Page 1 of 51

FCC TEST REPORT

Product	:	Mobile Phone
Trade mark	:	MI
Model/Type reference	:	2016117
Report Number	:	1608310293RFC-3
Date of Issue	:	Oct.16, 2016
FCC ID	:	2AFZZ-RM6117
Test Standards	:	47 CFR Part 15 Subpart C (2015)
Test result	:	PASS

Prepared for:

Xiaomi Communications Co., Ltd. The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:	Ting You Tiny You	Reviewed by:	Jim Long
	RF Engineer		RF Senior Supervisor
Approved by:	R.S	Date:	Oct.16, 2016
	Billy Li		

Technical Director

Version

Version No.	Date	Description
V1.0	Oct.16, 2016	Original

Page 3 of 51

Page

Content

1	GEN	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	GENERAL DESCRIPTION OF EUT	4
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	DESCRIPTION OF SUPPORT UNITS	
	1.5	TEST LOCATION TEST FACILITY	
	1.6 1.7	DEVIATION FROM STANDARDS	
	1.7	ABNORMALITIES FROM STANDARD CONDITIONS	00 6
	1.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	0 6
	1.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=1.96)	
2	TEST	SUMMARY	8
3	EQUI	PMENT LIST	9
4		REQUIREMENT	
-		TEST SETUP	
	4.1	4.1.1 For Conducted test setup	10
		4.1.1 For Radiated Emissions test setup	
		4.1.3 For Conducted Emissions test setup	
	4.2	TEST ENVIRONMENT	
	4.3	SYSTEM TEST CONFIGURATION	
	4.4	TEST CONDITION	
		4.4.1 Test channel	12
		4.4.2 Test mode	12
5	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	
	5.1	ANTENNA REQUIREMENT	13
	5.2	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	13
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	20 DB BANDWIDTH	
	5.5	CARRIER FREQUENCIES SEPARATION	
	5.6	NUMBER OF HOPPING CHANNEL	21
	5.7	DWELL TIME	24
	5.8	CONDUCTED OUT OF BAND EMISSION RADIATED SPURIOUS EMISSIONS	
	5.9	BAND EDGE MEASUREMENTS (RADIATED)	22 12
	5.10	CONDUCTED EMISSIONS	42 48
ΔΡΙ		X 1 PHOTOGRAPHS OF TEST SETUP	
		X 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	
API		A 2 FIIOTOGRAFIIS OF EUT CONSTRUCTIONAE DETAILS	

1 General Information

1.1 Client Information

1.1 Client Informat	lion		
Applicant:	Xiaomi Communicatio	ons Co., Ltd.	
Address of Applicant:	The Rainbow City of Haidian District, Beijir	China Resources, NO.68, Qinghe Middle Street, ng, China	
Manufacturer:	Xiaomi Communications Co., Ltd.		
Address of Manufacturer:	The Rainbow City of Haidian District, Beijir	China Resources, NO.68, Qinghe Middle Street, ng, China	
1.2 General Descri	iption of EUT		
Product Name:	Mobile Phone		
Model No.(EUT):	2016117		
Add Mode No.:	N/A		
Trade Mark:	MI		
EUT Supports Radios application:	LTE TDD Band 40/Ba Wlan 2.4GHz 802.11	d II/Band V/Band VIII nd 3/ Band 4/ Band 5/Band 7/Band 8/Band 20 and 41	
Power Supply:	AC adapter	Model:MDY-08-EF Input:100-240V~50/60Hz, 0.35A; Output: 5V === 2A	
	Battery1	Model: BN30 Brand: Sunwoda Rated voltage: 3.84Vdc Battery capacity: 3030mAh(Li-on Rechargeable)	
	Battery2	Model: BN30 Brand: SCUD Rated voltage: 3.84Vdc Battery capacity: 3030mAh(Li-on Rechargeable)	
USB Micro-B Plug cable:	117cm(Shielded)		
Sample Received Date:	Sep. 09, 2016		
Sample tested Date:	Sep. 11, 2016 to Sep	. 29, 2016	
1.3 Product Specif	fication subject	ive to this standard	
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	2.0+EDR		
Modulation Technique:	Frequency Hopping S	Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK		
Number of Channel:	79		
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Sample Type:	Portable production		
Antenna Type:	LDS Antenna		
	-3 dBi		
Antenna Gain:	-5 uBi		
Antenna Gain: Normal Test voltage:	3.84Vdc		

Page 5 of 51

Report No.: 1608310293RFC-3

Operating Temperature:	0° C to +40 $^{\circ}$ C (declared by the manufacturer)
Software Version:	MIUI8
Hardware Version:	P3

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz	N	/A

Modulation Configure					
Modulation	Packet	Packet Type	Packet Size		
	DH1	4	27		
GFSK	DH3	11	183		
	DH5	15	339		
	2DH1	20	54		
Pi/4 DQPSK	2DH3	26	367		
	2DH5	30	679		

Page 6 of 51

8DPSK	3DH1	24	83
	3DH3	27	552
	3DH5	31	1021

1.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust
2) Cable				
Cable No.	Description	Connector Type	Cable Type/Length	Supplied by
N/A	N/A	N/A	N/A	N/A

1.5 Test Location

All tests were performed at:

Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen,

China

Telephone: +86 (0) 755 26748019 Fax:+86 (0) 755 26748089

1.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul.18, 2014, valid time is until Jul.18, 2017.

1.7 Deviation from Standards

None.

1.8 Abnormalities from Standard Conditions

None.

1.9 Other Information Requested by the Customer

None.

Uni@nTrust Page 7 of 51

1.10 Measurement Uncertainty (95% confidence levels, k=1.96)

No.	Item	Measurement Uncertainty
1	Transmitter power conducted	0.57 dB
2	Transmitter power Radiated	2.20 dB
2	Conducted spurious emission 9KHz-40GHz	1.60 dB
3	Radiated spurious emission 9KHz-40GHz	2.20 dB
4	Conducted emission 9KHz-30MHz	3.39 dB
4	Radiated emission 30MHz-1000MHz	4.24 dB
5	Radiated emission 1GHz-18GHz	5.16 dB
6	Radiated emission 18GHz-40GHz	5.54 dB

2 Test Summary

Tests for radiated and conducted emissions were performed. All measurements were performed according to

the 2013 version of ANSI C63.10

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	DA 00-705	PASS
20 dB Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(1)	DA 00-705	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	DA 00-705	PASS
Number of Hopping Channel	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	DA 00-705	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	DA 00-705	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(a)(1)(g)(h)	DA 00-705	PASS
Conducted Out of Band Emission	47 CFR Part 15 Subpart C Section 15.247(d)	DA 00-705	PASS
Radiated Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	DA 00-705	PASS
Band Edge Measurement	47 CFR Part 15 Subpart C Section 15.205/15.209	DA 00-705	PASS

Remark:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

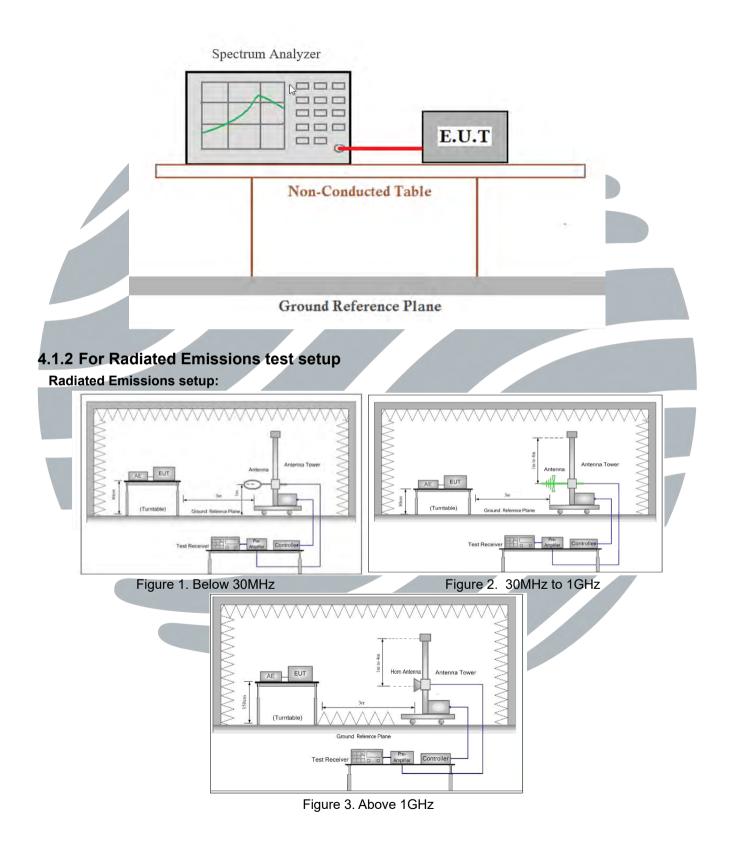
RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

3 Equipment List

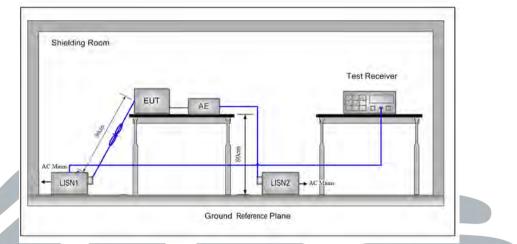
Conducted Emission Test					
Equipment	Manufacturer	Mode No.	Serial Number	Cal date (mm-dd-yyyy)	Due date (mm-dd-yyyy)
EMI Test Receiver	R&S	ESCI	101247	11/1/2015	10/31/2016
Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/1/2015	10/31/2016
Pulse Limiter	R&S	ESH3-Z2	101488	11/1/2015	10/31/2016
EMI Test Receiver	R&S	ESCI	101247	11/1/2015	10/31/2016

3m (Semi-Anechoic Chamber)						
Equipment	Manufacturer	Mode No.	Serial Number	Cal date (mm-dd-yyyy)	Due date (mm-dd-yyyy)	
Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	11/8/2015	11/7/2017	
Double-Ridged- Waveguide Horn Antenna	SCHWARZBECK	9120D	1011	11/8/2015	11/7/2017	
Emi Test Receiver	R&S	ESCI	101247	11/1/2015	10/31/2016	
Spectrum Analyzer	R&S	FSP40	100597	11/1/2015	10/31/2016	
Pre-amplifer	SCHWARZBECK	BBV 9743	9743-0022	11/1/2015	10/31/2016	
Broadband Preamplifer	SCHWARZBECK	BBV 9718	9718-248	11/1/2015	10/31/2016	
Turntable	Maturo Germany	TT2.0-1T	1	N/A	N/A	
Antenna Mast	Maturo Germany	CAM-4.0-P-12		N/A	N/A	
Test Software	R&S	ES-K1	1	N/A	N/A	


	Conducted RF test					
Equipment	Manufacturer	Mode No.	Serial Number	Cal date (mm-dd-yyyy)	Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9030A	ATO-67098	07/19/2016	07/18/2017	
Power Sensor	KEYSIGHT	U2021XA	MY55430035	01-09-2016	01-08-2017	

4 Test Requirement

4.1 Test setup


4.1.1 For Conducted test setup

4.1.3 For Conducted Emissions test setup

Conducted Emissions setup

4.2 Test Environment

Operating Environment:	
Temperature:	25.4 °C
Humidity:	55.6 % RH
Atmospheric Pressure:	99.80 Kpa

4.3 System Test Configuration

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.84Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency Band(GHz)	Mode	Antenna Port	Worst-case Orientation
Below 1GHz	1TX	Chain 0	Z-Portrait
Above 1GHz	1TX	Chain 0	Y-Portrait

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.4 Test Condition

4.4.1 Test channel

Modulation Type	Tx/Rx	RF Channel			
wodulation Type	TAINA	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/		Channel 1	Channel 40	Channel 79	
8DPSK (DH1,DH3,DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz	

4.4.2 Test mode

Pre-scan under all packets at lowest channel

Modulation Type		GFSK		т	r/4DQPSI	<		8DPSK	
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3	3-DH5
AVg Power	10.34	10.67	11.15	9.67	9.83	10.24	9.12	9.65	10.25

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of π /4DQPSK, 3-DH5 packet the power is the worst case of 8DPSK.

So, the worst-case packets see table below:

Modulation Type	Worst-case packets	
GFSK	1-DH5	
π/4DQPSK	2-DH5	
8DPSK	3-DH5	

5 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title			
1	FCC Part15C (2015)	Subpart C-Intentional Radiators			
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices			
3	FCC Public Notice DA 00- 705	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems			

5.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Both antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is -3dBi.

5.2 Pseudorandom Frequency Hopping Sequence

Technical Requirement:47 CFR Part 15 Subpart C Section 15.247(b)(g)(h)Test Method:DA 00-705

Frequency Hopping System:

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

EUT Pseudorandom Frequency Hopping Sequence:

Page 14 of 51

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

5.3 Conducted Peak Output Power

5.5 COnducted F	reak Output Power
Test Requirement:	47 CFR Part 15 Subpart C Section15.247 (b)(1)
Test Method:	DA 00-705
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.
Test Procedure:	 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: a) Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel b) RBW > the 20 dB bandwidth of the emission being measured c) VBW ≥ RBW d) Sweep = auto e) Detector function = peak f) Trace = max hold g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, the indicated level is the peak output power (the external attenuation and cable loss shall be considered). Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.
Test Setup:	Refer to section 4.1.1 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Transmitter mode
Test Results:	Pass
Test Data:	

Maximum Conducted Peak Output Power:

	Peak C	Output Powe	er (dBm)	Peak C	Output Powe	er (mW)		
Modulation Type	Channel 1	Channel 40	Channel 79	Channel 1	Channel 40	Channel 79	Limit (mW)	Results
GFSK	10.283	11.276	8.524	10.673	13.415	7.119	1000	Pass
π/4 DQPSK	10.915	11.977	9.236	12.345	15.542	8.387	1000	Pass
8DPSK	11.118	12.194	9.451	12.936	16.573	8.997	1000	Pass

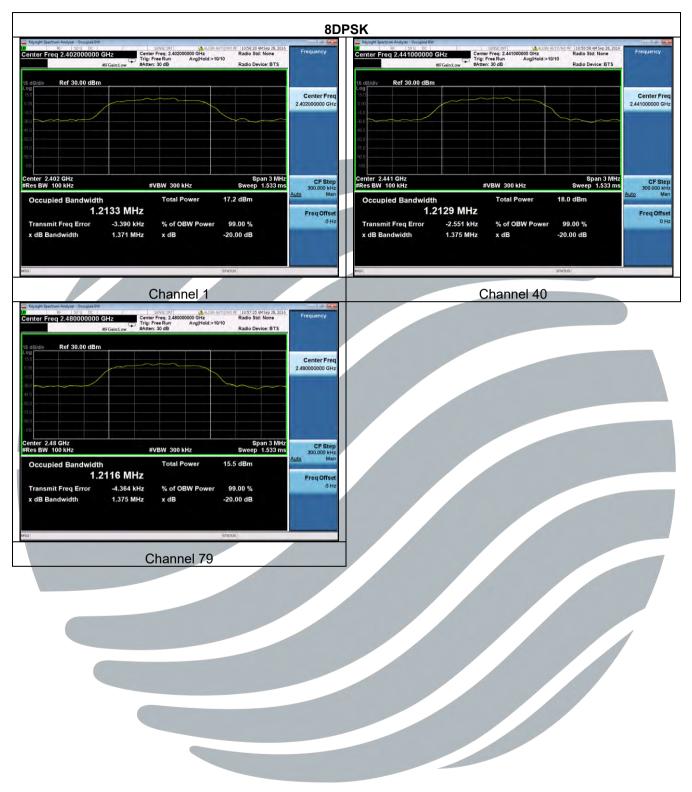
Note: the antenna gain of -3 dBi less than 6dBi maximum permission antenna gain value based on 0.125

watt peak output power limit.



5.4 20 dB Bandwidth

5.4 20 dB Bai		
Test Requirement:	47 CFR Part 15 Subpart C Sect	ion 15.247 (a)(1)
Test Method:	DA 00-705	
Limit:	dB bandwidth of hopping chanr bandwidth of hopping channel channel separation.	operating in the 2400-2483.5 MHz, if the 20 iel is greater than 25 kHz, two-thirds 20 dB shell be a minimum limit for the hopping
Test Procedure:	Remove the antenna from the E from the antenna port to the spe Use the following spectrum ana	
	 hopping channel b) RBW ≥ 1% of the 20 dB ba c) VBW ≥ RBW d) Sweep = auto; e) Detector function = peak f) Trace = max hold g) All the trace to stabilize, us marker to the peak of the e 	3 times the 20 dB bandwidth, centered on a ndwidth e the marker-to-peak function to set the mission, use the marker-delta function to bdB down bandwidth of the emission.
	as an amplitude offset.	uator loss were offset into measure device
Test Setup:	Refer to section 4.1.1 for details	3.
Instruments Used:	Refer to section 3 for details	
Test Mode:	Transmitter mode	
Test Results:	Pass	
Test Data:		
Occupied Bandwidth	:	
Channel	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)


Channel	20 d	B Bandwidth (I	MHz)	99% Bandwidth (MHz)			
Channel	GFSK	π/4 DQPSK	8DPSK	GFSK	π/4 DQPSK	8DPSK	
1	1.125	1.371	1.371	0.989	1.204	1.213	
40	1.125	1.373	1.375	0.988	1.206	1.213	
79	1.124	1.373	1.375	0.986	1.207	1.212	

The test plot as follows:

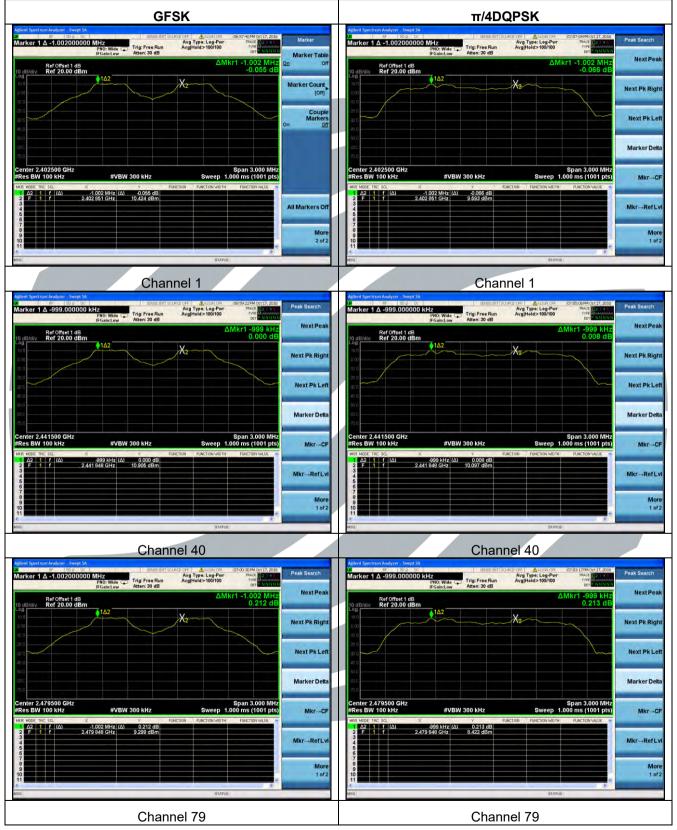
Page 17 of 51

Report No.: 1608310293RFC-3

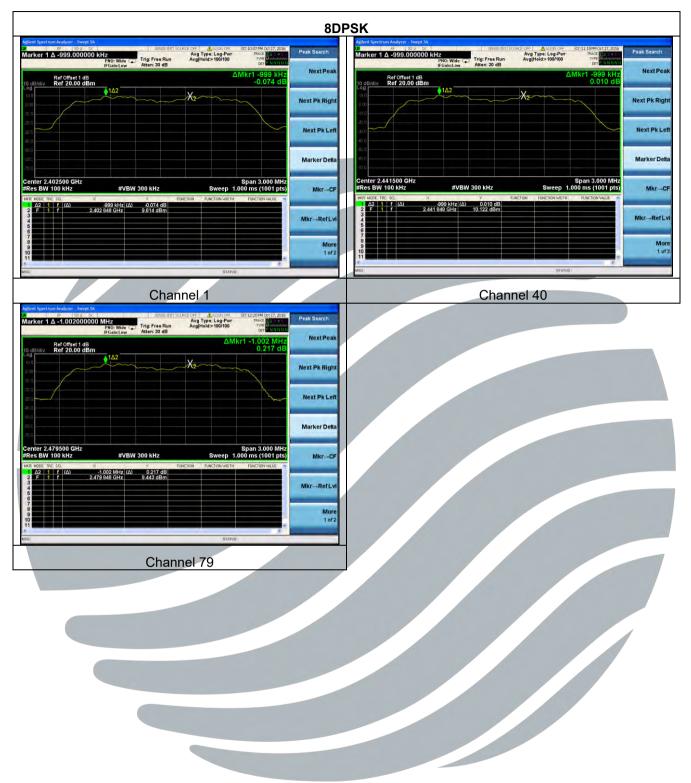
Page 18 of 51

5.5 **Carrier Frequencies Separation**

J.J Gailler Fley	
Test Requirement:	47 CFR Part 15 Subpart C Section 15.247 (a)(1)
Test Method:	DA 00-705
Limit: Test Procedure:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Remove the antenna from the EUT and then connect a low loss RF cable
	from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:
	Ose the following spectrum analyzer settings.
	 a) Set span = wide enough to capture the peaks of two adjacent channels b) Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span c) Video (or Average) Bandwidth (VBW) ≥ RBW d) Sweep = auto; e) Detector function = peak; f) Trace = max hold g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot. Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.
Test Setup:	Refer to section 4.1.1 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Hopping Frequencies Transmitter mode
Test Results:	Pass
Test Data:	
Carrier Frequencies Sen	aration


Carrier Frequencies Separation:

		acent Chai paration (M		20 dB	Bandwidth	(MHz)	Minin	num Limit	(MHz)
Channel	GFSK	π/4 DQPSK	8DPSK	GFSK	π/4 DQPSK	8DPSK	GFSK	π/4 DQPSK	8DPSK
1	1.002	1.002	0.999	1.125	1.371	1.371	0.75	0.91	0.91
40	0.999	0.999	0.999	1.125	1.373	1.375	0.75	0.92	0.92
79	1.002	0.999	1.002	1.124	1.373	1.375	0.75	0.92	0.92
Note: The	Note: The minimum limit is two-third 20 dB bandwidth.								

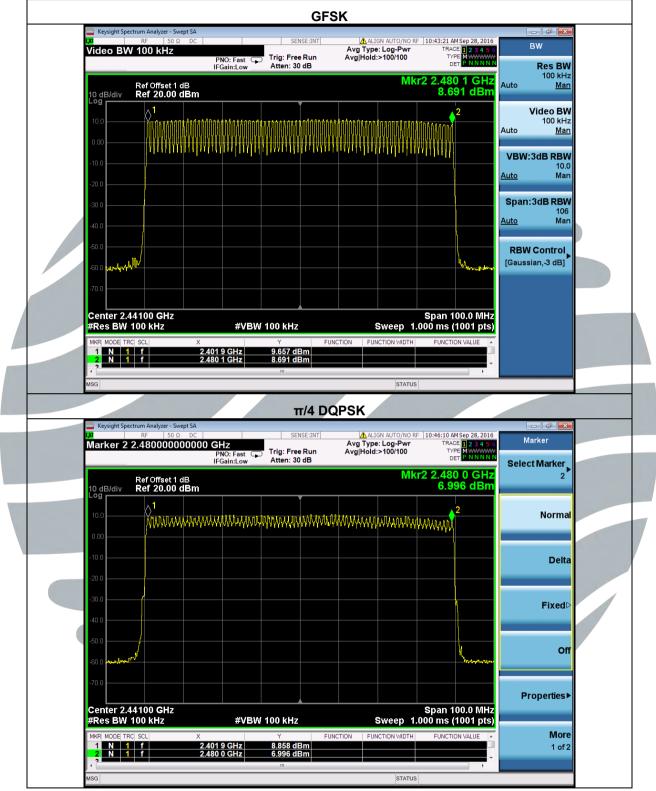

Page 19 of 51

The test plot as follows:

Page 20 of 51

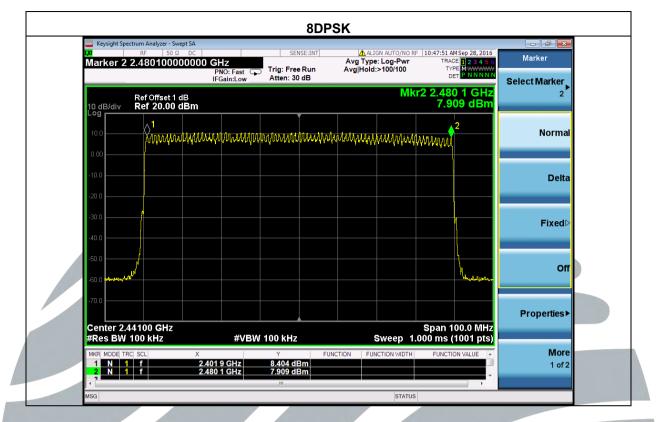
Report No.: 1608310293RFC-3

Page 21 of 51


5.6 Number of Hopping Channel

Test Requirement:	47 CFR Part 15 Subpart C Section 15.247(b)(1)
Test Method:	DA 00-705
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels.
Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:
	a) Span = the frequency band of operation
	b) RBW \geq 1% of the span
	c) VBW ≥ RBW
	d) Sweep = auto
	e) Detector function = peak
	f) Trace mode = max hold
	g) Allow the trace to stabilize, observed the band of 2400MHz to 2483.5MHz, than count it out the number of channels for comparing with the FCC rules.
	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.
Test Setup:	Refer to section 4.1.1 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Hopping Frequencies Transmitter mode
Test Results:	Pass
Test Data:	

Modulation Type	GFSK	π/4 DQPSK	8DPSK
Number of Hopping Channel	79	79	79



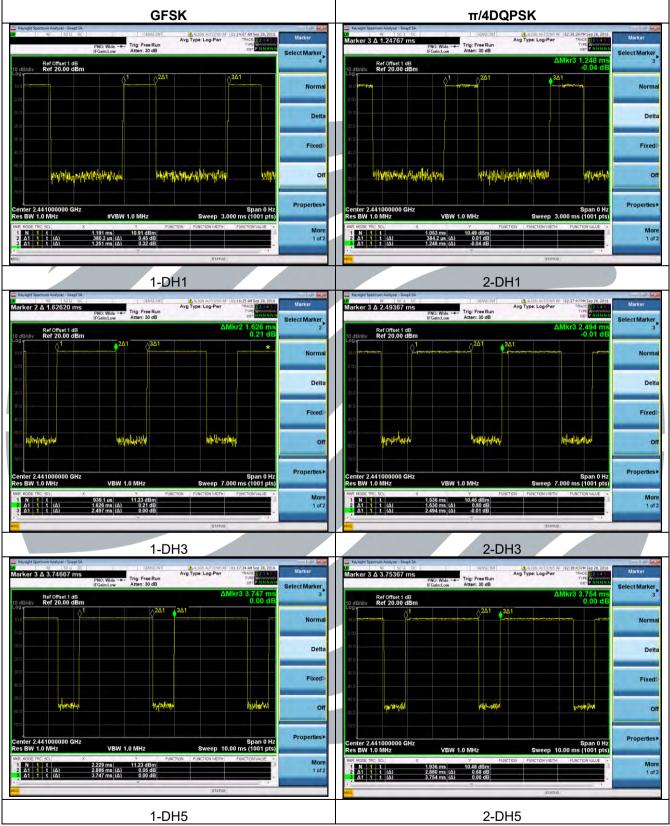
The test plot as follows:

Page 23 of 51

Report No.: 1608310293RFC-3

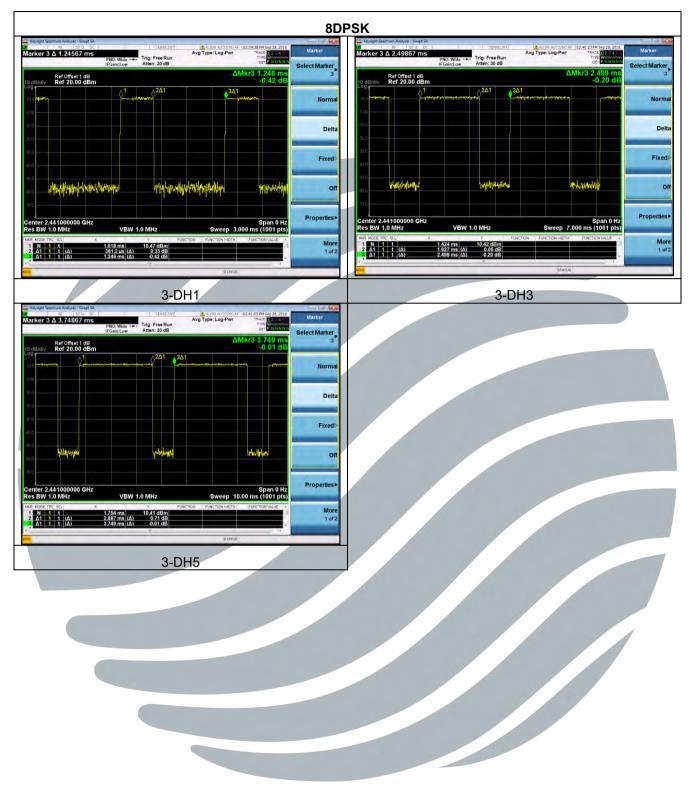
Page 24 of 51

5.7 Dwell Time Test Requirement: Test Method: Limit: Test Procedure:	47 CFR Part 15 Subpart C Section 15.247(a)(1) DA 00-705 Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:
	 a) Span = zero span, centered on a hopping channel b) RBW = 1 MHz c) VBW ≥ RBW d) Sweep = as necessary to capture the entire dwell time per hopping channel e) Detector function = peak f) Trace = max hold g) Use the marker-delta function to determine the dwell time
Test Setup:	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. Refer to section 4.1.1 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Hopping Frequencies Transmitter mode
Test Results:	Pass
Test Data:	


Modulation	Test	Packet	Time Slot Length	Dwell Time	Limit
Modulation	Frequency	Facket	ms	ms	ms
		DH1	0.3802	121.664	< 400
GFSK	2441MHz	DH3	1.626	260.160	< 400
		DH5	2.886	307.840	< 400
		3DH1	0.384	122.880	< 400
π/4 DQPSK	2441MHz	3DH3	1.630	260,800	< 400
		3DH5	2.880	307.200	< 400
		3DH1	0.381	121.920	< 400
8DPSK	2441MHz	3DH3	1.627	260.320	< 400
		3DH5	2.887	307.947	< 400

Remark:

1. The test period: T = 0.4 Second * 79 Channel = 31.6 s


2. Dwell time = time slot length * (Hopping rate / Number of hopping channels) * Period

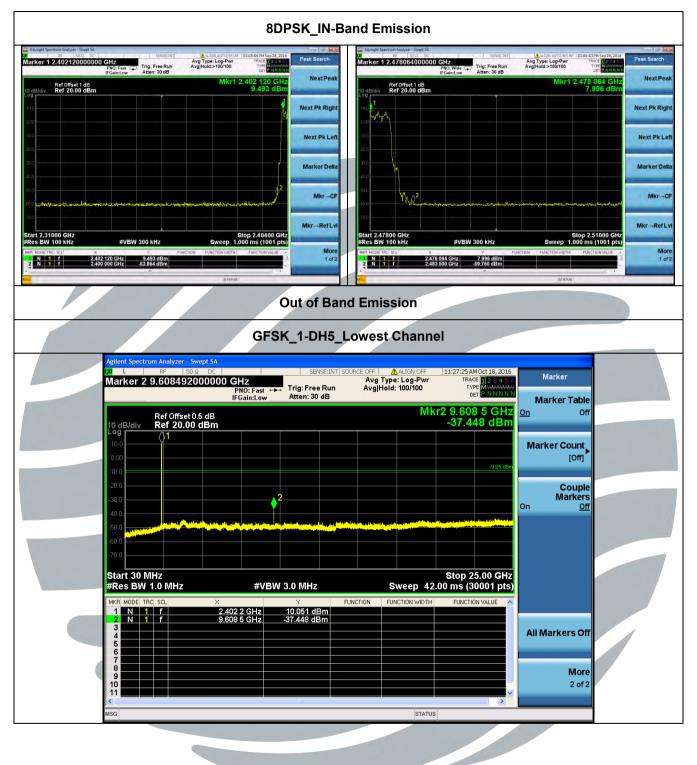
The test plot as follows:

Page 26 of 51

Report No.: 1608310293RFC-3

Page 27 of 51

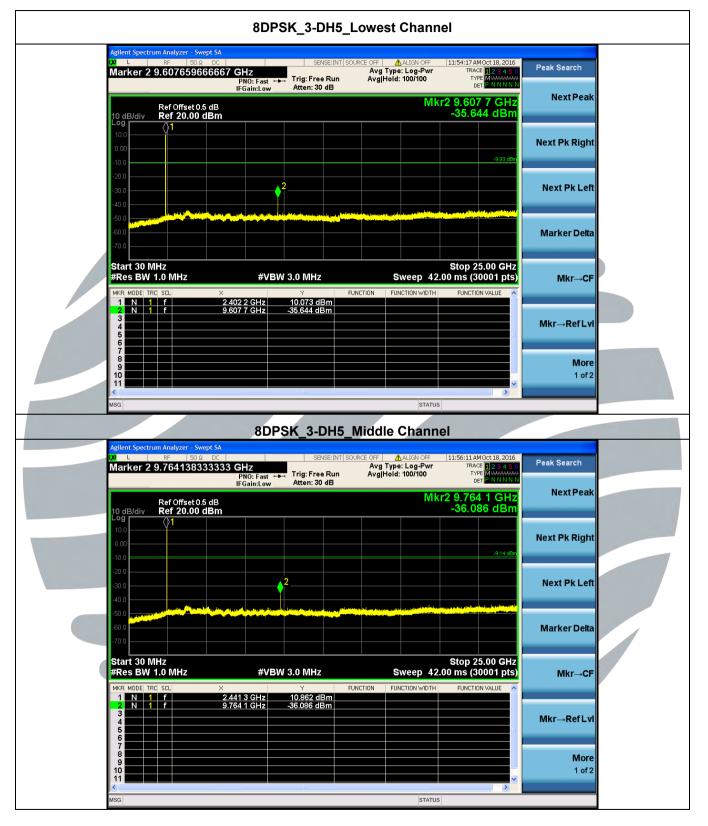
5.8 Conducted Out of Band Emission

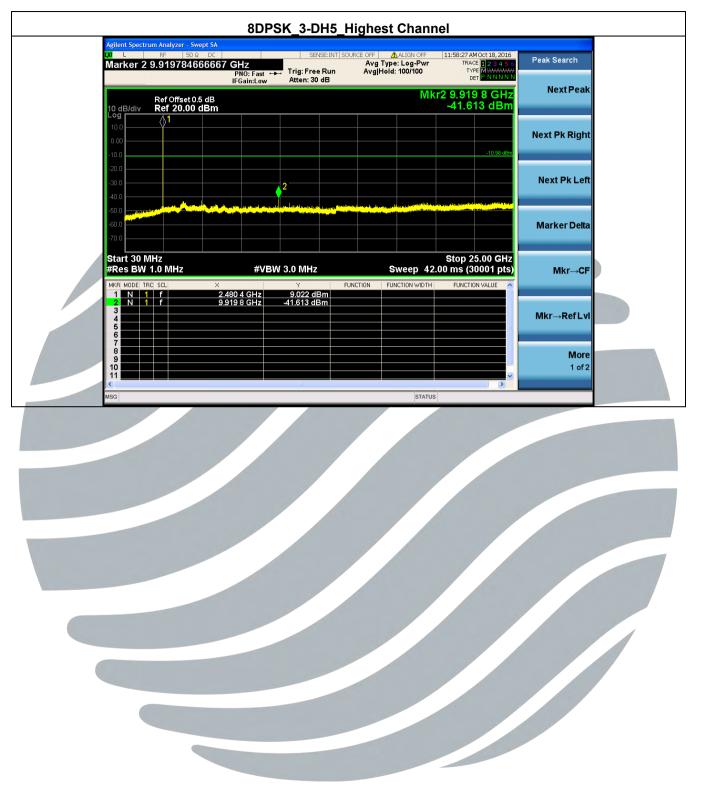

Test Requirement:	47 CFR Part 15 Subpart C Section 15.247(d)
Test Method:	DA 00-705
Limit:	In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.
Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable
	from the antenna port to the spectrum analyzer.
	Use the following spectrum analyzer settings:
	 a) Suitable frequency span b) RBW = 100 KHz c) VBW ≥ RBW d) Sweep = auto e) Detector function = peak f) Trace = max hold g) The band edges was measured and recorded.
	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.
Test Setup:	Refer to section 4.1.1 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Hopping Frequencies Transmitter mode
Test Results:	Pass

The test plot as follows:


GFSK_IN-Band Emission Avg Type: Log-Pwr Avg Hold:>100/100 Avg Type: Log-Pwr Avg Hold:>100/100 arker 1 2 40324800 er 1 2.478192000000 GHz Trig: Free Run Trig: Free Run NextPe NextPe 9.140 c Ref Offset 1 dB Ref 20.00 dBm Ref Offset 1 dB Ref 20.00 dBn 10.626 Next Pk Rig Next Pk Righ Next Pk Le Next Pk Le Marker Delt Marker Del Mkr C Mkr-RefLy Mkr-RefLy 2.31000 GH #VBW 300 kH Mor 1 of More 1 of 2 2.403 248 GHz 2.400 000 GHz 2.478 192 GHz 2.483 500 GHz N 1 7 N 1 7 10.626 N 1 7 N 1 7 9.140

Page 28 of 51


Report No.: 1608310293RFC-3


Report No.: 1608310293RFC-3

Report No.: 1608310293RFC-3

Report No.: 1608310293RFC-3

Page 32 of 51

5.9 Radiated Spurious Emissions

Test Requirement: Test Method: Limit:

: 47 CFR Part 15 Subpart C Section 15.205/15.209

DA 00-705	-			
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Remark:

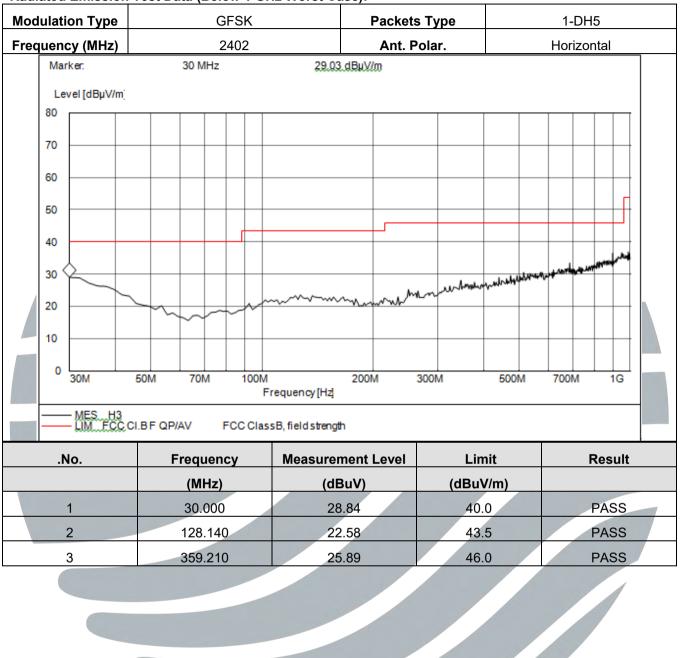
- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

The emissions were measured using the following resolution bandwidths:

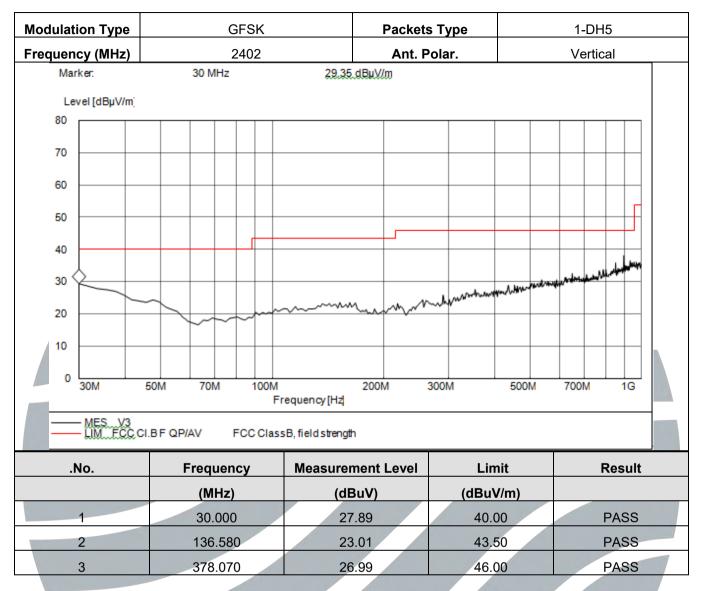
_					
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
1	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above TGHZ	Peak	1MHz	10Hz	Average

Harmonic and Spurious emissions that were identified as coming from the EUT were checked in Peak and in Average Mode. The high frequency, which started from 10 to26.5GHz.

Peak measurements and average measurements are made. All emissions were determined to have a peak-to-average ratio of less than 20dB.


Page 33 of 51

Test Procedure:	Below 1GHz test procedure as below:
	a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
	e) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f) Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	Above 1GHz test procedure as below:
	 g) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). h) Test the EUT in the lowest channel , the Highest channel i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. j) Repeat above procedures until all frequencies measured was complete.
Test Setup:	Refer to section 4.1.2 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Transmitter mode
Test Results:	Pass


Test Data:

Radiated Emission Test Data (Below 1 GHz Worst Case):

Page 35 of 51

Report No.: 1608310293RFC-3

Page 36 of 51

Radiated Emission Test Data (Above 1GHz):

Modulation Typ	dulation Type GFSK		Pa	ickets Type	1-0	DH5
requency (MH		2402		Ant. Polar.	Horiz	zontal
Marker: Level [dBµWm] 120 100 80 60 40 20 -20 1G	1.468937	876 GH2	44.2	9 dBµWm	4/4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	26.53
MES HOP MES HO Constant Constant		Frequenc				
.No.	Frequency	Measurement Peak Level	Peak Limit	Measurement Avg Level	Avg Limit	Result
	(MHz)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	6218.400	53.70	74	42.35	54	PASS
2	13480.900	54.62	74	44.15	54	PASS
3	23975.900	54.67	74	46.64	54	PASS

Page 37 of 51

Modul	Modulation Type		GFSK	Pa	ckets Type	1-C)H5
Frequ	ency (M	Hz)	2402	A	Ant. Polar.	Ver	tical
N	Marker.	17.66933	8677 GHz	51.04	4 dBµV/m		
12	00	inj					
	80						
	60				and the second second	a la anno an la anno anno	
	40		man las and a second				
	20						
	0						
-2	20 1G	2	2G 3G Frequenc	4G 5G 6G pv [Hz]	8G 10G		26.5G
	MES MES Consta Consta	VER Pk VER Avg nt 74 dBµV/m nt 54 dBµV/m					
.N	lo.	Frequency	Measurement Peak Level	Peak Limit	Measurement Avg Level	Avg Limit	Result
		(MHz)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	1	6278.500	53.76	74	41.85	54	PASS
2	2	13480.900	52.79	74	44.03	54	PASS
3	3	16192.300	52.65	74	44.59	54	PASS

Page 38 of 51

Modulation Typ	be	GFSK	Pa	ckets Type	1-D)H5
requency (MH	z)	2441	A	Ant. Polar.	Horiz	ontal
Marker: Level [dBµWm]	23.092184	369 GH:	54.8	dBµV/m		
120						
80						
60			and the second designed to the second designe	man and a second	Where the reading of the second se	
20						
0						
-20 1G	2	G 3G Frequenc	4G 5G 6G	8G 10G		26.5G
MES HOP MES HOP Constant Constant	R Pk R Avg 74 dBuV/m 54 dBuV/m		773			
.No.	Frequency	Measurement Peak Level	Peak Limit	Measurement Avg Level	Avg Limit	Result
	(MHz)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
		(
1	6206.400	53.41	74	42.10	54	PASS
1				42.10 44.03	54 54	PASS PASS

Page 39 of 51

Modulation T	уре	GFSK	Pa	ckets Type	1-D	0H5
Frequency (N	IHz)	2441	A	nt. Polar.	Ver	tical
Marker.	1.108216	5433 GHz	45.8	5 dBµV/m		
Level [dBµ\ 120	//m]					
100						
80						
60				-		And the second se
40	~~~~~~					~~~~~~
20						
o						
-20 IG	2	G 3G Frequenc	4G 5G 6G	8G 10G		26.5G
MES MES Consta	VER Pk VER Avg int 74 dBµV/m int 54 dBµV/m	riequeix				
.No.	Frequency	Measurement Peak Level	Peak Limit	Measurement Avg Level	Avg Limit	Result
	(MHz)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	6266.500	53.01	74	42.38	54	PASS
2	13569.100	54.26	74	44.56	54	PASS
3	24032.100	56.28	74	46.83	54	PASS

Modulation Ty	rpe	GFSK	Pa	ckets Type	1-D	0H5
Frequency (MI	Hz)	2480	A	nt. Polar.	Horiz	ontal
Marker. Level [dBµV/r	1 GHz n]	46.7	dBµV/m			
120						
80						
60			and a second and and and and and and and and and a	mmmmmmm	and a start a start a start a start a start a start	A A A A A A A A A A A A A A A A A A A
40						
0						
-20 IG	2	G 3G Frequent	4G 5G 6G cy [Hz]	8G 10G		26.5G
MES H MES H Constan	OR Pk OR Avg tt: 74 dBµV/m tt: 54 dBµV/m					
.No.	Frequency	Measurement Peak Level	Peak Limit	Measurement Avg Level	Avg Limit	Result
	(MHz)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	6242.400	54.68	74	42.58	54	PASS
2	13525.000	54.29	74	44.52	54	PASS
3	24004.000	55.67	74	46.00	54	PASS

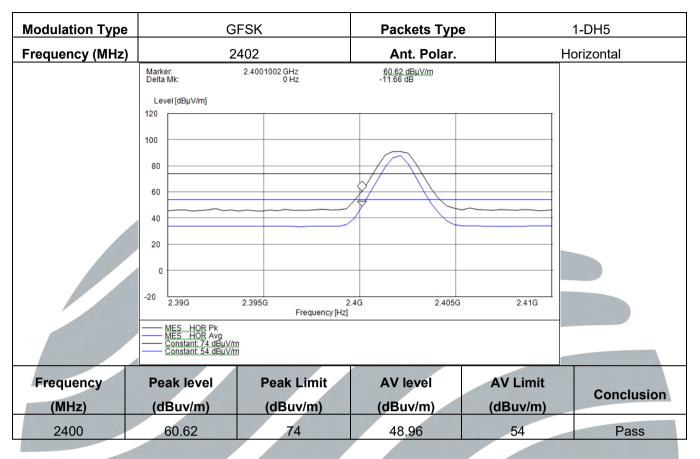
Modulation Typ	pe	GFSK	Pa	ckets Type	1-D	H5
Frequency (MH	lz)	2480	A	Ant. Polar.	Ver	tical
Marker:	16.082164	329 GHz	53.1	6 dBµV/m		
Level [dBµV/m] 120						
100						
80						
60					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
40	·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				and server the part of the par
20						
0						
-20						
-20 1G	2	G 3G Frequen	4G 5G 60 cy[Hz]	8G 10G		26.5G
MES VE MES VE Constant Constant	R Pk R Avg 74 dBµV/m 54 dBµV/m					
		Measurement		Measurement		
.No.	Frequency	Peak Level	Peak Limit	Avg Level	Avg Limit	Result
	(MHz)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	6230.400	53.03	74	42.32	54	PASS
2	13569.100	53.93	74	44.10	54	PASS
3	24018.000	55.23	74	46.19	54	PASS

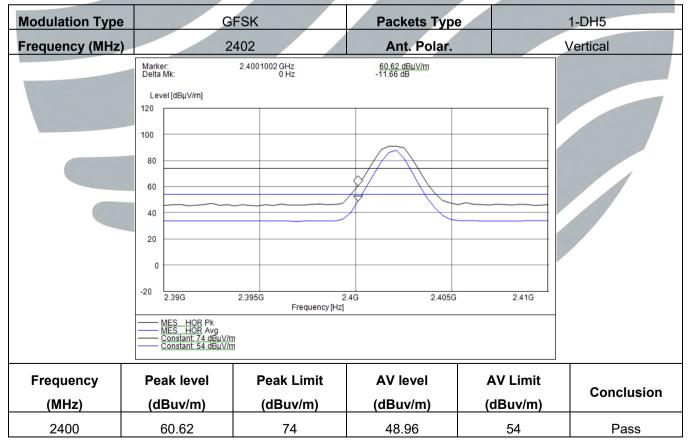
Note:

1) Through Pre-scan transmitting mode with all kind of modulation and data rate,

find the 1-DH5 of rate is the worst case of GFSK,QPSK,DPSK and then Only the worst case is recorded in the report.

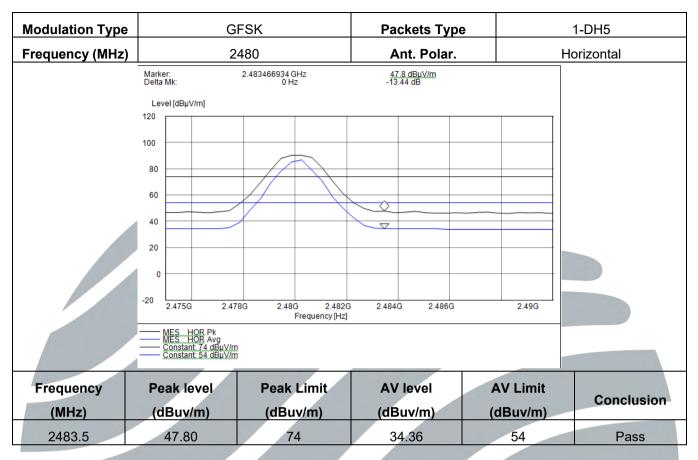
2) Scan from 9kHz to 26.5GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

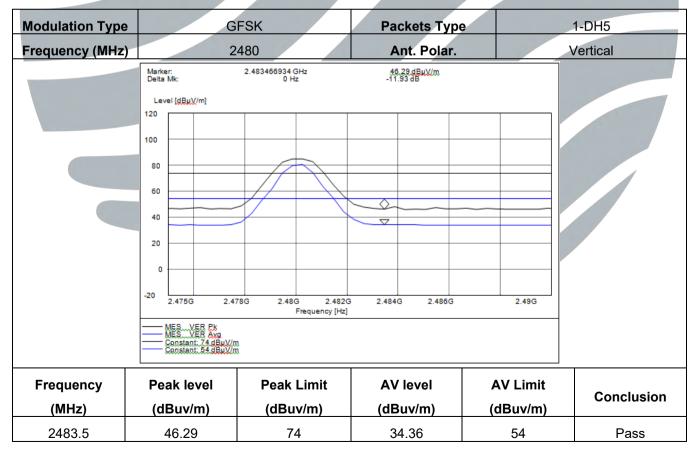

Page 42 of 51


5.10 Band Edge Measurements (Radiated)

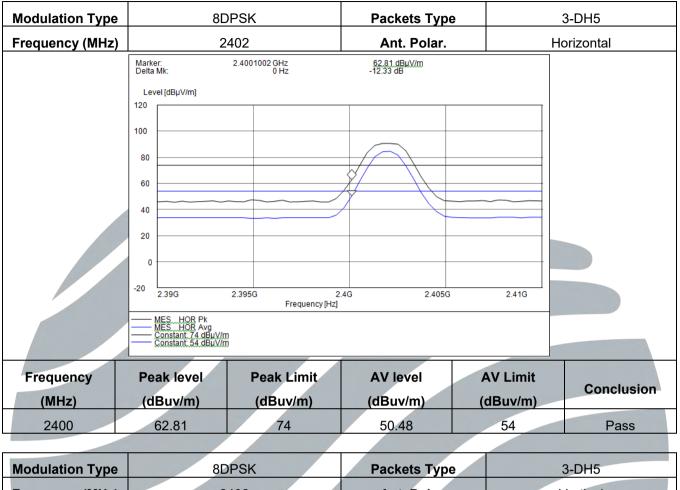
Limit:	Frequency	Limit (dBµV/m @3m)	Remark	
	30MHz-88MHz	40.0	Quasi-peak Value Quasi-peak Value Quasi-peak Value	
	88MHz-216MHz	43.5		
	216MHz-960MHz	46.0		
	960MHz-1GHz	54.0	Quasi-peak Value	
	Above 1GHz	54.0	Average Value	
	Above TGHZ	74.0	Peak Value	
	closest to the restricted bands 966 Semi-Chamber. Use (r bandwidth (VBW) = 3 MHz fo Hz or 1/T for average levels).	esolution bandwidth (RB	ons were made on the W) = 1 MHz, video	
	 closest to the restricted bands 966 Semi-Chamber. Use (r bandwidth (VBW) = 3 MHz for Hz or 1/T for average levels). 1. Use radiated spurious emistransmitter output (antenna point 2. Set the PK and AV limit line 3. Record the fundamental emistransmitter 	s respectively. The emission esolution bandwidth (RB r peak levels and RBW = ssion test procedure descript ort) was connected to the t e. nission and emissions out	ons were made on the W) = 1 MHz, video 1 MHz and VBW = 10 bed in 5.9 clause. The est receiver.	
	 closest to the restricted bands 966 Semi-Chamber. Use (r bandwidth (VBW) = 3 MHz for Hz or 1/T for average levels). 1. Use radiated spurious emistransmitter output (antenna po 2. Set the PK and AV limit line 3. Record the fundamental emistranse. 4. Determine band-edge comistranse. 	s respectively. The emission esolution bandwidth (RB r peak levels and RBW = ession test procedure descri- port) was connected to the tree. mission and emissions out pliance as required.	ons were made on the W) = 1 MHz, video 1 MHz and VBW = 10 bed in 5.9 clause. The est receiver.	
	 closest to the restricted bands 966 Semi-Chamber. Use (r bandwidth (VBW) = 3 MHz for Hz or 1/T for average levels). 1. Use radiated spurious emistransmitter output (antenna po 2. Set the PK and AV limit line 3. Record the fundamental em 4. Determine band-edge com Refer to section 4.1.2 for deta 	s respectively. The emission esolution bandwidth (RB r peak levels and RBW = ession test procedure descri- port) was connected to the tree. mission and emissions out pliance as required.	ons were made on the W) = 1 MHz, video 1 MHz and VBW = 10 bed in 5.9 clause. The est receiver.	
nstruments Used:	 closest to the restricted bands 966 Semi-Chamber. Use (r bandwidth (VBW) = 3 MHz for Hz or 1/T for average levels). 1. Use radiated spurious emist transmitter output (antenna po 2. Set the PK and AV limit line 3. Record the fundamental em 4. Determine band-edge com Refer to section 4.1.2 for details 	s respectively. The emission esolution bandwidth (RB r peak levels and RBW = ession test procedure descri- port) was connected to the tree. mission and emissions out pliance as required.	ons were made on the W) = 1 MHz, video 1 MHz and VBW = 10 bed in 5.9 clause. The est receiver.	
Test Setup: Instruments Used: Test Mode:	 closest to the restricted bands 966 Semi-Chamber. Use (r bandwidth (VBW) = 3 MHz for Hz or 1/T for average levels). 1. Use radiated spurious emist transmitter output (antenna po 2. Set the PK and AV limit line 3. Record the fundamental em 4. Determine band-edge com Refer to section 4.1.2 for details Transmitter mode 	s respectively. The emission esolution bandwidth (RB r peak levels and RBW = ession test procedure descri- port) was connected to the tree. mission and emissions out pliance as required.	ons were made on the W) = 1 MHz, video 1 MHz and VBW = 10 bed in 5.9 clause. The est receiver.	
nstruments Used:	 closest to the restricted bands 966 Semi-Chamber. Use (r bandwidth (VBW) = 3 MHz for Hz or 1/T for average levels). 1. Use radiated spurious emist transmitter output (antenna po 2. Set the PK and AV limit line 3. Record the fundamental em 4. Determine band-edge com Refer to section 4.1.2 for details 	s respectively. The emission esolution bandwidth (RB r peak levels and RBW = ession test procedure descri- port) was connected to the tree. mission and emissions out pliance as required.	ons were made on the W) = 1 MHz, video 1 MHz and VBW = 10 bed in 5.9 clause. The est receiver.	

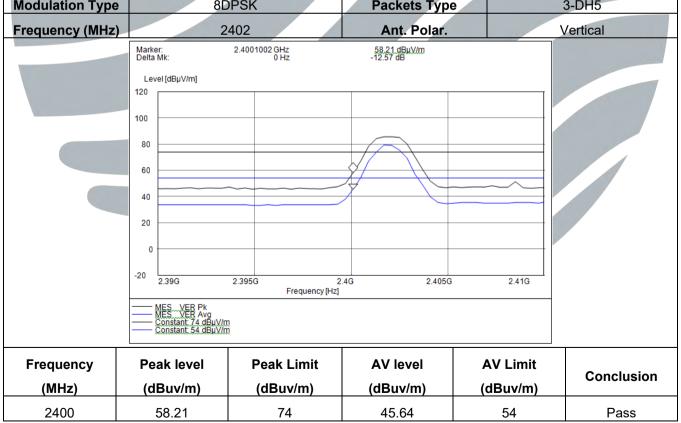
Page 43 of 51


Report No.: 1608310293RFC-3



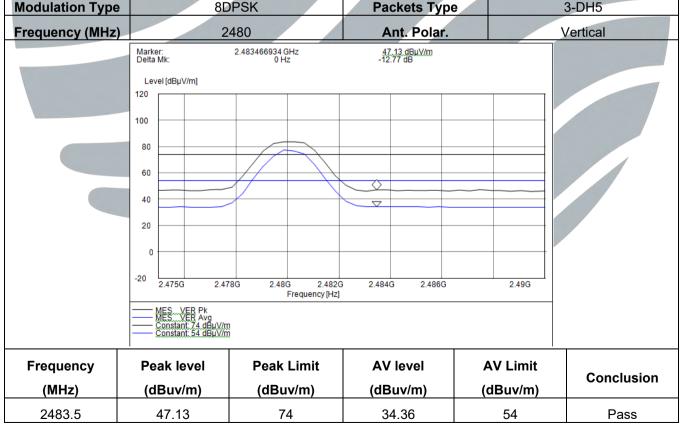
Page 44 of 51


Report No.: 1608310293RFC-3



Page 45 of 51

Report No.: 1608310293RFC-3



Page 46 of 51

Report No.: 1608310293RFC-3

Note:

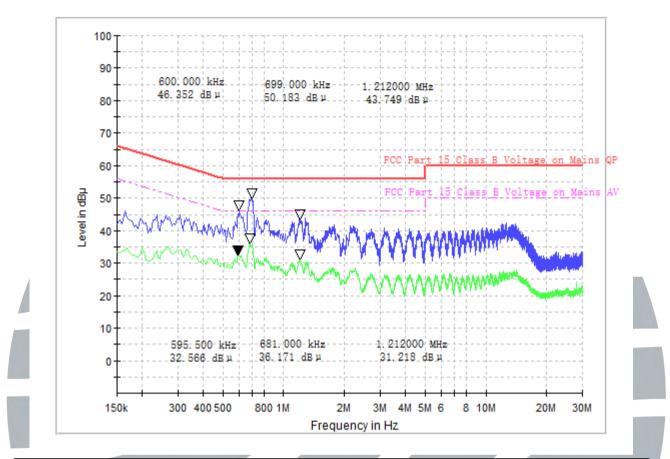
- 1) Find the 1-DH5 of rate is the worst case of GFSK, 3-DH5 of rate is the worst case of DQPSK,8DPSK and then Only the worst case is recorded in the report.
- 2) Through testing, the point of 2400 MHz test result is the worst in 2310-2400 MHz band.

5.11 Conducted Emissions

Test Requirement: Test Method: Test Frequency Range: Limit: 47 CFR Part 15C Section 15.207 ANSI C63.10 150KHz to 30MHz

-								
		Limit (c	lBµV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.							
		NOTE : The lower limit is applicable at the transition frequency						
Test Procedure:	 Test frequency range :150K 1) The mains terminal di shielded room. 2) The EUT was connected Impedance Stabilization Ne 	sturbance voltage tes d to AC power source	through a LISN 1 (Line					
	impedance. The power cabl to a second LISN 2, which the same way as the LISN 1	es of all other units of t was bonded to the gr	he EUT were connected ound reference plane in					
		outlet strip was used to connect multiple power cables to a single LISN						
	3) The tabletop EUT was pl ground reference plane. An	provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was						
	placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear							
	of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground							
		reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted						
	on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of							
	equipment and all of the in ANSI C63.10 on conducted	measurement.	e changed according to					
Test Setup:	Refer to section 4.1.3 for de	tails.						
Instruments Used:	Refer to section 3 for details							
Test Mode:	Transmitter mode							
Test Results:	Pass							
Measurement Data								

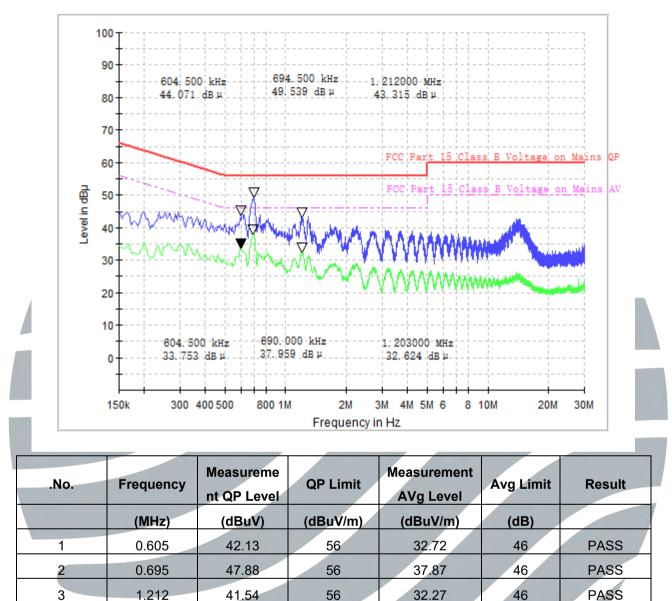
Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 49 of 51

Test plot as follows: Live Line:


.No.	Frequency	Measureme nt QP Level	QP Limit	Measurement AVg Level	Avg Limit	Result
	(MHz)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.600	44.36	56	32.42	46	PASS
2	0.699	48.12	56	36.27	46	PASS
3	1.212	41.21	56	31.46	46	PASS
					-	

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 50 of 51

Neutral Line:

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photographs.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.

