	0.52	32.23	-	-	Р	V
Li		46.49	28.12	-11.88	40	43.02	15.97	0.62	32.28	-	-	Р	V
		91.11	23.29	-20.21	43.5	39.56	14.75	0.83	32.24	-	-	Р	V
		570.29	26.45	-19.55	46	30.48	25.84	2.04	32.39	-	-	Р	V
		756.53	29.9	-16.1	46	31.19	27.71	2.34	31.65	-	-	Р	V
		956.35	33.16	-12.84	46	30.41	30.62	2.6	30.76	-	-	Р	V
													V
													V
													V
													٧
													V
													V

1. No other spurious found.

Remark

2. All results are PASS against limit line.

 The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

TEL: 886-3-327-0868 Page Number : C6 of C8

Note symbol

Report No.: FR181632A

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-0868 Page Number : C7 of C8

A calculation example for radiated spurious emission is shown as below:

Report No.: FR181632A

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

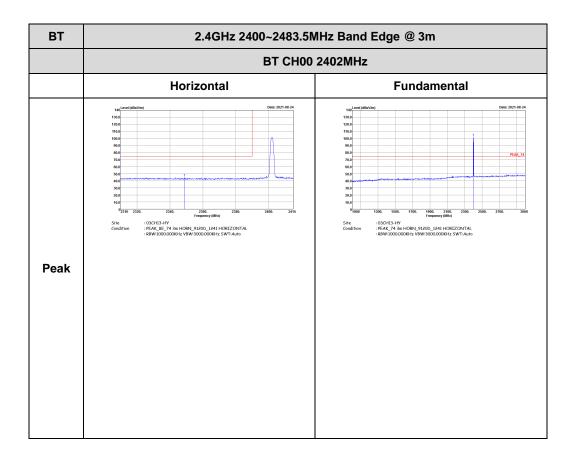
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

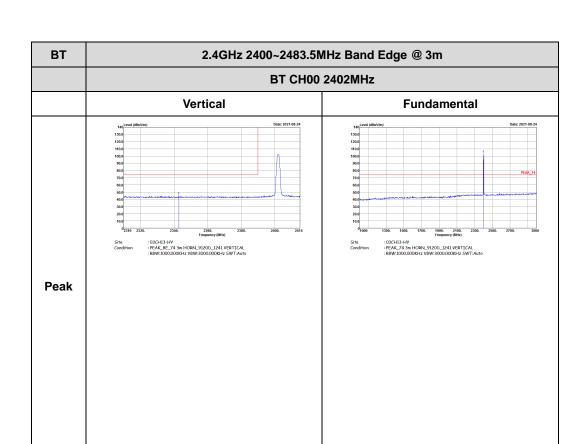
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".


TEL: 886-3-327-0868 Page Number : C8 of C8

Appendix D. Radiated Spurious Emission Plots


Test Engineer :		Temperature :	20~25°C	
rest Engineer .	Yuan Lee, Jacky Hong, and Wilson Wu	Relative Humidity :	50~60%	

Report No.: FR181632A

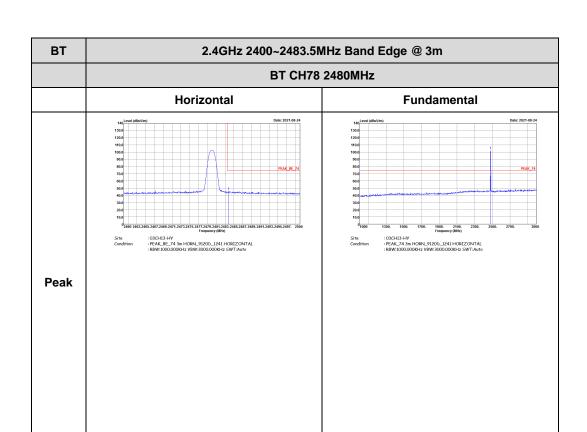
2.4GHz 2400~2483.5MHz BT (Band Edge @ 3m)

TEL: 886-3-327-0868 Page Number : D1 of D11

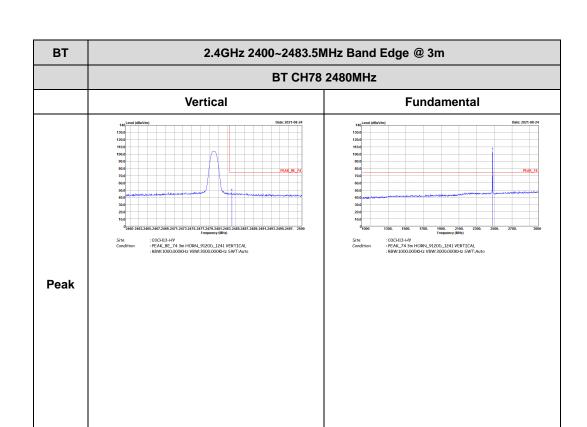
TEL: 886-3-327-0868 Page Number : D2 of D11

вт 2.4GHz 2400~2483.5MHz Band Edge @ 3m BT CH39 2441MHz Horizontal **Fundamental** : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CH13-HY : PEAK_74 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto

Report No.: FR181632A


Peak Left blank

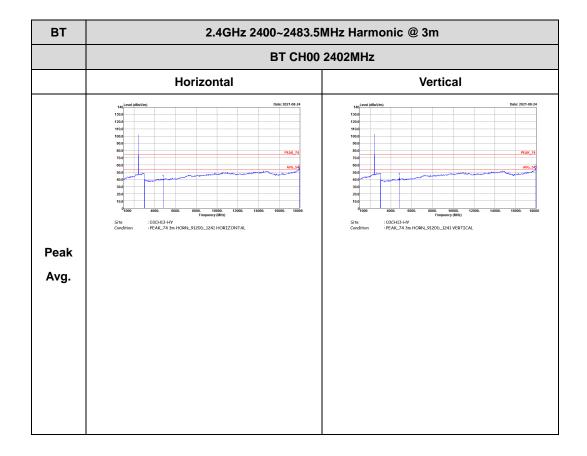
: D3 of D11 TEL: 886-3-327-0868 Page Number


вт 2.4GHz 2400~2483.5MHz Band Edge @ 3m BT CH39 2441MHz Vertical **Fundamental** : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CH13-HY : PEAK_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak Left blank

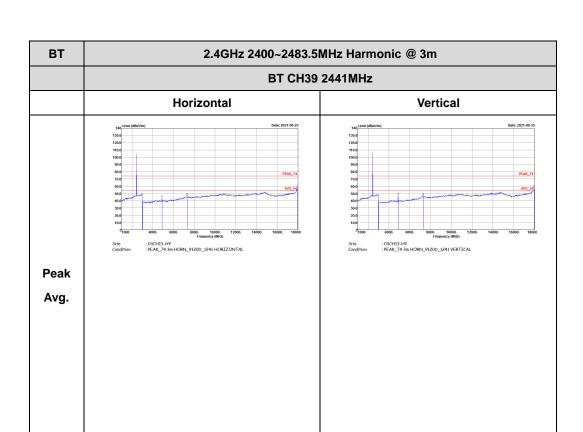
Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : D4 of D11

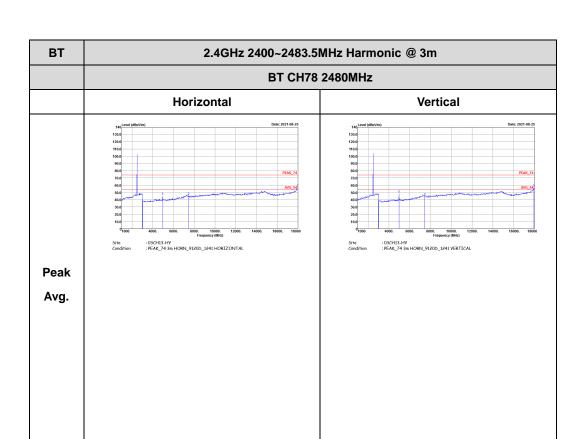
TEL: 886-3-327-0868 Page Number : D5 of D11



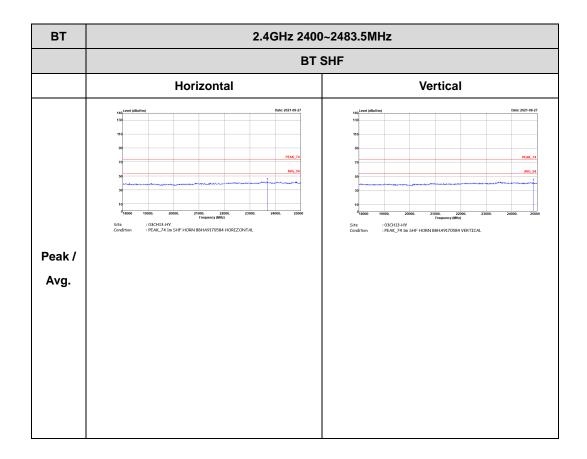
TEL: 886-3-327-0868 Page Number : D6 of D11


2.4GHz 2400~2483.5MHz

Report No.: FR181632A

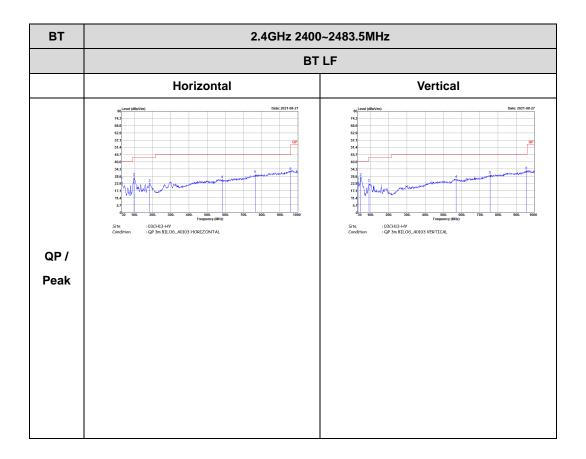

BT (Harmonic @ 3m)

TEL: 886-3-327-0868 Page Number : D7 of D11

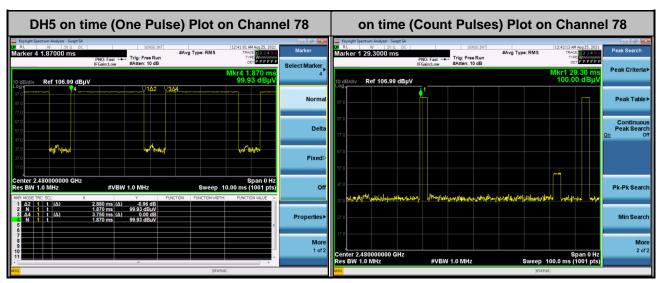

TEL: 886-3-327-0868 Page Number : D8 of D11

TEL: 886-3-327-0868 Page Number : D9 of D11

Emission above 18GHz 2.4GHz BT (SHF)


Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : D10 of D11


Emission below 1GHz 2.4GHz BT (LF)

Report No.: FR181632A

TEL: 886-3-327-0868 Page Number : D11 of D11

Appendix E. Duty Cycle Plots

Report No.: FR181632A

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

$$2.88 \text{ ms x } 20 \text{ channels} = 57.6 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

$$2.88 \text{ ms } x 2 = 5.76 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$$

TEL: 886-3-327-0868 Page Number : E1 of E1