

TEST REPORT

Product Name Model Number		 Xiaomi Smart Projector L1 XMTYY03FMG, XMTYY**FMG (*=0-9, indicates for different market purposes) 			
FCC ID		: 2AFZZ-XMTYY03FMG			
Prepared for Address	::	Xiaomi Communications Co., Ltd. #019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, 100085, China			
Prepared by Address	:	EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone,Nanshan District, Shenzhen, Guangdong, China			
		Tel: (0755) 26954280 Fax: (0755) 26954282			
Date(s) of Tests		ENS2406060159W00202R June 8, 2024 to July 24, 2024 July 27, 2024			

Table of Contents

1 TEST RESULT CERTIFICATION	
2 EUT TECHNICAL DESCRIPTION	
3 SUMMARY OF TEST RESULT	6
4 TEST METHODOLOGY	7
 4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS 4.2 MEASUREMENT EQUIPMENT USED 4.3 DESCRIPTION OF TEST MODES 	7
5 FACILITIES AND ACCREDITATIONS	9
5.1 FACILITIES 5.2 EQUIPMENT 5.3 LABORATORY ACCREDITATIONS AND LISTINGS	9
6 TEST SYSTEM UNCERTAINTY	10
7 SETUP OF EQUIPMENT UNDER TEST	
 7.1 RADIO FREQUENCY TEST SETUP 1 7.2 RADIO FREQUENCY TEST SETUP 2 7.3 CONDUCTED EMISSION TEST SETUP 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 7.5 SUPPORT EQUIPMENT 	
8 FREQUENCY HOPPING SYSTEM REQUIREMENTS	15
 8.1 Standard Applicable 8.2 EUT Pseudorandom Frequency Hopping Sequence 8.3 Equal Hopping Frequency Use 8.4 Frequency Hopping System 	
9 TEST REQUIREMENTS	
 9.1 20DB&99%BANDWIDTH 9.2 CARRIER FREQUENCY SEPARATION	26 30 32 34 38 55 68 71
10 APPENDIX PHOTOGRAPHS OF EUT	
11 APPENDIX PHOTOGRAPHS OF TEST SETUP	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

1 TEST RESULT CERTIFICATION

Applicant	:	Xiaomi Communications Co., Ltd.
Address	:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, 100085, China
Manufacturer	:	Xiaomi Communications Co., Ltd.
Address	:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, 100085, China
EUT	:	Xiaomi Smart Projector L1
Model Name	:	XMTYY03FMG, XMTYY**FMG (*=0-9, indicates for different market purposes)
Trade Mark	:	Xiaomi

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS			
IC RSS-GEN, Issue 5(04-2018)+A1(03-2019)+A2(02-2021) IC RSS-247 Issue 3(08-2023)	PASS			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2, Part 15.247, IC RSS-247 Issue 3 and IC RSS-GEN, Issue 5.

The test results of this report relate only to the tested sample identified in this report

Date of Test :	June 8, 2024 to July 24, 2024				
Prepared by :	Una yu				
	Una Yu /Editor				
Reviewer :	For Xia SHENZHEN,				
	Joe Xia /Supervisor				
	THO.				

Approve & Authorized Signer :

Lisa Wang/Manager

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Modified History

Version	Report No.	Revision Date	Summary
Ver.1.0	ENS2406060159W00202R	/	Original Report

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description
Product:	Xiaomi Smart Projector L1
Model Number:	XMTYY03FMG, XMTYY**FMG (*=0-9, indicates for different market purposes) (Note: All models are identical in circuitry and electrical, mechanical and physical construction; the difference are model number for trading purpose. Mode XMM2102 was Chosen final test.)
Test Sample S/N:	N/A
Variant Number:	N/A
Device Type:	Bluetooth V5.0
Data Rate:	1Mbps for GFSK modulation 2Mbps forπ/4-DQPSK modulation 3Mbps for 8DPSK modulation
Modulation:	GFSK, π/4-DQPSK, 8DPSK
Operating Frequency Range(s) :	2402-2480MHz
Number of Channels:	79 channels
Antenna Type:	FPC Antenna
Antenna Gain:	2.91dBi
Power supply:	DC 19V from adapter
Adapter:	Model No:GQ72-190342-E1 Input:100-240V~50/60Hz 1.8A Max Output:19.0V 3.42A 64.98W
Test Voltage:	AC 120V/60Hz
Temperature Range:	0°C ~ +40°C
Software Version:	RTM8.240401.078
Hardware Version:	CO15FGN TV

Note: for more details, please refer to the User's manual of the EUT.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2406060159W00202R

FCC Part Clause	IC Part Clause	Test Parameter	Verdict	Remark
15.247(a)(1)	RSS-247.5.1 RSS-Gen.6.7	Emission Bandwidth	PASS	
15.247(a)(1)	RSS-247.5.1	Carrier Frequency Separation	PASS	
15.247(a)(1)	RSS-247.5.1	Number of Hopping Frequencies	PASS	
15.247(a)(1)	RSS-247.5.1	Average Time of Occupancy (Dwell Time)	PASS	
15.247(b)(1)	RSS-247.5.4 RSS-Gen 6.12	Maximum Peak Conducted Output Power	PASS	
15.247(d)	RSS-247.5.5	Conducted Spurious Emissions	PASS	
15.247(d) 15.209 15.205	RSS-Gen 8.9 RSS-Gen 8.10 RSS-Gen 6.13 RSS-247.3.3 RSS-247.5.5	Radiated Spurious Emissions	PASS	
15.207	RSS-Gen 8.8	Conducted Emission	PASS	
15.203 15.247(b)	RSS-Gen 6.8 RSS-247.5.4	Antenna Application	PASS	
15.247 (a) (1)/g/h	-	Frequency Hopping System	PASS	

SUMMARY OF TEST RESULT 3

NOTE1: N/A (Not Applicable)

NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID:2AFZZ-XMTYY03FMG filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C IC RSS-GEN, Issue 5(04-2018)+A1(03-2019)+A2(02-2021) IC RSS-247 Issue 3(02-2023) FCC KDB 558074 D01 15.247 Meas Guidance v05r02

4.2 MEASUREMENT EQUIPMENT USED

Conducted Emission Test Equipment

Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Rohde & Schwarz	ESCI	101384	2024/5/11	1Year
Rohde & Schwarz	ENV216	101161	2024/5/10	1Year
	Rohde & Schwarz	Rohde & Schwarz ESCI	Rohde & SchwarzESCI101384	Rohde & Schwarz ESCI 101384 2024/5/11

For Spurious Emissions Test

Equipment	Manufacturer	Model No. Serial No.		Last Cal.	Cal. Interval
EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	2024/5/10	1Year
Pre-Amplifie	Lunar EM	LNA30M3G-25	J1010000070	2024/5/10	1Year
Bilog Antenna	Schwarzbeck	VULB9163	661	2023/6/2	2 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1177	2023/5/12	2 Year
Pre-Amplifie	SKET	LNPA_0118G-45	SK2019051801	2024/5/10	1Year
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	2023/5/12	2 Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	2024/5/10	1Year
Horn antenna	Schwarzbeck	BBHA9170	9170-399	2023/5/12	2 Year

For other test items:

Equipment	Manufacturer	Model No. Serial No.		Last Cal.	Cal. Interval
Wideband Radio Communication Tester	R&S	CMW500 171168		2023/9/14	1Year
Frequency Extender	R&S	CMW-Z800A	100430	2023/11/2	1Year
Spectrum Analyzer	R&S	FSV3044	101289	2023/9/14	1Year
Analog Signal Generator	R&S	SMB100A	183237	2023/9/16	1Year
Vector Signal Generator	R&S	SMM100A 101808		2023/9/16	1Year
RF Control Unit(Power Meter)	Tonscend	JS0806-2	22C8060567	2023/9/14	1Year
Temperature&Humidity Chamber	ESPEC	EL-02KA	12107166	2024/5/10	1 Year

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation(DH5); 2Mbps for π /4-DQPSK modulation(2DH5); 3Mbps for 8DPSK modulation(3DH5);)were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for Bluetooth

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
0	2402	39	2441					
1	2403	40	2442	76	2478			
2	2404	41	2443	77	2479			
				78	2480			
Note: fc=2402M	Note: fc=2402MHz+(k-1)×1MHz k=1 to 79							

Test Frequency and channel for Bluetooth

Lowest F	Frequency	Middle F	requency	Highes	st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441	78	2480

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at:

EMTEK (Shenzhen) Co., Ltd.

Building 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
EMC Lab. :	Accredited by CNAS The Certificate Registration Number is L2291. The Laboratory has been assessed and proved to be in compliance with CNAS-CL01 (identical to ISO/IEC 17025:2017)
	Accredited by FCC Designation Number: CN1204 Test Firm Registration Number: 882943
	Accredited by A2LA The Certificate Number is 4321.01.
	Accredited by Industry Canada The Conformity Assessment Body Identifier is CN0008
Name of Firm : Site Location :	EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Parameter	Measurement Uncertainty
Frequency error	±20Hz
Occupied Bandwidth	±0.5KHz
Transmitter output power	±0.6dB
Conducted spurious emissions	±3.2dB
Radiated spurious emissions	±4.5dB
Temperature	±1.2℃
Humidity	±3%
DC voltages	±0.25V
Time	±1%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

The Bluetooth component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

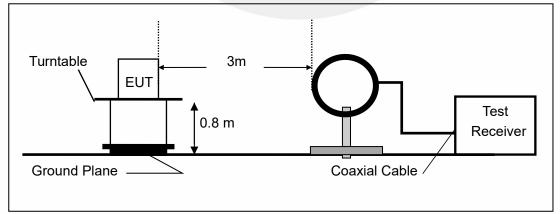
7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

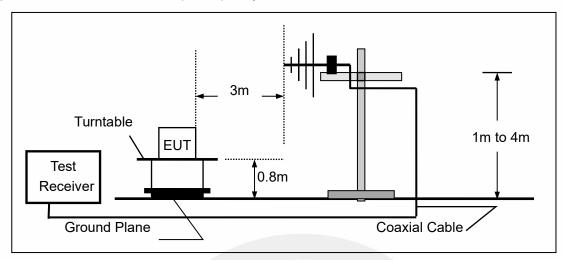
The EUT is placed on a turntable 0.8meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

Above 30MHz:

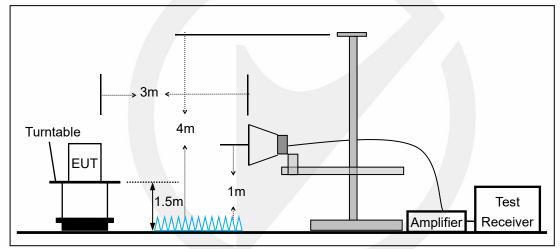

The EUT is placed on a turntable 0.8meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.)

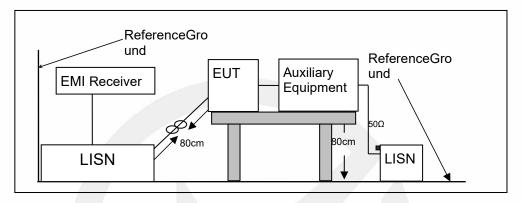

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz


深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

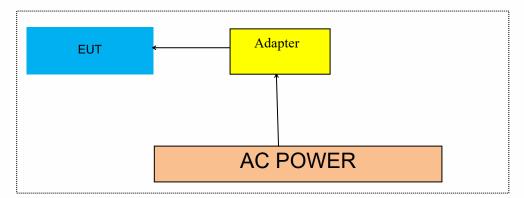
(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (Perfect Share Mini) must be connected to LISN. The LISN shall be placed 0.8m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details						
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite						
1	1	1	/			

Auxiliary Cable List and Details							
Cable Description	Length (m) Shielded/Unshielded		With / Without Ferrite				
1	1	1	1				

Auxiliary Equipment List and Details						
Description	Manufacturer	Model	Serial Number			
1	/	1	1			

Notes:

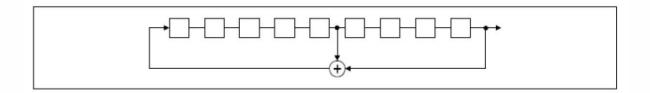
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 FREQUENCY HOPPING SYSTEM REQUIREMENTS

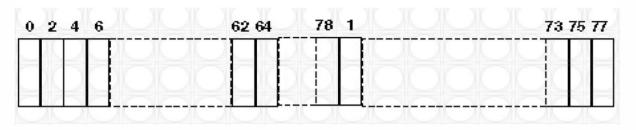
8.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

8.2 EUT Pseudorandom Frequency Hopping Sequence


The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; thephase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divide into time slots where each slot corresponds to an RF hop frequency. Consecutive hopscorrespond to different RF hop frequencies. The normal hop is 1 600 hops/s.

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

Length of pseudo-random sequence: 29-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8.3 Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

Example of a 79 hopping sequence in data mode: 35, 27, 6, 44, 14, 61, 74, 32, 1, 11, 23, 2, 55, 65, 29, 3, 9, 52, 78, 58, 40, 25, 0, 7, 18, 26, 76, 60, 47, 50, 2, 5, 16, 37, 70, 63, 66, 54, 20, 13, 4, 8, 15, 21, 26, 10, 73, 77, 67, 69, 43, 24, 57, 39, 46, 72, 48, 33, 17, 31, 75, 19, 41, 62, 68, 28, 51, 66, 30, 56, 34, 59, 71, 22, 49, 64, 38, 45, 36, 42, 53 Each Frequency used equally on the average by each transmitter

8.4 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH- enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

9 TEST REQUIREMENTS

9.1 20DB&99%BANDWIDTH

9.1.1 Applicable Standard

According to FCC Part 15.247(a)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.1 and RSS-Gen.6.7

9.1.2 Conformance Limit

No limit requirement.

9.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.1.4 Test Procedure

The EUT was operating inBluetoothmode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 30 kHz.

Set the video bandwidth (VBW) =100kHz.

Set Span= approximately 2 to 3 times the 20 dB bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize.Use the marker-to-peak function to set the marker to the peak of the emission. Use themarker-delta function to measure 20 dB down one side of the emission. Reset the markerdeltafunction, and move the marker to the other side of the emission, until it is (asclose as possible to) even with the reference marker level. The marker-delta reading atthis point is the 20 dB bandwidth of the emission.

If this value varies with differentmodes of operation (e.g., data rate, modulation format, etc.), repeat this test for eachvariation.

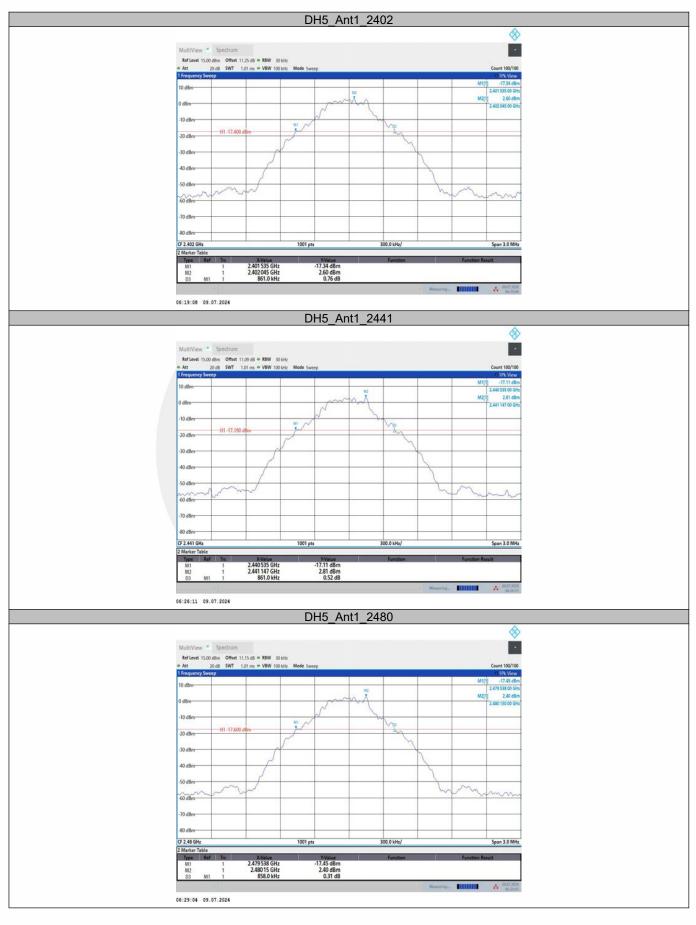
Measure and record the results in the test report.

Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

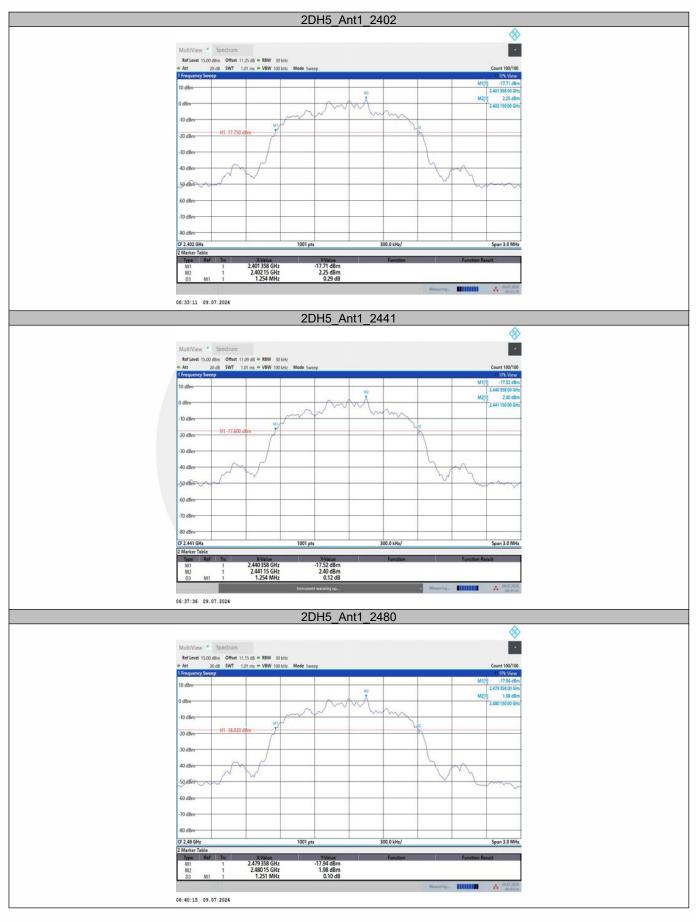
Note: N/A

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn



20dB Emission Bandwidth

TestMode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.86	2401.54	2402.40		
DH5	Ant1	2441	0.86	2440.54	2441.40		
		2480	0.86	2479.54	2480.40		
		2402	1.25	2401.36	2402.61		
2DH5	Ant1	2441	1.25	2440.36	2441.61		
		2480	1.25	2479.36	2480.61		
		2402	1.25	2401.35	2402.60		
3DH5	Ant1	2441	1.25	2440.35	2441.60		
		2480	1.26	2479.35	2480.61		



深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

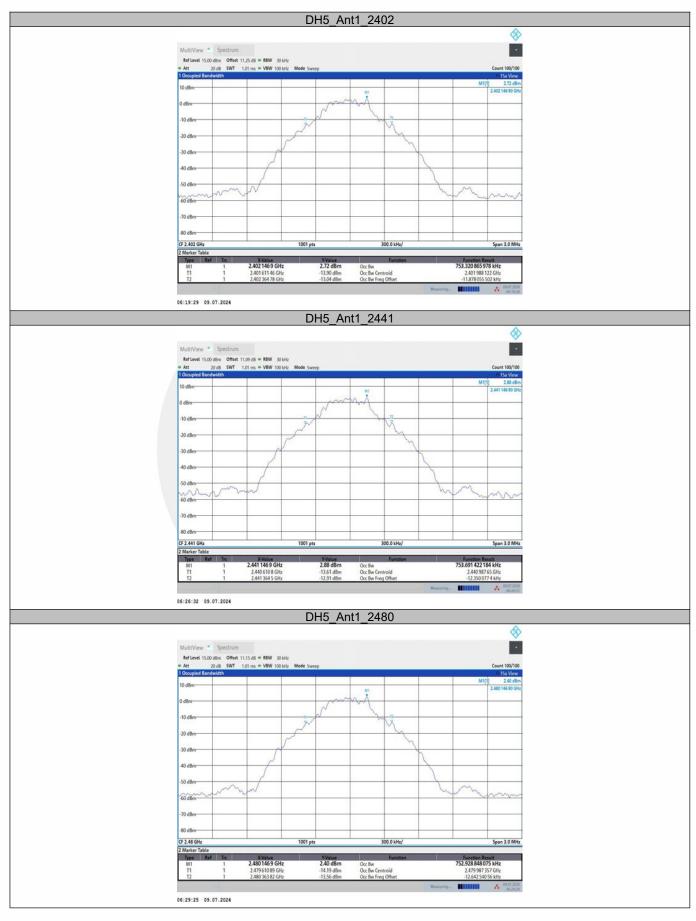
深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

3DH5_Ant1_2402 • MultiView Spectrum
 Ref Level
 15.00 dBm
 Offset
 11.25 dB
 # RBW
 30 kHz

 Att
 20 dB
 SWT
 1.01 ms
 * VBW
 100 kHz
 dBe M 2.81 di 402 150 00 10 d8n -H1-17.190 20 dBr -30 dB 40 d 60 dB 70 dB 80 dBn CF 2.402 GH 1001 pts 300.0 kHz/ Span 3.0 MHz X-Value 2.401 352 GHz 2.402 15 GHz 1.251 MHz 16.83 dBm 2.81 dBm 0.04 dB M1 M2 06:44:51 09.07.2024 3DH5 Ant1 2441 \$ •
 Ref Level
 15.00 dBm
 Offset
 11.09 dB
 # R5W
 30 kHz

 Att
 20 dB
 SWT
 1.01 ms
 * VBW
 100 kHz
 dBe M. 3.15 6 10 dB -H1 -16.850 a 20 dBn -30 dB 40 d -60 dB 70 de -80 dBr CF 2.441 GH 1001 pts 300.0 kHz/ Span 3.0 MHz X-Value 2.440 352 GHz 2.441 15 GHz 1.251 MHz Y-Value -16.52 dBm 3.15 dBm -0.22 dB M1 M2 06:50:03 09.07.2024 3DH5_Ant1_2480 • · Spect Ref Level 15.00 dBm Offset 11.15 dB • R5W 30 kHz SWT 1.01 ms • VBW 100 kHz -17.54 (dBe 49 00 0 2.43 d 10 484 -H1-17.570 20 dB -30 dBn 40 dB 50 0 -60 dB 70 dBr 80 dBn CF 2.48 GH 1001 pts 300.0 kHz/ Span 3.0 MHz X-Value 2.479 349 GHz 2.480 147 GHz 1.257 MHz V-Value -17.54 dBm 2.43 dBm -0.02 dB M1 M2 D3 06:52:33 09.07.2024

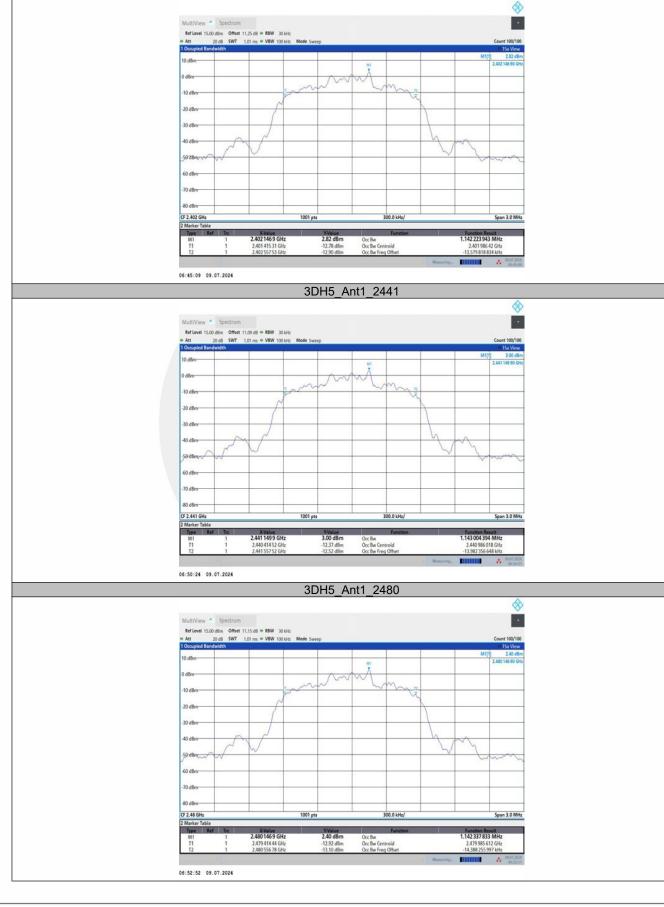
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.753	2401.6115	2402.3648		
DH5	Ant1	2441	0.754	2440.6108	2441.3645		
		2480	0.753	2479.6109	2480.3638		
		2402	1.142	2401.4103	2402.5526		
2DH5	Ant1	2441	1.141	2440.4107	2441.5518		
		2480	1.141	2479.4102	2480.5514		
		2402	1.142	2401.4153	2402.5575		
3DH5	Ant1	2441	1.143	2440.4145	2441.5575		
		2480	1.142	2479.4144	2480.5568		

Occupied Channel Bandwidth

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn



2DH5_Ant1_2402 • MultiView Spectrum
 Ref Level
 15.00 dBm
 Offset
 11.25 dB
 # RBW
 30 kHz

 Att
 20 dB
 SWT
 1.01 ms
 * VBW
 100 kHz
) dBe 10 d8n 20 dBn -30 dB 40 d 50-dB 60 dB 70 dB -80 dBr CF 2.402 GH 1001 pts 300.0 kHz/ Span 3.0 MHz X-Value 2.402 146 9 GHz 2.401 410 33 GHz 2.402 552 64 GHz 1.96 dBm .142 309 791 MHz Occ Bw Occ Bw Ce Occ Bw Fr MI TI -12.8 2.40 06:33:31 09.07.2024 2DH5 Ant1 2441 • Ref Level 15.00 dBm Offset 11.09 dB = RSW 30 kHz Att 20 dB SWT 1.01 ms = VBW 100 kHz dBe 10 dB 20 dB -30 dB 40 d 50 dBr -60 dB 70 dB -80 dBr CF 2.441 GH 1001 pts 300.0 kHz/ Span 3.0 MHz X-Value 2.441 149 9 GHz 2.440 410 65 GHz 2.441 551 8 GHz Y-Value 2.32 dBm -12.76 dBm -12.12 dBm Function Result 1.141 145 793 MHz 2.440 981 224 GHz 18 775 024 158 kHz Occ Bw Occ Bw Centroid MI TI TD 06:37:57 09.07.2024 2DH5 Ant1 2480 • Offset 11.15 dB = RBW 30 kHz SWT 1.01 ms = VBW 100 kHz Ref Level 15.00 dBe 48014 10 dBn 20 dB -30 dBn 40 dB 50.48 -60 dB 70 dBr 80 dBrr CF 2.48 GH 1001 pts 300.0 kHz/ Span 3.0 MHz X-Value 2.480 149 9 GHz 2.479 410 18 GHz 2.480 551 45 GHz Y-Value 1.76 dBr -13.00 dB -12.63 dB Function Result 1.141 273 376 MHz Occ Bw Occ Bw Centroid Occ Bw Freq Offse M1 11 2.479 980 8 19.187 268 1 06:40:35 09.07.2024

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

3DH5_Ant1_2402

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

9.2 CARRIER FREQUENCY SEPARATION

9.2.1 Applicable Standard

According to FCC Part 15.247(a)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.1

9.2.2 Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hoppingchannel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

In case of an output power less than 125mW,the frequency hopping system may have channels separated by a minimum of 25kHz ortwo-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

9.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.2.4 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzersettings:

Set the RBW =300kHz. Set VBW =300kHz.

Set the span = wide enough to capture the peaks of two adjacent channels

Set Sweep time = auto couple.

Set Detector = peak. Set Trace mode = max hold.

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

Test Results


Temperature:	25° C		
Relative Humidity:	45%		
ATM Pressure:	1011 mbar		

Note: For GFSK, pi/4-DQPSK, 8DPSKLimit = 20dB bandwidth * 2/3

TestMode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
		Hop_2402	1.02	≥0.860	PASS
DH5	Ant1	Hop_2441	1.02	≥0.860	PASS
		Hop_2480	1	≥0.860	PASS
		Hop_2402	1.006	≥0.833	PASS
2DH5	Ant1	Hop_2441	1.314	≥1.250	PASS
	Hop_2480	0.996	≥0.833	PASS	
		Hop_2402	1.014	≥0.840	PASS
3DH5	Ant1	Hop_2441	1.35	≥1.260	PASS
		Hop_2480	1.002	≥0.840	PASS

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

2DH5_Ant1_Hop_2402 • MultiView Spectrum
 Ref Level
 15.00 dBm
 Offset
 11.25 dB
 # RBW
 300 kHz

 Att
 20 dB
 SWT
 1.01 ms
 * VBW
 300 kHz
 Mode
 E DZ minim -0.02 monorm m THE T -10 dBrr 20.4 -30 d8 40 dB 50 dBr 60 dB 70 dB -80 dBr 2.401 5 GHz 1001 pts 200.0 kHz/ 2.403 5 GHz 4 07:03:13 09.07.2024 2DH5_Ant1_Hop_2441 •
 Ref Level
 15.00 dBm
 Offset
 11.09 dB
 RBW
 300 kHz

 Att
 20 dB
 SWT
 1.01 ms
 VBW 300 kHz
 Turner En 12 m man m any. -10 dBn -20 df -30 d8 40 d8 -50 dBr 60 dB 70 dB -80 dBn 2.440 5 GHz 1001 pts 2.442 5 GHz 200.0 kHz/ 4 07:03:45 09.07.2024 2DH5_Ant1_Hop_2480 \otimes · Spectr • Offset 11.20 dB = RBW 300 kHz SWT 1.01 ms = VBW 300 kHz Mo Ref Level 15.00 dBm dBr um wmm mountain HRIG--10 dBn -20 dB -30 dBe 40 d8 -50 dBn -60 dBn 70 dBr -80 dBr 2.478 5 GHz 1001 pt 200.0 kHz/ 2.480 5 GH 07:04:14 09.07.2024

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

3DH5_Ant1_Hop_2402 • MultiView Spectrum Ref Level 15.00 dBm Offset 11.25 dB = RBW 300 kHz Att 20 dB SWT 1.01 ms = VBW 300 kHz Mode V= V 22 0.02 d amor ww -10 dBm in a 30 d8 40 d8 -50 dB 60 dB 70 dB -80 dBr 2.401 5 GHz 1001 pts 200.0 kHz/ 2.403 5 GHz 4 07:07:51 09.07.2024 3DH5_Ant1_Hop_2441 \$ • Spec
 Ref Level
 15.00 dBm
 Offset
 11.09 dB
 RBW
 300 kHz

 Att
 20 dB
 SWT
 1.01 ms
 VBW 300 kHz
 202 D2 manor mar mm 0.11 -10 dBn -20 df -30 d8 40 dB -50 dBr 60 dB 70 dB -80 dBn 2.440 5 GHz 1001 pts 2.442 5 GHz 200.0 kHz/ 4 07:09:38 09.07.2024 3DH5_Ant1_Hop_2480 \otimes • Spectr Ref Level 15.00 dBm Offset 11.20 dB = R5W 300 kHz SWT 1.01 ms = VBW 300 kHz M man more mm 10 dB -20 dB -30 dBe 40 d8 -50 dBn -60 dBn 70 d8 -80 dBr 2.478 5 GHz 1001 pt 200.0 kHz/ 2.480 5 GH 07:10:10 09.07.2024

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

9.3 NUMBER OF HOPPING FREQUENCIES

9.3.1 Applicable Standard

According to FCC Part 15.247(a)(1)and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.1

9.3.2 Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall use at least15 channels.

9.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.3.4 Test Procedure

the hopping frequencies.

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation (2400-2483.5MHz) RBW =300KHz VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. It may prove necessary to break the span up to sections, inorder to clearly show all of

Test Results

Temperature:	25° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Note: N/A

TestMode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

9.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

9.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.1

9.4.2 Conformance Limit

For frequency hopping systems operating in the 2400-2483.5MHz band, the averagetime of occupancy on any channel shall not be greater than 0.4s within a period of 0.4smultiplied by the number of hopping channels employed.

9.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.4.4 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzersettings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

 $VBW \ge RBW$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value

varies with different modes of operation (e.g., data rate, modulation format, etc.),

repeat this test for each variation. The limit is specified in one of the subparagraphsof this Section.

9.4.5 Test Results

Temperature:	25° C	
Relative Humidity:	45%	
ATM Pressure:	1011 mbar	


Note: TotalHops(DH1)=(1600/2/79)*31.6 TotalHops(DH3)=(1600/4/79)*31.6 TotalHops(DH5)=(1600/6/79)*31.6 DwellTime=BurstWidth*TotalHops

All the antenna(Antenna 1) and modes(GFSK, π /4-DQPSK, 8DPSK) mode have been tested, and the worst(Antenna 1,GFSK) resultrecorded was report as below:

TestMode	Antenna	Frequency[MHz]	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.360	320	0.115	≤0.4	PASS
DH3	Ant1	Нор	1.610	160	0.258	≤0.4	PASS
DH5	Ant1	Нор	2.870	106.67	0.306	≤0.4	PASS

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

9.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER

9.5.1 Applicable Standard

According to FCC Part 15.247(b)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.4 and RSS-Gen 6.12

9.5.2 Conformance Limit

The max For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.5.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.5.4 Test Procedure

As an alternative to a peak power measurement, compliance with the limit can be based on a measurement of the maximum conducted output power.

Use the following spectrum analyzer settings:

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel(about 8MHz)

Set RBW > the 20 dB bandwidth of the emission being measured(about 3MHz)

Set VBW ≥ RBW

Set Sweep = auto

Set Detector function = peak

Set Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emissionto determine the peak amplitude level.

Test Results

Temperature:	25° C	
Relative Humidity:	45%	
ATM Pressure:	1011 mbar	

Note: N/A

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
DH5	Ant1	2402	5.57	≤20.97	PASS
		2441	5.72	≤20.97	PASS
		2480	5.18	≤20.97	PASS
2DH5	Ant1	2402	5.35	≤20.97	PASS
		2441	5.74	≤20.97	PASS
		2480	5.27	≤20.97	PASS
3DH5	Ant1	2402	5.67	≤20.97	PASS
		2441	5.86	≤20.97	PASS
		2480	5.31	≤20.97	PASS

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

DH5_Ant1_2402 • MultiView . Spectrum
 Ref Level
 20.00 dBm
 Offset
 11.25 dB
 # RBW
 3 MHz

 Att
 25 dB
 SWT
 1.01 ms
 = VBW 10 MHz
 Mode 5.57 10 d8n -10 dB 20 dBn 30.48 40 d8 50 dB -60 dBn -70 dBn CF 2.402 GHz 1001 pts 800.0 kHz/ Span 8.0 MHz * 07:13:00 09.07.2024 DH5_Ant1_2441 \$ •
 Ref Level
 20.00 dBm
 Offset
 11.09 dB
 RBW
 3 MHz

 Att
 25 dB
 SWT
 1.01 ms
 VBW
 10 MHz
 10 dBr -10 dB 20 d8 -30 dBn 40 dB 50 dt -60 dBn -70 dBm CF 2.441 GHz Span 8.0 MH 1001 pts 800.0 kHz/ 07:13:37 09.07.2024 DH5_Ant1_2480 \otimes • Offset 11.15 dB = RBW 3 MHz SWT 1.01 ms = VBW 10 MHz Ref Level 20.00 5.18 d 10 d8e -10 dBo 20 dB -30 dBn 40 dBm 50 dB -60 dBr 70 dBm CF 2.48 GHz 1001 pt 800.0 kHz/ Soan 8.0 MH 07:14:07 09.07.2024

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

2DH5_Ant1_2402 • MultiView . Spectrum
 Ref Level
 20.00 dBm
 Offset
 11.25 dB
 # RBW
 3 MHz

 Att
 25 dB
 SWT
 1.01 ms
 = VBW 10 MHz
 Mode 5.35 10 d8n -10 dB 20 dBn 30.48 40 d8 50 dB -60 dBn -70 dBn CF 2.402 GHz 1001 pts 800.0 kHz/ Span 8.0 MH * 07:14:54 09.07.2024 2DH5_Ant1_2441 \$ •
 Ref Level
 20.00 dBm
 Offset
 11.09 dB
 RBW
 3 MHz

 Att
 25 dB
 SWT
 1.01 ms
 VBW
 10 MHz
 10 dBr -10 dB 20 d8 -30 dBn 40 dB 50 dt -60 dBn -70 dBm CF 2.441 GHz Span 8.0 MH 1001 pts 800.0 kHz/ 07:15:32 09.07.2024 2DH5_Ant1_2480 \otimes • Offset 11.15 dB = RBW 3 MHz SWT 1.01 ms = VBW 10 MHz Ref Level 20.00 5.27 d 10 d8e -10 dBo 20 de -30 dBn 40 dBm 50 dB -60 dBr 70 dBm CF 2.48 GHz 1001 pt 800.0 kHz/ Span 8.0 MH 07:16:05 09.07.2024

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

9.6 CONDUCTED SUPRIOUS EMISSION

9.6.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-247.5.5

9.6.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted, provided the transmitter demonstrates compliance with the peak conducted power limits.

9.6.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

9.6.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DSS channel center frequency.

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel.

Set the RBW = 100 kHz. Set the VBW \ge 3 x RBW.

Set Detector = peak. Set Sweep time = auto couple.

Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum Maximum conduceted level.

Note that the channel found to contain the maximum conduceted level can be used to establish the reference level.

Band-edge measurement

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation

Set RBW ≥ 1% of the span=100kHzSet VBW ≥3 x RBW

Set Sweep = autoSet Detector function = peakSet Trace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Emission level measurement

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.(30MHz to 25GHz).Set RBW = 100 kHzSet VBW \geq RBW

Set Sweep = autoSet Detector function = peakSet Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

9.6.5 Test Results

Temperature:	25°C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Note: N/A

Reference level measurement

TestMode	Antenna	Freq(MHz)	Max.Point[MHz]	Result[dBm]
		2402	2402.15	5.20
DH5	Ant1	2441	2441.14	5.31
		2480	2480.15	4.78
		2402	2401.82	5.27
2DH5	Ant1	2441	2441.15	5.33
		2480	2479.82	4.98
		2402	2401.83	5.34
3DH5	Ant1	2441	2441.15	5.55
		2480	2480.15	4.99

DH5_Ant1_2402 • Spectrum
 Ref Level
 30.00 dBm
 Offset
 11.25 dB
 # R5W
 100 kHz

 Att
 30 dB
 SWT
 1.01 ms
 * VBW 300 kHz
 Mode 5.20 402 151 30 20 dBn -10 dBn 20 dB 30 dB 40 dB -50 dBn -60 dBn CF 2.402 GHz 1001 pts 150.0 kHz/ Span 1.5 MH 4 06:19:45 09.07.2024 DH5 Ant1 2441 \$ •
 Ref Level
 30.00 dBm
 Offset
 11.09 dB
 RBW
 100 kHz

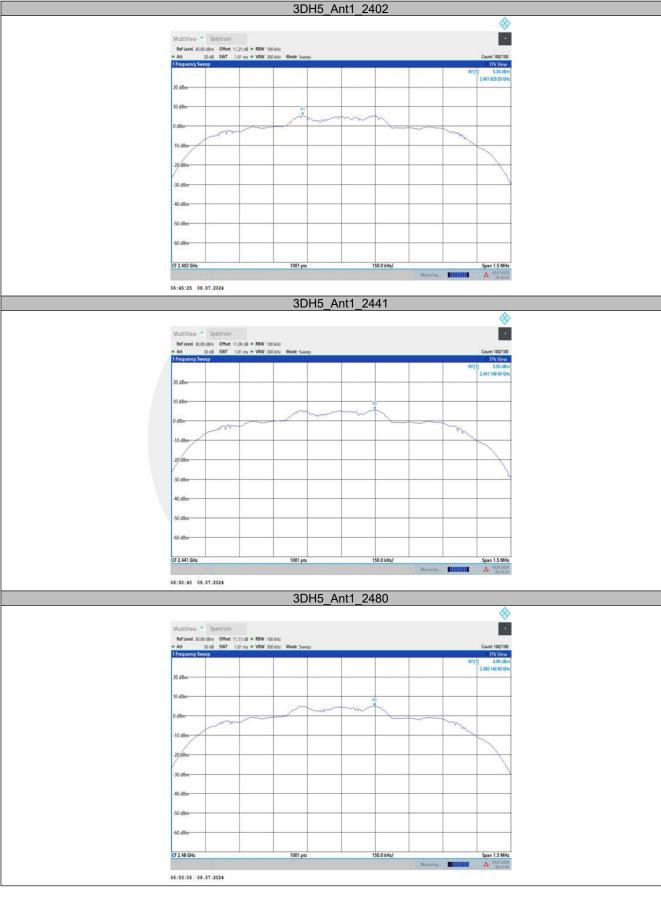
 Att
 30 dB
 SWT
 1.01 ms
 VBW 300 kHz
 5.31 20 dBr 10.48 10 d8 20 dB 30 dBn 40 dB -50 dBn -60 dBm CF 2.441 GHz Span 1.5 MH 1001 pts 150.0 kHz/ . 06:26:47 09.07.2024 DH5_Ant1_2480 \otimes • Ref Level 30.00 Offset 11.15 dB = RBW 100 kHz SWT 1.01 ms = VBW 300 kHz 4.78 d 20 dBr 10 dBr ARe 10 d8 -20 dBr 30 dBn 40 dBn 50 dBr -60 dBm CF 2.48 GHz 1001 pt 150.0 kHz/ Span 1.5 MH 06:29:40 09.07.2024

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

06:40:51 09.07.2024

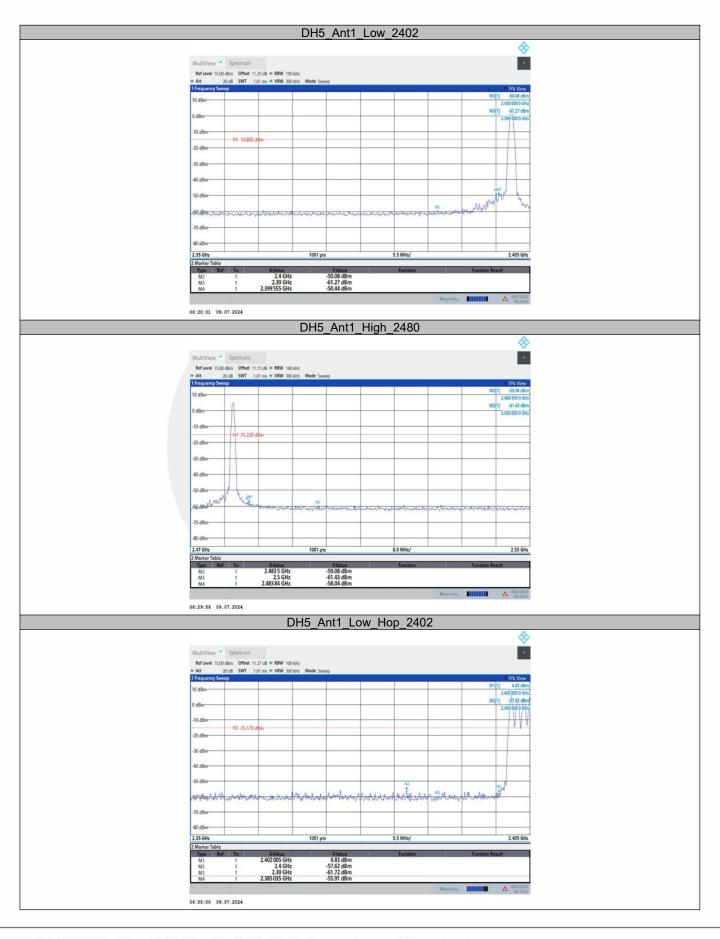
EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn


1001 pt

150.0 kHz/

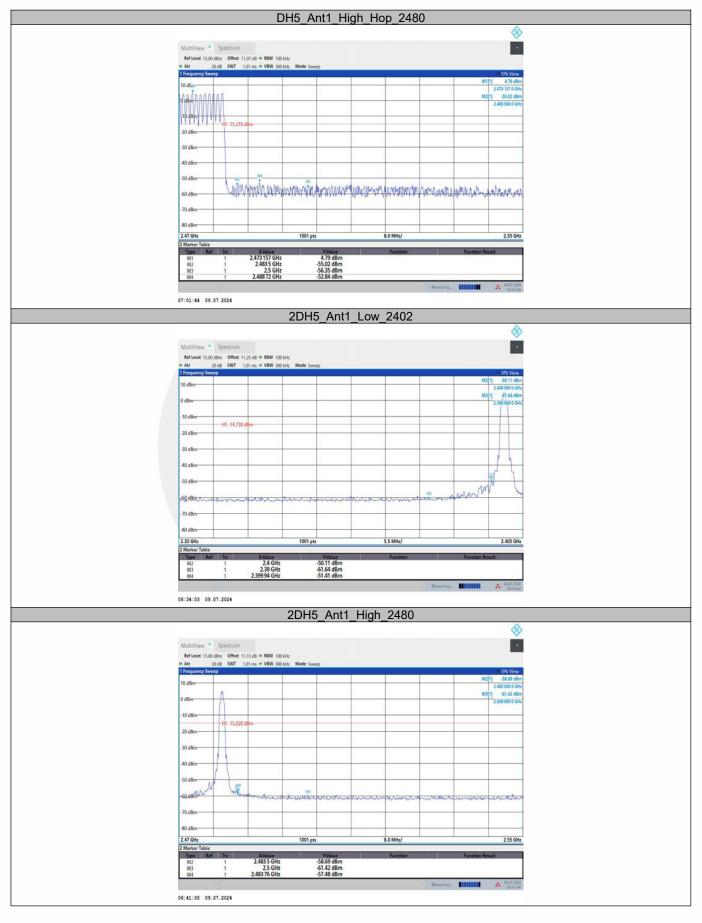
Span 1.5 MH

.....


TestMode	Antenna	ChName	Frequency[MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict	
		Low	2402	5.20	-50.44	≤-14.8	PASS	
	Apt1	High	2480	4.78	-58.04	≤-15.22	PASS	
DH5	Ant1	Low	Hop_2402	4.83	-55.91	≤-15.17	PASS	
			High	Hop_2480	4.79	-52.84	≤-15.21	PASS
	Ant1		Low	2402	5.27	-51.41	≤-14.73	PASS
2DH5		High	2480	4.98	-57.48	≤-15.02	PASS	
2005	Anti	Low	Hop_2402	4.95	-52.49	≤-15.05	PASS	
		High	Hop_2480	4.48	-55.53	≤-15.52	PASS	
			Low	2402	5.34	-50.73	≤-14.66	PASS
2045	Apt1	High	2480	4.99	-58.03	≤-15.01	PASS	
3DH5	Ant1	Low	Hop_2402	-0.30	-57.58	≤-20.3	PASS	
		High	Hop_2480	4.19	-55.23	≤-15.81	PASS	

Band edge measurements

Report No. ENS2406060159W00202R



深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Access to the World

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

2DH5_Ant1_Low_Hop_2402 • MultiView Spectrum
 Ref Level
 15.00 dBm
 Offset
 11,27 dB
 # RBW
 100 kHz

 Att
 20 dB
 SWT
 1.01 ms
 VBW 300 kHz
 Mode
 0 dBm -60.56 -10 dBn H1-15.050 20 dBn 30 dBa 40 dBn 50 dBn 60.d8m -70 dBn 80 48 1001 pts 5.5 MHz/ 2.405 GH: 2.35 GHz X Value 2.403 159 GHz 2.4 GHz 2.39 GHz 2.398 95 GHz 4.95 dBm -60.56 dBm -61.39 dBm -52.49 dBm M2 M3 M4 07:04:47 09.07.2024 2DH5 Ant1 High Hop 2480 \$ •
 Ref Level
 15.00
 dBm
 Offset
 11.07
 dB
 RBW
 100
 kHz

 Att
 20
 dB
 SWT
 1.01
 ms
 VBW
 300
 kHz
 dBr 62.01 Mary Walt -10 dBm -11 .15 530 20 dBn 30 dBn 40 dBn 50 dBn withh MAN 11 WAL. Alla -60 dBn -70 dBn 80 dBn 1001 pts 8.0 MHz/ 2.55 GHz 2.47 GHz 2.478 192 GHz 2.483 5 GHz 2.5 GHz 2.500 48 GHz 4.48 dBm -62.01 dBm -62.04 dBm -55.53 dBm M1 M2 M3 M4 07:04:29 09.07.2024 3DH5_Ant1_Low_2402 \otimes • Spectr Ref Level 15.00 dBm Offset 11.25 dB = RBW 100 kHz SWT 1.01 ms = VBW 300 kHz dBe -10 dBn H1-14.660 20 dB -30 dBn 40 dBe 50 dB M 60 dBm -70 dBr 80 dBr 2.35 GHz 1001 pts 5.5 MHz/ 2.405 GHz X-Value 2.4 GHz 2.39 GHz 2.399 83 GHz -51.28 dBm -61.07 dBm -50.73 dBm M2 M3 M4 06:45:41 09.07.2024

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

3DH5_Ant1_High_2480 • MultiView Spectrum
 Ref Level
 15.00 dBm
 Offset
 11.15 dB
 # RBW
 100 kHz

 Att
 20 dB
 SWT
 1.01 ms
 * VBW 300 kHz
 Mode
 dBe 2 483 50 -61.42 dl 2 500 000 0 0 10 dB H1 -15.010 d 20 dBn -30 dB 40 d -50 dB W.M. 60 MB/m 70 dBr 80 dBrr 2.47 GHz 1001 pts 8.0 MHz/ 2.55 GHz 2.483 5 GHz 2.484 48 GHz 2.484 48 GHz -58.95 dBm -61.42 dBm -58.03 dBm M2 M3 M4 06:53:20 09.07.2024 3DH5_Ant1_Low_Hop_2402 \$ • Spectru
 Ref Level
 15.00 dBm
 Offset
 11.27 dB
 # RSW
 100 kHz

 Att
 20 dB
 SWT
 1.01 ms
 # VBW 300 kHz
 0 dBm dBr -10 d8m 20.46 30 dBn 40 dB 50 dB -60 dBm -70 dBn -80 dBn 1001 pts 5.5 MHz/ 2.405 GHz 2.35 GHz X Value 2.403 709 GHz 2.4 GHz 2.39 GHz 2.399 94 GHz -0.30 dBm -59.32 dBm -61.92 dBm -57.58 dBm M1 M2 M3 M4 07:10:42 09.07.2024 3DH5_Ant1_High_Hop_2480 \otimes • Ref Level 15.00 dBm Offset 11,07 dB = R5W 100 kHz SWT 1,01 ms = VBW 300 kHz a Balana hat the 10 dBm H1-15.810 20 dBm 30 d8m 40 dBm 50 dBn An Renter here M. Maple Mr. 60 dBr 70 dBn -80 dBm 2.47 GHz 1001 pts 8.0 MHz/ 2.55 GHz X-Value 2.470 839 GHz 2.483 5 GHz 2.5 GHz 2.509 92 GHz 4.19 dBm -60.31 dBm -60.10 dBm -55.23 dBm M1 M2 M3 M4 07:10:24 09.07.2024

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

Conducted Spurious Emission

TestMode	Antenna	Frequency[MHz]	FreqRange [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	5.11	5.11		PASS
		2402	30~1000	5.20	-56.44	≤-14.8	PASS
			1000~26500	5.20	-51.13	≤-14.8	PASS
			Reference	5.31	5.31		PASS
DH5	Ant1	2441	30~1000	5.31	-56.06	≤-14.69	PASS
			1000~26500	5.31	-51.09	≤-14.69	PASS
			Reference	4.72	4.72		PASS
		2480	30~1000	4.78	-56.45	≤-15.22	PASS
			1000~26500	4.78	-51.44	≤-15.22	PASS
		2402 · · · · · · · · · · · · · · · · · · ·	30~1000	5.27	-56.31	≤-14.73	PASS
			1000~26500	5.27	-50.9	≤-14.73	PASS
2DH5	Ant1		30~1000	5.33	-55.88	≤-14.67	PASS
2005	Anti		1000~26500	5.33	-50.27	≤-14.67	PASS
		2480	30~1000	4.98	-56.26	≤-15.02	PASS
		2400	1000~26500	4.98	-51.24	≤-15.02	PASS
		2402	30~1000	5.34	-56.32	≤-14.66	PASS
		2402	1000~26500	5.34	-51.18	≤-14.66	PASS
3DH5	Apt1	2441 -	30~1000	5.55	-55.6	≤-14.45	PASS
3005	Ant1		1000~26500	5.55	-51.28	≤-14.45	PASS
		2480	30~1000	4.99	-56.44	≤-15.01	PASS
		2400	1000~26500	4.99	-51.21	≤-15.01	PASS

• Spectrum
 Ref Level 20.00 dBm
 Offset 11,25 dB = RBW 100 kHz

 Att
 20 dB
 SWT
 30.1 ms = VBW 300 kHz
 Mode
 35,060.0 10 d8n 10 dB H1 -14,800 20 dB 30.48 40 d8 50 dt 70 dBm 30.0 MHz 30001 pts 97.0 MHz/ 1.0 GH * 01 06:20:17 09.07.2024 DH5 Ant1 2402 1000~26500 \$ •
 Ref Level
 20.00 dBm
 Offset
 11.25 dB
 # RSW
 100 kHz

 Att
 20 dB
 SWT
 255 ms
 * VBW 300 kHz
 2.402 0 10 d8n -51.13 d 21.995 000 -10 dB H1 -14,800 20 d -30 dB 40.6 -70 dBm 1.0 GHz 30001 pts 2.55 GHz/ 26.5 GH ** 0 05:20:39 09.07.2024 DH5_Ant1_2441_30~1000 \otimes • Offset 11.09 dB = RBW 100 kHz SWT 30.1 ms = VBW 300 kHz Ref Level 20.00 -56.06 d 33.055 0 / 10 d8e -10 dBn H1 -14,690 80 d8 -30 dBr 40 dBn 50 dF 70 dBm 30.0 MHz 97.0 MHz/ 30001 pt 1.0 GH ٨ 06:27:02 09.07.2024

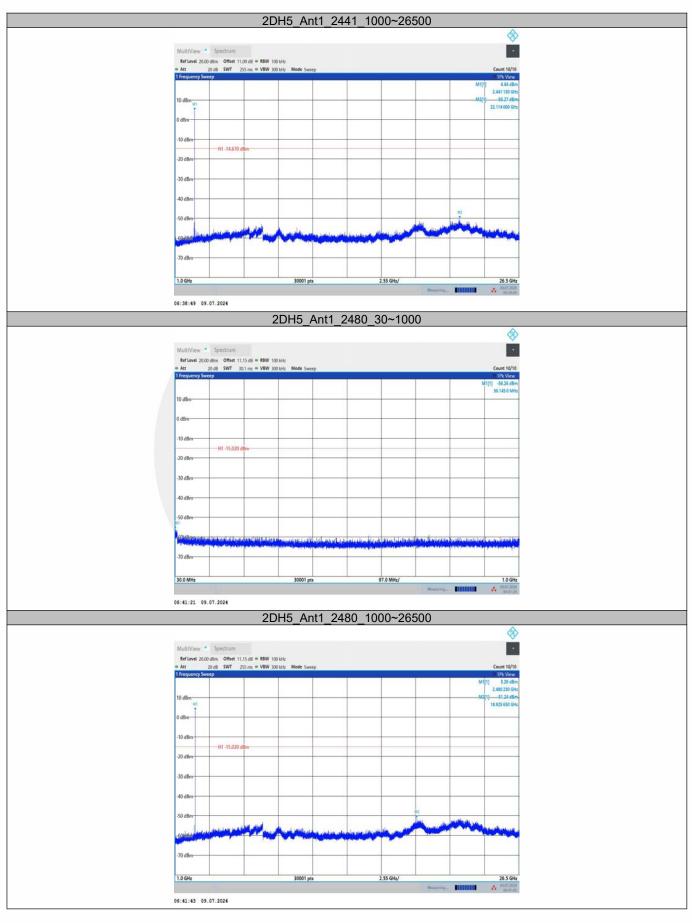
DH5_Ant1_2402_30~1000

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

DH5_Ant1_2441_1000~26500 • MultiView Spectrum Ref Level 20.00 dBm Offset 11.09 dB = RBW 100 kHz Att 20 dB SWT 255 ms = VBW 300 kHz Mode 4.82 0 2.441 130 10 d8m -51.09 di 22.152 250 G -10 d8 -H1-14.690 20 dB 30.48 40 d 50 d -70 dBm 1.0 GHz 30001 pts 2.55 GHz/ 26.5 GH ** 0 06:27:24 09.07.2024 DH5 Ant1 2480 30~1000 \$ •
 Ref Level
 20.00 dBm
 Offset
 11.15 dB
 # RSW
 100 kHz

 Att
 20 dB
 SWT
 30.1 ms
 # VBW 300 kHz
 -56.45 d 35.351 0 / 10 d8e -10 dB H1-15.220 -20 đ -30 dBr 40 dE 50 d -70 dBm 30.0 MHz 30001 pts 97.0 MHz/ 1.0 GH * 01 05:30:12 09.07.2024 DH5_Ant1_2480_1000~26500 \otimes • Offset 11.15 dB = RBW 100 kHz SWT 255 ms = VBW 300 kHz Ref Level 20.00 dBm 4.39 d. 2.450 230 2.450 230 (]-----51.44 d 22.102 100 (10 d8e 0 dBm -10 dBr -H1-15,220 20 dB -30 dBr 40 dBr 70 dBm 2.55 GHz/ 1.0 GHz 30001 pt 26.5 GH ٨ 06:30:35 09.07.2024

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

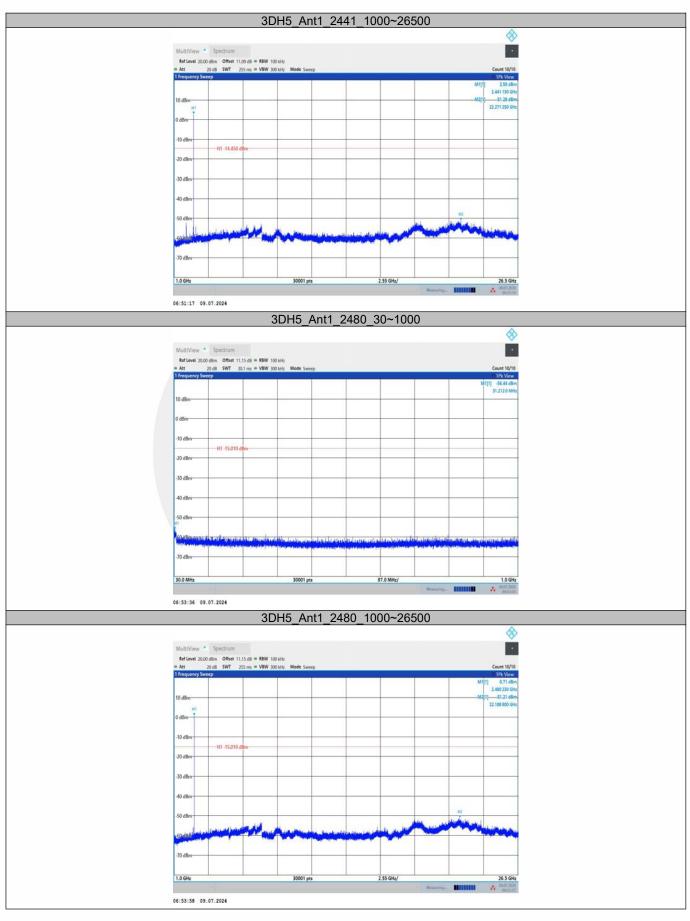

2DH5_Ant1_2402_30~1000 • MultiView Spectrum
 Ref Level
 20.00 dBm
 Offset
 11.25 dB
 # RBW
 100 kHz

 Att
 20 dB
 SWT
 30.1 ms
 * VBW 300 kHz
 Mode
 -56.31 33.63701 10 d8n 10 dB H1-14,730 20 dBn 30.48 40 d8 50 di -70 dBm 30.0 MHz 30001 pts 97.0 MHz/ 1.0 GH * 01 06:34:19 09.07.2024 2DH5 Ant1 2402 1000~26500 \$ • Spectri
 Ref Level
 20.00 dBm
 Offset
 11.25 dB
 # RSW
 100 kHz

 Att
 20 dB
 SWT
 255 ms
 * VBW 300 kHz
 -0.05 2.402 10 d8n -50.90 22.079 150 0 dBm -10 dB H1 -14,730 -20 dE -30 dB 40 d 50 d -70 dBm 1.0 GHz 30001 pts 2.55 GHz/ 26.5 GH ** 0 05:34:41 09.07.2024 2DH5_Ant1_2441_30~1000 \otimes • Ref Level 20.00 dBm Offset 11.09 dB = R5W 100 kHz SWT 30.1 ms = VBW 300 kHz Me -55.88 d 33.734 0 M 10 d8e -10 dBn H1 -14,670 20 dB -30 dBn 40 dBn 50 dB 70 dBm 30.0 MHz 97.0 MHz/ 30001 pt 1.0 GH ٨ 06:38:27 09.07.2024

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn


3DH5_Ant1_2402_30~1000 • MultiView Spectrum
 Ref Level
 20.00 dBm
 Offset
 11.25 dB
 # RBW
 100 kHz

 Att
 20 dB
 SWT
 30.1 ms
 * VBW 300 kHz
 Mode
 -56.32 35.480.0 / 10 d8n 10 dB H1-14.660 20 dB 30.48 40 d 50 d 70 dBm 30.0 MHz 30001 pts 97.0 MHz/ 1.0 GH * 01 06:45:55 09.07.2024 3DH5 Ant1 2402 1000~26500 \$ • Spectr
 Ref Level
 20.00 dBm
 Offset
 11.25 dB
 # RSW
 100 kHz

 Att
 20 dB
 SWT
 255 ms
 * VBW 300 kHz
 3.06 2.4 -51.18 0 10 dBr 21.980 550 0 dBrr -10 dB -H1-14.660 -20 dE -30 dBr 40 dE -70 dBm 1.0 GHz 30001 pts 2.55 GHz/ 26.5 GH ** 0 06:46:17 09.07.2024 3DH5_Ant1_2441_30~1000 \otimes • Ref Level 20.00 dBm Offset 11.09 dB = R5W 100 kHz SWT 30.1 ms = VBW 300 kHz Me -55.60 d 32.538 0 f 10 d8e -10 dBn H1 -14.450 80 d8 -30 dBr 40 dBn 70 dBm 30.0 MHz 97.0 MHz/ 30001 pt 1.0 GH ٨ 06:50:55 09.07.2024

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

9.7 RADIATED SPURIOUS EMISSION

9.7.1 Applicable Standard

According to FCC Part 15.247(d), 15.205, 15.209 and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02 According to IC RSS-Gen and RSS-247

9.7.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

According to FUC Part 15.	205, Restricted bands		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	12.51975-12.52025 240-285		36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	1.705-30 30		30
30-88	100	40	3
88-216	150	43.5	3
216-960 200		46	3
Above 960	500	54	3

9.7.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

9.7.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz $VBW \ge RBW$

Sweep = auto

Detector function = peak

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Trace = max hold For Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 100 kHz for $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 30MHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 9kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 150KHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 200Hz $\mathsf{VBW} \geq \mathsf{RBW}$ Sweep = auto Detector function = peak Trace = max hold Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT.

measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

9.7.5 Test Results

	Spurious	Emission	below	30MHz	(9KHz to	30MHz)
--	----------	----------	-------	-------	----------	--------

Temperature:	22° C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Freq. (MHz)	Ant.Pol.	Emis Level(d	sion BuV/m)	Limit 3m	(dBuV/m)	Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission Above 1GHz(1GHz to 25GHz)

All the antenna(Antenna 1) and modes(GFSK, π /4-DQPSK, 8DPSK) mode have been tested, and the worst(Antenna 1,GFSK) resultrecorded was report as below:

Test mode:	GFS	SK F		ency:			
Freq.	Ant.Pol.	Emis Level(d	sion BuV/m)	Limit 3m((dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
7783.12	V	57.92	38.76	74.00	54.00	16.08	15.24
12030	V	64.15	43.32	74.00	54.00	9.85	10.68
16993.1	V	66.28	46.34	74.00	54.00	7.72	7.66
9226.87	Н	59.01	41.45	74.00	54.00	14.99	12.55
11536.8	Н	64.28	43.16	74.00	54.00	9.72	10.84
17540.6	Н	66.37	47.32	74.00	54.00	7.63	6.68

Test mode:	GFS	K Frequen		псу:	Channel 39: 2441MHz		
Freq.	Ant.Pol.	Emission Lev	el(dBuV/m)	Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
8964.37	V	58.54	41.72	74.00	54.00	15.46	12.28
11553.7	V	63.19	42.76	74.00	54.00	10.81	11.24
17021.2	V	66.76	45.23	74.00	54.00	7.24	8.77
8229.37	Н	58.34	38.87	74.00	54.00	15.66	15.13
12013.1	Н	63.49	43.94	74.00	54.00	10.51	10.06
17505	Н	67.07	43.60	74.00	54.00	6.93	10.40

Test mode:	GFS	K Frequen		ісу:	cy: Channel 78: 2480MHz		
Freq.	Ant.Pol.	Emission Lev	rel(dBuV/m) Limit 3m((dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
8443.12	V	58.37	40.81	74.00	54.00	15.63	13.19
10882.5	V	63.92	42.32	74.00	54.00	10.08	11.68
17964.3	V	66.53	47.37	74.00	54.00	7.47	6.63
8265	Н	57.93	39.20	74.00	54.00	16.07	14.80
10899.3	Н	62.79	42.28	74.00	54.00	11.21	11.72
17191.8	Н	67.61	46.61	74.00	54.00	6.39	7.39

Note:

(1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor.

(3) Correct Factor= Ant_F + Cab_L - Preamp

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

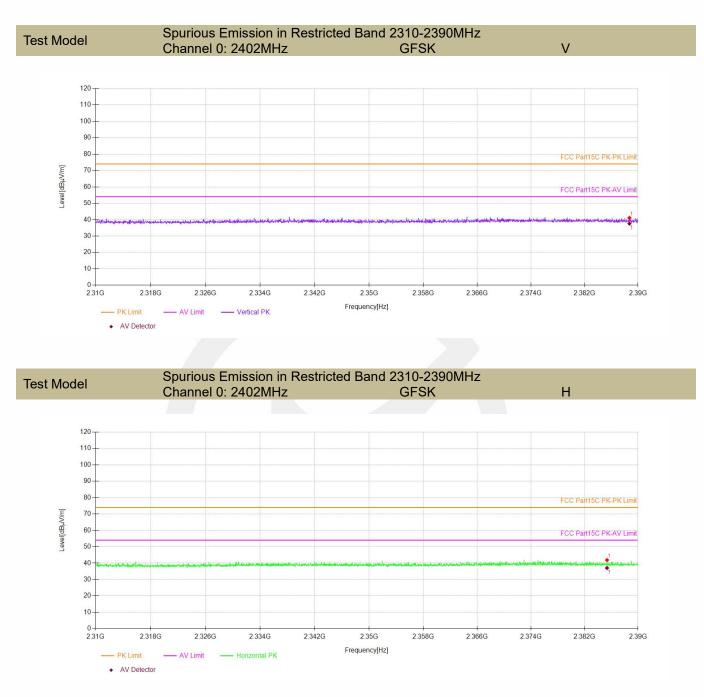
All the antenna(Antenna 1) and modes(GFSK, π/4-DQPSK, 8DPSK, Hopping) mode have been tested, and the worst(Antenna 1,GFSK, Hopping) resultrecorded was report as below:

Test mode:	GFSK	Frequenc	cy: Ch	Channel 0: 2402MHz		
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	
2385.35	Н	41.91	74.00	37.04	54.00	
2388.71	V	41.06	74.00	37.60	54.00	

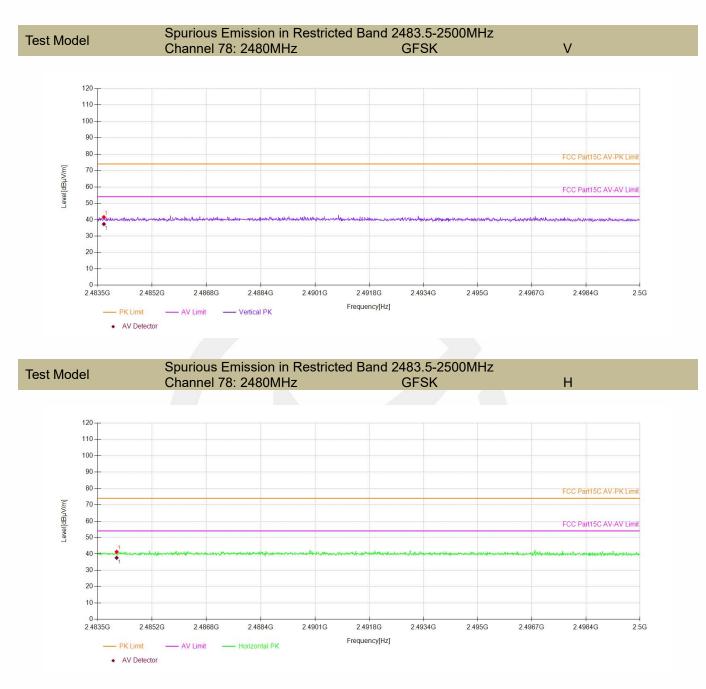
Test mode:	GFSK	Frequenc	cy: Ch	annel 78: 2480MI	Ηz
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2484.07	Н	41.26	74.00	37.59	54.00
2483.68	V	41.55	74.00	37.32	54.00

Test mode:	GFSK	Frequenc	су: Но	pping	
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2386.91	Н	41.74	74.00	37.16	54.00
2485.68	Н	41.40	74.00	37.13	54.00
2387.98	V	40.76	74.00	37.71	54.00
2486.12	V	41.60	74.00	37.33	54.00

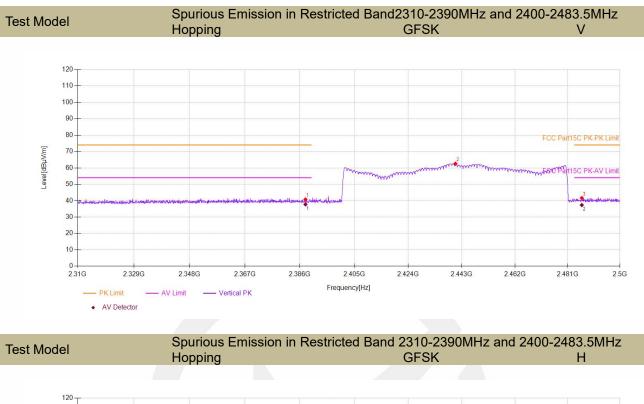
Note:

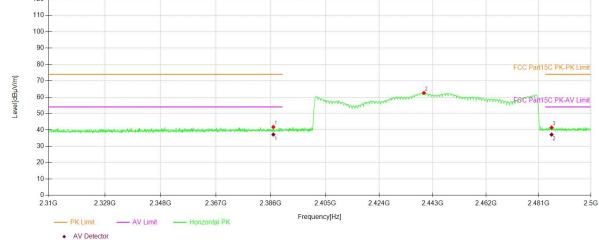

(1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz). (2) Emission Level= Reading Level+Correct Factor.

(3) Correct Factor= Ant_F + Cab_L - Preamp

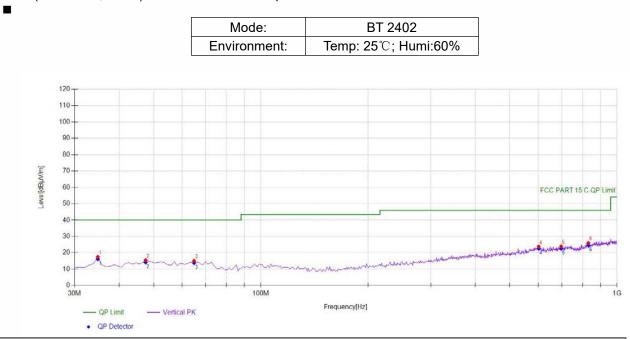

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



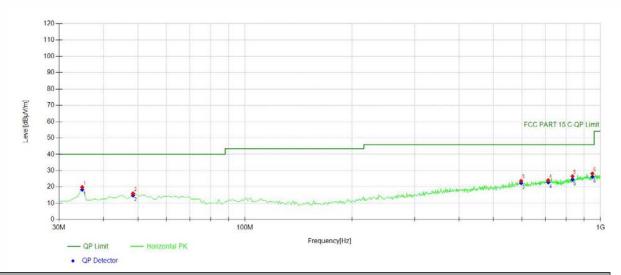


Report No. ENS2406060159W00202R



■ Spurious Emission below 1GHz(30MHz to 1GHz)

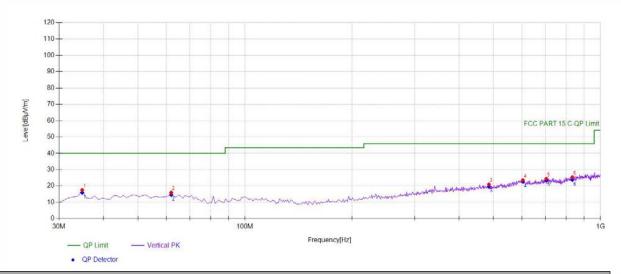
All the antenna(Antenna 1) and modes(GFSK, π /4-DQPSK, 8DPSK) mode have been tested, and the worst(Antenna 1,GFSK) resultrecorded was report as below:


Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity	
1	34.8549	35.54	-18.09	17.45	PK	40.00	22.55	Vertical	
2	47.4775	31.82	-16.37	15.45	PK	40.00	24.55	Vertical	
3	64.955	33.09	-18.00	15.09	PK	40.00	24.91	Vertical	
4	602.872	30.39	-6.59	23.80	PK	46.00	22.20	Vertical	
5	697.057	30.17	-6.26	23.91	PK	46.00	22.09	Vertical	
6	831.051	30.90	-4.89	26.01	PK	46.00	19.99	Vertical	

Final Data List								
NO.	Freq. [MHz]	Factor [dB/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]			
1	34.8549	-18.09	16.18	40.00	23.82			
2	47.4775	-16.37	14.18	40.00	25.82			
3	64.955	-18.00	13.82	40.00	26.18			
4	602.8729	-6.59	22.53	46.00	23.47			
5	697.0571	-6.26	22.48	46.00	23.52			
6	831.0511	-4.89	24.58	46.00	21.42			

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

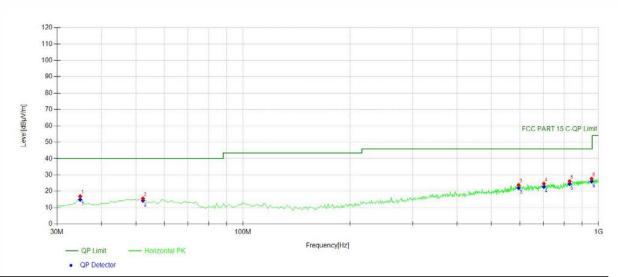
Mode:	BT 2402
Environment:	Temp: 25℃; Humi:60%


Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity	
1	34.8549	37.92	-18.09	19.83	PK	40.00	20.17	Horizontal	
2	48.4484	32.20	-16.22	15.98	PK	40.00	24.02	Horizontal	
3	598.018	30.22	-6.54	23.68	PK	46.00	22.32	Horizontal	
4	712.592	30.16	-6.09	24.07	PK	46.00	21.93	Horizontal	
5	833.964	31.29	-4.82	26.47	PK	46.00	19.53	Horizontal	
6	948.538	31.20	-3.02	28.18	PK	46.00	17.82	Horizontal	

Final Data List	_		_	-	
NO.	Freq. [MHz]	Factor [dB/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]
1	34.8549	-18.09	18.33	40.00	21.67
2	48.4484	-16.22	14.84	40.00	25.16
3	598.018	-6.54	22.37	46.00	23.63
4	712.5926	-6.09	22.76	46.00	23.24
5	833.964	-4.82	24.52	46.00	21.48
6	948.5385	-3.02	26.23	46.00	19.77

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

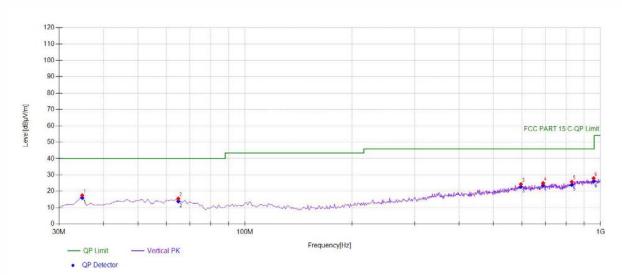
Mode:	BT 2441
Environment:	Temp: 25℃; Humi:60%


Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity	
1	34.8549	35.58	-18.09	17.49	PK	40.00	22.51	Vertical	
2	62.042	33.55	-17.60	15.95	PK	40.00	24.05	Vertical	
3	485.385	31.02	-10.09	20.93	PK	46.00	25.07	Vertical	
4	604.814	30.24	-6.70	23.54	PK	46.00	22.46	Vertical	
5	703.853	30.52	-6.12	24.40	PK	46.00	21.60	Vertical	
6	832.993	30.24	-4.84	25.40	PK	46.00	20.60	Vertical	

Final Data List	-		_		
NO.	Freq. [MHz]	Factor [dB/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]
1	34.8549	-18.09	15.92	40.00	24.08
2	62.042	-17.60	14.58	40.00	25.42
3	485.3854	-10.09	19.56	46.00	26.44
4	604.8148	-6.70	22.52	46.00	23.48
5	703.8539	-6.12	23.38	46.00	22.62
6	832.993	-4.84	23.74	46.00	22.26

Report No. ENS2406060159W00202R

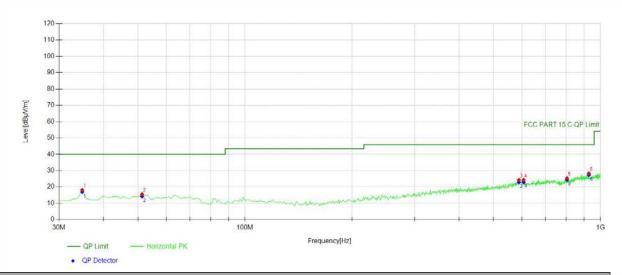
Mode:	BT 2441
Environment:	Temp: 25℃; Humi:60%


Suspe	cted Data	List			_	_		
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity
1	34.8549	35.00	-18.09	16.91	PK	40.00	23.09	Horizontal
2	52.3323	31.82	-16.31	15.51	PK	40.00	24.49	Horizontal
3	596.076	30.42	-6.64	23.78	PK	46.00	22.22	Horizontal
4	701.911	30.77	-6.13	24.64	PK	46.00	21.36	Horizontal
5	829.109	31.07	-4.94	26.13	PK	46.00	19.87	Horizontal
6	956.306	30.21	-2.58	27.63	PK	46.00	18.37	Horizontal

Final Data List					
NO.	Freq. [MHz]	Factor [dB/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]
1	34.8549	-18.09	14.92	40.00	25.08
2	52.3323	-16.31	14.35	40.00	25.65
3	596.0761	-6.64	21.98	46.00	24.02
4	701.9119	-6.13	22.68	46.00	23.32
5	829.1091	-4.94	24.53	46.00	21.47
6	956.3063	-2.58	26.03	46.00	19.97

Report No. ENS2406060159W00202R

Mode:	BT 2480
Environment:	Temp: 25℃; Humi:60%


Suspe	cted Data	List						
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity
1	34.8549	35.55	-18.09	17.46	PK	40.00	22.54	Vertical
2	64.955	33.48	-18.00	15.48	PK	40.00	24.52	Vertical
3	597.047	30.87	-6.59	24.28	PK	46.00	21.72	Vertical
4	689.289	31.50	-6.55	24.95	PK	46.00	21.05	Vertical
5	830.080	30.68	-4.92	25.76	PK	46.00	20.24	Vertical
6	956.306	30.50	-2.58	27.92	PK	46.00	18.08	Vertical

Final Data List					
NO.	Freq. [MHz]	Factor [dB/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]
1	34.8549	-18.09	16.05	40.00	23.95
2	64.955	-18.00	13.90	40.00	26.10
3	597.047	-6.59	22.70	46.00	23.30
4	689.2893	-6.55	23.73	46.00	22.27
5	830.0801	-4.92	23.90	46.00	22.10
6	956.3063	-2.58	26.06	46.00	19.94

Report No. ENS2406060159W00202R

Mode:	BT 2480
Environment:	Temp: 25℃; Humi:60%

Suspe	ected Data	List						
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity
1	34.8549	36.22	-18.09	18.13	PK	40.00	21.87	Horizontal
2	51.3614	31.68	-16.19	15.49	PK	40.00	24.51	Horizontal
3	589.279	31.22	-6.98	24.24	PK	46.00	21.76	Horizontal
4	607.727	31.12	-6.85	24.27	PK	46.00	21.73	Horizontal
5	804.834	30.73	-5.33	25.40	PK	46.00	20.60	Horizontal
6	927.177	31.45	-3.15	28.30	PK	46.00	17.70	Horizontal

Final Data List			_		
NO.	Freq. [MHz]	Factor [dB/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]
1	34.8549	-18.09	16.94	40.00	23.06
2	51.3614	-16.19	14.30	40.00	25.70
3	589.2793	-6.98	22.88	46.00	23.12
4	607.7277	-6.85	22.91	46.00	23.09
5	804.8348	-5.33	24.40	46.00	21.60
6	927.1772	-3.15	27.30	46.00	18.70

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

9.8 CONDUCTED EMISSION TEST

9.8.1 Applicable Standard

According to FCC Part 15.207 According to IC RSS-Gen 8.8

9.8.2 Conformance Limit

Co	nducted Emission Limit	
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50
Note: 1 The lower limit shall apply at	the transition frequencies	

Note: 1. The lower limit shall apply at the transition frequencies

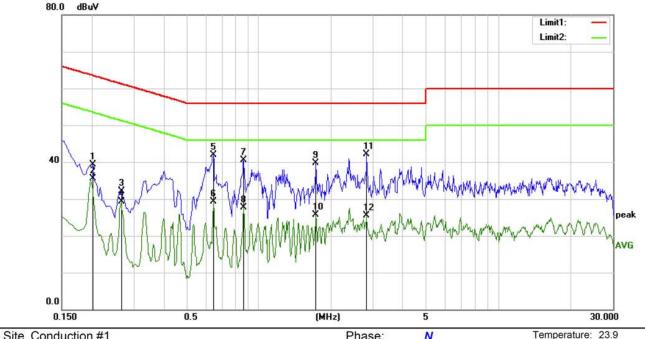
 The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

9.8.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

9.8.4 Test Procedure

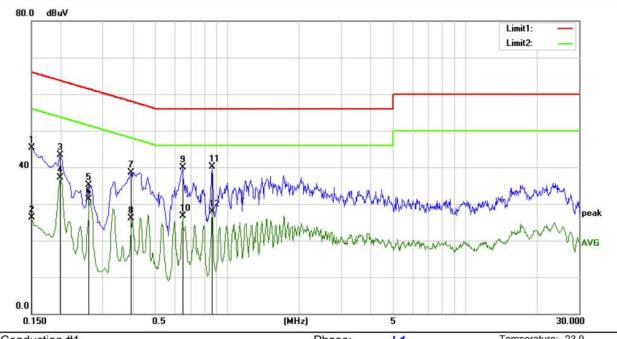
The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.


9.8.5 Test Results

Pass

The AC120V &240V voltage have been tested, and the worst result recorded was report as below:

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn



Site Conduction#1	Fliase.	Temperature. 20.9
Limit: (CE)FCC PART 15 class B_QP	Power: AC 120V/60Hz	Humidity: 53 %

/k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.2020	29.37	10.03	39.40	63.53	-24.13	QP	
	0.2020	25.39	10.03	35.42	53.53	-18.11	AVG	
	0.2660	22.13	10.03	32.16	61.24	-29.08	QP	
	0.2660	19.26	10.03	29.29	51.24	-21.95	AVG	
	0.6460	31.89	9.99	41.88	56.00	-14.12	QP	
	0.6460	19.31	9.99	29.30	46.00	-16.70	AVG	
	0.8660	30.62	9.98	40.60	56.00	-15.40	QP	
	0.8660	17.69	9.98	27.67	46.00	-18.33	AVG	
	1.7340	29.67	9.98	39.65	56.00	-16.35	QP	
	1.7340	15.80	9.98	25.78	46.00	-20.22	AVG	
r.	2.8140	32.19	9.97	42.16	56.00	-13.84	QP	
	2.8140	15.58	9.97	25.55	46.00	-20.45	AVG	
		MHz 0.2020 0.2020 0.2660 0.2660 0.6460 0.6460 0.8660 0.8660 1.7340 1.7340 2.8140	Ik. Freq. Level MHz dBuV 0.2020 29.37 0.2020 25.39 0.2660 22.13 0.2660 19.26 0.6460 31.89 0.6460 19.31 0.8660 30.62 0.8660 17.69 1.7340 29.67 1.7340 32.19	Ik. Freq. Level Factor MHz dBuV dB 0.2020 29.37 10.03 0.2020 25.39 10.03 0.2060 22.13 10.03 0.2660 19.26 10.03 0.2660 19.26 10.03 0.6460 31.89 9.99 0.6460 19.31 9.99 0.8660 30.62 9.98 1.7340 29.67 9.98 1.7340 15.80 9.98 2.8140 32.19 9.97	Ik. Freq. Level Factor ment MHz dBuV dB dBuV 0.2020 29.37 10.03 39.40 0.2020 25.39 10.03 35.42 0.2660 22.13 10.03 32.16 0.2660 19.26 10.03 29.29 0.6460 31.89 9.99 41.88 0.6460 19.31 9.99 29.30 0.8660 30.62 9.98 40.60 0.8660 17.69 9.98 27.67 1.7340 29.67 9.98 39.65 1.7340 15.80 9.98 25.78 2.8140 32.19 9.97 42.16	Ik. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV dBuV 0.2020 29.37 10.03 39.40 63.53 0.2020 25.39 10.03 35.42 53.53 0.2660 22.13 10.03 32.16 61.24 0.2660 19.26 10.03 29.29 51.24 0.6460 31.89 9.99 41.88 56.00 0.6460 19.31 9.99 29.30 46.00 0.8660 30.62 9.98 40.60 56.00 0.8660 17.69 9.98 27.67 46.00 1.7340 29.67 9.98 39.65 56.00 1.7340 15.80 9.98 25.78 46.00 2.8140 32.19 9.97 42.16 56.00	Ik. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB dB 0.2020 29.37 10.03 39.40 63.53 -24.13 0.2020 25.39 10.03 35.42 53.53 -18.11 0.2660 22.13 10.03 32.16 61.24 -29.08 0.2660 19.26 10.03 29.29 51.24 -21.95 0.6460 31.89 9.99 41.88 56.00 -14.12 0.6460 19.31 9.99 29.30 46.00 -16.70 0.8660 30.62 9.98 40.60 56.00 -15.40 0.8660 17.69 9.98 27.67 46.00 -18.33 1.7340 29.67 9.98 39.65 56.00 -16.35 1.7340	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.2020 29.37 10.03 39.40 63.53 -24.13 QP 0.2020 25.39 10.03 35.42 53.53 -18.11 AVG 0.2660 22.13 10.03 32.16 61.24 -29.08 QP 0.2660 19.26 10.03 29.29 51.24 -21.95 AVG 0.6460 31.89 9.99 41.88 56.00 -14.12 QP 0.6460 19.31 9.99 29.30 46.00 -16.70 AVG 0.8660 30.62 9.98 27.67 46.00 -18.33 AVG 1.7340 29.67 9.98 27.67 46.00 -18.35 QP 1.7340 15.80 9.98 25.78 46.00 -20.22 AVG 2.8140 32.19 9.97

Site	Cond	duction #1					Phase:	L1		Temperature:	23.9
Limit	: (CE	E)FCC PA	RT 15 class	s B_QP			Power: AC 120V/60Hz			Humidity:	53 %
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1		0.1500	35.21	10.01	45.22	66.00	-20.78	QP			
2		0.1500	16.33	10.01	26.34	56.00	-29.66	AVG			
3		0.1980	33.20	10.03	43.23	63.69	-20.46	QP			
4		0.1980	27.17	10.03	37.20	53.69	-16.49	AVG			
5		0.2620	25.09	10.03	35.12	61.37	-26.25	QP			
6		0.2620	21.35	10.03	31.38	51.37	-19.99	AVG			
7		0.3940	28.62	9.94	38.56	57.98	-19.42	QP			
8		0.3940	16.14	9.94	26.08	47.98	-21.90	AVG			
9		0.6500	29.86	9.99	39.85	56.00	-16.15	QP			
10		0.6500	16.73	9.99	26.72	46.00	-19.28	AVG			
11	*	0.8620	30.12	9.98	40.10	56.00	-15.90	QP			
12		0.8620	17.97	9.98	27.95	46.00	-18.05	AVG			

9.9 ANTENNA APPLICATION

9.9.1 Antenna Requirement

Standard	Requirement
FCC CRF Part15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
FCC 47 CFR Part 15.247 (b)	If transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
RSS-Gen Section 6.8	The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.
RSS-247 Section 5.4	If the transmitter employs an antenna system that emits multiple directional beams, but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device (i.e. the sum of the power supplied to all antennas, antenna elements, staves, etc., and summed across all carriers or frequency channels) shall not exceed the applicable output power limit. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

9.9.2 Result

PASS. Note:

- Antenna use a permanently attached antenna which is not replaceable.
- □ Not using a standard antenna jack or electrical connector for antenna replacement
- □ The antenna has to be professionally installed (please provide method of installation)

Please refer to the attached documentInternal Photos to show the antenna connector.

*** End of Report ***

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

10 APPENDIX PHOTOGRAPHS OF EUT

Please refer to the file of External Photo and Internal Photo.

11 APPENDIX PHOTOGRAPHS OF TEST SETUP

Please refer to the file of Test Setup Photo.

