

UnienTrust

Remark: All tested is under the condition of the main wave is filtered out.

5.8FIELD STRENGTH OF SPURIOUS RADIATION

Test Requirement: LTE Band 4: FCC 47 CFR Part 27.53(h)(1)
LTE Band 7 \& Band 38: FCC 47 CFR Part 27.53(m)(4)
Test Method:
ANSI/TIA-603-E-2016 \& KDB 971168 D01v03
Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
$0.009 \mathrm{MHz}-30 \mathrm{MHz}$	Peak	10 kHz	30 KHz	Peak
$30 \mathrm{MHz}-1 \mathrm{GHz}$	Quasi-peak	100 kHz	300 KHz	Peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak

Limits:

FCC 47 CFR Part 27.53(h)(1): Except as otherwise specified below, for operations in the $1695-1710 \mathrm{MHz}$, $1710-1755 \mathrm{MHz}, 1755-1780 \mathrm{MHz}, 1915-1920 \mathrm{MHz}, 1995-2000 \mathrm{MHz}, 2000-2020 \mathrm{MHz}, 2110-2155 \mathrm{MHz}, 2155-$ 2180 MHz , and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43+10 \log 10(P) d B$. The emission limit equal to -13 dBm .

FCC 47 CFR Part 27.53(h)(3): Measurement procedure. (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
(ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
(iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

FCC 47 CFR Part 27.53(m)(4): For mobile digital stations, the attenuation factor shall be not less than $40+10$ $\log (P) d B$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43+10 \log$ $(P) d B$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55+10 \log (P)$ dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph $(\mathrm{m})(6)$ of this section. In addition, the attenuation factor shall not be less that $43+10 \log (P) \mathrm{dB}$ on all frequencies between 2490.5 MHz and 2496 MHz and 55 $+10 \log (P) \mathrm{dB}$ at or below 2490.5 MHz . Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

FCC 47 CFR Part 27.53(m)(6): Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is $2495-2496 \mathrm{MHz}$, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or 1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band $2495-2496 \mathrm{MHz}$). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules.

Test Setup:
 Refer to section 4.2.1 for details.
 Test Procedures:

1. Scan up to 10th harmonic, find the maximum radiation frequency to measure.
2. The technique used to find the Spurious Emissions of the transmitter was the antenna substitution method. Substitution method was performed to determine the actual ERP/EIRP emission levels of the EUT.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

Test procedure as below:

1) The EUT was powered $O N$ and placed on a $0.8 / 1.5 \mathrm{~m}$ high table at a 3 meter semi/fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. Modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1 m to 4 m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
7) The output power into the substitution antenna was then measured.
8) Steps 6) and 7) were repeated with both antennas polarized.
9) Calculate power in dBm by the following formula:

$$
\begin{aligned}
& \mathrm{ERP}(\mathrm{dBm})=\mathrm{Pg}(\mathrm{dBm})-\text { cable loss }(\mathrm{dB})+\text { antenna gain }(\mathrm{dBd}) \\
& \mathrm{EIRP}(\mathrm{dBm})=\mathrm{Pg}(\mathrm{dBm})-\text { cable loss }(\mathrm{dB})+\text { antenna gain }(\mathrm{dBi}) \\
& E \operatorname{EIRP}=E R P+2.15 \mathrm{~dB}
\end{aligned}
$$

where:
Pg is the generator output power into the substitution antenna.
10) Test the EUT in the lowest channel, the middle channel the Highest channel
11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, and found the Y axis positioning which it is worse case.
12) Repeat above procedures until all frequencies measured was complete.

Equipment Used: Refer to section 3 for details.
Test Result: Pass
The measurement data as follows:

Remark:

1) The disturbance above 18 GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20 dB below the limit need not be reported.
2) All tested is under the condition of the main wave is filtered out.

5.9FREQUENCY STABILITY

Test Requirement:
Test Method:
Limits:
Test Setup:

Test Procedures:

a) Temp. $=-30^{\circ}$ to $+50^{\circ} \mathrm{C}$
b) Voltage =low voltage, 3.65 Vdc, Normal, 3.85 Vdc and High voltage, 4.40 Vdc.
2) Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to $20^{\circ} \mathrm{C}$ and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until $+50^{\circ} \mathrm{C}$ is reached.
3) Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case).
Equipment Used: Refer to section 3 for details.
Test Result:
Pass

Modulation	Channel/ Frequency	Voltage	Temperature	Deviation	Deviation	Limit	Pass/ Fail
	(MHz)	(Vdc)	(${ }^{\text {C) }}$	(Hz)	(ppm)	(ppm)	
LTE Band $4 / 20 \mathrm{MHz} /$ Full RB							
QPSK	$\begin{array}{r} 20175 \text { / } \\ 1732.5 \end{array}$	VL	TN	19	0.0110	Note 1	Pass
		VN		18	0.0104		Pass
		VH		-16	-0.0092		Pass
		VN	50	19	0.0110		Pass
			40	16	0.0092		Pass
			30	15	0.0087		Pass
			20	14	0.0081		Pass
			10	-13	-0.0075		Pass
			0	-20	-0.0115		Pass
			-10	-18	-0.0104		Pass
			-20	17	0.0098		Pass
			-30	18	0.0104		Pass

Modulation	Channel/ Frequency	Voltage	Temperature	Deviation	Deviation	Limit	Pass/ Fail
	(MHz)	(Vdc)	(${ }^{\text {C) }}$	(Hz)	(ppm)	(ppm)	
LTE Band 7 / 20MHz / Full RB							
QPSK	21100 / 2535	VL	TN	13	0.0051	Note 1	Pass
		VN		11	0.0043		Pass
		VH		-15	-0.0059		Pass
		VN	50	13	0.0051		Pass
			40	18	0.0071		Pass
			30	11	0.0043		Pass
			20	-14	-0.0055		Pass
			10	-15	-0.0059		Pass
			0	14	0.0055		Pass
			-10	-11	-0.0043		Pass
			-20	-10	-0.0039		Pass
			-30	17	0.0067		Pass

Modulation	Channel/ Frequency	Voltage	Temperature	Deviation	Deviation	Limit	Pass/ Fail
	(MHz)	(Vdc)	(${ }^{\text {C) }}$	(Hz)	(ppm)	(ppm)	
LTE Band 38 / 20MHz / Full RB							
QPSK	$38000 / 2595$	VL	TN	-18	-0.0069	Note 1	Pass
		VN		-17	-0.0066		Pass
		VH		-17	-0.0066		Pass
		VN	50	16	0.0062		Pass
			40	-15	-0.0058		Pass
			30	-19	-0.0073		Pass
			20	21	0.0081		Pass
			10	-22	-0.0085		Pass
			0	-17	-0.0066		Pass
			-10	-18	-0.0069		Pass
			-20	-20	-0.0077		Pass
			-30	-16	-0.0062		Pass

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.

