

EMC TEST REPORT

Applicant Xiaomi Communications Co., Ltd.

FCC ID 2AFZZ1119DG

Product Mobile Phone

Brand Redmi

Model 21061119DG

Report No. R2106A0482-E1

Issue Date August 2, 2021

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2020)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Wei Liu

Guang chang fan
Approved by: Guang chang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Tes	t Laboratoryt	4
	1.1	Notes of the Test Report	
	1.2	Test facility	4
	1.3	Testing Location	4
2	Ge	neral Description of Equipment under Test	5
	2.1	Applicant and Manufacturer Information	5
	2.2	General information	5
	2.3	Applied Standards	7
	2.4	Test Mode	
3	Tes	t Case Results	9
	3.1	Radiated Emission	9
	3.2	Conducted Emission	16
4	Ма	in Test Instruments	19
Α	NNEX	A: The EUT Appearance	20
		R: Test Satur Photos	21

Summary of measurement results

Report No.: R2106A0482-E1

Number	Test Case	Clause in FCC Rules	Conclusion
1	Radiated Emission	FCC Part15.109, ANSI C63.4-2014	PASS
2	Conducted Emission	FCC Part15.107, ANSI C63.4-2014	PASS

Date of Testing: July 1, 2021 ~ July 24, 2021 Date of Sample Received: June 22, 2021

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (**shanghai**) **co.**, **Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: fanguangchang@ta-shanghai.com

2 General Description of Equipment under Test

2.1 Applicant and Manufacturer Information

Applicant	Xiaomi Communications Co., Ltd.				
Applicant address	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085				
Manufacturer	Xiaomi Communications Co., Ltd.				
Manufacturer address	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085				

2.2 General information

	EUT	Description					
Device Type	Portable Device						
Model	21061119DG						
IMEI		IMEI 1: 868393050035963 IMEI 2: 868393050035971					
HW Version	P1.1						
SW Version	MIUI12.5						
Antenna Type	PIFA Antenna						
Memory 4G+64G; 6G+128G; 4G+128G							
	Band	Tx (MHz)	Rx (MHz)				
	GSM 850	824 ~ 849	869 ~ 894				
	GSM 1900	1850 ~ 1910	1930 ~ 1990				
	WCDMA Band II	1850 ~ 1910	1930 ~ 1990				
	WCDMA Band IV	1710 ~ 1755	2110 ~ 2155				
	WCDMA Band V	824 ~ 849	869 ~ 894				
	LTE Band 2	1850 ~ 1910	1930 ~ 1990				
	LTE Band 4	1710 ~ 1755	2110 ~ 2155				
Frequency	LTE Band 5	824 ~ 849	869 ~ 894				
	LTE Band 7	2500 ~ 2570	2620 ~ 2690				
	LTE Band 38	2570 ~ 2620	2570 ~ 2620				
	LTE Band 41	2535 ~ 2655	2535 ~ 2655				
	Bluetooth	2400 ~ 2483.5	2400 ~ 2483.5				
	WIFI 2.4G	2400 ~ 2483.5	2400 ~ 2483.5				
	WIFI 5G(U-NII-1)	5150 ~ 5250	5150 ~ 5250				
	WIFI 5G(U-NII-2A)	5250 ~ 5350	5250 ~ 5350				

TA Technology (Shanghai) Co., Ltd.

TA-MB-06-001E

Page 5 of 21

Report No.: R2106A0482-E1 WIFI 5G(U-NII-2C) 5470 ~ 5725 5470 ~ 5725 5725 ~ 5850 WIFI 5G(U-NII-3) 5725 ~ 5850 NFC 13.56 13.56 Auxiliary test equipment PC Manufacturer: Dell PC Model: E5430 (SN: R98M9 A02) Manufacturer: Xiaomi Communications Co., Ltd. Phone Model: 21061119DG (SN: BG123S001010) Note: The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2020) ANSI C63.4 (2014)

2.4 Test Mode

Test Mode					
Mode 1	Adapter +USB cable+ earphone + Front camera On				
Mode 2	Adapter +USB cable+ earphone + Rear camera On				
Mode 3	Adapter + USB cable + earphone + Mp4				
Mode 4	Adapter + USB cable + earphone + Bluetooth WLAN Traffic				
Mode 5	USB Copy(EUT with PC) + USB cable + earphone				
Mode 6	Front Camera On +earphone				
Mode 7	Earphone + MP4				
Mode 8	Rear camera On +earphone				
Mode 9	earphone + Bluetooth WLAN Traffic				
Mode 10	Adapter +USB cable+ Front camera On				
Mode 11	Adapter +USB cable+ Rear camera On				
Mode 12	PHONE(100%ELECTRIC QUANTITY)+ REVERSE CHARGE+PHONE				
Wode 12	LOAD((100%ELECTRIC QUANTITY)				
Mode 13	PHONE(100%ELECTRIC QUANTITY)+ REVERSE CHARGE+PHONE				
WOUE 13	LOAD((50%ELECTRIC QUANTITY)				
Mode 14	PHONE(100%ELECTRIC QUANTITY)+ REVERSE CHARGE+PHONE				
WOUE 14	LOAD((10%ELECTRIC QUANTITY)				

During the test, the preliminary test was performed in all modes with all adapters, USB and batteries, mode 5 is selected as the worst condition, except mode 14 was selected as the worst mode for Reverse charge. The test data of the worst-case condition was recorded in this report.

3 Test Case Results

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure
15°C~35°C	30%~60%	101.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

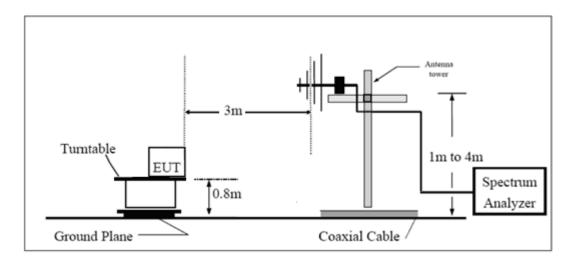
Set the spectrum analyzer in the following:

Below 1GHz:

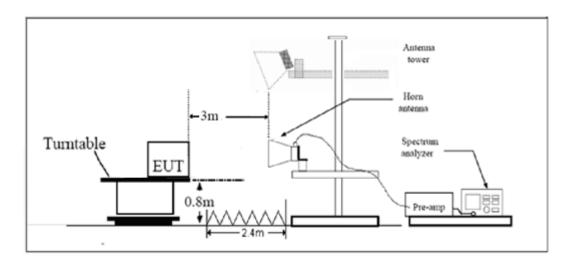
RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:

- (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO


The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.



Test Setup

Below 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

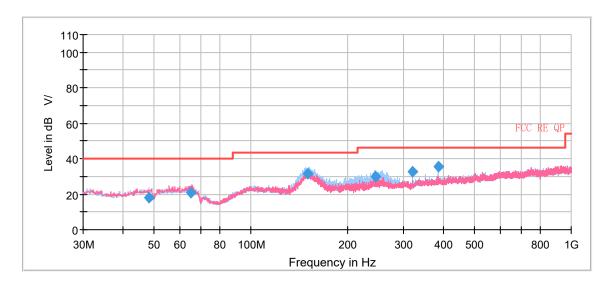
Limits

Class B

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

Measurement Uncertainty

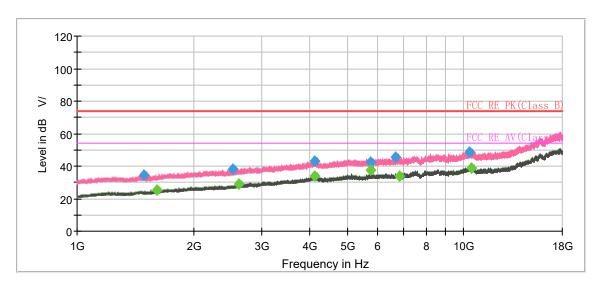
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
30MHz~200MHz	4.17 dB
200MHz~1000MHz	4.84 dB
1GHz~18GHz	4.35 dB
18GHz~26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

Test Results

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier, the Emissions in the frequency band 18GHz –40GHz is more than 20dB below the limit are not reported.

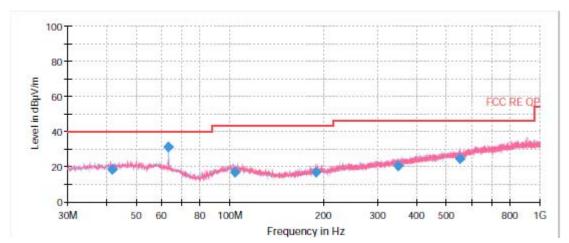
The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. A font (Level in dB μ V/) in the test plot =(level in dB μ V/m)



Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
48.32	18.11	225.0	Н	280.0	-5.1	21.89	40.00
64.93	20.83	100.0	V	13.0	-7.0	19.17	40.00
151.11	31.54	185.0	Н	305.0	-9.8	11.96	43.50
245.27	29.77	110.0	Н	116.0	-4.4	16.23	46.00
320.00	32.93	100.0	Н	70.0	-3.2	13.07	46.00
384.01	35.36	100.0	Н	191.0	-1.6	10.64	46.00

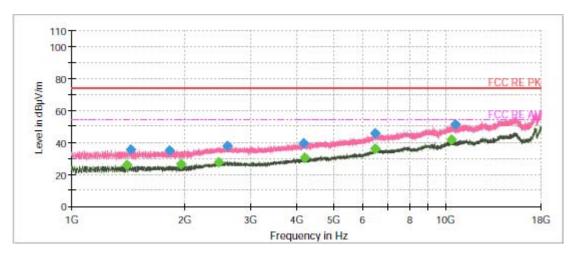
Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain)


2. Margin = Limit – Quasi-Peak

Radiated Emission from 1GHz to 18GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1487.90	34.53		74.00	39.47	100.0	Н	137.0	-15.6
1608.60		25.24	54.00	28.76	200.0	V	120.0	-15.0
2524.90	38.09		74.00	35.91	200.0	V	17.0	-10.5
2617.27		28.85	54.00	25.15	100.0	V	158.0	-9.9
4116.10	42.94		74.00	31.06	100.0	V	188.0	-3.1
4128.00		33.79	54.00	20.21	200.0	V	234.0	-3.2
5746.97	42.57		74.00	31.43	100.0	Н	42.0	-0.4
5760.00		37.62	54.00	16.38	100.0	V	166.0	-0.4
6657.03	45.25		74.00	28.75	200.0	Н	166.0	0.4
6807.77		33.68	54.00	20.32	200.0	Н	0.0	0.6
10325.07	48.61		74.00	25.39	200.0	Н	89.0	5.7
10504.70		39.03	54.00	14.97	200.0	Н	326.0	5.7

Reverse charging



Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
41.676250	18.49	180.0	V	200.0	13.8	21.51	40.00
63.465000	31.08	221.0	Н	198.0	12.4	8.92	40.00
103.713750	17.01	125.0	V	260.0	13.1	26.49	43.50
189.365000	16.99	105.0	V	243.0	12.3	26.51	43.50
349.492500	20.55	225.0	Н	200.0	16.5	25.45	46.00
553.316250	24.53	225.0	V	327.0	20.1	21.47	46.00

Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain)

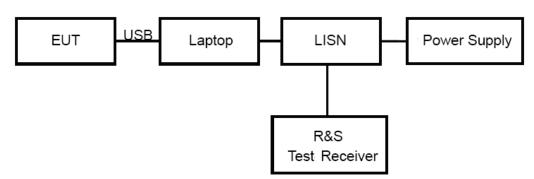
^{2.} Margin = Limit - Quasi-Peak

Radiated Emission from 1GHz to 18GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1403.466667		25.88	54.00	28.12	200.0	V	228.0	-19.5
1434.066667	35.41		74.00	38.59	100.0	Н	232.0	-19.3
1827.333333	35.20		74.00	38.80	200.0	Н	60.0	-18.5
1954.266667		26.62	54.00	27.38	100.0	V	61.0	-18.4
2474.466667		27.84	54.00	26.16	100.0	V	75.0	-16.3
2601.400000	37.58		74.00	36.42	200.0	V	358.0	-16.1
4165.400000	39.56		74.00	34.44	200.0	Н	4.0	-12.7
4192.033333		30.41	54.00	23.59	200.0	Н	171.0	-12.7
6458.133333		35.97	54.00	18.03	200.0	V	337.0	-4.1
6488.166667	45.70		74.00	28.30	100.0	Н	176.0	-3.8
10363.600000		41.81	54.00	12.19	200.0	Н	185.0	-1.0
10606.700000	51.08		74.00	22.92	100.0	Н	260.0	-0.8

3.2 Conducted Emission

Ambient condition


Temperature	Relative humidity	Pressure			
15°C~35°C	30%~60%	101.5kPa			

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

Frequency	Conducted Limits(dBµV)					
(MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 *	56 to 46*				
0.5 - 5	56	46				
5 - 30	60	50				
* Decreases with the logarithm of the frequency.						

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB.

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.


Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.23	27.73	1	62.41	34.68	70.0	9.000	L1	ON	21
0.36		15.77	48.80	33.03	70.0	9.000	L1	ON	21
0.44		22.52	47.14	24.63	70.0	9.000	L1	ON	20
0.44	27.78		57.10	29.32	70.0	9.000	L1	ON	20
1.15	19.84		56.00	36.16	70.0	9.000	L1	ON	20
1.38		16.33	46.00	29.67	70.0	9.000	L1	ON	20
2.12		15.62	46.00	30.38	70.0	9.000	L1	ON	20
2.22	18.12		56.00	37.88	70.0	9.000	L1	ON	20
10.20	18.00		60.00	42.00	70.0	9.000	L1	ON	20
10.86		16.08	50.00	33.92	70.0	9.000	L1	ON	20
15.42	19.78		60.00	40.22	70.0	9.000	L1	ON	20
15.97		16.59	50.00	33.41	70.0	9.000	L1	ON	20

Remark: Correct factor=cable loss + LISN factor

L line

Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15	33.15		65.88	32.73	70.0	9.000	N	ON	21
0.36		18.43	48.80	30.37	70.0	9.000	N	ON	21
0.44		26.82	47.14	20.32	70.0	9.000	N	ON	20
0.44	33.78		57.14	23.36	70.0	9.000	N	ON	20
0.89		18.42	46.00	27.58	70.0	9.000	N	ON	20
2.09	21.49		56.00	34.51	70.0	9.000	Ν	ON	20
2.12		16.51	46.00	29.49	70.0	9.000	N	ON	20
4.40	20.54		56.00	35.46	70.0	9.000	N	ON	19
12.25	29.08		60.00	30.92	70.0	9.000	N	ON	20
12.26		19.04	50.00	30.96	70.0	9.000	Ν	ON	20
13.07		20.46	50.00	29.54	70.0	9.000	N	ON	20
17.97	26.23	-	60.00	33.78	70.0	9.000	Ν	ON	20

Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 KHz to 30 MHz

4 Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Time	
Spectrum Analyzer	R&S	FSV40	15195-01- 00	2021-05-15	2022-05-14	
EMI Test Receiver	R&S	ESCI	100948	2021-05-15	2022-05-14	
Trilog Antenna	SCHWARZBECK	VULB 9163	391	2019-12-16	2022-12-15	
Horn Antenna	R&S	HF907	102723	2018-08-11	2021-08-10	
Horn Antenna	ETS-Lindgren	3160-09	00102644	2018-06-20	2023-06-19	
Standard Gain Horn	STEATITE	QSH-SL-26- 40-K-15	16779	2019-12-24	2021-12-23	
EMI Test Receiver	R&S	ESR	101667	2021-05-16	2022-05-15	
LISN	R&S	ENV216	101171	2018-12-15	2021-12-14	
Bore Sight Antenna mast	ETS	2171B	00058752	1	1	
Test software	EMC32	R&S	9.26.0	1	1	

******END OF REPORT ******

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.