Page 1 of 67

FCC TEST REPORT

Product Name:	Mobile Phone
Trade Mark:	MI
Model No.:	MDE5
Report Number:	170726002RFM-3
Test Standards:	FCC 47 CFR Part 90 Subpart S FCC 47 CFR Part 2
FCC ID:	2AFZZ-XMSD5
Test Result:	PASS
Date of Issue:	September 4, 2017

Prepared for:

Xiaomi Communications Co., Ltd. The Rainbow City of China Resources, NO.68,Qinghe Middle Street, Haidian District, Beijing, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by: _	Kevin Liang	Reviewed by:	Jim long
	Senio Engineer		Senior Supervisor
Approved by:	D	Date:	September 4, 2017
	Billy Li		

Technical Director

Version

Version No.	Date	Description
V1.0	September 4, 2017	Original

CONTENTS

1.	GENE	ERAL INFORMATION	4
	11		4
	1.2	EUT INFORMATION	4
		1.2.1 GENERAL DESCRIPTION OF EUT	4
		122 DESCRIPTION OF ACCESSORIES	5
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	6
	1.4	DESCRIPTION OF SUPPORT UNITS	7
	1.5	TEST LOCATION	7
	1.6		7
	1.7	DEVIATION FROM STANDARDS	7
	1.8	ABNORMALITIES FROM STANDARD CONDITIONS	7
	1.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	1.10	MEASUREMENT UNCERTAINTY	8
2	TEST	SUMMARY	٩
2. 3	FOUI	PMENT LIST	10
4.	TEST	CONFIGURATION	11
••			
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	11
		4.1.1 NORMAL OR EXTREME I EST CONDITIONS	11
	4.2		11
		4.2.1 FOR RADIATED EMISSIONS TEST SETUP	11
		4.2.2 FOR CONDUCTED RF TEST SETUP	12
	4.3		13
	4.4		13
	4.5	PRE-SCAN	14
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	17
	51	REFERENCE DOCUMENTS FOR TESTING	17
	5.2	EFECTIVE RADIATED POWER (ERP)	
	5.3		
	5.4	99%&26DB BANDWIDTH	21
	5.5	EMISSION MASK	30
	5.6	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	43
	5.7	FIELD STRENGTH OF SPURIOUS RADIATION	52
		5.7.1 RADIATED EMISSION TEST DATA (30 MHz to 1 GHz)	53
		5.7.2 RADIATED EMISSION TEST DATA (ABOVE 1GHz)	59
	5.8	FREQUENCY STABILITY	65
	יסאס		67
	PENDI		/ه حو
AP		A 2 FIUTUS UF EUT CUNSTRUCTIONAL DETAILS	ס/

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Xiaomi Communications Co., Ltd.
Address of Applicant:	The Rainbow City of China Resources, NO.68,Qinghe Middle Street, Haidian District, Beijing, China
Manufacturer:	Xiaomi Communications Co., Ltd.
Address of Manufacturer:	The Rainbow City of China Resources, NO.68,Qinghe Middle Street, Haidian District, Beijing, China

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Mobile Phone		
Model No.:	MDE5		
Add. Model No.:	N/A		
Trade Mark:	MI		
DUT Stage:	Identical Prototype		
	GSM Bands:	GSM 850/ PCS 1900	
	UTRA Bands:	Band II/ Band IV/ Band V	
	CDMA2000 Band:	BC0/ BC1/ BC10	
	E-UTRA Bands:	FDD Band 2/ Band 4/ Band 5/ Band 7/ Band 12/ 13/ Band 17/ Band 25/ Band 26/ Band 30	Band
		TDD Band 38/ Band 41	
	2.4 GHz ISM Band:	IEEE 802.11b/g/n	
EUT Supports Function:		Bluetooth V3.0+EDR/ Bluetooth V4.1 LE/ Blue V5.0 LE	tooth
	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz IEEE 802.11a/n/ac	
		5 250 MHz to 5 350 MHz IEEE 802.11a/n/ac	
		5 470 MHz to 5 725 MHz IEEE 802.11a/n/ac	
		5 725 MHz to 5 850 MHz IEEE 802.11a/n/ac	
	RNSS Bands:	1559 MHz to 1610 MHz GPS/GLONASS/Galile	90
	NFC:	13.553 MHz to 13.567 MHz	
Software Version:	MIUI 8		
Hardware Version:	P2.0		
Sample Received Date:	July 27, 2017		
Sample Tested Date:	July 27, 2017 to September 3, 2017		

1.2.2 Description of Accessories

Adapter	
Trade Mark:	XIAOMI
Model No.:	MDY-08-EY
Input:	100-240V~50/60 Hz 0.5A
Output:	5V == 3A/9V == 2A/12V == 1.5A
AC Cable:	N/A
DC Cable:	N/A

Battery	
Trade Mark:	MI
Model No.:	BM3B
Battery Type:	Lithium-ion Polymer Rechargeable Battery
Rated Voltage:	3.85 Vdc
Limited Charge Voltage:	4.4 Vdc
Rated Capacity:	3300 mAh

Cable(1)	
Trade Mark:	MI
Model No.:	L6BU2018-CS-H
Description:	USB Type-C Plug Cable
Cable Type:	Shielded without ferrite
Length:	1.0 Meter

Cable(2)		
Trade Mark:	MI	
Model No.:	KLC-2588-1	
Description:	USB Type-C Plug Cable	
Cable Type:	Shielded without ferrite	
Length:	1.0 Meter	

Cable(3)		
Trade Mark:	MI	
Model No.:	KLC-2469	
Description:	USB Type-C to 3.5 mm Headphone Jack Adapter	
Cable Type:	Unshielded without ferrite	

Cable(4)		
Trade Mark:	MI	
Model No.:	0QT000XI0007	
Description:	USB Type-C to 3.5 mm Headphone Jack Adapter	
Cable Type:	Unshielded without ferrite	

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Support Networks:	CDMA2000, L	TE	
	CDMA2000 B0	C10 1xRTT:	QPSK
Type of Modulation:	CDMA2000 B0	C10 1xEV-DO:	QPSK, 8PSK
	LTE Band 26:		QPSK, 16QAM, 64QAM
	CDMA2000 B0	C10:	817.25-822.75 MHz
	LTE Band 26 (Channel Bandwidth: 1.4 MHz):	814.7-823.3 MHz
Frequency Range:	LTE Band 26 (Channel Bandwidth: 3 MHz):	815.5-822.5MHz
	LTE Band 26 (Channel Bandwidth: 5 MHz):	816.5-821.5 MHz
	LTE Band 26 (Channel Bandwidth: 10 MHz):	819 MHz
	LTE Band 26 (Channel Bandwidth: 15 MHz):	821.5 MHz
	CDMA2000 B0	C10:	23.55dBm
	LTE Band 26 (Channel Bandwidth: 1.4 MHz):	22.55dBm
	LTE Band 26 (Channel Bandwidth: 3 MHz):	22.58dBm
Max RF Output Power:	LTE Band 26 (Channel Bandwidth: 5 MHz):	22.60dBm
	LTE Band 26 (Channel Bandwidth: 10 MHz):	22.61dBm
	LTE Band 26 (Channel Bandwidth: 15 MHz):	22.67dBm
	CDMA2000 BC10:		1M29F9W
		Channel Bandwidth: 1.4 MHz	1M09G7W
	LTE Band 26 QPSK	Channel Bandwidth: 3 MHz	2M71G7W
		Channel Bandwidth: 5 MHz	4M52G7W
		Channel Bandwidth: 10 MHz	9M00G7W
		Channel Bandwidth: 15 MHz	13M5G7W
		Channel Bandwidth: 1.4 MHz	1M10D7W
		Channel Bandwidth: 3 MHz	2M71D7W
Type of Emission.	LIE Band 26	Channel Bandwidth: 5 MHz	4M52D7W
		Channel Bandwidth: 10 MHz	8M98D7W
		Channel Bandwidth: 15 MHz	13M5D7W
		Channel Bandwidth: 1.4 MHz	1M10D7W
	LTE Dand OG	Channel Bandwidth: 3 MHz	2M70D7W
	64QAM	Channel Bandwidth: 5 MHz	4M52D7W
	o ray an	Channel Bandwidth: 10 MHz	8M96D7W
		Channel Bandwidth: 15 MHz	13M5D7W
IEMI	Conducted: 86	5736030026044, 865736030026	3051
	Radiation: 865	736030023801, 8657360300238	319
MEID	Conducted: 99	001021001303	
	Radiation: 990	01021001191	
Antenna Type:	PIFA Antenna		
Antenna Gain:	-3.9 dBi		
Normal Test Voltage:	3.85 Vdc		
Extreme Test Voltage:	3.7 to 4.4Vdc		
Extreme Test Temperature:	-30 °C to +50 °	°C	

1.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
N/A	N/A	N/A	N/A	N/A

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.5 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.6 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194 Test Firm Registration Number: 259480

1.7 DEVIATION FROM STANDARDS

None.

1.8 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.10 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 90 Subpart S Test Cases							
Test Item	Test Requirement	Test Method	Result				
Effective Radiated	FCC 47 CFR Part 2.1046 &	ANSI/TIA/EIA-603-D 2010	PASS				
Power (ERP)	FUU 47 UFR Part 90.035	& KDB 971108 D01002102					
Conducted Output Power	FCC 47 CFR Part 2.1046(a)	ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02	PASS				
99%&26dB Bandwidth	FCC 47 CFR Part 2.1049(h)	ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02	PASS				
Emission Mask	FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.691	ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02	PASS				
Spurious emissions at antenna terminals	FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.691	ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02	PASS				
Field strength of spurious radiation	FCC 47 CFR Part 2.1053 & FCC 47 CFR Part 90.691	ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02	PASS				
Frequency stability FCC 47 CFR Part 2.1055 & FCC 47 CFR Part 90.213		ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02	PASS				
Note:							
1) N/A : In this whole rop	1) N/A: In this whole report not application						

1) N/A: In this whole report not application.

3. EQUIPMENT LIST

Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)	
Y	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018	
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017	
>	Receiver	R&S	ESIB26	100114	Dec. 22, 2016	Dec. 22, 2017	
	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017	
	Loop Antenna	ETS-LINDGREN	6502	00202525	Jun. 24, 2015	Jun. 23, 2018	
>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Jul. 24, 2015	Jul. 23, 2018	
>	Preamplifier	HP	8447F	2805A02960	Dec. 22, 2016	Dec. 22, 2017	
	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	Dec. 30, 2016	Dec. 30, 2017	
	Horn Antenna	ETS-LINDGREN	3117	00164202	Jul. 24, 2015	Jul. 23, 2018	
Þ	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	Dec. 30, 2016	Dec. 30, 2017	
	Horn Antenna	ETS-LINDGREN	3116C	00200180	Jul. 28, 2015	Jul. 27, 2018	
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jul. 29, 2015	Jul. 28, 2018	
Þ	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A	
	Highpass Filter (1.2GHz~18GHz)	Micro-Tronics	HPM50108	G552	Jan. 19, 2017	Jan. 19, 2018	
	Highpass Filter (3GHz~18GHz)	Micro-Tronics	HPM50117	G005	Jan. 30, 2017	Jan. 30, 2018	

2/3/4G RF Test System Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
	Spectrum Analyzer	R&S	FSP 13	1164.4391.13	Mar. 22, 2017	Mar. 21, 2018
	Spectrum Analyzer	R&S	FSV 13	1307.9002K13 -101620-cJ	Aug. 09, 2017	Aug. 08, 2018
	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017
	Wideband Radio Communication Tester	R&S	CMW500	116254	Mar. 22, 2017	Mar. 21, 2018
V	Universal Radio Communication Tester	R&S	CMU200	114713	Dec. 22, 2016	Dec. 22, 2017
2	DC Source	KIKUSUI	PWR400L	LK003024	Sep. 21, 2016	Sep. 20, 2017
	Temp & Humidity chamber	lspec	GL(U)04KA(W)	1692H201P3	Sep. 21, 2016	Sep. 20, 2017
	Temp & Humidity chamber	Votisch	VT4002	58566133290 020	Jun. 19, 2017	Jun. 18, 2018
\checkmark	Test Software	ECIT	Automation	TestSystem	Software Vers	ion: 2.170530

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Test Environment	Selected Values During Tests				
Test Condition	Ambient				
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)		
TN/VN	+15 to +35	3.85	20 to 75		
TL/VL	-30	3.7	20 to 75		
TH/VL	+50	3.7	20 to 75		
TL/VH	-30	4.4	20 to 75		
TH/VH	+50	4.4	20 to 75		

Remark:

1) The EUT just work in such extreme temperature of -30 °C to +50 °C and the extreme voltage of 3.7 V to 4.4 V, so here the EUT is tested in the temperature of -30 °C to +50 °C and the voltage of 3.7 V to 4.4 V.

2) VN: Normal Voltage; TN: Normal Temperature;

TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;

VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.

4.2 TEST SETUP

4.2.1 For Radiated Emissions test setup

4.2.2 For Conducted RF test setup

4.3 TEST CHANNELS

Pand	Ty/Dy Eroquonov	RF Channel			
Ballu	TX/KX Frequency	Low(L)	Middle(M)	High(H)	
	Tx (817 MHz-824 MHz)	Channel 450	Channel 560	Channel 670	
CDIVIA2000 BC TU		817.25 MHz	820 MHz	822.75 MHz	

Band	Test Frequency ID	Bandwidth (MHz)	Number [UL]	Frequency of Uplink (MHz)
		1.4	26697	814.7
		3	26705	815.5
	Low Range	5	26715	816.5
		10	/	/
		15	/	821.5
LIE Band 26 TX: 814 MHz to 824 MHz	Middle Range	1.4/3/5/10	26740	819
	High Range	1.4	26783	823.3
		3	26775	822.5
		5	26765	821.5
		10	1	1
		15	26765	/

4.4 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.85Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, X/Y/Z axis, and antenna ports. The worst case was found when positioned as the table below.

Band	Mode	Antenna Port	Worst-case axis positioning
CDMA2000 BC10 1xRTT	1TX	Chain 0	Y axis
LTE Band 26	1TX	Chain 0	Y axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.5 PRE-SCAN

CDMA2000 BC10 Maximum Average Power (dBm)					
Channel	450	560	670		
Frequency	817.25 MHz	820 MHz	822.75 MHz		
1xRTT RC1+SO55	23.43	23.49	23.45		
1xRTT RC3+SO55	23.44	23.50	23.46		
1xRTT RC3+SO32 (+ F-SCH)	23.49	23.55	23.51		
1xRTT RC3+SO32(+SCH)	23.42	23.48	23.44		
1xEVDO RTAP 153.6 Kbps	23.43	23.49	23.45		
1xEVDO RETAP 4096 Bits	23.26	23.32	23.28		
1xRTT RC8+SO75 (1X advance)	23.40	23.41	23.38		

LTE Band 26 Maximum Average Power (dBm)										
Modulation	R	В	Te	est Chanr	nel	RB Test Channel				
Modulation	Size	Offset	Low	Mid	High	Size	Offset	Low	Mid	High
	Channe	I Bandwi	dth: 1.4 N		Channel	Bandwid	th: 3 MHz			
	1	0	22.52	22.55	22.53	1	0	22.55	22.58	22.56
	1	2	22.46	22.53	22.49	1	7	22.49	22.56	22.52
	1	5	22.40	22.44	22.43	1	14	22.43	22.47	22.46
QPSK	3	0	22.50	22.53	22.51	8	0	21.68	21.65	21.65
	3	1	22.44	22.51	22.47	8	3	21.60	21.58	21.59
	3	3	22.38	22.42	22.41	8	7	21.63	21.46	21.46
	6	0	21.51	21.47	21.45	15	0	21.54	21.50	21.48
	1	0	21.94	22.13	22.11	1	0	21.97	22.16	22.14
	1	2	21.91	22.07	22.07	1	7	21.94	22.10	22.10
	1	5	21.84	21.98	22.00	1	14	21.87	22.01	22.03
16QAM	3	0	21.93	22.12	22.10	8	0	20.61	20.56	20.59
	3	1	21.90	22.06	22.06	8	3	20.59	20.63	20.60
	3	3	21.83	21.97	21.99	8	7	20.55	20.52	20.57
	6	0	20.50	20.52	20.53	15	0	20.53	20.55	20.56
	1	0	20.88	21.11	21.09	1	0	20.91	21.14	21.12
	1	2	20.89	20.97	21.00	1	7	20.92	21.00	21.03
	1	5	20.78	20.91	20.93	1	14	20.81	20.94	20.96
64QAM	3	0	20.87	21.10	21.08	8	0	19.60	19.55	19.54
	3	1	20.88	20.96	20.99	8	3	19.52	19.54	19.54
	3	3	20.77	20.90	20.92	8	7	19.53	19.55	19.52
	6	0	19.48	19.42	19.41	15	0	19.51	19.45	19.44
	Chann	el Bandw	ridth: 5 M	Hz			Channel I	Bandwidt	h: 10 MHz	Z
	1	0	22.57	22.60	22.58	1	0		22.61	/
	1	12	22.51	22.58	22.54	1	24		22.55	/
	1	24	22.45	22.49	22.48	1	49		22.49	/
QPSK	12	0	21.70	21.67	21.67	25	0		21.74	1
	12	6	21.62	21.60	21.61	25	12		21.66	/
	12	13	21.65	21.48	21.48	25	25	1	21.69	1
	25	0	21.56	21.52	21.50	50	0	/	21.60	/
	1	0	21.99	22.18	22.16	1	0	1	22.03	1
	1	12	21.96	22.12	22.12	1	24	1	22.00	/
16QAM	1	24	21.89	22.03	22.05	1	49	1	21.93	/
	12	0	20.63	20.58	20.61	25	0	/	20.67	/
	12	6	20.61	20.65	20.62	25	12	/	20.65	
	12	13	20.57	20.54	20.59	25	25	/	20.61	
	25	0	20.55	20.57	20.58	50	0	/	20.59	/
64QAM	1	0	20.93	21.16	21.14	1	0		20.97	1
	1	12	20.94	21.02	21.05	1	24	/	20.98	/

Page 15 of 67

Report No.: 170726002RFM-3

	1	24	20.83	20.96	20.98	1	49	/	20.87	/
	12	0	19.62	19.57	19.56	25	0	/	19.66	/
	12	6	19.54	19.56	19.56	25	12	/	19.58	/
	12	13	19.55	19.57	19.54	25	25	/	19.59	/
	25	0	19.53	19.47	19.46	50	0	/	19.57	/
	Channe	el Bandwi	dth: 15 M	IHz						
	1	0	/	/	22.67					
	1	37	/	/	22.61					
	1	74	/	/	22.55					
QPSK	37	0	/	1	21.80					
	37	19	-1	/	21.72					
	37	39	1	1	21.75					
	75	0	/		21.66					
	1	0		1	22.09					
	1	37		/	22.06					
	1	74	1	1	21.99					
16QAM	37	0	/	1	20.73					
	37	19	1		20.71					
	37	39	1	1	20.67					
	75	0		/	20.65					
	1	0	1		21.03					
	1	37	1	1	21.04					
	1	74	/	1	20.93					
64QAM	37	0	/		19.72					
	37	19		1	19.64					
	37	39	1		19.65					
	75	0	1	/	19.63					

Pre-scan all bandwidth and RB, find worse case mode are chosen to the report, the worse mode applicability and tested channel detail as below:

Band	Radiated	Conducted
CDMA2000 BC10	1xRTT	1xRTT

LTE worse case mode applicability and tested channel detail as below:

14	Cha	annel	Ban	dwidt	h(MH	lz)		Modulatio	n		RB #			Test	
item	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	1	Half	Full	L	М	Н
LTE Band 26		-	-	-	-	-									
	\boxtimes	\boxtimes	\square	\square	\square		\square	\square	\square	\boxtimes			\square	\boxtimes	\boxtimes
Effective Radiated Power				\boxtimes		-	\square	\square	\square	\square				\boxtimes	
					\square					\square			\boxtimes		
	\square	\boxtimes	\square	\square	\square		\square		\square	\square	\square	\boxtimes	\square	\boxtimes	\boxtimes
Conducted				\square				\square	\square	\square	\square	\boxtimes		\boxtimes	
output power					\square		\bowtie	\square	\square	\square	\square	\boxtimes	\square		
		\square	\square	\square			\square					\boxtimes	\square	\boxtimes	\boxtimes
99%&26dB Bandwidth				\square			\square		\square			\boxtimes		\boxtimes	
Bandwiddi					\square		\square	\square	\square			\boxtimes	\square		
	\square	\boxtimes	\square	\square	\square			\square	\square	\square		\boxtimes			\boxtimes
Emission Mask				\square			\square		\square			\boxtimes		\boxtimes	
					\square		\square		\square	\square		\boxtimes	\square		
Spurious	\square	\square	\square	\square	\square				\square	\square			\square	\boxtimes	\boxtimes
emissions at				\square			\square	\square	\square					\boxtimes	
terminals					\square					\square			\square		
Field strength of	\square	\square	\square	\square	\square		\square			\square				\square	
spurious	\square	\square	\square	\square	\square		\square			\square				\square	
radiation				\square			\square			\square			\square		
Frequency stability												\boxtimes		\boxtimes	
Remark: The mark "⊠" means is chosen for testing; The mark "⊡" means is not chosen for testing; The mark "" means is not supported bandwidth															

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 90	Private Land Mobile Radio Services
3	ANSI/TIA-603-D 2010	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
5	KDB 971168 D01	KDB 971168 D01 Power Meas License Digital Systems v02r02

5.2 EFFECTIVE RADIATED POWER (ERP)

Test Requirement:FCC 47 CFR Part 2.1046 & FCC 47 CFR Part 90.635Test Method:ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02Limit:Imit:

Limit:

(a) The effective radiated power and antenna height for base stations may not exceed 1 kilowatt (30 dBw) and 304 m. (1,000 ft.) above average terrain (AAT), respectively, or the equivalent thereof as determined from the Table. These are maximum values, and applicants will be required to justify power levels and antenna heights requested.

(b) The maximum output power of the transmitter for mobile stations is 100 watts (20 dBw).

Table—Equivalent Power and Antenna Heights for Base Stations in the 851–869 MHz and 935–940 MHz Bands Which Have a Requirement for a 32 km (20 mi) Service Area Radius

Antenna height (ATT) meters (feet)	Effective radiated power (watts) ¹²⁴
Above 1,372 (4,500)	65
Above 1,220 (4,000) to 1,372 (4,500)	70
Above 1,067 (3,500) to 1,220 (4,000)	75
Above 915 (3,000) to 1,067 (3,500)	100
Above 763 (2,500) to 915 (3,000)	140
Above 610 (2,000) to 763 (2,500)	200
Above 458 (1,500) to 610 (2,000)	350
Above 305 (1,000) to 458 (1,500)	600
Up to 305 (1,000)	³ 1,000

1. Power is given in terms of effective radiated power (ERP).

- 2. Applicants in the Los Angeles, CA, area who demonstrate a need to serve both the downtown and fringe areas will be permitted to utilize an ERP of 1 kw at the following mountaintop sites: Santiago Park, Sierra Peak, Mount Lukens, and Mount Wilson.
- 3. Stations with antennas below 305 m (1,000 ft) (AAT) will be restricted to a maximum power of 1 kw (ERP).
- 4. Licensees in San Diego, CA, will be permitted to utilize an ERP of 500 watts at the following mountaintop sites: Palomar, Otay, Woodson and Miguel.

Test Procedure:

Test procedure as below:

- 1) The EUT was powered ON and placed on a 0.8/1.5m high table at a 3 meter semi/fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. Modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.

- 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
- 7) The output power into the substitution antenna was then measured.
- 8) Steps 6) and 7) were repeated with both antennas polarized.
- 9) Calculate power in dBm by the following formula:

$$ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)$$

EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)

EIRP=ERP+2.15dB

where:

Pg is the generator output power into the substitution antenna.

- 10) Test the EUT in the lowest channel, the middle channel the Highest channel
- 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, and found the Y axis positioning which it is worse case.
- 12) Repeat above procedures until all frequencies measured was complete.

	Frequency	Detector	RBW	VBW	Remark	
Receiver Setup:	30MHz-1GHz	Peak	100kHz	300kHz	Peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
Test Setup:	Refer to section 4.2.1 for details.					
In structure surface la solu	Defends continue 0 for details					

Test betup.	
Instruments Used:	Refer to section 3 for details
Test Mode:	Link mode
Test Results:	Pass
Test Data:	See table below

Maximum ERP (dBm)							
Channel	CDMA2000 BC10 1xRTT	Limit (dBm)	Result				
Lowest	17.62	50	Pass				
Middle	17.62	50	Pass				
Highest	17.82	50	Pass				

LTE Band 26 Maximum ERP (dBm)							
Channel	QPSK; RB:1	16QAM; RB:1	64QAM; RB:1	Limit (dBm)	Result		
		Channel Band	width: 1.4MHz				
Lowest	19.03	18.24	17.14	50	Pass		
Middle	18.72	18.53	17.23	50	Pass		
Highest	18.83	18.52	17.41	50	Pass		
Channel Bandwidth: 3MHz							
Lowest	18.83	18.12	17.11	50	Pass		
Middle	18.74	18.60	17.36	50	Pass		
Highest	19.16	18.56	17.22	50	Pass		
		Channel Ban	dwidth: 5MHz				
Lowest	19.12	18.29	17.36	50	Pass		
Middle	18.87	18.34	17.34	50	Pass		
Highest	18.95	18.32	17.48	50	Pass		
	Channel Bandwidth: 10MHz						
Middle	19.03	18.26	17.14	50	Pass		
		Channel Banc	width: 15MHz				
Highest	19.22	18.29	17.50	50	Pass		

Page 20 of 67

5.3 CONDUCTED OUTPUT POWER

Test Requirement:FCC 47 CFR Part 2.1046(a)Test Method:ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02Limit:No Limit

Test Procedure:

The EUT was set up for the maximum power with CDMA2000, and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.2.2 for details.					
Instruments Used:	Refer to section 3 for details					
Test Mode:	Link mode					
Test Results:	Pass					
Test Data:	The full result refer to section 4.5 for details.					

Page 21 of 67

5.499%&26DB BANDWIDTH

Test Requirement:	FCC 47 CFR Part 2.1049(h)
Test Method:	ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02
Limit:	No Limit

Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The 99% and -26dB bandwidths was also measured and recorded.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.2.2 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Link mode
Test Results:	Pass

99% & 26 dB Bandwidth							
Test Mode	Test ModeChannelFrequency (MHz)26 dB BW (MHz)99% (MHz)						
CDMA2000 BC10	450	817.25	1.435	1.2722			
	<mark>56</mark> 0	820	1.425	1.2860			
	670	822.75	1.428	1.2775			

	LTE Band 26							
Channel	R Config	B uration	26 dB BW (MHz)			99% BW (MHz)		
	Size	Offset	QPSK	16QAM	64QAM	QPSK	16QAM	64QAM
			Cha	innel Bandwi	idth: 1.4 MHz			
Lowest	6	0	1.239	1.240	1.248	1.0865	1.0918	1.0972
Middle	6	0	1.246	1.232	1.222	1.0893	1.0989	1.0895
Highest	6	0	1.224	1.230	1.245	1.0931	1.0943	1.0900
			Ch	annel Bandw	vidth: 3 MHz			
Lowest	15	0	2.996	2.990	3.002	2.6960	2.7026	2.7014
Middle	15	0	3.017	2.968	3.013	2.7102	2.7148	2.6993
Highest	15	0	3.002	3.013	3.013	2.7032	2.7019	2.7019
			Ch	annel Bandw	/idth: 5 MHz			
Lowest	25	0	4.964	4.936	4.942	4.5085	4.5077	4.5095
Middle	25	0	4.940	4.959	4.964	4.5227	4.5030	4.5032
Highest	25	0	4.976	4.939	4.965	4.5118	4.5218	4.5180
	Channel Bandwidth: 10 MHz							
Middle	50	0	9.865	9.803	9.693	8.9911	8.9842	8.9611
			Cha	annel Bandw	idth: 15 MHz			
Lowest	75	0	14.76	14.65	14.70	13.489	13.462	13.487

The test plot as follows:

Page 26 of 67

Page 29 of 67

	LTE Band	26 / 15MH	lz / 64QAN	1
	Lov	west Char	nnel	
Aeltert Spectrum Analyzer Doo Center Freq 821.500	DC Ce DC Ce DOO MHZ Ce JIFGain1ew #At	sense INT Source OF Inter Freq: 821,500000 MHz g: Free Run AvgiHold ten: 34 dB	4>10/10 GPT 10.29:49 AM Sep Radio Std: Non Radio Device: I	04,2017 Trace/Detector
t0 dB/div Ref 30.00	0 dBm			
20.0	pennenn	*****		Clear Writ
10.0 20.0 30.0	1		Lunannan	Averag
40.0 60.0 60.0				Max Hol
Center 821.5 MHz #Res BW 300 kHz		#VBW 910 kHz	Span 30 Sweep	MHz 1 ms
Occupied Band	width 13 487 MHz	Total Power	30.2 dBm	Detect
Transmit Freq Erro x dB Bandwidth	or 13.166 kHz 14.70 MHz	OBW Power x dB	99.00 % -26.00 dB	Auto <u>Ma</u>
wsg JFile <826-15M-BW-L	-16Q png> saved		STATUS	

Page 30 of 67

5.5 EMISSION MASK

 Test Requirement:
 FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.691

 Test Method:
 ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02

Limit:

(a)(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

(a)(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer.

For each band edge measurement:

- 1) Set the spectrum analyzer span to include the low or high channels.
- 2) Set the emissions mask of low or high channels.
- 3) Set resolution bandwidth to at least 1% of emission bandwidth and the VBW set 3 times of RBW.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. **Test Setup:** Refer to section 4.2.2 for details.

Test octup.	
Instruments Used:	Refer to section 3 for details
Test Mode:	Link mode
Test Results:	Pass

The test plot as follows:

Page 43 of 67

5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

 Test Requirement:
 FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.691

 Test Method:
 ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02

Limit:

(a)(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

(a)(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

Test Procedure:

The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range. b. Measuring frequency range is from 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.2.2 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Link mode
Test Results:	Pass

The test plot as follows:

Page 48 of 67

Page 51 of 67

5.7 FIELD STRENGTH OF SPURIOUS RADIATION

Test Requirement: FCC 47 CFR Part 2.1051 & FCC 47 CFR Part 90.691 ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02

Receiver Setup:

Test Method:

Frequency	Detector	RBW	VBW	Remark
0.009 MHz-30 MHz	Peak	10 kHz	30 KHz	Peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak

Limits:

(a)(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

(a)(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

Refer to section 4.2.1 for details. **Test Setup:**

Test Procedures:

- 1. Scan up to 10th harmonic, find the maximum radiation frequency to measure.
- 2. The technique used to find the Spurious Emissions of the transmitter was the antenna substitution method. Substitution method was performed to determine the actual ERP/EIRP emission levels of the EUT.

Test procedure as below:

- 1) The EUT was powered ON and placed on a 0.8/1.5m high table at a 3 meter semi/fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. Modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
- 7) The output power into the substitution antenna was then measured.
- 8) Steps 6) and 7) were repeated with both antennas polarized.
- 9) Calculate power in dBm by the following formula:

ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)

EIRP=ERP+2.15dB

where:

Pg is the generator output power into the substitution antenna.

- 10) Test the EUT in the lowest channel, the middle channel the Highest channel
- 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, and found the Y axis positioning which it is worse case.
- 1) Repeat above procedures until all frequencies measured was complete.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:

Page 53 of 67

5.7.1 Radiated Emission Test Data (30 MHz to 1 GHz)

Page 54 of 67

Page 55 of 67

Page 56 of 67

Page 57 of 67

Page 58 of 67

5.7.2 Radiated Emission Test Data (Above 1GHz)

Page 60 of 67

Page 61 of 67

Page 62 of 67

Page 63 of 67

Page 64 of 67

5.8 FREQUENCY STABILITY

Test Requirement: FCC 47 CFR Part 2.1055 & FCC 47 CFR Part 90.213 **Test Method:** ANSI/TIA/EIA-603-D 2010 & KDB 971168 D01v02r02

Limits:

Minimum frequency stability as specified in the following table.

Frequency range	Fixed and base	Mobile stations			
(MHz)	stations	Over 2 watts output power	2 watts or less output power		
809-824	¹⁴ 1.5	2.5	2.5		

¹⁴Control stations may operate with the frequency tolerance specified for associated mobile frequencies. **Test Setup:** Refer to section 4.2.2 for details.

Test Procedures:

- 1) Use CMW 500 or CMU 200 with Frequency Error measurement capability.
 - Temp. =-30° to +50°C a)
 - Voltage =low voltage, 3.7 Vdc, Normal, 3.85 Vdc and High voltage, 4.4 Vdc. b)
- Frequency Stability vs Temperature: 2)

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until +50°C is reached.

3) Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case).

Equipment Used: Refer to section 3 for details. Pass

Test Result:

Modulation	Channel/ Frequency	Voltage	Temperature	Deviation	Deviation	Limit	Pass/ Fail
	(MHz)	(Vdc)	(°C)	(Hz)	(ppm)	(ppm)	
			CDMA BC	10 1xRTT			
		VL		17	0.0207	± 2.5	Pass
		VN	TN	19	0.0232	± 2.5	Pass
		VH		17	0.0207	± 2.5	Pass
			50	21	0.0256	± 2.5	Pass
			40	23	0.0280	± 2.5	Pass
OPSK	590 / 920		30	16	0.0195	± 2.5	Pass
QFSK	3607 620		20	18	0.0220	± 2.5	Pass
		VN	10	11	0.0134	± 2.5	Pass
			0	23	0.0280	± 2.5	Pass
			-10	20	0.0244	± 2.5	Pass
			-20	21	0.0256	± 2.5	Pass
			-30	19	0.0232	± 2.5	Pass

Page 66 of 67

Report No.: 170726002RFM-3

Modulation	Channel/ Frequency	Voltage	Temperature	Deviation	Deviation	Limit	Pass/ Fail
	(MHz)	(Vdc)	(°C)	(Hz)	(ppm)	(ppm)	
		L	TE Band 26 / 1	0MHz / Full RE	3		
		VL		-12	-0.0147	± 2.5	Pass
		VN	TN	-11	-0.0134	± 2.5	Pass
	26740 / 819	VH		-14	-0.0171	± 2.5	Pass
		819 VN	50	-9	-0.0110	± 2.5	Pass
			40	-10	-0.0122	± 2.5	Pass
OPSK			30	-14	-0.0171	± 2.5	Pass
QFSK			20	-12	-0.0147	± 2.5	Pass
			10	-9	-0.0110	± 2.5	Pass
			0	-5	-0.0061	± 2.5	Pass
			-10	-8	-0.0098	± 2.5	Pass
			-20	-9	-0.0110	± 2.5	Pass
					-30	-13	-0.0159

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.

