FCC TEST REPORT

Product

Mobile Phone

Trade mark

MI

Model/Type reference

2016102

Report Number

1610280464RFC-1

Date of Issue

Dec. 13, 2016

FCC ID

2AFZZ-RT6102

Test Standards

FCC 47 CFR Part 15 Subpart C

Test result

PASS

Prepared for:

Xiaomi Communications Co., Ltd. The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

> TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:

devin Lian

Reviewed by:

Kevin Liang Senior Engineer

Senior Supervisor

Approved by:

Billy Li

Date:

Technical Director

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 2 of 47

Report No.: 1610280464RFC-1

Version

Version No.	Date	Description
V1.0	Dec. 13, 2016	Original

Content

			Page
1	GEN	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	GENERAL DESCRIPTION OF EUT	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	DESCRIPTION OF SUPPORT UNITS	
	1.5	TEST LOCATION	
	1.6	TEST FACILITY	
	1.7	DEVIATION FROM STANDARDSABNORMALITIES FROM STANDARD CONDITIONS	
	1.8 1.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
		MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=1.96)	
_			
2		SUMMARY	
3	EQU	IPMENT LIST	8
4	TEST	FREQUIREMENT	10
	4.1	TEST SETUP	
	4.1	4.1.1 For Conducted test setup	
		4.1.2 For Radiated Emissions test setup	
		4.1.3 For Conducted Emissions test setup	
	4.2	TEST ENVIRONMENT	
	4.3	SYSTEM TEST CONFIGURATION	11
	4.4	TEST CONDITION	12
		4.4.1 Test channel	12
		4.4.2 Test mode	
		4.4.3 Duty Cycle	
5	RAD	IO TECHNICAL REQUIREMENTS SPECIFICATION	14
	5.1	ANTENNA REQUIREMENT	14
	5.2	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	5.3	CONDUCTED PEAK OUTPUT POWER	16
	5.4	20 DB BANDWIDTH	
	5.5	CARRIER FREQUENCIES SEPARATION	
	5.6	NUMBER OF HOPPING CHANNEL	
	5.7	DWELL TIME	
	5.8 5.9	CONDUCTED OUT OF BAND EMISSION	
	5.9	RADIATED SPURIOUS EMISSIONS 5.9.1 Radiated Emission Test Data (9 KHz ~ 30MHz)	
		5.9.2 Radiated Emission Test Data (Above 18 GHz)	
		5.9.3 Radiated Emission Test Data (30MHz ~ 1 GHz Worst Case)	
		5.9.4 Radiated Emission Test Data (1GHz ~ 18GHz)	
	5.10	BAND EDGE MEASUREMENTS (RADIATED)	
		CONDUCTED EMISSIONS	
ΑP	PEND	IX 1 PHOTOGRAPHS OF TEST SETUP	47
		IX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	
	:1		· /

Page 4 of 47 Report No.: 1610280464RFC-1

1 General Information

1.1 Client Information

Applicant:	Xiaomi Communications Co., Ltd.
Address of Applicant:	The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China
Manufacturer:	Xiaomi Communications Co., Ltd.
Address of Manufacturer:	The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

1.2 General Description of EUT

2 General Description of Eor					
Product Name:	Mobile Phone				
Model No.(EUT):	2016102				
Add Model No.:	N/A				
Trade Mark:	MI				
EUT Supports Radios application:	GSM850/900/1800/1900 WCDMA Band I/Band II/Band V/Band VIII LTE FDD Band 1 /Band 3 /Band 4 /Band 5 /Band 7 /Band 8 /Band 20 LTE TDD Band 38 /Band 40 Wlan 2400MHz-2483.5MHz 802.11b/g/n(HT20&HT40) Wlan 5150MHz-5350MHz, 5470MHz-5725MHz, 5725MHz-5850MHz only support 802.11a Bluetooth V3.0+EDR&Bluetooth V4.0 BLE GPS, Glonass				
Power Supply:	AC adapter	Model: MDY-08-EF Input: 100-240V~50/60Hz 0.35A MAX Output: DC 5.0V == 2000mA			
	Battery	Model: BN43 Brand: MI Rated Voltage: 3.85Vdc Battery Capacity: 4000mAh(Li-on Rechargeable)			
USB Micro-B Plug cable:	le: 117cm(Shielded without ferrite)				
Sample Received Date:	Sep. 12, 2016				
Sample Tested Date:	Sep. 22, 2016 ~ Dec. 13, 2016				

1.3 Product Specification subjective to this standard

Operation Frequency:	2400MHz-2483.5MHz
Bluetooth Version:	V3.0+EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4 DQPSK, 8DPSK
Number of Channel:	79
Channel Separation:	1MHz
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable device
Antenna Type:	LDS Antenna
Antenna Gain:	0.96 dBi
Normal Test Voltage:	3.85Vdc

Page 5 of 47 Report No.: 1610280464RFC-1

Software Version:	MIUI8
Hardware Version:	P3

	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	N	/A

Modulation Configure				
Modulation	Packet	Packet Type	Packet Size	
	DH1	4	27	
GFSK	DH3	11	183	
	DH5	15	339	
	2DH1	20	54	
π/4 DQPSK	2DH3	26	367	
	2DH5	30	679	
	3DH1	24	83	
8DPSK	3DH3	27	552	
	3DH5	31	1021	

1.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust

2) Cable

Cable No.	Description	Connector Type	Cable Type/Length	Supplied by
1	Antenna Cable	SMA	30cm	UnionTrust

Page 6 of 47 Report No.: 1610280464RFC-1

1.5 Test Location

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1,

Longhua New District, Shenzhen, China 518109

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Tests were sub-contracted. (FCC 47 CFR Part 15 Subpart C Section 15.205/15.207/15.209)

Compliance Certification Services (Shenzhen) Inc.

No.10-1 Mingkeda Logistics Park, No.18 Huanguan South RD. Guan lan Town, Baoan Distr, Shenzhen, Guangdong, China.

Tel: 86 0755 28055000 Fax: 86 0755 29055221

1.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Shenzhen UnionTrust Quality and Technology Co., Ltd.

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

Compliance Certification Services (Shenzhen) Inc.

FCC Registration Number is 441872.

1.7 Deviation from Standards

None

1.8 Abnormalities from Standard Conditions

None.

1.9 Other Information Requested by the Customer

None.

1.10 Measurement Uncertainty (95% confidence levels, k=1.96)

No.	Item	Measurement Uncertainty
1	Radio Frequency	±6.3 x 10-8
2	RF power, conducted	±0.52 dB
3	Spurious emissions, radiated (Below 1GHz)	±5.3 dB
3	Spurious emissions, radiated (Above 1GHz)	±5.1 dB
4	Conduction emission (9KHz~150KHz)	±3.8 dB
4	Conduction emission (150KHz~30MHz)	±3.4 dB
5	Temperature	±0.64 °C
6	Humidity	±2.8 %
7	Supply voltages	±0.49 %

Page 7 of 47 Report No.: 1610280464RFC-1

2 Test Summary

Tests for radiated and conducted emissions were performed. All measurements were performed according to the 2013 version of ANSI C63.10

Test Item	Test Requirement	Test method	Result
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS*
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	DA 00-705	PASS
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	DA 00-705	PASS
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	DA 00-705	PASS
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	DA 00-705	PASS
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	DA 00-705	PASS
Pseudorandom Frequency Hopping Sequence	FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1)(g)(h)	DA 00-705	PASS
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	DA 00-705	PASS
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	DA 00-705	PASS*
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	DA 00-705	PASS*

Remark:

Tx: In this whole report Tx (or tx) means Transmitter.
Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

"*": In this whole report "*" means tests were sub-contracted Item.

Page 8 of 47 Report No.: 1610280464RFC-1

3 Equipment List

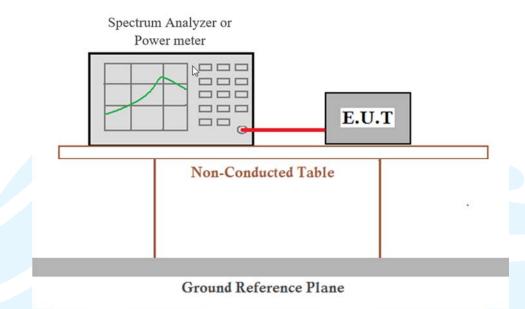
	3M Semi/full-anechoic Chamber									
Equipment	Manufacturer Model No.		Serial Number	Cal. Due date (mm-dd-yyyy)	Cal. Interval					
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	02-20-2017	1 Year					
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R					
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R					
Controller	CT	N/A	N/A	N.C.R	N.C.R					
Bilog Antenna	SCHAFFNER	CBL6143	5063	02-21-2017	1 Year					
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02-20-2017	1 Year					
Loop Antenna	COM-POWER	AL-130	121044	02-20-2017	1 Year					
High Noise Amplifier	Agilent	8449B	3008A01838	02-21-2017	1 Year					
Horn Antenna	Schwarzbeck	BBHA9120	D286	02-21-2017	1 Year					
Temp. / Humidity Meter	Anymetre	JR913	N/A	02-21-2017	N.C.R					
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R					
Test S/W	FARAO		LZ-RF / CC	S-SZ-3A2						

Conducted Emission test								
Equipment	Manufacturer	Model No.	Serial Number	Serial Number Cal. Due date (mm-dd-yyyy)				
EMI Test Receiver	R&S	ESCI	100783	02-21-2017	1 Year			
L.I.S.N	R&S	ENV216	101543-WX	02-21-2017	N.C.R			

	RF test system/ Conducted RF test										
Used	Equipment	Manufacturer Model N		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	01-27-2016	01-26-2017					
\boxtimes	Receiver	R&S	ESR7	1316.3003K07- 101181-K3	02-23-2016	02-22-2017					
	Receiver	R&S	ESIB26	100114	08-06-2015	08-05-2017					
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	01-09-2016	01-08-2017					
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	12-16-2015	12-15-2017					
	EXG-B RF Analog Signal Generator	KEYSIGHT	N5171B	MY53051777	01-09-2016	01-08-2017					
	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	01-08-2016	01-07-2017					
	4ch. Simultaneous Sampling 14 Bits 2MS/s	KEYSIGHT	U2531A	TW55193502	11-09-2015	11-08-2017					
	Communication Tester	R&S	CMU200	114713	12-07-2015	12-06-2017					
	Band rejection filter (5150MHz~5880MHz)	micro-tronics	BRM50716	G1868	06-15-2016	06-14-2017					

Page 9 of 47

Band rejection filter (2400MHz~2500MHz)	micro-tronics	BRM50702	G248	06-21-2016	06-20-2017
DC Source	KIKUSUI	PWR400L	LK003024	09-21-2016	09-20-2017
Temp & Humidity chamber	Ispec	GL(U)04K A(W)	1692H201P3	09-21-2016	09-20-2017



4 Test Requirement

4.1 Test setup

4.1.1 For Conducted test setup

4.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

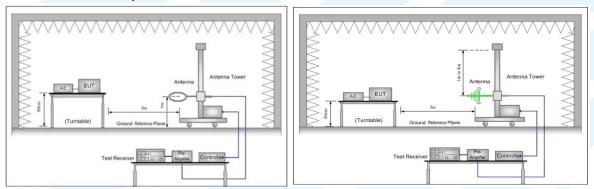


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

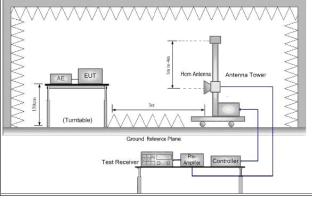
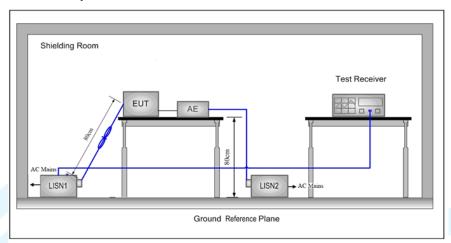



Figure 3. Above 1GHz

4.1.3 For Conducted Emissions test setup

Conducted Emissions setup

4.2 Test Environment

Operating Environment:	
Temperature:	22.2 °C
Humidity:	56 % RH
Atmospheric Pressure:	100.78 Kpa

4.3 System Test Configuration

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.85Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency Band(GHz)	Mode	Antenna Port	Worst-case Orientation		
Below 1GHz	1TX	Chain 0	X-Portrait		
Above 1GHz	1TX	Chain 0	X-Portrait		

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Page 12 of 47

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Report No.: 1610280464RFC-1

4.4 Test Condition

4.4.1 Test channel

Modulation Type	Tx/Rx	RF Channel				
wodulation Type	TA/NA	Low(L)	Middle(M)	High(H)		
GFSK/ π/4 DQPSK/	04000411- 0400 0411-	Channel 0	Channel 39	Channel 78		
8DPSK (DH1,DH3,DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz		

4.4.2 Test mode

Pre-scan under all packets at lowest channel

Modulation Type	GFSK			π/4 DQPSK			8DPSK		
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3	3-DH5
AVg Power	5.73	5.66	5.71	3.49	3.24	3.27	3.53	3.26	3.27

So, the worst-case packets see table below:

Modulation Type	Worst-case packets		
GFSK	1-DH1		
π/4 DQPSK	2-DH1		
8DPSK	3-DH1		

Tested channel detail

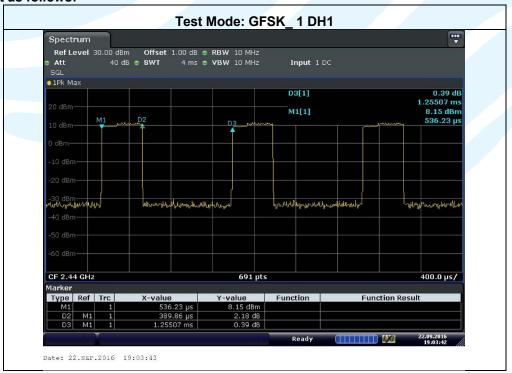
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

aronitootare). I ollowing o	name (s) was (were) selected for the final test as listed below.						
Modulation Technology	FHSS						
Modulation Type	GFSK π/4 DQPSK 8DPSK						
Packets	DH1 DH3 DH5 DH1 DH3 DH5 DH1 DH3 DH5						
Available Channel	0 to 78						
Test Item	Test Channel						
AC Power Line	Frequency Hopping Channel 0 to 78						
Conducted Emission	Link						
Conducted Peak Output	Channel 0 & 39 & 78						
Power							
20 dB Bandwidth	Channel 0 & 39 & 78						
20 db baildwidiii							
Carrier Frequencies	Frequency Hopping Channel 0 to 78						
Separation							
Number of Hopping	Frequency Hopping Channel 0 to 78						

Page 13 of 47

Report No.: 1610280464RFC-1

Channel	\boxtimes			\boxtimes			\boxtimes		
Dwell Time				Chann	el 0 & 3	9 & 78			
Dwell Tillle	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Pseudorandom			Freque	ency Ho	pping C	hannel () to 78		
Frequency Hopping Sequence	\boxtimes								
Conducted Out of Band	Channel 0 & 39 & 78								
Emission	\boxtimes			\boxtimes			\boxtimes		
Radiated Emissions	Channel 0 & 39 & 78								
Radiated Emissions							\boxtimes		
Band Edge				Cha	nnel 0 8	k 78			
Measurements (Radiated)							\boxtimes		
Remark: The mark "\sum " means is chosen for testing The mark "\sum " means is not chosen for testing									


4.4.3 Duty Cycle

Modulati on Type	packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
GFSK	3 DH1	0.38986	1.25507	0.31	31.06	5.08	2.57

Remark:

- 1) Duty cycle= On Time/ Period
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle)

The test plot as follows:

5 Radio Technical Requirements Specification

Reference documents for testing:

	roronoo accannonto tot tot	zg.
No.	Identity	Document Title
1	FCC CFR 47 Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC CFR 47 Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
4	FCC Public Notice DA 00-705	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

5.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	
FIII ANTANNA'	

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 0.96 dBi.

Page 15 of 47 Report No.: 1610280464RFC-1

5.2 Pseudorandom Frequency Hopping Sequence

Technical Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(b)(g)(h)

Test Method: DA 00-705

Frequency Hopping System:

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

EUT Pseudorandom Frequency Hopping Sequence:

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Page 16 of 47 Report No.: 1610280464RFC-1

5.3 Conducted Peak Output Power

Test Requirement: FCC 47 CFR Part 15 Subpart C Section15.247 (b)(1)

Test Method: DA 00-705

Limit: For frequency hopping systems operating in the 2400-2483.5 MHz band

employing at least 75 non-overlapping hopping channels, and all frequency

hopping systems in the 5725-5850 MHz band: 1 watt.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output

power no greater than 125 mW.

Test Procedure: a) Remove the antenna from the EUT and then connect a low loss RF

cable from the antenna port to the power meter.

b) Measure out each test modes' peak or average output power, record the power level.

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Maximum Conducted Peak Output Power:

Modulation	Peak Output Power (dBm)			Peak Output Power (mW)		
Туре	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78
GFSK	6.01	7.03	5.71	3.99	5.05	3.72
π/4 DQPSK	5.98	6.97	5.67	3.96	4.98	3.69
8DPSK	6.65	7.57	6.33	4.62	5.71	4.30

Note: the antenna gain of 0.96 dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.

Page 17 of 47 Report No.: 1610280464RFC-1

5.4 20 dB Bandwidth

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Method: DA 00-705

Limit: None; for reporting purposes only.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable

from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:

a) Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

b) RBW ≥ 1% of the 20 dB bandwidth

c) VBW ≥ RBW

d) Sweep = auto;

e) Detector function = peak

f) Trace = max hold

g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

Refer to section 3 for details

Test Setup: Refer to section 4.1.1 for details.

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Occupied Bandwidth:

Instruments Used:

Modulation	20 dB Bandwidth (MHz)			99% Bandwidth (MHz)		
Type	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78
GFSK	0.9483	0.9484	0.9481	0.89384	0.89275	0.89432
π/4 DQPSK	1.275	1.275	1.275	1.1697	1.1691	1.1687
8DPSK	1.284	1.283	1.281	1.1711	1.1712	1.1714

The test plot as follows:

Page 20 of 47 Report No.: 1610280464RFC-1

5.5 Carrier Frequencies Separation

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Method: DA 00-705

Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may

have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is

reater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output

power no greater than 125 mW.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable

from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:

a) Set span = wide enough to capture the peaks of two adjacent channels

- b) Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span
- c) Video (or Average) Bandwidth (VBW) ≥ RBW
- d) Sweep = auto;
- e) Detector function = peak;
- f) Trace = max hold
- g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

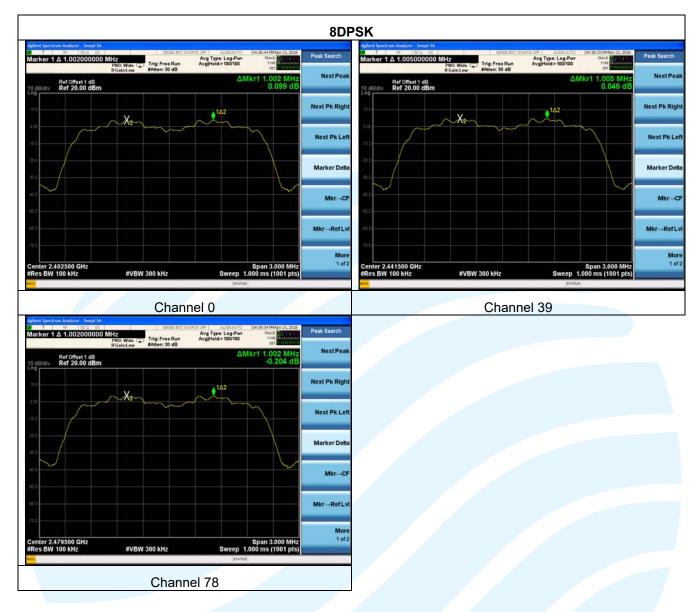
Instruments Used: Refer to section 3 for details

Test Mode: Hopping Frequencies Transmitter mode

Test Results: Pass

Test Data:

Carrier Frequencies Separation:


Tallion 1 Too architecture							
Modulation	Adjacent C	hannel Separa	ation (MHz)	Minimum Limit (MHz)			
Туре	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	1.002	0.996	0.996	0.6322	0.6323	0.6321	
π/4 DQPSK	0.999	0.996	1.002	0.8500	0.8500	0.8500	
8DPSK	1.002	1.005	1.002	0.8560	0.8553	0.8540	

Note: The minimum limit is two-third 20 dB bandwidth.

Page 23 of 47 Report No.: 1610280464RFC-1

5.6 Number of Hopping Channel

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1)

Test Method: DA 00-705

Limit: Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at

least 15 non-overlapping channels.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable

from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:

a) Span = the frequency band of operation

b) RBW ≥ 1% of the span

c) VBW ≥ RBW

d) Sweep = auto

e) Detector function = peak

f) Trace mode = max hold

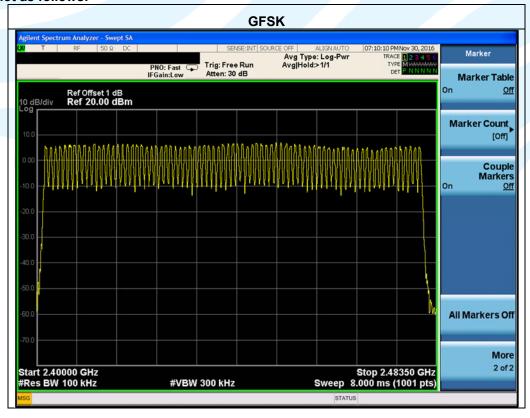
g) Allow the trace to stabilize, observed the band of 2400MHz to 2483.5MHz, than count it out the number of channels for comparing with the FCC rules.

Note: The cable loss and attenuator loss were offset into measure device

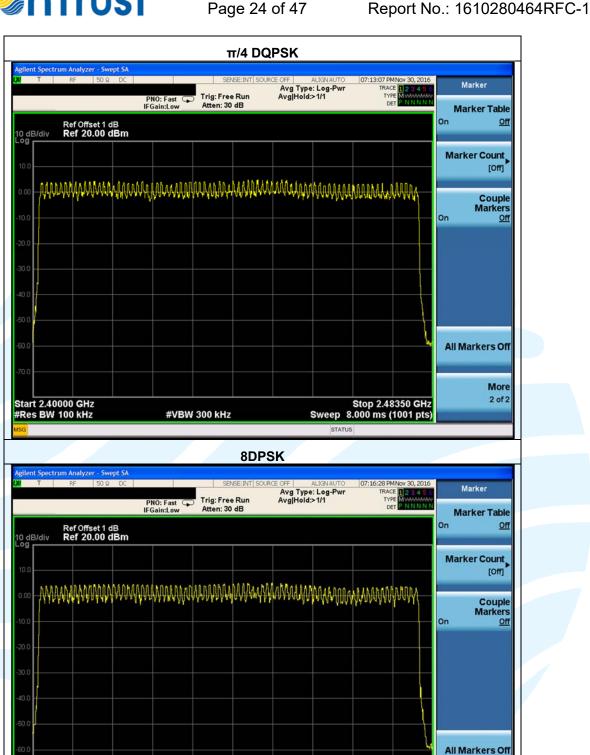
as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details


Test Mode: Hopping Frequencies Transmitter mode

Test Results: Pass


Test Data:

Modulation Type	GF	SK	π/4 DQPS	SK	8DPSK
Number of Hopping Channel	7	9	79		79

The test plot as follows:

Start 2.40000 GHz

#Res BW 100 kHz

#VBW 300 kHz

More

2 of 2

Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)

Page 25 of 47 Report No.: 1610280464RFC-1

5.7 Dwell Time

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1)

Test Method: DA 00-70

Limit: Frequency hopping systems in the 2400-2483.5 MHz band shall use at

least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied

by the number of hopping channels employed.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable

from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:

a) Span = zero span, centered on a hopping channel

b) RBW = 1 MHz

c) VBW ≥ RBW

 Sweep = as necessary to capture the entire dwell time per hopping channel

e) Detector function = peak

f) Trace = max hold

g) Use the marker-delta function to determine the dwell time

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Hopping Frequencies Transmitter mode
Test Results: Pass

Test Data:

Madulatian	Test	Daalaat	Time Slot Length	Dwell Time	Limit
Modulation	Frequency	Packet	ms	ms	ms
		DH1	0.380	121.60	< 400
	2402MHz	DH3	1.632	261.12	< 400
		DH5	2.868	305.92	< 400
		DH1	0.380	121.60	< 400
GFSK	2441MHz	DH3	1.632	261.12	< 400
		DH5	2.880	307.20	< 400
		DH1	0.380	121.60	< 400
	2480MHz	DH3	1.632	261.12	< 400
		DH5	2.880	307.20	< 400
		2DH1	0.384	122.88	< 400
	2402MHz	2DH3	1.640	262.40	< 400
		2DH5	2.880	307.20	< 400
		2DH1	0.384	122.88	< 400
π/4 DQPSK	2441MHz	2DH3	1.638	262.08	< 400
		2DH5	2.880	307.20	< 400
		2DH1	0.384	122.88	< 400
	2480MHz	2DH3	1.640	262.40	< 400
		2DH5	2.880	307.20	< 400
		3DH1	0.384	122.88	< 400
	2402MHz	3DH3	1.632	261.12	< 400
		3DH5	2.892	308.48	< 400
		3DH1	0.384	122.88	< 400
8DPSK	2441MHz	3DH3	1.638	262.08	< 400
		3DH5	2.880	307.20	< 400
		3DH1	0.384	122.88	< 400
	2480MHz	3DH3	1.624	259.84	< 400
		3DH5	2.880	307.20	< 400

Remark:

- 1. The test period: T = 0.4 Second * 79 Channel = 31.6 s
- 2. Dwell time = time slot length * (Hopping rate / Number of hopping channels) * Period

Report No.: 1610280464RFC-1 The test plot as follows: GFSK_DH1 GFSK_DH3 2402 MHz Avg Type: Log-Ps Avg|Hold: 1/1 Ref Offset 1 dB Ref 11.00 dBn Fixed 01 0 More 1 of 2 2441 MHz Avg Type: Log-Par Avg|Hold: 1/1 rker 1 Δ 380.000 μs arker 1 Δ 1.63200 m Avg Type: Log-Par Avg|Hold: 1/1 Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Delt Delt Fixed 01 0 #VBW 1.0 MH #VBW 1.0 MH: 2480 MHz r 1 Δ 380.000 μs Avg Type: Log-Pur AvgiHeid: 1/1 ker 1 Δ 1.63200 ms Avg Type: Log-Pu AvgiHold: 1/1 Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Delt Delt Fixed

#VBW 1.0 MHz

#VBW 1.0 MHz

GFSK_DH5 π/4 DQPSK 2DH1 2402 MHz Avg Type: Log-Pr Avg|Hold: 1/1 Avg Type: Log-Pu Avg|Hold: 1/1 Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBn Fixed O 0 More 1 of 2 2441 MHz Avg Type: Log-Pur Avg|Hold: 1/1 arker 1 A 384.000 µs Avg Type: Log-Par Avg|Hold: 1/1 2.880 m 0.018 d Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Delt Delt Fixed 01 0 2480 MHz Avg Type: Log-P er 1 Δ 384.000 μs Avg Type: Log-Pa Avg|Hold: 1/1 Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Delt Delt Fixed Span (Sweep 12.00 ms (1001 #VBW 1.0 MHz #VBW 1.0 MHz

π/4 DQPSK 2DH3 π/4 DQPSK 2DH5 2402 MHz Avg Type: Log-Pwi Avg[Hold: 1/1 Avg Type: Log-Pu Avg|Hold: 1/1 Ref Offset 1 dB Ref 11.00 dBn Ref Offset 1 dB Ref 11.00 dBn Fixed O 0 More 1 of 2 2441 MHz Avg Type: Log-Pur Avg|Hold: 1/1 arker 1 A 2.88000 m Avg Type: Log-Par Avg|Hold: 1/1 1.638 m 0.213 d Ref Offset 1 dB Ref 11.00 dBn Ref Offset 1 dB Ref 11.00 dBm Delt Delt Fixed 01 0 Center 2.441000 Res BW 1.0 MHz 2480 MHz Avg Type: Log-Ps AvgiHeld: 1/1 Avg Type: Log-P Avg|Hold: 1/1 Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Delt Delt Fixed Span 0 H Sweep 12.00 ms (1001 pt #VBW 1.0 MHz #VBW 1.0 MHz

8DPSK_3DH1 8DPSK_3DH3 2402 MHz Avg Type: Log-Pw Avg[Hold: 1/1 Avg Type: Log-P Avg|Hold: 1/1 Fixed O 0 More 1 of 2 2441 MHz Avg Type: Log-Par Avg|Hold: 1/1 rker 1 A 384,000 u arker 1 A 1.63800 m Avg Type: Log-Pu Avg|Hold: 1/1 Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Delt Delt Fixed 01 0 2480 MHz Avg Type: Log-Pur AvgiHeid: 1/1 Avg Type: Log-Ps Avg|Hold: 1/1 : Fast --- Trig: Video Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Xzymen Delt Delt Fixed #VBW 1.0 MHz #VBW 1.0 MHz

Page 32 of 47 Report No.: 1610280464RFC-1

5.8 Conducted Out of Band Emission

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(d)

Test Method: DA 00-705

Limit: In any 100kHz bandwidth outside the frequency bands in which the spread

spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the

desired power.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable

from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:

a) Suitable frequency span

b) RBW = 100 KHz

c) VBW ≥ RBW

d) Sweep = auto

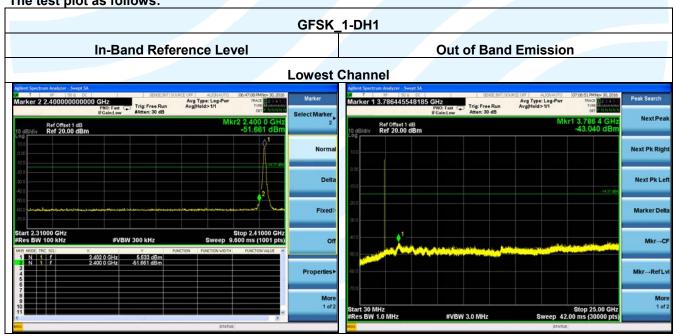
e) Detector function = peak

f) Trace = max hold

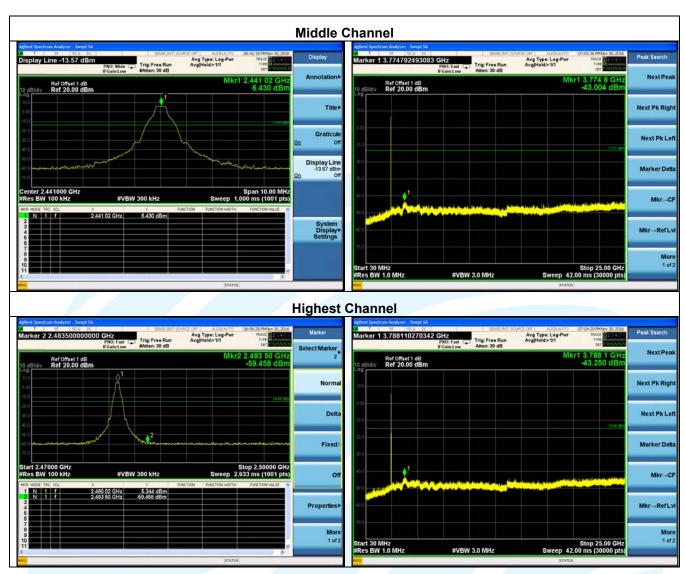
g) The band edges was measured and recorded.

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

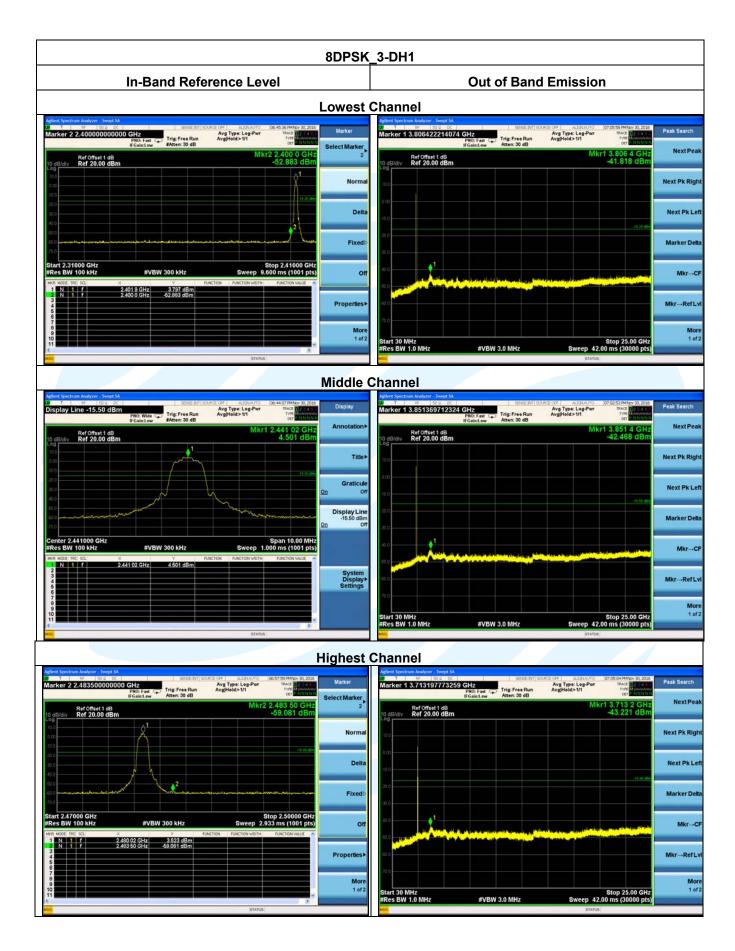

Test Setup: Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details


Test Mode: Hopping Frequencies Transmitter mode

Test Results: Pass

The test plot as follows:



Page 36 of 47 Report No.: 1610280464RFC-1

5.9 Radiated Spurious Emissions

Test Requirement: Test Method:

FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 DA 00-705

Limit:

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0	.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0	.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

The emissions were measured using the following resolution bandwidths:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Harmonic and Spurious emissions that were identified as coming from the EUT were checked in Peak and in Average Mode. The high frequency, which started from 10 to26.5GHz.

Peak measurements and average measurements are made. All emissions were determined to have a peak-to-average ratio of less than 20dB.

Test Procedure:

Below 1GHz test procedure as below:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Page 37 of 47

horizontal and vertical polarizations of the antenna are set to make the measurement.

Report No.: 1610280464RFC-1

- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f) Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel

Above 1GHz test procedure as below:

- g) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h) Test the EUT in the lowest channel, the Highest channel
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j) Repeat above procedures until all frequencies measured was complete.

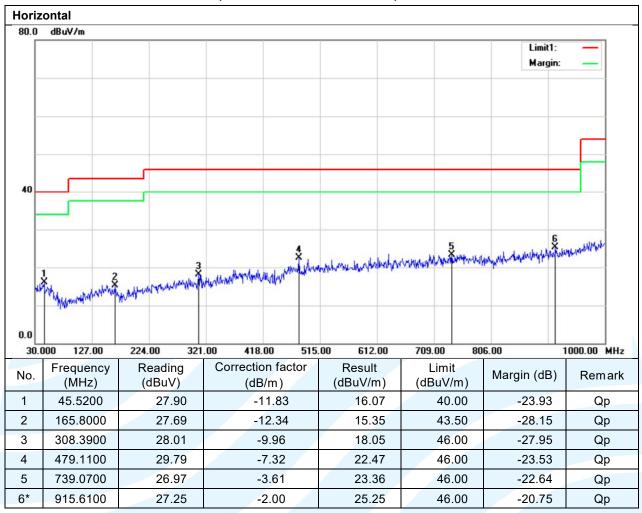
Test Setup: Refer to section 4.1.2 for details.

Instruments Used: Refer to section 3 for details

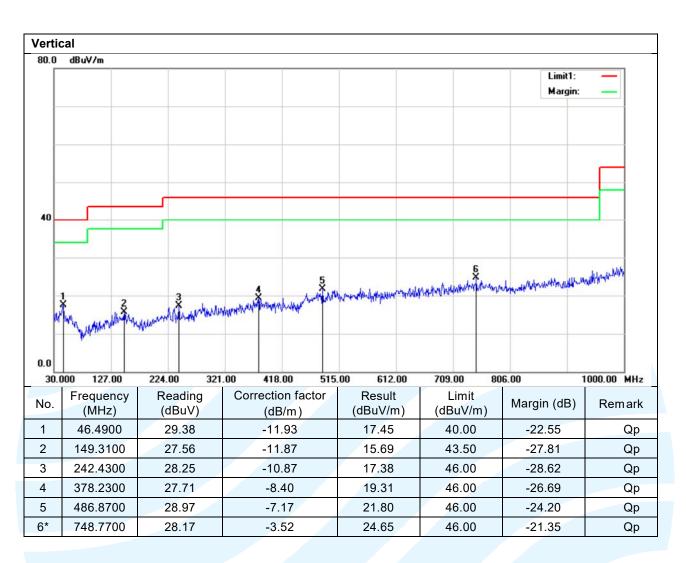
Test Mode: Transmitter mode

Test Results: Pass

5.9.1 Radiated Emission Test Data (9 KHz ~ 30MHz)


The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

5.9.2 Radiated Emission Test Data (Above 18 GHz)


The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

5.9.3 Radiated Emission Test Data (30MHz ~ 1 GHz Worst Case)

5.9.4 Radiated Emission Test Data (1GHz ~ 18GHz)

Tx_2402 MHz									
.No.	Frequency (MHz)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Polar.			
1	4804.0000	42.11	74	-31.89	Peak	Horizontal			
2	4804.0000	31.01	54	-22.99	Average	Horizontal			
3	7206.0000	46.32	74	-27.68	Peak	Horizontal			
4	7206.0000	34.57	54	-19.43	Average	Horizontal			
5	4804.0000	41.39	74	-32.61	Peak	Vertical			
6	4804.0000	30.25	54	-23.75	Average	Vertical			
7	7206.0000	45.46	74	-28.54	Peak	Vertical			
8	7206.0000	33.88	54	-20.12	Average	Vertical			

Tx_2441 MHz									
.No.	Frequency (MHz)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Polar.			
1	4882.0000	42.93	74	-31.07	Peak	Horizontal			
2	4882.0000	31.21	54	-22.79	Average	Horizontal			
3	7323.0000	46.42	74	-27.58	Peak	Horizontal			
4	7323.0000	34.82	54	-19.18	Average	Horizontal			
5	4882.0000	42.1	74	-31.9	Peak	Vertical			
6	4882.0000	30.21	54	-23.79	Average	Vertical			
7	7323.0000	45.69	74	-28.31	Peak	Vertical			
8	7323.0000	33.62	54	-20.38	Average	Vertical			

Tx_2480 MHz									
.No.	Frequency (MHz)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Polar.			
1	4960.0000	43.06	74	-30.94	Peak	Horizontal			
2	4960.0000	31.23	54	-22.77	Average	Horizontal			
3	7440.0000	46.62	74	-27.38	Peak	Horizontal			
4	7440.0000	34.2	54	-19.8	Average	Horizontal			
5	4960.0000	42.53	74	-31.47	Peak	Vertical			
6	4960.0000	30.66	54	-23.34	Average	Vertical			
7	7440.0000	44.7	74	-29.3	Peak	Vertical			
8	7440.0000	32.98	54	-21.02	Average	Vertical			

Remark:

Scan from 9 kHz to 25GHz, the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 41 of 47 Report No.: 1610280464RFC-1

5.10 Band Edge Measurements (Radiated)

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 DA 00-705

Limit:

DA 00-100							
Frequency	Limit (dBµV/m @3m)	Remark					
30MHz-88MHz	40.0	Quasi-peak Value					
88MHz-216MHz	43.5 Quasi-peak						
216MHz-960MHz	46.0	Quasi-peak Value					
960MHz-1GHz	54.0	Quasi-peak Value					
Above 1GHz	54.0	Average Value					
	74.0	Peak Value					

Test Procedure:

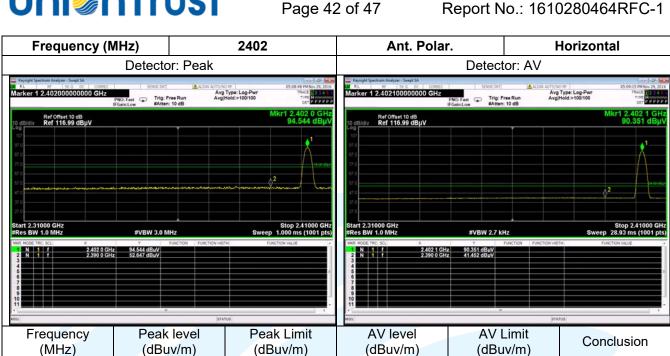
Radiated band edge measurements at 2390MHz and 2483MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

- 1. Use radiated spurious emission test procedure described in 5.9 clause. The transmitter output (antenna port) was connected to the test receiver.
- 2. Set the PK and AV limit line.
- 3. Record the fundamental emission and emissions out of the band-edge.
- 4. Determine band-edge compliance as required.

Test Setup: Refer to section 4.1.2 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

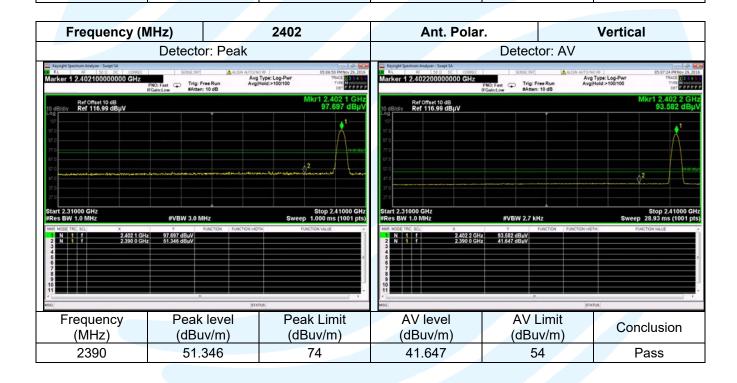

Test Results: Pass

Test Data:

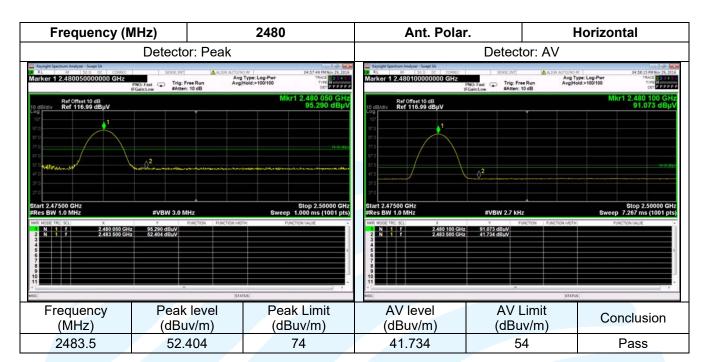
2390

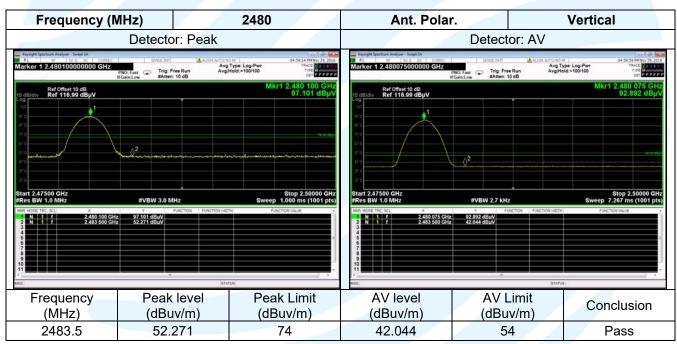
52.647

Page 42 of 47



41.452


54


Pass

74

Page 44 of 47 Report No.: 1610280464RFC-1

5.11 Conducted Emissions

Test Requirement: 47 CFR Part 15C Section 15.207

Test Method: ANSI C63.10 **Test Frequency Range:** 150KHz to 30MHz

Limit:

Test Procedure:

Fraguency range (MHz)	Limit (dBμV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Test frequency range :150KHz-30MHz

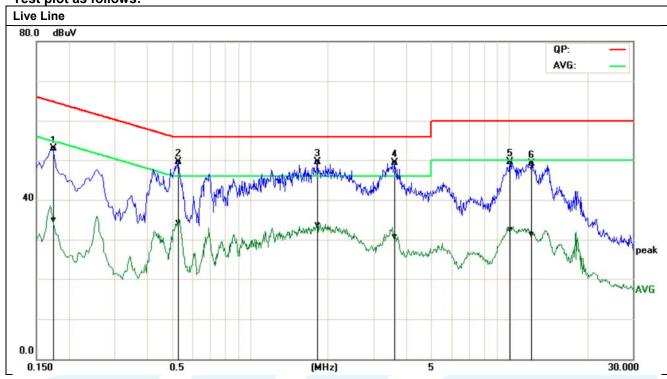
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Test Setup: Refer to section 4.1.3 for details.

Instruments Used: Refer to section 3 for details

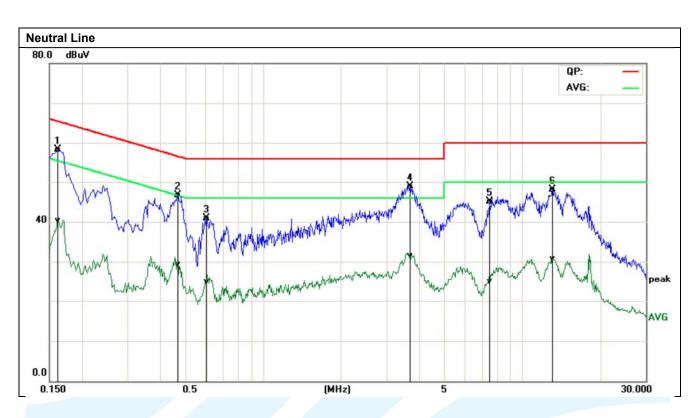
Test Mode: Transmitter mode

Test Results: Pass


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Test plot as follows:

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin		Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1740	33.30	15.31	19.58	52.88	34.89	64.76	54.77	-11.88	-19.88	Pass
2P	0.5299	29.88	14.70	19.65	49.53	34.35	56.00	46.00	-6.47	-11.65	Pass
3*	1.8220	29.84	13.91	19.71	49.55	33.62	56.00	46.00	-6.45	-12.38	Pass
4P	3.6340	29.63	11.08	19.68	49.31	30.76	56.00	46.00	-6.69	-15.24	Pass
5P	10.1220	29.39	12.41	20.14	49.53	32.55	60.00	50.00	-10.47	-17.45	Pass
6P	12.2100	28.97	11.34	20.04	49.01	31.38	60.00	50.00	-10.99	-18.62	Pass

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak Iimit	Average limit	QuasiPeak margin		Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1620	38.54	20.61	19.72	58.26	40.33	65.36	55.36	-7.10	-15.03	Pass
2P	0.4700	27.12	9.63	19.64	46.76	29.27	56.51	46.51	-9.75	-17.24	Pass
3P	0.6060	21.14	5.29	19.67	40.81	24.96	56.00	46.00	-15.19	-21.04	Pass
4*	3.7020	29.26	11.76	19.73	48.99	31.49	56.00	46.00	-7.01	-14.51	Pass
5P	7.4940	25.30	5.11	19.80	45.10	24.91	60.00	50.00	-14.90	-25.09	Pass
6P	13.1220	28.31	10.84	19.88	48.19	30.72	60.00	50.00	-11.81	-19.28	Pass

Page 47 of 47 Report No.: 1610280464RFC-1

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photographs.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.