Page 1 of 48

FCC TEST REPORT

Product Name:Mobile PhoneTrade Mark:MIModel No.:MDE5Report Number:170726002RFC-1Test Standards:FCC 47 CFR Part 15 Subpart CFCC ID:2AFZZ-XMSD5Test Result:PASSDate of Issue:September 4, 2017

Prepared for:

Xiaomi Communications Co., Ltd. The Rainbow City of China Resources, NO.68,Qinghe Middle Street, Haidian District, Beijing, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:	Kevih Liang	Reviewed by:	Jim bong
Approved by:	Senior Engineer	Date:	Senior Supervisor September 4, 2017

Technical Director

Version

Version No.	Date	Description
V1.0	September 4, 2017	Original

CONTENTS

1.	GENI	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT INFORMATION	
		1.2.1 GENERAL DESCRIPTION OF EUT	
		1.2.2 DESCRIPTION OF ACCESSORIES	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	7
	1.8	DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	1.11	MEASUREMENT UNCERTAINTY	8
2.	TEST	SUMMARY	٩
2. 3.		PMENT LIST	
4.			
	4.1	Environmental conditions for testing	11
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
	4.0	4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.2 4.3	TEST CHANNELSEUT TEST STATUS	
	4.3 4.4	PRE-SCAN	
	4.4	4.4.1 PRE-SCAN UNDER ALL PACKETS AT MIDDLE CHANNEL	
		4.4.1 PRE-SCAN UNDER ALL PACKETS AT MIDDLE CHANNEL	
		4.4.2 WORST-CASE DATA FACKETS	
	4.5	TEST SETUP	
	4 .5	4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	
5.		O TECHNICAL REQUIREMENTS SPECIFICATION	40
э.	RADI		
	5.1	REFERENCE DOCUMENTS FOR TESTING	
	5.2	ANTENNA REQUIREMENT	
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	20 DB BANDWIDTH	
	5.5	CARRIER FREQUENCIES SEPARATION	
	5.6	NUMBER OF HOPPING CHANNEL	
	5.7	DWELL TIME	
	5.8	CONDUCTED OUT OF BAND EMISSION	
	5.9 5 10	RADIATED SPURIOUS EMISSIONS BAND EDGE MEASUREMENTS (RADIATED)	
	5.10 5.11	BAND EDGE MEASUREMENTS (RADIATED) CONDUCTED EMISSION	
		X 1 PHOTOS OF TEST SETUP	
AP	PENDI	X 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	48

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Xiaomi Communications Co., Ltd.
Address of Applicant:	The Rainbow City of China Resources, NO.68,Qinghe Middle Street, Haidian District, Beijing, China
Manufacturer:	Xiaomi Communications Co., Ltd.
Address of Manufacturer:	The Rainbow City of China Resources, NO.68,Qinghe Middle Street, Haidian District, Beijing, China

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Mobile Phone		
Model No.:	MDE5		
Add. Model No.:	N/A		
Trade Mark:	MI		
DUT Stage:	Identical Prototype		
	GSM Bands:	GSM 850/ PCS 1900	
	UTRA Bands:	Band II/ Band IV/ Band V	
	CDMA Band:	BC0/ BC1/ BC10	
	E-UTRA Bands:	FDD Band 2/ Band 4/ Band 5/ Band 7/ Band 12/ Band 13/ Band 17/ Band 25/ Band 26/ Band 30	
		TDD Band 38/ Band 41	
	2.4 GHz ISM Band:	IEEE 802.11b/g/n	
EUT Supports Function:		Bluetooth V3.0+EDR/ BI V5.0 LE	uetooth V4.1 LE/ Bluetooth
	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz	IEEE 802.11a/n/ac
		5 250 MHz to 5 350 MHz	IEEE 802.11a/n/ac
		5 470 MHz to 5 725 MHz	IEEE 802.11a/n/ac
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n/ac
	RNSS Bands:	1559 MHz to 1610 MHz	GPS/GLONASS/Galileo
	NFC:	13.553 MHz to 13.567 MHz	
Software Version:	MIUI 8		
Hardware Version:	P2.0		
IMEI Code:	865736030026044, 865736030026051		
Sample Received Date:	July 27, 2017		
Sample Tested Date:	July 27, 2017 to Augus	st 12, 2017	

1.2.2 Description of Accessories

Adapter	
Trade Mark:	XIAOMI
Model No.:	MDY-08-EY
Input:	100-240V~50/60 Hz 0.5A
Output:	5V == 3A/9V == 2A/12V == 1.5A
AC Cable:	N/A
DC Cable:	N/A

Battery	
Trade Mark:	MI
Model No.:	BM3B
Battery Type:	Lithium-ion Polymer Rechargeable Battery
Rated Voltage:	3.85 Vdc
Limited Charge Voltage:	4.4 Vdc
Rated Capacity:	3300 mAh

Cable(1)	
Trade Mark:	MI
Model No.:	L6BU2018-CS-H
Description:	USB Type-C Plug Cable
Cable Type:	Shielded without ferrite
Length:	1.0 Meter

Cable(2)		
Trade Mark:	MI	
Model No.:	KLC-2588-1	
Description:	USB Type-C Plug Cable	
Cable Type:	Shielded without ferrite	
Length:	1.0 Meter	

Cable(3)		
Trade Mark:	MI	
Model No.:	KLC-2469	
Description:	USB Type-C to 3.5 mm Headphone Jack Adapter	
Cable Type:	Unshielded without ferrite	

Cable(4)	
Trade Mark:	MI
Model No.:	0QT000XI0007
Description:	USB Type-C to 3.5 mm Headphone Jack Adapter
Cable Type:	Unshielded without ferrite

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Operational Frequency Band	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	Bluetooth V3.0+EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK
Number of Channels:	79
Channel Separation:	1 MHz
Hopping Channel Type:	Adaptive Frequency Hopping Systems
Antenna Type:	PIFA Antenna
Antenna Gain:	-1.68 dBi
Maximum Peak Power:	11.17 dBm
Normal Test Voltage:	3.85 Vdc

1.4 OTHER INFORMATION

	Operation Frequency Each of Channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402 MHz	20	2422 MHz	40	2442 MHz	60	2462 MHz		
1	2403 MHz	21	2423 MHz	41	2443 MHz	61	2463 MHz		
2	2404 MHz	22	2424 MHz	42	2444 MHz	62	2464 MHz		
3	2405 MHz	23	2425 MHz	43	2445 MHz	63	2465 MHz		
4	2406 MHz	24	2426 MHz	44	2446 MHz	64	2466 MHz		
5	2407 MHz	25	2427 MHz	45	2447 MHz	65	2467 MHz		
6	2408 MHz	26	2428 MHz	46	2448 MHz	66	2468 MHz		
7	2409 MHz	27	2429 MHz	47	2449 MHz	67	2469 MHz		
8	2410 MHz	28	2430 MHz	48	2450 MHz	68	2470 MHz		
9	2411 MHz	29	2431 MHz	49	2451 MHz	69	2471 MHz		
10	2412 MHz	30	2432 MHz	50	2452 MHz	70	2472 MHz		
11	2413 MHz	31	2433 MHz	51	2453 MHz	71	2473 MHz		
12	2414 MHz	32	2434 MHz	52	2454 MHz	72	2474 MHz		
13	2415 MHz	33	2435 MHz	53	2455 MHz	73	2475 MHz		
14	2416 MHz	34	2436 MHz	54	2456 MHz	74	2476 MHz		
15	2417 MHz	35	2437 MHz	55	2457 MHz	75	2477 MHz		
16	2418 MHz	36	2438 MHz	56	2458 MHz	76	2478 MHz		
17	2419 MHz	37	2439 MHz	57	2459 MHz	77	2479 MHz		
18	2420 MHz	38	2440 MHz	58	2460 MHz	78	2480 MHz		
19	2421 MHz	39	2441 MHz	59	2461 MHz	Ν	/A		

Modulation Configure							
Modulation	Modulation Packet Packet Type Packet Size						
	1-DH1	4	27				
GFSK	1-DH3	11	183				
	1-DH5	15	339				
π/4 DQPSK	2-DH1	20	54				
	2-DH3	26	367				

Report No.: 170726002RFC-1

	2-DH5	30	679
	3-DH1	24	83
8DPSK	3-DH3	27	552
	3-DH5	31	1021

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
NA	NA	NA	NA	NA

2) Support Cable

Cable No. Description		Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194 Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases							
Test Item	Test Requirement	Test Method	Result				
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS				
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS				
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS				
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS				
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS				
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS				
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS				
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS				
Radiated Emissions	ECC 47 CER Part 15 Subpart C Section		PASS				
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS				
Note: 1) N/A: In this whole rep	ort not application.						

3. EQUIPMENT LIST

Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)	
	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018	
>	Receiver	R&S	ESIB26	100114	Dec. 22, 2016	Dec. 22, 2017	
	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017	
	Loop Antenna	ETS-LINDGREN	6502	00202525	Jun. 24, 2015	Jun. 23, 2018	
2	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Jul. 24, 2015	Jul. 23, 2018	
>	Preamplifier	HP	8447F	2805A02960	Dec. 22, 2016	Dec. 22, 2017	
	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	Dec. 30, 2016	Dec. 30, 2017	
	Horn Antenna	ETS-LINDGREN	3117	00164202	Jul. 24, 2015	Jul. 23, 2018	
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	Dec. 30, 2016	Dec. 30, 2017	
	Horn Antenna	ETS-LINDGREN	3116C	00200180	Jul. 28, 2015	Jul. 27, 2018	
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jul. 29, 2015	Jul. 28, 2018	
	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A	
	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	Jun. 21, 2017	Jun. 20, 2018	
	Band Rejection Filter (5150MHz~5880MHz)	Micro-Tronics	BRM50716	G1868	Jun. 15, 2017	Jun. 14, 2018	
Z	Wideband Radio Communication Tester	R&S	CMW270	100304	Jun. 5, 2017	Jun. 4, 2018	
>	Test Software	Audix	e3	Sof	tware Version: 9.16	0323	

	Conducted Emission Test Equipment List								
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)			
>	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017			
>	Pulse Limiter	R&S	ESH3-Z2	0357.8 <mark>810.5</mark> 4	Dec. 22, 2016	Dec. 22, 2017			
>	LISN	R&S	ESH2-Z5	860014/024	Dec. 22, 2016	Dec. 22, 2017			
	LISN	ETS-Lindgren	3816/2SH	00201088	Aug. 24, 2016	Aug. 23, 2017			
2	Test Software	Audix	e3	Software Version: 9.160323					

	Conducted RF test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017		
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017		
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 22, 2016	Dec. 22, 2017		
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 22, 2016	Dec. 22, 2017		
2	Wideband Radio Communication Tester	R&S	CMW270	100304	Jun. 5, 2017	Jun. 4, 2018		

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests					
Test Condition	Ambient					
Test Condition	Temperature (°C) Voltage (V)		Relative Humidity (%)			
NT/NV	+15 to +35	3.85	20 to 75			
Remark: 1) NV: Normal Voltage: NT: Normal Temperature						

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (Kpa)	Tested by				
AC Power Line Conducted Emission	26.2	49	100.0	Bessy Xu				
Conducted Peak Output Power	25.1	47	99.90	Tiny You				
20 dB Bandwidth	25.1	47	99.90	Tiny You				
Carrier Frequencies Separation	25.1	47	99.90	Tiny You				
Number of Hopping Channel	25.1	47	99.90	Tiny You				
Dwell Time	25.1	47	99.90	Tiny You				
Conducted Out of Band Emission	25.1	47	99.90	Tiny You				
Radiated Emissions	26.5	45	98.69	Terence Chen				
Band Edge Measurement	26.5	45	98.69	Terence Chen				

4.2TEST CHANNELS

Mode		Test RF Channel Lists					
	Tx/Rx Frequency	Lowest(L)	Middle(M)	Highest(H)			
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78			
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz			
π/4DQPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78			
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz			
8DPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78			
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz			

4.3EUT TEST STATUS

Type of Modulation	Tx/Rx Function	Description
GFSK/π/4DQPSK/ 8DPSK	1Tx	 Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency.

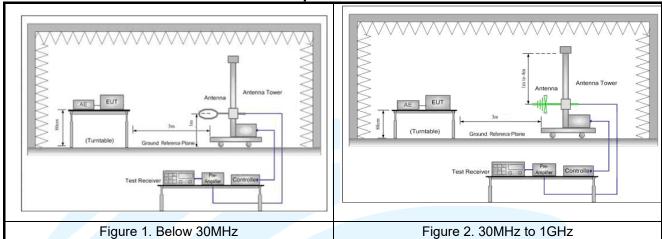
4.4 PRE-SCAN

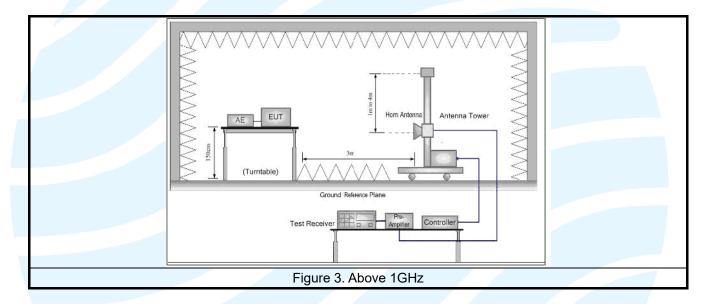
4.4.1 Pre-scan under all packets at middle channel

	Conducted Average Power (dBm) for packets												
Type of Modulation	GFSK			π/4DQPSK			8DPSK						
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3	3-DH5				
Power (dBm)	10.56	10.52	10.51	9.63	9.57	9.59	9.93	9.79	9.81				

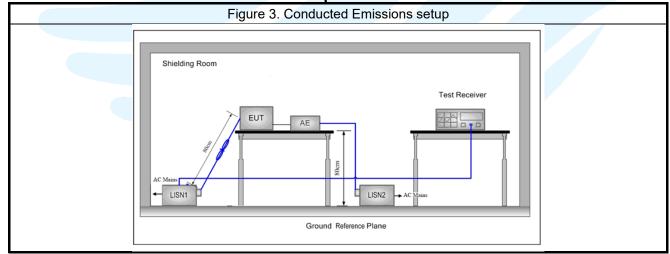
4.4.2 Worst-case data packets

Type of Modulation	Worst-case data rates
GFSK	1-DH1
π/4DQPSK	2-DH1
8DPSK	3-DH1

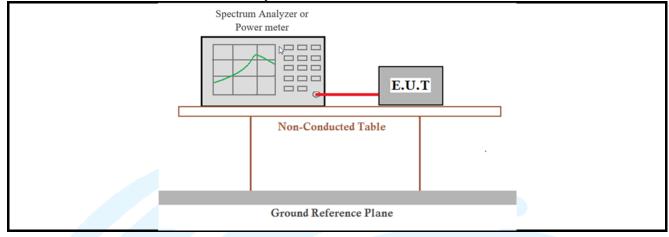

4.4.3 Tested channel detail


Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Type of Modulation		GFSK			r/4DQPS	K		8DPSK		
Data Packets	1- DH1	1- DH3	1- DH5	2- DH1	2- DH3	2- DH5	3- DH1	3- DH3	3- DH5	
Available Channel					0 to 78					
Test Item			Test cha	nnel an	d choose	of data	packets	;		
AC Power Line Conducted			Frequ	uency Ho	opping Cł	nannel 0	to 78			
Emission					Link					
Conducted Peak Output				Chanı	nel 0 & 39	8 78				
Power	>						2			
20 dB Bandwidth				Chan	nel 0 & 39	9 & 78				
20 db Balldwidth	2						2			
Carrier Frequencies			Frequ	uency Ho	opping Ch	nannel 0	to 78			
Separation	2			>			2			
Number of Hopping Channel	Frequency Hopping Channel 0 to 78									
Number of Hopping Channel	K			>			J			
Dwell Time	Channel 39									
Dweir Time	2	2	<	2	2	K	Þ		K	
Conducted Out of Band				Chanı	nel 0 & 39	9 & 78				
Emission	<			>			Z			
Radiated Emissions				Chan	nel 0 & 39	9 & 78				
Radiated Emissions	>									
Band Edge Measurements				Cha	annel 0 &	78				
(Radiated)	2									
Remark: 1. The mark "♥ " means is chos 2. The mark "□ " means is not].							


4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup



4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.85Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

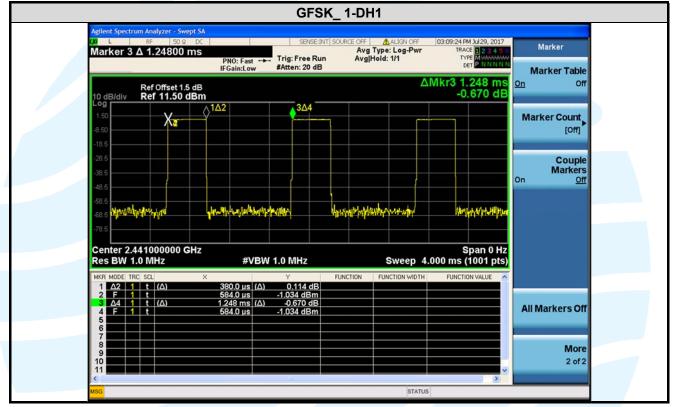
Frequency	Mode	Antenna Port	Worst-case axis positioning
Above 1GHz	1TX	Chain 0	Y axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	1-DH1	0.38	1.248	0.30	30.45	5.16	2.63	-10.33


Remark:

1) Duty cycle= On Time/ Period;

2) Duty Cycle factor = 10 * log(1/ Duty cycle);

3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title						
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations						
2	FCC 47 CFR Part 15	Radio Frequency Devices						
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices						

5.2ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

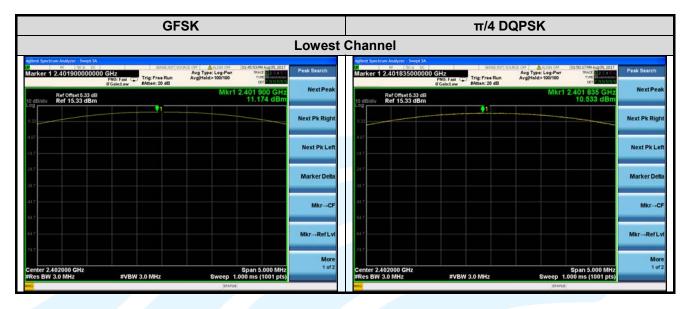
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is - 1.68 dBi.

Page 17 of 48


5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: Test Method: Limit: Test Procedure:	FCC 47 CFR Part 15 Subpart C Section15.247 (b)(1) ANSI C63.10-2013 Section 7.8.5 For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
	 a) Use the following spectrum analyzer settings: Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel. RBW > 20 dB bandwidth of the emission being measured. VBW ≥ RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
	 b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report.
Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Transmitter mode
Test Results:	Pass
Test Data:	

Type of	Peak	Output Power (dBm)	Peak Output Power (mW)			
Modulation	Channel 0 Channel 39 Channel 78 Channel		Channel 39 Channel 78		Channel 39	Channel 78	
GFSK	11.17	10.56	10.79	13.09	11.38	11.99	
π/4 DQPSK	10.53	9.63	10.2	11.30	9.18	10.47	
8DPSK	10.75	9.93	10.47	11.89	9.84	11.14	

Note: The antenna gain of -1.68 dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.

The test plot as follows:

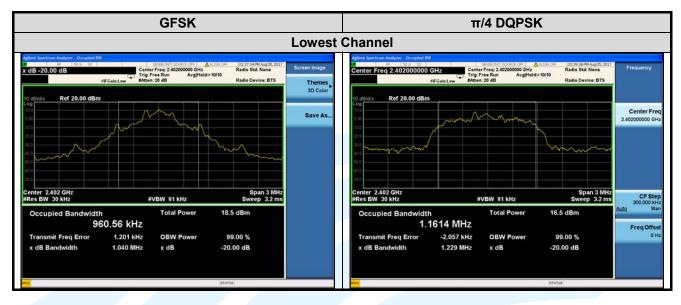
Marker 1 2.44100000000 GHz Filo Faet V Filo Faet V Fil			hannel	Middle			
Ref Offset 5.33 dB IMAT 2.41 1000 GHz Ref Offset 5.33 dB IMAT 2.41 10 dBlow Ref 15.33 dB 0	Peak Search	Avg Type: Log-Pwr TRACE A Control Avg/Hold> 100/100 Type: Log-Pwr Trace A Control Avg/Hold>	Marker 1 2.44110000000 GHz SPOC Reg Trig Free Run Avg Trig		Avg Type: Log-Pwr AvgHold>100/100	GHz Trig: Free Run	RF 50.9 DC
5.33 Next Pk Right 5.33 4.43 4.43 4.47 4.43 4.47 4.47	GHZ	Mkr1 2.441 100 GHz 9.626 dBm	10 dB/div Ref 15.33 dBm		Mkr1 2.441 000 GHz 10.563 dBm		Ref Offset 5.33 dB 10 dB/div Ref 15.33 dBm
117 117 013 117 014 117 015 117 016 117 017 117 018 117 019 117	Next Pk Right		533	Next Pk Right			533
307 307 307 307 417 417 417 417 417 417	Next Pk Left		147	Next Pk Left			447
	Marker Delta		347	Marker Delta			34.7
607 MkrRef Lvi	Mkr→CF		μη 617	Mkr→CF			-44.7
	Mkr→RefLvl		60 10	Mkr→RefLvi			647 747
More Center 2.441000 GHz Span 5.000 MHz More 1 of 2 Center 2.441000 GHz Span 5.000 MHz	0 MHz 0 MHz 01 pts)	Span 5.000 MHz Sweep 1.000 ms (1001 pts)		1 of 2	Span 5.000 MHz Sweep 1.000 ms (1001 pts)	#VBW 3.0 MHz	

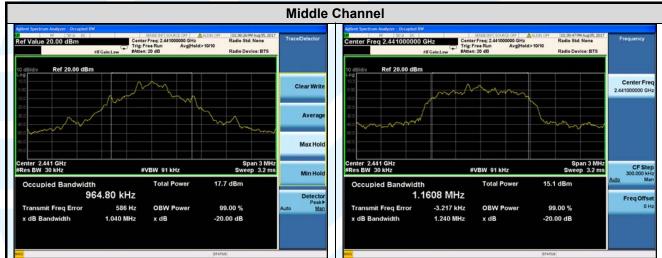
				Highest	Channel			
glent Spectrum Analyzer Swept SA 85 (\$0.0 DC) Marker 1 2.480025000000 (Avg Type: Log-Pwr Avg[Hold>100/100	01:46:43PM Aug 05, 2017 TRACE 0 23 CONT	Peak Search	Aglient Spectrum Analyzer - Swept SA BE 50 P DC Marker 1 2.48020000000	GHz PN0: East	ANCE OFF ALLIAN OFF 01:50:477M Aug05, 2017 Avg Type: Log-Pwr TRACE 05 10 10 AvgHold:: 100/100 Type	Peak Search
Ref Offset 5.33 dB g dB/div Ref 15.33 dBm	PN0: Fast Trig: Free Run #Goin:Low #Atten: 20 dB		2.480 025 GHz 10.789 dBm	NextPeak	Ref Offset 5.33 dB 10 dB/div Ref 15.33 dBm	PN0: Fast Trig: Free Run IF Gain:Low #Atten: 20 dB	Mkr1 2.480 200 GHz 10.198 dBm	NextPea
5.33				Next Pk Right	633	• 1		Next Pk Rig
4.67				Next Pk Left	-14.7			Next Pk L
H.7				Marker Delta	317			Marker De
11.7				Mkr→CF	417			Mkr-+
567				Mkr→RefLvi	617			Mkr→RefL
Center 2.480000 GHz Res BW 3.0 MHz	#VBW 3.0 MHz	Sween 1	Span 5.000 MHz .000 ms (1001 pts)	More 1 of 2	Center 2.480000 GHz #Res BW 3.0 MHz	#VBW 3.0 MHz	Span 5.000 MHz Sweep 1.000 ms (1001 pts)	Mo 1 of
0	WBW 510 MH2	Statu			Miso	WON 3.0 MHz	status	

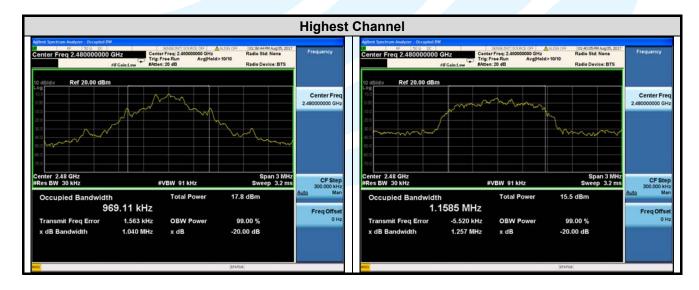
	80	PSK	
Lowest Ch	annel	Middle	Channel
IF Gain1.ow #Atten: 20 dB	Mg Type: Log-Pwr The Type Log-Park Search Park Search Certification Cert	Marker 1 2.441095000000 GHz PR0: Fast Trig: Free Rur If GaleLow Ref Offset 5.33 dB	Mkr1 2.441 095 GHz NextPeak
10 dBraiv Ref 15.33 dBm Log 533	10.751 dBm	10 dBJdlv Ref 15.33 dBm	9.932 dBm Next Pk Right
48	Next Pk Left	487	Next Pk Left
347	Marker Delta	307	Marker Delta
447	MkrCF	407 947	MkrCF
54.7 	MkrRefLvi More	607 343	Mkr→RefLvi More
Center 2.402000 GHz #Res BW 3.0 MHz #VBW 3.0 MHz	Span 5.000 MHz 1 of 2 Sweep 1.000 ms (1001 pts)	Center 2.441000 GHz #Res BW 3.0 MHz #VBW 3.0 MHz	Span 5.000 MHz 1 of 2 Sweep 1.000 ms (1001 pts)

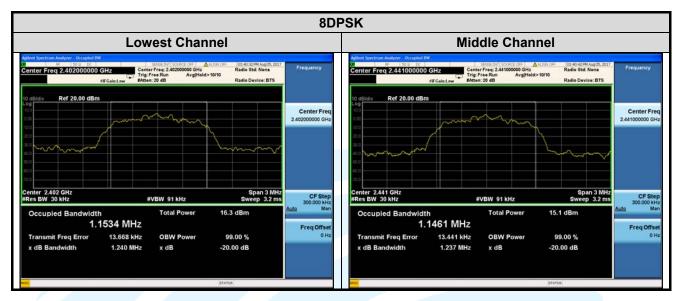
	Highest	Channel		
Aglent Spectrum Andyzer - Swept SA NF 50.0 DC Marker 1 2.479995000000 GHz PN0: Fas FGaint on		Avg Type: Log-Pwr Avg Type: Log-Pwr Avg Hold>100/100	01:54 08PM Aug 05, 2017 TRACE D 2 F 4 F 4 TYPE MOMMAN DET P NIN NA A	Peak Search
Ref Offset 5.33 dB 10 dB/div Ref 15.33 dBm		Mkr1 2	.479 995 GHz 10.465 dBm	NextPea
5 33	•1 ••••			Next Pk Rig
417				Next Pk Le
347				Marker Del
417				Mkr→C
64.7				Mkr→RefL
747 Center 2.480000 GHz #Res BW 3.0 MHz #V	BW 3.0 MHz		Span 5.000 MHz 00 ms (1001 pts)	Mo 1 ol

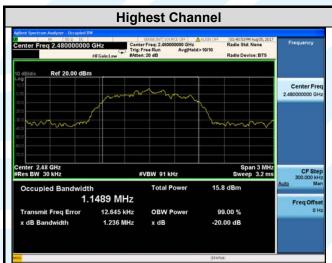
Test Data:


Page 20 of 48


5.420 DB BANDWIDTH


Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10-2013 Section 6.9.2				
Limit:	None; for reporting purposes only.				
Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Jse the following spectrum analyzer settings:				
	 a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel. b) RBW = 1% to 5% of the OBW. c) VBW ≥ 3 x RBW d) Sweep = auto; e) Detector function = peak f) Trace = max hold g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission. 				
	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.				
Test Setup:	Refer to section 4.5.3 for details.				
Instruments Used:	Refer to section 3 for details				
Test Mode:	Transmitter mode				
Test Results:	Pass				


Type of	20 dB Bandwidth (MHz)			99% Bandwidth (MHz)		
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78
GFSK	1.040	1.040	1.040	0.96056	0.96480	0.96911
π/4 DQPSK	1.229	1.240	1.257	1.1614	1.1608	1.1585
8DPSK	1.240	1.237	1.236	1.1534	1.1461	1.1489


The test plot as follows:

Page 23 of 48

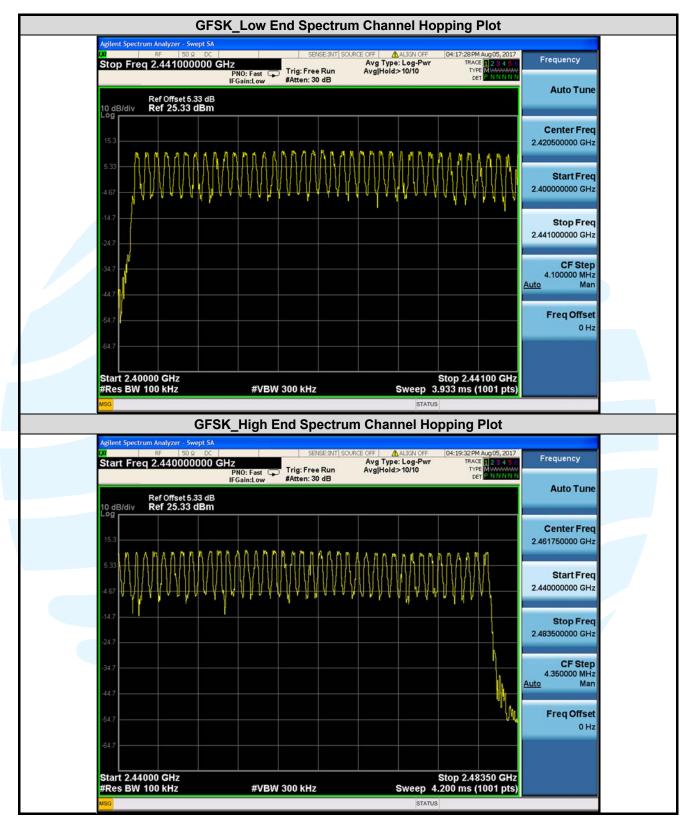
5.5 CARRIER FREQUENCIES SEPARATION

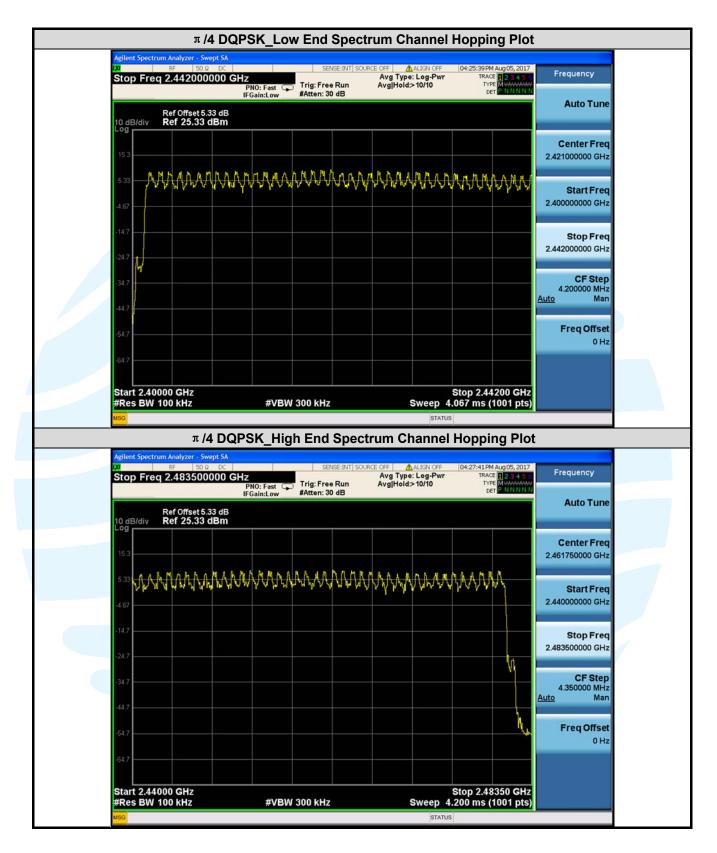
Test Requirement: Test Method: Limit: Test Procedure:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 Section 7.8.2 Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:
	 a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels.
	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.
Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Hopping Frequencies Transmitter mode
Test Results:	Pass
Test Data:	

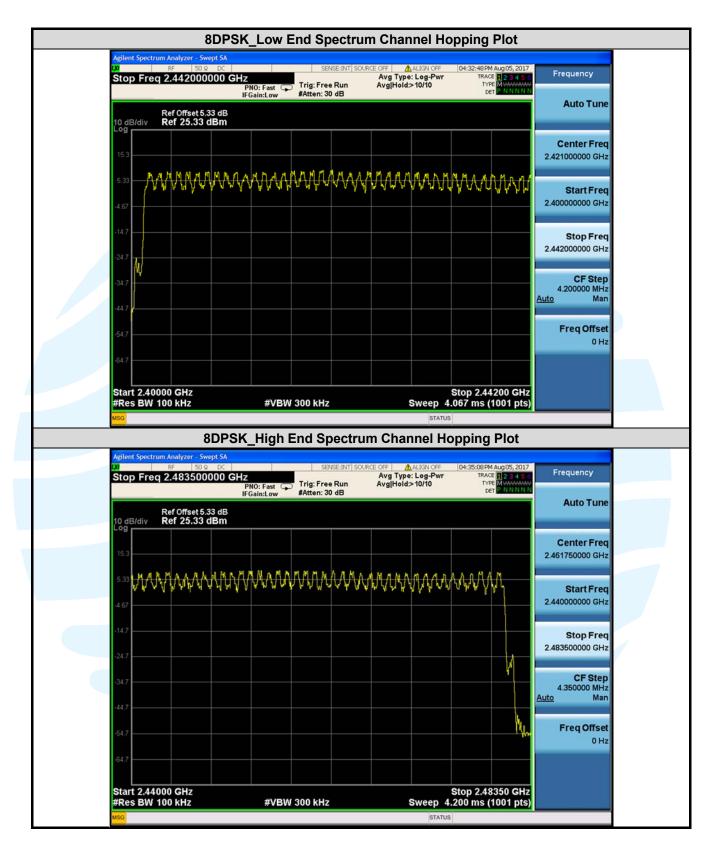
Type of Modulation	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)	
Type of Modulation	Channel 39	Channel 39	
GFSK	1.000	0.693	
π/4 DQPSK	1.000	0.838	
8DPSK	1.000	0.827	
Note: The minimum limit is two-third 20 dB bandwidth.			

The test plot as follows:

	8DI	PSK		
Aglent Spectrum Analyzer - Swigt SA D RF S010 DC Marker 1 △ 1.0000000000	MHZ PN0: Fast Golinclow #Atten: 30 dB	OURCE OFF Avag Type: Log-Pwr Avg Type: Log-Pwr Avg[Hold>10/10	HELLOHPM Aug 05, 2017 TRACE 2 2 2 4 4 TYPE MONITORING OF 2 10 10 10 10	Marker Select Marker
Ref Offset 5.33 dB 10 dB/div Ref 25.33 dBm		ΔMk	1 1.000 MHz 0.689 dB	1
15.3		162		Norma
-1.57 gent	- X2 martine X2	Mart war war and a start of the	and the second s	Delta
347				Fixed
-417				or
647				Properties
Center 2.441000 GHz #Res BW 300 kHz	#VBW 910 kHz	Sween 100	Span 5.000 MHz 0 ms (1001 pts)	Mon 1 of 2

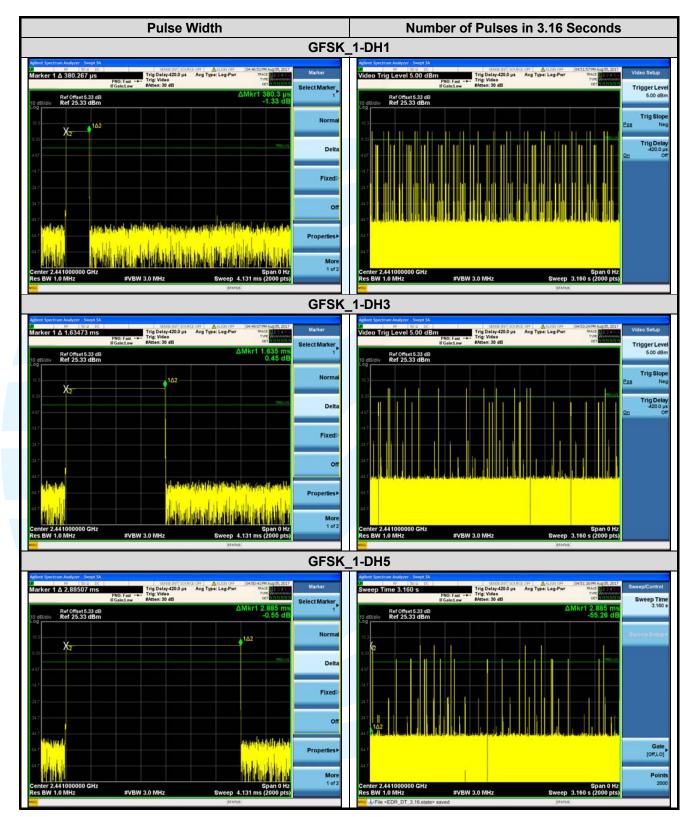

Page 25 of 48


5.6 NUMBER OF HOPPING CHANNEL

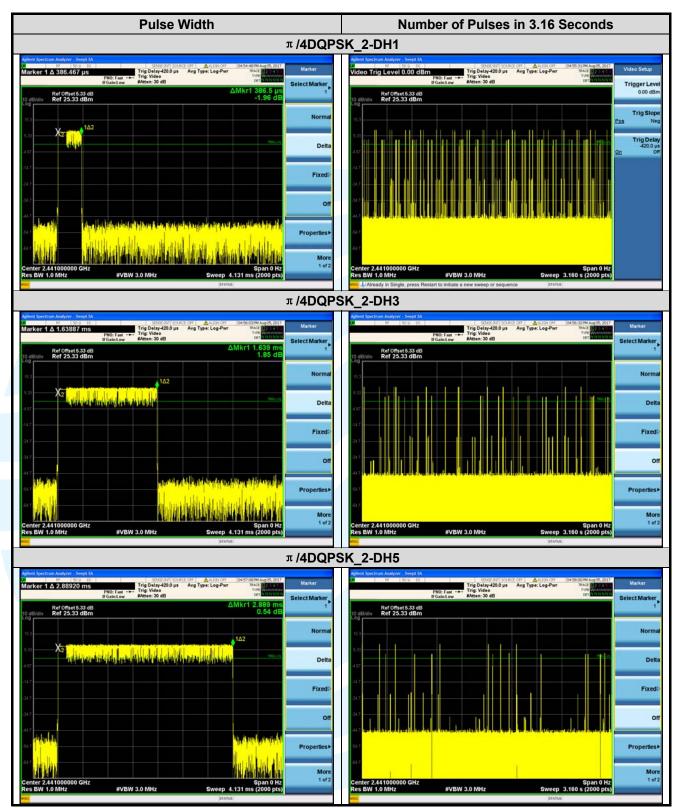

Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1)				
Test Method:	ANSI C63.10-2013 Section 7.8.3				
Limit:	Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non- overlapping channels.				
Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:				
	a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation				
	 across multiple spans, to allow the individual channels to be clearly seen. b) RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. 				
	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.				
Test Setup:	Refer to section 4.5.3 for details.				
Instruments Used:	Refer to section 3 for details				
Test Mode:	Hopping Frequencies Transmitter mode				
Test Results:	Pass				
Test Data:					

Type of Modulation	Number of Hopping Channel
GFSK	79
π <mark>/4 D</mark> QPSK	79
8DPSK	79

The test plot as follows:

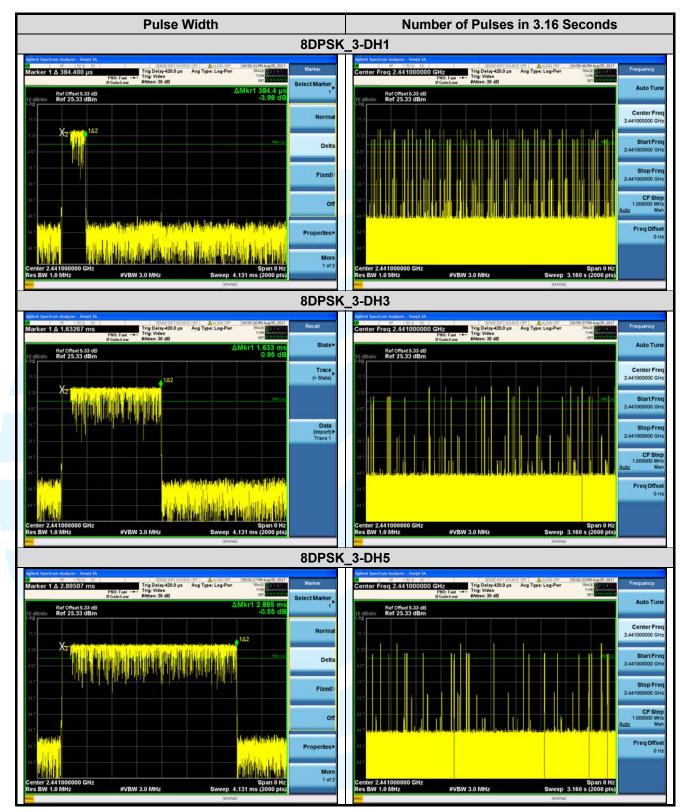


Page 29 of 48


5.7 DWELL TIME	
Test Requirement: Test Method:	FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1) ANSI C63.10-2013 Section 7.8.4
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:
	 a) Span = zero span, centered on a hopping channel b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep = As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function = peak e) Trace = max hold f) Use the marker-delta function to determine the dwell time Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.
Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Hopping Frequencies Transmitter mode
Test Results: Test Data:	Pass
Type of T	Test Pulse Width Number of Dwell Time Limit

Type of	Test	Test Packet Puls	Pulse Width	Number of Pulses in 3.16	Dwell Time	Limit
Modulation	Frequency	Facket	ms	seconds	ms	ms
		1-DH1	0.380	31.000	117.89	< 400
GFSK	2441MHz	1-DH3	1.635	13.000	212.55	< 400
		1-DH5	2.885	8.000	230.80	< 400
		2-DH1	0.387	32.000	123.68	< 400
GFSK	2441MHz	2-DH3	1.639	12.000	196.68	< 400
		2-DH5	2.889	7.000	202.23	< 400
		3-DH1	0.384	31.000	119.16	< 400
8DPSK 2441MHz	2441MHz	3-DH3	1.633	11.000	179.63	< 400
		3-DH5	2.885	7.000	201.95	< 400

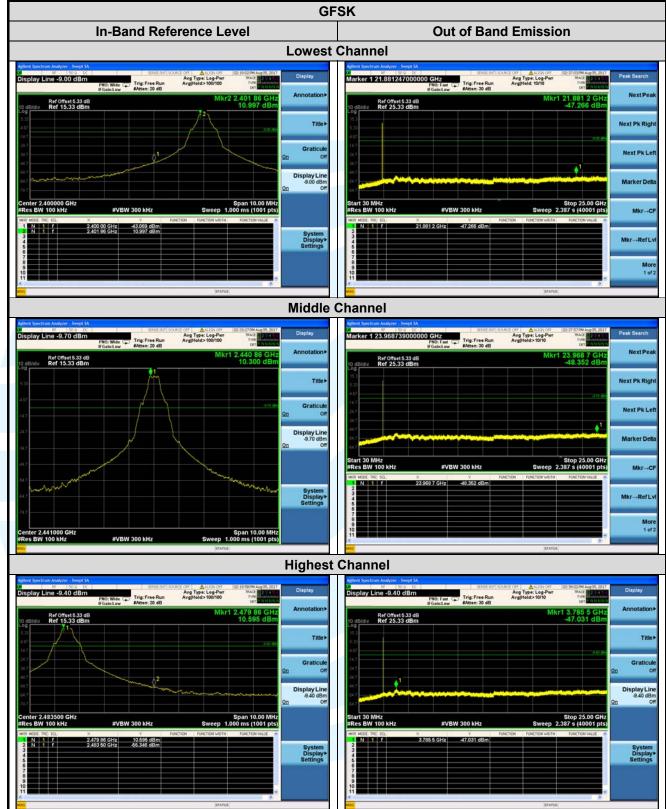
The test plot as follows:

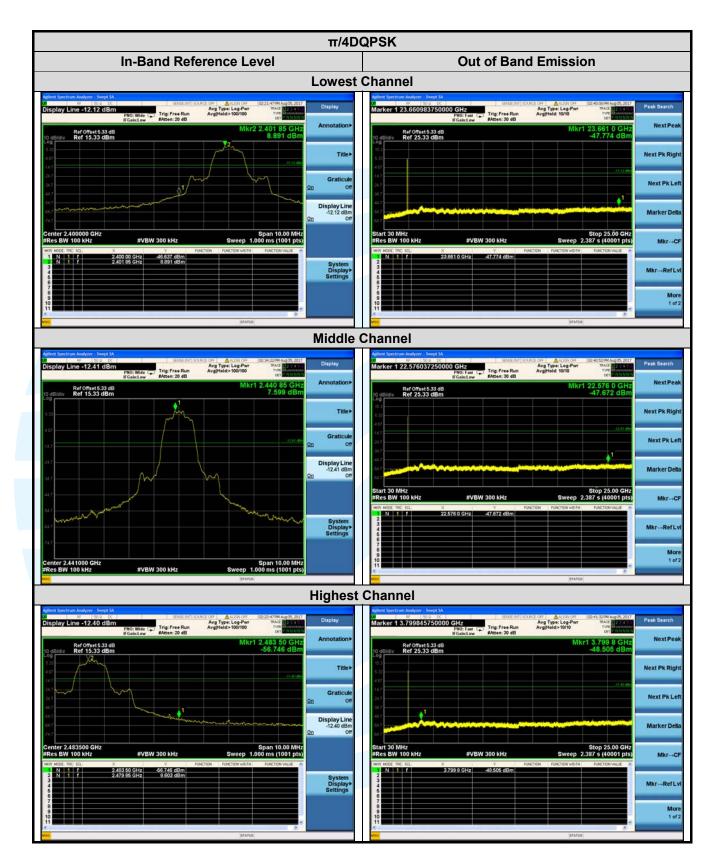


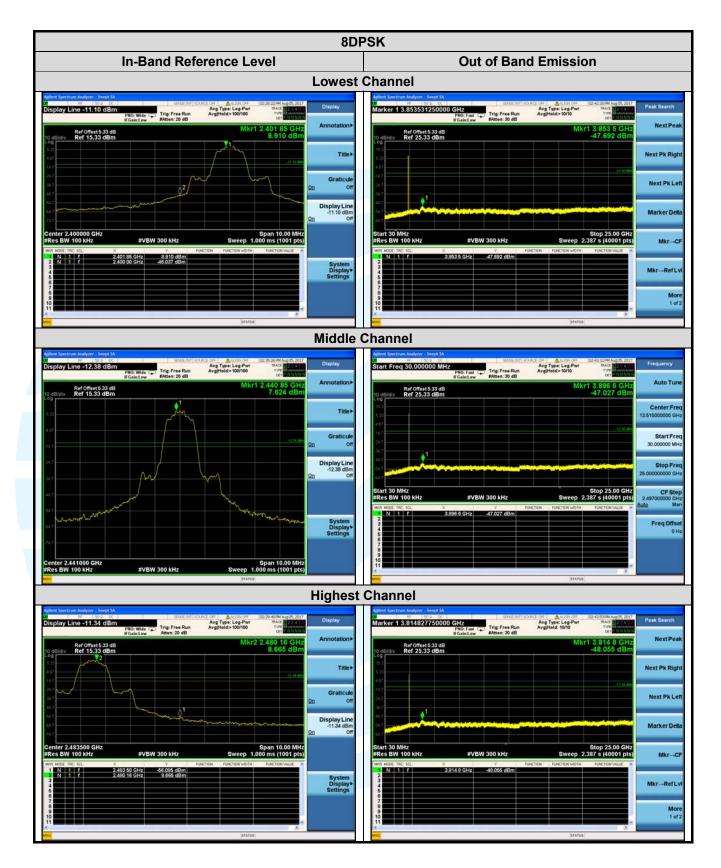
Page 31 of 48

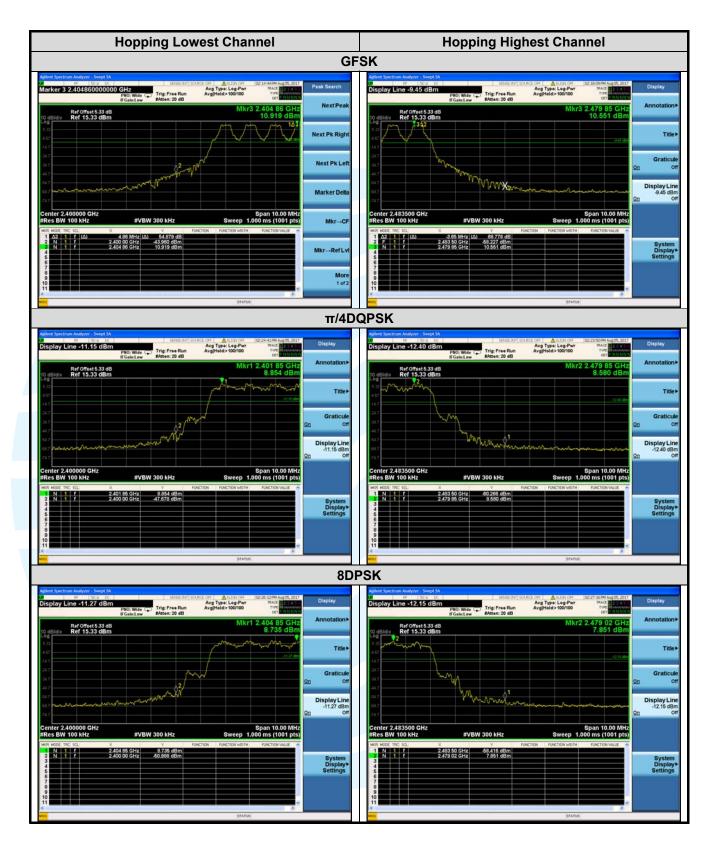
Page 32 of 48

Report No.: 170726002RFC-1


Uni⊛nTrust


Page 33 of 48


5.8 CONDUCTED OUT OF BAND EMISSION


Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.247(d)			
Test Method:	ANSI C63.10-2013 Section 6.10.4			
Limit: Test Procedure:	In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:			
	Step 1:Measurement Procedure REF			
	 a) Set instrument procedure REF a) Set instrument center frequency to 2400 MHz or 2483.5 MHz. b) Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation. c) Set the RBW = 100 kHz. d) Set the VBW ≥ 3 x RBW. e) Detector = peak. f) Sweep time = auto couple. g) Sweep points ≥ 2 x Span/RBW h) Trace mode = max hold. i) Allow the trace to stabilize. j) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker to the peak of the in-band emission. 			
	Step 2: Measurement Procedure OOBE a) Set RBW = 100 kHz. b) Set VBW ≥ 300 kHz. c) Detector = peak. d) Sweep = auto couple. e) Trace Mode = max hold. f) Allow trace to fully stabilize. g) Use the peak marker function to determine the maximum amplitude level.			
	Note: The cable loss and attenuator loss were offset into measure device as an			
Toot Sotup	amplitude offset. Refer to section 4.5.3 for details.			
Test Setup: Instruments Used:	Refer to section 3 for details			
Test Mode:				
Test Results:	Hopping Frequencies Transmitter mode Pass			
Test Data:	F 455			
icol Dala.				

The test plot as follows:

Uni⊛nTrust

5.9 RADIATED SPURIOUS EMISSIONS

Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209
Test Method:	ANSI C63.10-2013 Section 6.6.4.3
Receiver Setup:	

Frequency	RBW
0.009 MHz-0.150 MHz	200/300 kHz
0.150 MHz -30 MHz	9/10 kHz
30 MHz-1 GHz	100/120 kHz
Above 1 GHz	1 MHz

Limits:

Spurious Emissions

Spurious Linissions				
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)	I		300
0.490 MHz-1.705 MHz	24000/F(kHz)			30
1.705 MHz-30 MHz	30	I		30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

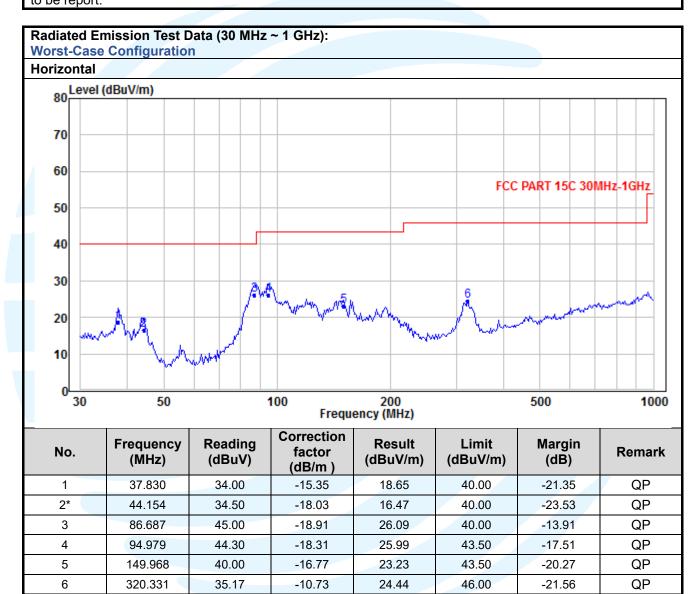
Test Setup: Refer to section 4.5.1 for details.

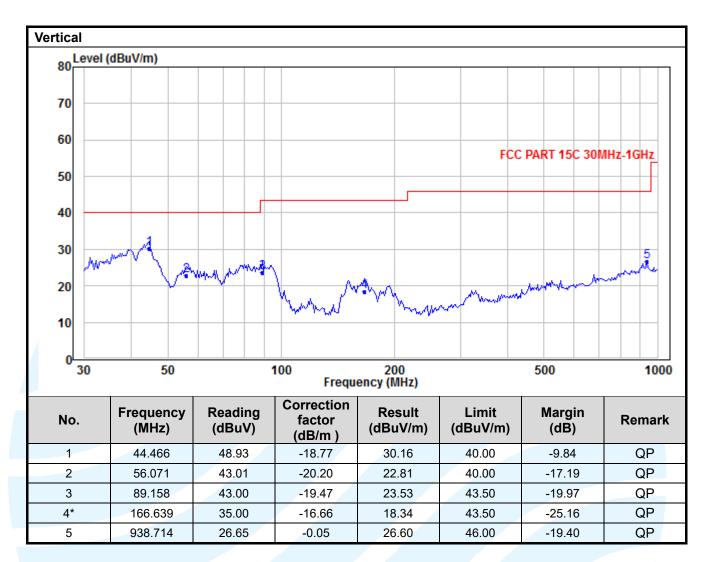
Test Procedures:

- 1. From 30 MHz to 1GHz test procedure as below:
- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 2. Above 1GHz test procedure as below:
- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- 2) Test the EUT in the lowest channel ,middle channel, the Highest channel
- 3) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found

Page 39 of 48

the Y axis positioning which it is worse case.


4) Repeat above procedures until all frequencies measured was complete.


Equipment Used: Refer to section 3 for details. Pass

Test Result:

The measurement data as follows:

Radiated Emission Test Data (9 KHz ~ 30 MHz): The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Uni⊛nTrust

Radiated Emission Test Data (Above 1GHz):

Lowest Channel:						
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4804.00	40.98	74.00	-33.02	Peak	Horizontal
2	7206.00	46.35	74.00	-27.65	Peak	Horizontal
3	4804.00	39.02	74.00	-34.98	Peak	Vertical
4	7206.00	43.27	74.00	-30.73	Peak	Vertical

Middle Channel:

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4882.00	39.40	74.00	-34.60	Peak	Horizontal
2	7323.00	44.49	74.00	-29.51	Peak	Horizontal
3	4882.00	38.52	74.00	-35.48	Peak	Vertical
4	7323.00	43.49	74.00	-30.51	Peak	Vertical

Highest Channel:

ingliest onal						
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4960.00	39.72	74.00	-34.28	Peak	Horizontal
2	7440.00	45.05	74.00	-28.95	Peak	Horizontal
3	4960.00	38.81	74.00	-35.19	Peak	Vertical
4	7440.00	43.51	74.00	-30.49	Peak	Vertical

Remark:

As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

5.10 **BAND EDGE MEASUREMENTS (RADIATED)**

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209

Test Method:

ANSI C63.10-2013 Section 6.6.4.3

Limits:

Radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a).

Frequency	Limit (dBµV/m @3m)	Remark
30 MHz-88 MHz	40.0	Quasi-peak Value
88 MHz-216 MHz	43.5	Quasi-peak Value
216 MHz-960 MHz	46.0	Quasi-peak Value
960 MHz-1 GHz	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
Above I GHZ	74.0	Peak Value

Test Setup: Refer to section 4.5.1 for details.

Test Procedures:

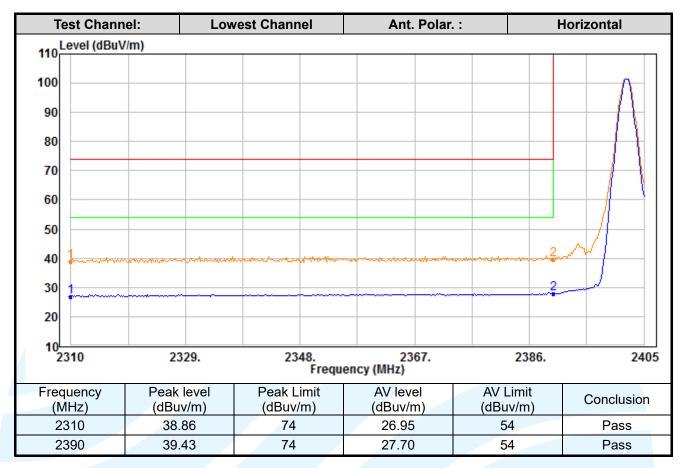
Radiated band edge measurements at 2390 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

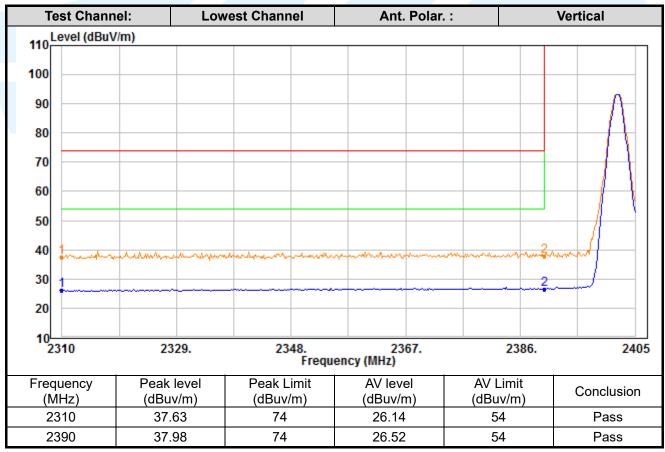
1. Use radiated spurious emission test procedure described in clause 5.10. The transmitter output (antenna port) was connected to the test receiver.

2. Set the PK and AV limit line.

3. Record the fundamental emission and emissions out of the band-edge.

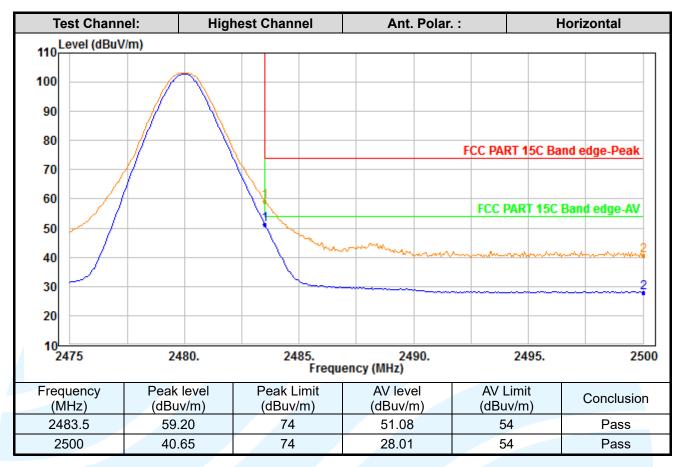
4. Determine band-edge compliance as required.

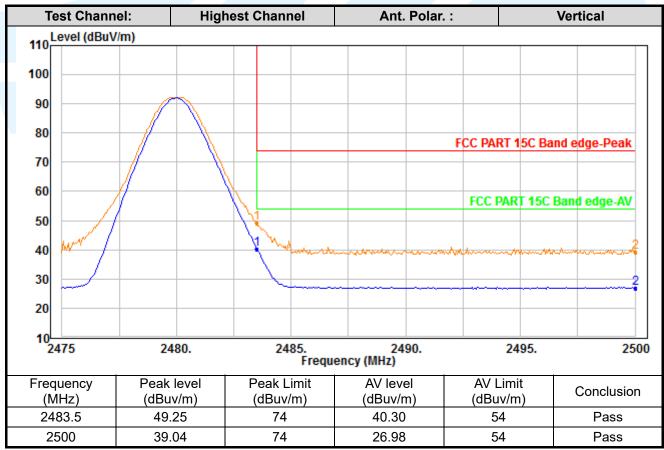

Refer to section 3 for details. Equipment Used: Pass


Test Result:

The measurement data as follows:

Page 43 of 48


Report No.: 170726002RFC-1



Page 44 of 48

Report No.: 170726002RFC-1

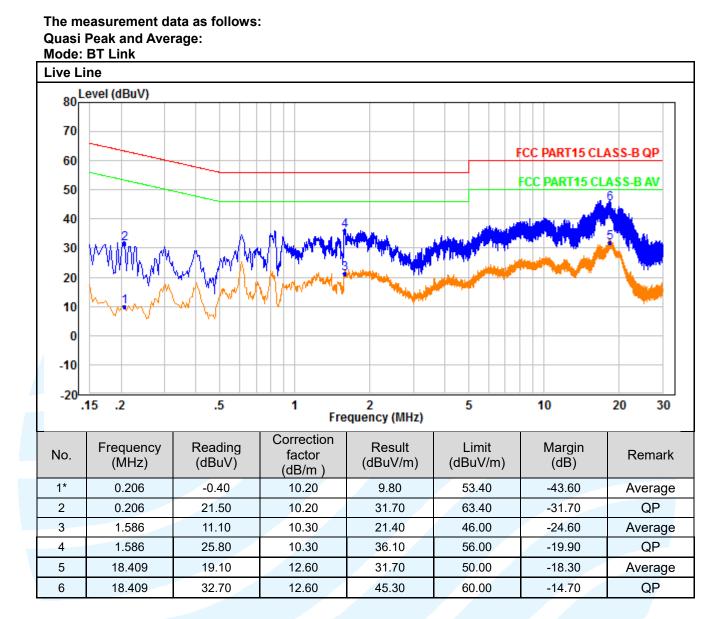
5.11 CONDUCTED EMISSION

Test Requirement:	47 CFR Part 15C Section 15.207
Test Method:	ANSI C63.10-2013 Section 6.2
Limits:	

Frequency range	Limits (dB(µV)			
(MHz)	Quasi-peak	Average		
0,15 to 0,50	66 to 56	56 to 46		
0,50 to 5	56	46		
5 to 30	60	50		

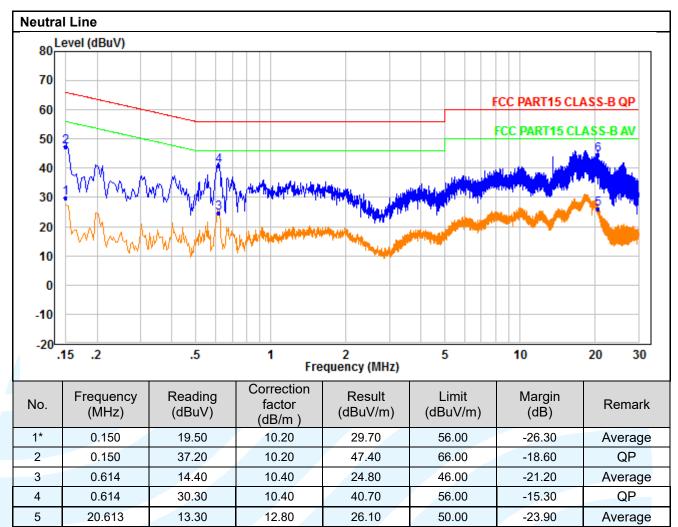
Remark:

- The lower limit shall apply at the transition frequencies. 1.
- The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. 2.
- Refer to section 4.5.2 for details. **Test Setup:**


Test Procedures:

Test frequency range :150KHz-30MHz

- The mains terminal disturbance voltage test was conducted in a shielded room. 1)
- The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) 2) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for 3) floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from 4) the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- In order to find the maximum emission, the relative positions of equipment and all of the interface cables 5) must be changed according to ANSI C63.10 on conducted measurement.


Equipment Used: Refer to section 3 for details. Pass

Test Result:

Uni⊛nTrust

QP

Remark:

6

20.613

31.70

1. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

12.80

44.50

60.00

-15.50

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.

