

FCC TEST REPORT (BLUETOOTH)

Report No.: RF160601W004-1

FCC ID: 2AFZZ-RS6031

Test Model: 2016031

Received Date: Jun. 01, 2016

Test Date: Jun. 02, 2016 ~ Jun. 28, 2016

Issued Date: Jun. 29, 2016

Applicant: Xiaomi Communications Co., Ltd.

Address: The Rainbow City of China Resources, NO.68, Qinghe Middle

Street, Haidian District, Beijing, China

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd.,

Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Cau Vil., Lin Kou Dist., New Taipei

City, Taiwan (R.O.C.)

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen, Kwei Shan Hsiang,

Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

TABLE OF CONTENTS

R	RELEASE CONTROL RECORD4				
1	C	Certificate of Conformity	5		
2	S	Summary of Test Results	6		
	2.1	Measurement Uncertainty	6		
3	G	General Information	7		
	3.1	General Description of EUT	7		
	3.2	Description of Test Modes			
	3.2.1	Test Mode Applicability and Tested Channel Detail			
	3.3 3.3.1	Description of Support Units			
	3.4	General Description of Applied Standards			
4		est Types and Results(For BT EDR)			
_	4 .1	Radiated Emission and Bandedge Measurement			
		Limits of Radiated Emission and Bandedge Measurement	12		
		Test Instruments			
		Test Procedures			
	4.1.4	Deviation from Test Standard	14		
		Test Set Up			
	4.1.6	EUT Operating Conditions	15		
		Test Results			
	4.2	Conducted Emission Measurement			
		Limits of Conducted Emission Measurement			
		Test Instruments			
		Test Procedures Deviation From Test Standard			
		Test Setup			
		EUT Operating Condition			
		Test Results			
	4.3	Number of Hopping Frequency Used			
	4.3.1	Limits of Hopping Frequency Used Measurement			
		Test Setup			
		Test Instruments			
		Test Procedure			
		Deviation fromTest Standard			
	4.3.6	Test Results Dwell Time on Each Channel			
		Limits of Dwell Time on Each Channel Measurement			
		Test Setup			
		Test Instruments			
		Test Procedures			
	4.4.5	Deviation from Test Standard	27		
	4.4.6	Test Results			
	4.5	Channel Bandwidth			
		Limits of Channel Bandwidth Measurement			
		Test Setup			
		Test Procedure			
		Test Procedure Deviation from Test Standard			
		EUT Operating Condition			
		Test Results			
	4.6	Hopping Channel Separation			
		Limits of Hopping Channel Separation Measurement			
		Test Setup			

Α	ppend	ix – Information on the Testing Laboratories	. 41
5	P	ictures of Test Arrangements	. 40
	4.8.6	Test Results	37
		Eut Operating Condition	
		Deviation From Test Standard	
		Test Procedure	
		Test Instruments	
		Limits Of Conducted Out Of Band Emission Measurement	
		Conducted Out of Band Emission Measurement	
		Test Results	
		EUT Operating Condition	
		Deviation fromTest Standard	
		Test Procedure	
		Test Instruments	
	4.7.2	Test Setup	. 35
	4.7.1	Limits of Maximum Output Power Measurement	35
	4.7	Maximum Output Power	
	4.6.6	Test Results	33
	4.6.5	Deviation From Test Standard	32
	4.6.4	Test Procedure	32
	4.6.3	Test Instruments	32

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF160601W004-1	Original release	Jun. 29, 2016

1 Certificate of Conformity

Product: Mobile Phone

Brand: MI

Test Model: 2016031

Sample Status: Identical Prototype

Applicant: Xiaomi Communications Co., Ltd.

Test Date: Jun. 02, 2016 ~ Jun. 28, 2016

FCC Part 15, Subpart C (Section 15.247)

Standards: ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Amy	, Date:	Jun. 29, 2016	
	Amyee Qian / Engineer			
	2 tilling			
Approved by :		, Date:	Jun. 29, 2016	

William Chung / Manager

Report No.: RF160601W004-1

2 Summary of Test Results

FCC Part 15, Subpart C (SECTION 15.247) (BT EDR)							
FCC Clause	Test Item	Result	Remarks				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is 6.27dB at 12.232000MHz.				
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.				
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.				
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.				
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.				
15.205 & 209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -6.58dB at 51.34MHz.				
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	No antenna connector is used.				

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	9kHz ~ 30MHz	2.44 dB
	9KHZ ~ 30MHZ	2.74 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.93 dB
	200MHz ~1000MHz	2.95 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.26 dB
Naulateu Lillissions above 1 GHz	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 General Information

3.1 General Description of EUT

Product	Mobile Phone				
Brand	rand MI				
Test Model	2016031				
Power Supply Rating	5.0Vdc (adapter or host equipment) 3.85Vdc (battery)				
Modulation Technology	BT EDR	FHSS			
Modulation Type	BT EDR GFSK, 8DPSK, π/4 DQPSK				
Transfer Rate	BT EDR 1/2/3 Mbps				
Operating Frequency	2402MHz ~ 2480MHz				
Number of Channel	BT EDR 79				
Output Power	BT EDR 17.783mW				
Antenna Type	PIFA Antenna with -1.02dBi gain				
Accessory Device	Refer to note as below				
Data Cable Supplied	USB cable: non-shielded, detachable, 1.2m				

Note:

- 1. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.
- 2. The EUT was powered by the following adapter:

ADAPTER				
BRAND:	MI			
MODEL:	MDY-08-EF			
INPUT:	AC 100-240V, 500mA			
OUTPUT:	DC 5V, 2000mA			

3. The EUT matched the following USB cables:

USB CABLE 1	_
BRAND:	MI
MODEL:	KLC-2100
SIGNAL LINE:	1.2 METER

USB CABLE 2					
BRAND:	MI				
MODEL:	RS418D010(RICHSTAR)				
SIGNAL LINE:	1.2 METER				

4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

3.2 Description of Test Modes

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

BT EDR

EUT CONFIGURE		APPLICA	ABLE TO		DESCRIPTION
MODE	RE≥1G	RE<1G	PLC	APCM	BESSIA HON
-	V	V	V	√	-

Where

RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane.

2. "-" means no effect.

Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL			PACKET TYPE
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED MODULA CHANNEL TECHNOL		MODULATION TYPE	PACKET TYPE	
1	0 to 78	78	FHSS	GFSK	DH5	

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

CON	EUT IFIGURE 10DE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	
	-	0 to 78	78	FHSS	8DPSK	DH5	

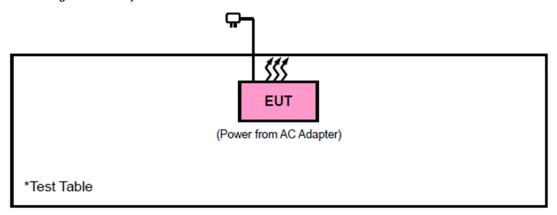
Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL			MODULATION TYPE	PACKET TYPE	
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5	
-	0 to 78	0, 39, 78	FHSS	π /4 DQPSK	DH5	
-	0 to 78	0, 39, 78	FHSS	8DPSK	DH5	

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Alex Chen
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Alex Chen
PLC	25deg. C, 68%RH	120Vac, 60Hz	Yuqiang Yin
APCM	21deg. C, 60%RH	120Vac, 60Hz	Wenliang Wu


3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	DC source	LONG WEI	PS-6403D	010934269	N/A
2	PC	HP	A6608CN	3CR83825X3	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS						
1	DC Line: Unshielded, Detachable 1.0m						
2	AC Line: Unshielded, Detachable 1.5m						

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) FCC Public Notice DA 00-705 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Verification). The test report has been issued separately.

4 Test Types and Results(For BT EDR)

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR7	101494	Apr. 05,16	Apr. 04,17
Bilog Antenna	Teseq	CBL 6111D	30643	Jul. 16, 15	Jul. 15, 16
Loop Antenna	Daze	ZN30900A	0708	Dec. 30, 15	Dec. 29, 16
Horn Antenna (1GHz -18GHz)	ETS -Lindgren	3117	00062558	May 30, 14	May 29, 17
Amplifier	Burgeon	BPA-530	100220	Apr. 05,16	Apr. 04,17
Pre-Amplifier (18GHz-40GHz)	EMCI	EMC 184045	980102	Nov. 20,15	Nov. 19,17
Pre-Amplifier	HP	8449B	3008A00409	Apr. 25,15	Apr. 24,17
GPS Generator+ Antenna	TOJOIN	GNSS-5000A	E1-010119	Aug. 08, 14	Aug. 07, 16
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	NSEMC003	Mar. 12,16	Mar. 11,18
Test Software	ADT	ADT_Radiated _V7.6.15.9.2	N/A	N/A	N/A

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

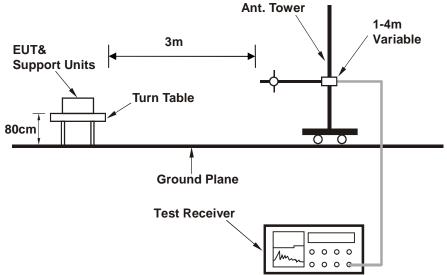
- 2. The calibration interval of the loop antenna is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in HwaYa Chamber 4.
- 4. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 5. The FCC Site Registration No. is 460141.
- 6. The IC Site Registration No. is IC7450F-4.

4.1.3 Test Procedures

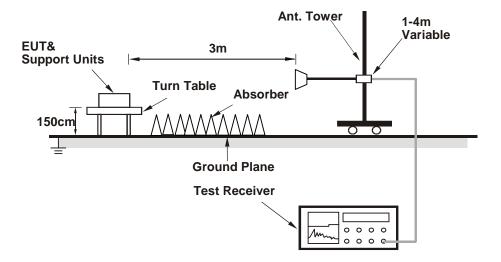
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. For Average measurement, due to the DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB, therefore Average value = peak reading + 20log(duty cycle).
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4	Deviation	from	Test	Standar
4.1.4	Deviation	110111	1621	Stariuari

No deviation.



4.1.5 Test Set Up

<Frequency Range below 1GHz>

<Frequency Range above 1GHz>

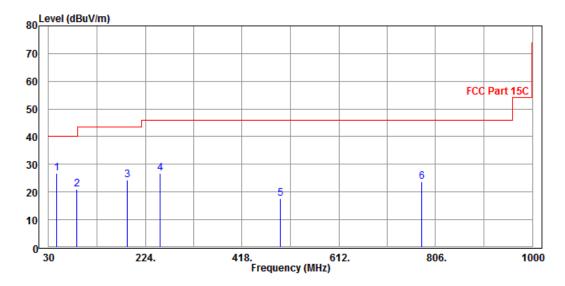
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

BELOW 1GHz WORST-CASE DATA:

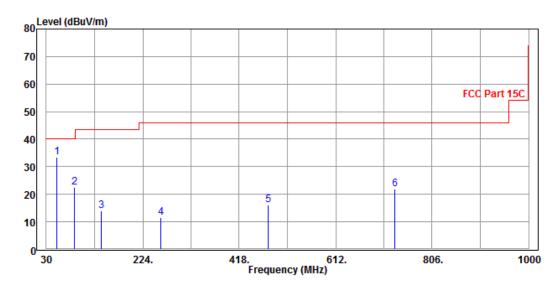

9 KHz – 30 KHz data: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

30 MHz – 1GHz data:

CHANNEL	TX Channel 0	DETECTOR FUNCTION	Ougoi Pook (OP)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK	
46.49	26.71	55.30	40.00	-13.29	7.80	1.03	37.42	101	180	QP	
87.23	20.99	49.80	40.00	-19.01	6.82	1.44	37.07	101	180	QP	
188.11	24.43	48.98	43.50	-19.07	9.98	2.10	36.63	101	180	QP	
254.07	26.83	48.43	46.00	-19.17	12.45	2.47	36.52	101	180	QP	
495.60	17.74	32.89	46.00	-28.26	18.35	3.45	36.95	101	180	QP	
778.84	23.81	33.75	46.00	-22.19	23.02	4.60	37.56	101	180	QP	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



CHANNEL	TX Channel 0	DETECTOR FUNCTION	Oversi Book (OB)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
51.34	33.42	63.22	40.00	-6.58	6.49	1.08	37.37	101	180	QP
86.26	22.36	51.22	40.00	-17.64	6.79	1.43	37.08	101	180	QP
140.58	14.09	41.04	43.50	-29.41	8.07	1.82	36.84	101	180	QP
259.89	11.68	33.18	46.00	-34.32	12.52	2.50	36.52	101	180	QP
476.20	16.02	31.42	46.00	-29.98	18.11	3.39	36.90	101	180	QP
731.31	22.04	32.00	46.00	-23.96	23.07	4.41	37.44	101	180	QP

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

ABOVE 1GHz WORST-CASE DATA:

GFSK DH5

CHANNEL	TX Channel 0	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)

	A	NTENN	A POLAF	RITY & TE	ST DISTA	NCE: H	ORIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	33.82	41.69	54.00	-20.18	32.29	8.15	48.31	150	226	Average
2390	57.92	65.79	74.00	-16.08	32.29	8.15	48.31	150	208	Peak
2402	100.77	108.61			32.30	8.17	48.31	150	120	Average
2402	107.74	115.58			32.30	8.17	48.31	150	100	Peak
2483.5	35.31	42.91	54.00	-18.69	32.38	8.32	48.30	150	100	Average
2483.5	59.35	66.95	74.00	-14.65	32.38	8.32	48.30	150	100	Peak
		ANTEN	INA POLA	ARITY & 1	EST DIST	ANCE: \	VERTICA	L AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	35.31	43.18	54.00	-18.69	32.29	8.15	48.31	135	285	Average
2390	52.23	60.10	74.00	-21.77	32.29	8.15	48.31	135	285	Peak
2402	96.81	104.65			32.30	8.17	48.31	135	285	Average
2402	103.64	111.48			32.30	8.17	48.31	135	285	Peak
2483.5	34.25	41.85	54.00	-19.75	32.38	8.32	48.30	135	285	Average
2483.5	55.04	62.64	74.00	-18.96	32.38	8.32	48.30	135	285	Peak

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level Limit value.
- 2. 2402MHz: Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)

	Δ	NTENN	A POLAF	RITY & TE	ST DISTA	NCE: H	ORIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	33.84	41.71	54.00	-20.16	32.29	8.15	48.31	100	360	Average
2390	59.51	67.38	74.00	-14.49	32.29	8.15	48.31	100	360	Peak
2441	98.71	106.44			32.34	8.24	48.31	100	360	Average
2441	105.89	113.62			32.34	8.24	48.31	100	360	Peak
2483.5	35.65	43.25	54.00	-18.35	32.38	8.32	48.30	100	360	Average
2483.5	60.08	67.68	74.00	-13.92	32.38	8.32	48.30	100	360	Peak
		ANTEN	NA POLA	ARITY & T	TEST DIST	ANCE: \	VERTICA	L AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	35.07	42.94	54.00	-18.93	32.29	8.15	48.31	132	281	Average
2390	48.94	56.81	74.00	-25.06	32.29	8.15	48.31	132	281	Peak
2441	94.07	101.80			32.34	8.24	48.31	132	281	Average
2441	100.45	108.18			32.34	8.24	48.31	132	281	Peak
2483.5	34.49	42.09	54.00	-19.51	32.38	8.32	48.30	132	281	Average
2483.5	54.74	62.34	74.00	-19.26	32.38	8.32	48.30	132	281	Peak

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level Limit value.
- 2. 2441MHz: Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)

	Α	NTENN	A POLAF	RITY & TE	ST DISTA	NCE: HO	ORIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	34.02	41.89	54.00	-19.98	32.29	8.15	48.31	100	358	Average
2390	58.67	66.54	74.00	-15.33	32.29	8.15	48.31	100	358	Peak
2480	95.80	103.41			32.38	8.31	48.30	100	358	Average
2480	102.50	110.11			32.38	8.31	48.30	100	358	Peak
2483.5	36.17	43.77	54.00	-17.83	32.38	8.32	48.30	100	358	Average
2483.5	62.75	70.35	74.00	-11.25	32.38	8.32	48.30	100	358	Peak
		ANTEN	NA POLA	ARITY & T	TEST DIST	ANCE: \	VERTICA	L AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	34.14	42.01	54.00	-19.86	32.29	8.15	48.31	125	290	Average
2390	50.62	58.49	74.00	-23.38	32.29	8.15	48.31	125	290	Peak
2480	92.20	99.81			32.38	8.31	48.30	125	290	Average
2480	99.26	106.87			32.38	8.31	48.30	125	290	Peak
2483.5	35.09	42.69	54.00	-18.91	32.38	8.32	48.30	125	290	Average
	54.09	61.69	74.00	-19.91	32.38	8.32	48.30	125	290	Peak

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level Limit value.
- 2. 2480MHz: Fundamental frequency.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

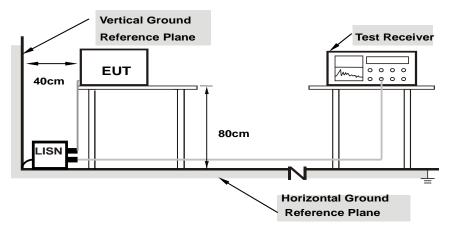
4.2.2 Test Instruments

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCS30	100340	May 11,15	May 10,17
Artificial Mains Network	Rohde&Schwarz	ENV216	101173	Mar. 04,16	Mar. 03,17
Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	100317	Apr. 05,16	Apr. 04,17
Voltage probe	SCHWARZBECK	ITK 9421	TK 9421-176	Jan. 08,16	Jan. 07,17
Test software	ADT	ADT_Cond_V7.3.7	N/A	N/A	N/A

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation From Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.

4.2.7 Test Results

CONDUCTED WORST-CASE DATA

TEST VOLTAGE	DC 5.0V From Adapter Input 230 Vac, 50 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	24deg. C, 55RH	TESTED BY	Eric

Frequency (MHz)	QuasiPeak (dB¦ÌV)	CAverage (dB¦ÌV)	Limit (dB¦ÌV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		21.47	56.00	34.53	L	ON	9.6
0.150000	36.89		66.00	29.11	L	ON	9.6
0.462000		25.71	46.66	20.95	L	ON	9.7
0.462000	35.31		56.66	21.35	L	ON	9.7
0.540000		35.98	46.00	10.02	L	ON	9.7
0.540000	43.63		56.00	12.37	L	ON	9.7
0.832000		26.95	46.00	19.05	L	ON	9.7
0.832000	38.31		56.00	17.69	L	ON	9.7
12.084000		38.47	50.00	11.53	L	ON	9.9
12.084000	51.31		60.00	8.69	L	ON	9.9
19.304000		31.94	50.00	18.06	L	ON	9.9
19.304000	40.61		60.00	19.39	L	ON	9.9

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Full Spectrum

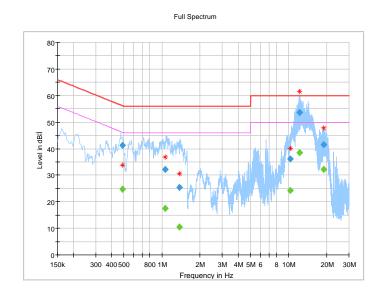
80

70

60

40

150k 300 400500 800 1M 2M 3M 4M 5M 6 8 10M 20M 30M Frequency in Hz

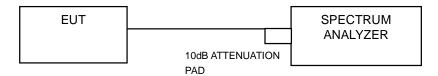


TEST VOLTAGE	DC 5.0V From Adapter Input 230 Vac, 50 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	24deg. C, 55RH	TESTED BY	Eric

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.486000		24.75	46.24	21.49	N	ON	10.1
0.486000	41.37		56.24	14.87	N	ON	10.1
1.060000		17.60	46.00	28.40	N	ON	9.9
1.060000	32.28		56.00	23.72	N	ON	9.9
1.380000		10.55	46.00	35.45	N	ON	9.9
1.380000	25.31		56.00	30.69	N	ON	9.9
10.300000		24.14	50.00	25.86	N	ON	9.9
10.300000	36.17		60.00	23.83	N	ON	9.9
12.232000		38.37	50.00	11.63	N	ON	9.9
12.232000	53.73		60.00	6.27	N	ON	9.9
18.924000		32.29	50.00	17.71	N	ON	10.0
18.924000	41.43		60.00	18.57	N	ON	10.0

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

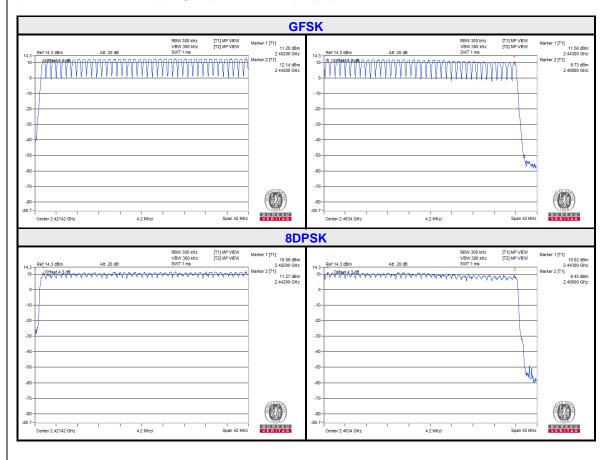
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer (10Hz–40GHz)	Rohde&Schwarz	FSV40	101003	Apr. 05,16	Apr. 04,17
Power Meter	Anritsu	ML2495A	1139001	Feb.19,16	Feb. 18,17
Power Sensor	Anritsu	MA2411B	1126068	Feb.19,16	Feb. 18,17
Power Sensor	Keysight	U2021XA	MY55060016	May 27,15	May 26,17
Power Sensor	Keysight	U2021XA	MY55060018	May 27,15	May 26,17
Digital Multimeter	FLUKE	15B	A1220010DG	Oct. 12, 15	Oct.11, 16

NOTE:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in RF Oven room.

4.3.4 Test Procedure

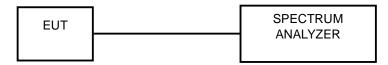
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.


4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.



4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

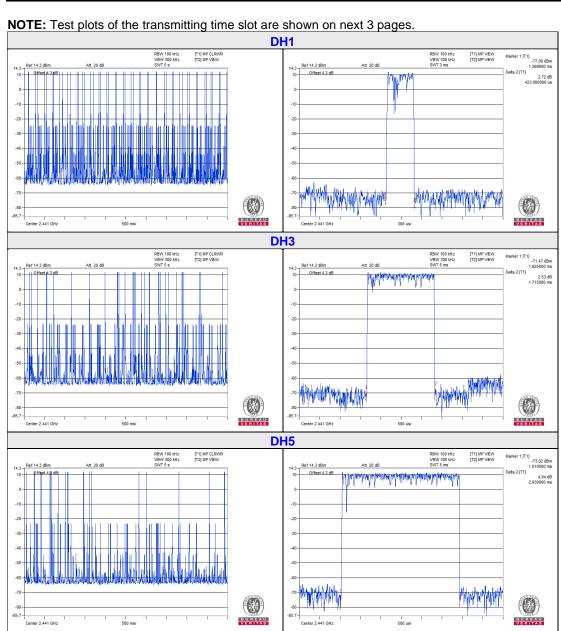
4.4.3 Test Instruments

Refer to section 4.3.3 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

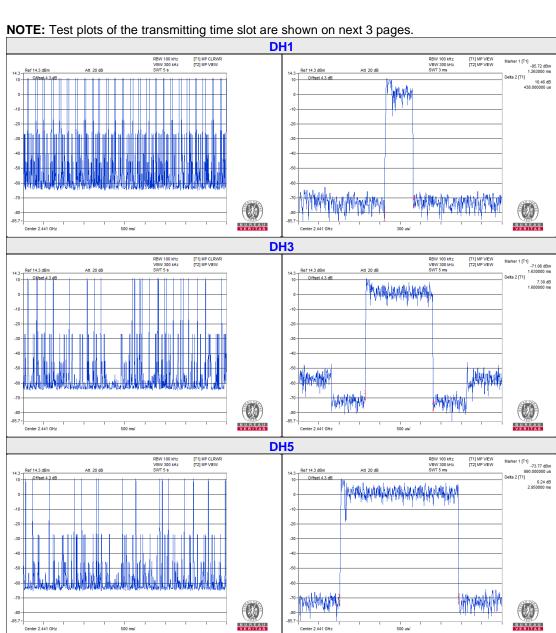
4.4.5 Deviation from Test Standard


No deviation.

4.4.6 Test Results

GFSK

	Number		ber of tra			Length of	Result	Limit (msec)	PASS / FAIL
Mode	Hopping Channel	period (sec)	sweep time (sec)	times in a sweep	times in a period	transmission time (msec)	(msec)		
DH1	79	31.6	5	48	303.36	0.423	128.32	400	PASS
DH3	79	31.6	5	26	164.32	1.715	281.81	400	PASS
DH5	79	31.6	5	16	101.12	2.93	296.28	400	PASS



Report No.: RF160601W004-1

8DPSK

Mode	Number of Hopping Channel		iod time in a in a		Length of transmission time (msec)	Result (msec)	Limit (msec)	PASS / FAIL	
DH1	79	31.6	5	51	322.32	0.438	141.18	400	PASS
DH3	79	31.6	5	25	158	1.68	265.44	400	PASS
DH5	79	31.6	5	16	101.12	2.95	298.3	400	PASS



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

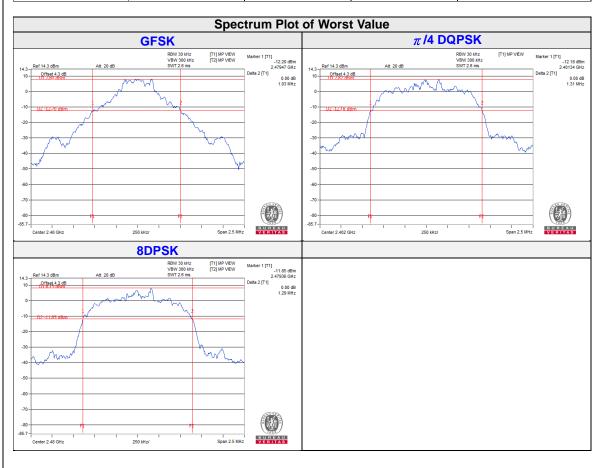
Refer to section 4.3.3 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)					
Gilainiei	rrequeries (mriz)	GFSK	π/4 DQPSK	8DPSK			
0	2402	1.01	1.31	1.29			
39	2441	0.94	1.28	1.29			
78	2480	1.03	1.28	1.29			

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

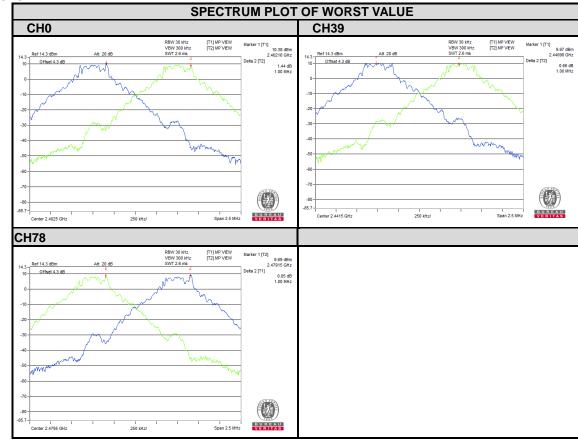
4.6.3 Test Instruments

Refer to section 4.3.3 to get information of above instrument.

4.6.4 Test Procedure

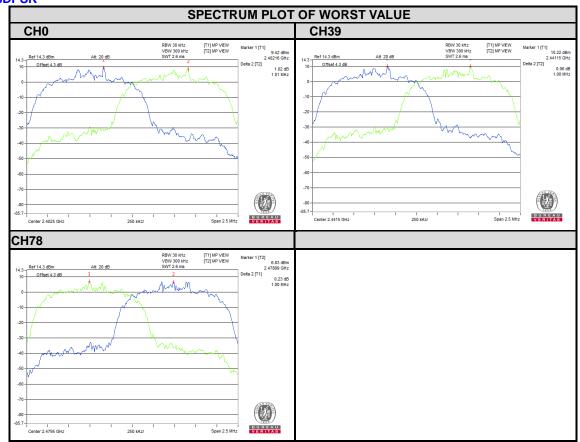
Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.
- 4.6.5 Deviation From Test Standard No deviation.

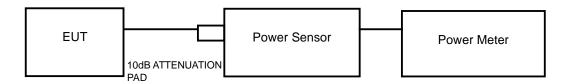


4.6.6 Test Results

Channel	Frequency (MHz) Adjacent Channel Separation (MHz)		20dB Bandwidth (MHz)		Minimum Limit (MHz)		Pass / Fail	
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.01	1.01	1.29	0.67	0.86	Pass
39	2441	1.00	1.00	0.94	1.29	0.63	0.86	Pass
78	2480	1.00	1.00	1.03	1.29	0.69	0.86	Pass


NOTE: The minimum limit is two-third 20dB bandwidth.

GFSK



4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.3.3 to get information of above instrument.

4.7.4 Test Procedure

A power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

4.7.5 Deviation fromTest Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

Channel	Frequency (MHZ)	Oı	Output Power (mW)		Output Power (dBm)			Power Limit (mW)	Pass / Fail
	(141112)	GFSK	π/4 DQPSK	8DPSK	GFSK	π/4 DQPSK	8DPSK	L (v)	
0	2402	13.836	10.715	10.889	11.41	10.30	10.37	125	Pass
39	2441	17.783	13.996	14.125	12.50	11.46	11.50	125	Pass
78	2480	10.495	8.147	8.204	10.21	9.11	9.14	125	Pass

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits Of Conducted Out Of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 Test Instruments

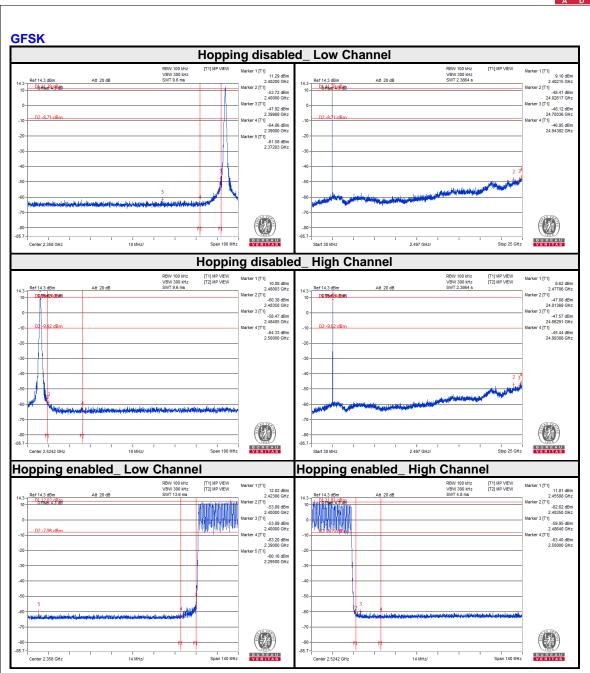
Refer to section 4.3.3 to get information of above instrument.

4.8.3 Test Procedure

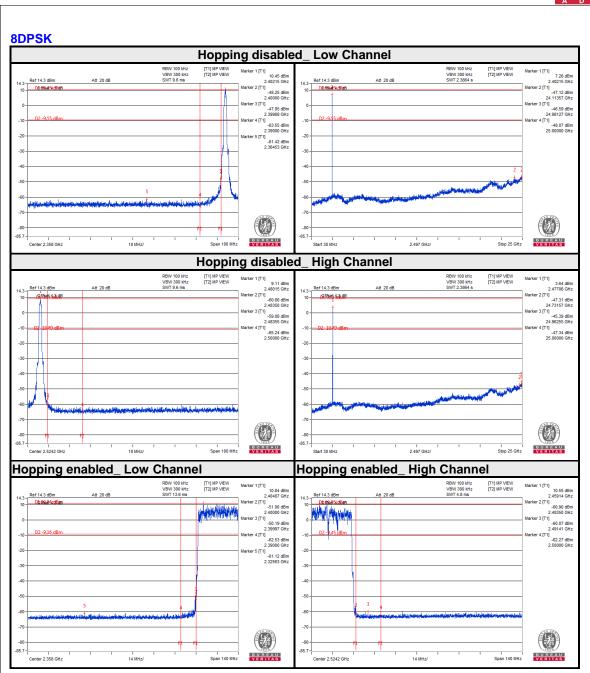
The transmitter output was connected to the spectrum analyzer via a low loss cable. of Spectrum Analyzer was set RBW to 100 kHz and VBW to 100 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

4.8.4 Deviation From Test Standard

No deviation.


4.8.5 Eut Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5	Pictures of Test Arrangements
Pl	ease refer to the attached file (Test Setup Photo).

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF Lab/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26051924 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---