

Report No.: EED32J00053001 Page 1 of 77

Product Mi Bluetooth Speaker

Trade mark N/A

Model/Type reference : MDZ-26-DA

Serial Number N/A

Report Number EED32J00053001 **FCC ID** : 2AFZYMDZ-26-DB

Date of Issue : Apr. 17, 2017

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Xiaomi Inc

The Rainbow City of China Resources, No. 68, Qinghe Middle Street, Haidian District, Beijing, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

> > Report Sea

Tested By:

Date:

Tom- chen

Tom chen (Test Project)

Reviewed by:

Kevin yang (Reviewer)

Apr. 17, 2017

Compiled by:

Ware xin (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 2325261069

2 Version

Version No.	Date	Description
00	Apr. 17, 2017	Original
	(25)	

Report No. : EED32J00053001 Page 3 of 77

3 Test Summary

rest Summary		/°>		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation			PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Do mo o wler	162.1	UKATU	10.0	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

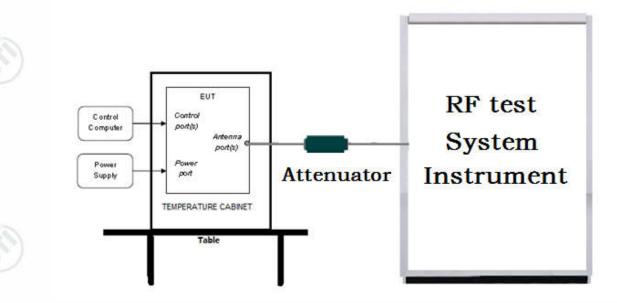
The tested samples and the sample information are provided by the client.

Report No. : EED32J00053001 Page 4 of 77

4 Content

1 COVER PAGE.....

2 VE	RSION		••••••	•••••	••••••	2
3 TE	ST SUMMARY		••••••	••••••	•••••	3
4 CC	ONTENT				•••••	4
5 TE	ST REQUIREMENT.					5
5.	1 Test setup					5
•		d test setup				
		Emissions test setup				
_		d Emissions test setup				
		Ī				
		TON				
6.	1 CLIENT INFORMATIO	N				7
		TION OF EUT				
		ATION SUBJECTIVE TO THIS				
		JPPORT UNITS				
		ΓANDARDS				
		OM STANDARD CONDITIONS.				
		N REQUESTED BY THE CUS				
6.	10 MEASUREMENT UN	ICERTAINTY (95% CONFIDE	NCE LEVELS, K=2)			10
7 EC	QUIPMENT LIST	•••••	•••••	•••••	•••••	11
8 R <i>A</i>	ADIO TECHNICAL R	EQUIREMENTS SPECIFI	CATION	•••••	•••••	13
	Annendix A): 20dB (Occupied Bandwidth				14
	Appendix B): Carrie	r Frequency Separation				18
		Time				
		ng Channel Number				
		icted Peak Output Power.				
		edge for RF Conducted En				
		onducted Spurious Emiss lorandom Frequency Hopp				
		a Requirement				
		wer Line Conducted Emis				
	Appendix K): Restric	cted bands around fundan	nental frequency (Rad	diated)		49
		ed Spurious Emissions				
PHO	TOGRAPHS OF TE	ST SETUP	•••••	•••••	•••••	64
PHO	TOGRAPHS OF EU	T CONSTRUCTIONAL D	ETAILS			66



Report No. : EED32J00053001 Page 5 of 77

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

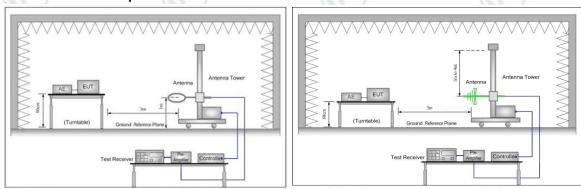
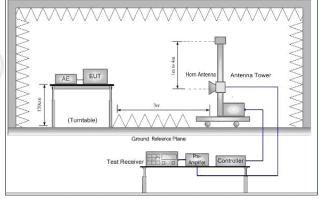
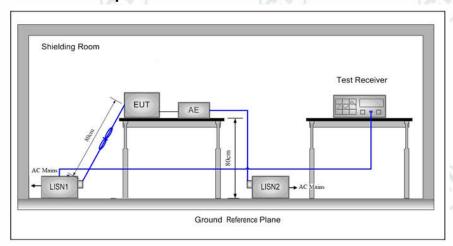


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

Report No. : EED32J00053001 Page 6 of 77

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		0
Temperature:	24°C	
Humidity:	50% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Toot Mode	Tv	RF Channel					
Test Mode	Тх	Low(L)	Middle(M)	High(H)			
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79			
8DPSK(DH1,DH3,DH5)		2402MHz	2441MHz	2480MHz			
TX mode: The EUT transmitted the continuous modulation test signal at the specific channel(s).							

Test mode:

Pre-scan under all rate at Highest channel 79

Mode GFSK				
packets	1-DH1	1-DH3	1-DH5	
Power(dBm)	4.292	4.301	4.307	

Mode		π/4DQPSK	
packets	2-DH1	2-DH3	2-DH5
Power(dBm)	5.069	5.077	5.084
Mode		8DPSK	
packets	3-DH1	3-DH3	3-DH5
Power(dBm)	5.288	5.296	5.301

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

Report No.: EED32J00053001 Page 7 of 77

6 General Information

6.1 Client Information

Applicant:	Xiaomi Inc
Address of Applicant:	The Rainbow City of China Resources, No. 68, Qinghe Middle Street, Haidian District, Beijing, China
Manufacturer:	Xiaomi Inc
Address of Manufacturer:	The Rainbow City of China Resources, No. 68, Qinghe Middle Street, Haidian District, Beijing, China
Factory:	Shenzhen 3Nod Digital Technology Co., Ltd.
Address of Factory:	Building D Park 8# Langhui Road Tangxiayong Village Industrial Zone Songgang Town Baoan District Shenzhen City China

6.2 General Description of EUT

Product Name:	Mi Bluetooth Speaker		
Model No.(EUT):	MDZ-26-DA		
Trade mark:	N/A		
EUT Supports Radios application:	BT 4.0 Dual mode	(67.)	67
Power Supply:	DC 5V for USB / DC 3.8V 1500i	mAh Battery pack Li-ion	
Sample Received Date:	Mar. 28, 2017	106-2	
Sample tested Date:	Mar. 28, 2017 to Apr. 17, 2017		(1)

6.3 Product Specification subjective to this standard

Operation	Frequency:	2402MH	2402MHz~2480MHz					
Bluetooth	Version:	3.0+EDF	{		42			
Modulatio	n Technique:	ue: Frequency Hopping Spread Spectrum(FHSS)						
Modulatio	n Type:	GFSK, π	GFSK, π/4DQPSK, 8DPSK					
Number o	f Channel:	79	79					
Hopping C	Channel Type:	Adaptive	Adaptive Frequency Hopping systems					
Test Powe	er Grade:	4 (manuf	facturer declare	e)		730	\	
Test Softv	vare of EUT:	Bluetootl	n MP Tool (ma	nufacturer de	eclare)	(63))	
Antenna T	ype:	Monopol	e Antenna					
Antenna C	Gain:	2.5dBi						
Test Volta	Test Voltage: AC 120V, 60Hz					/°5		
Operation	Frequency ea	ch of channe	el (a))	(6))	(8/1)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz	

Report No. : EED32J00053001 Page 8 of 77

9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
9	24 10101112	29	2430101112	49	2430101112	09	247 01011 12
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	model	Serial number	Supplied by
AE1	adupter	JBL	F5V-2.3C-1V	EP-4007837	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

Report No. : EED32J00053001 Page 9 of 77

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

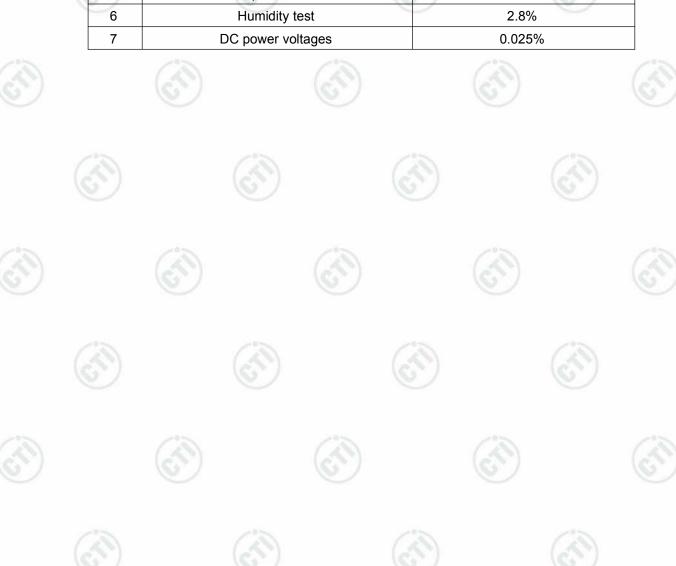
None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

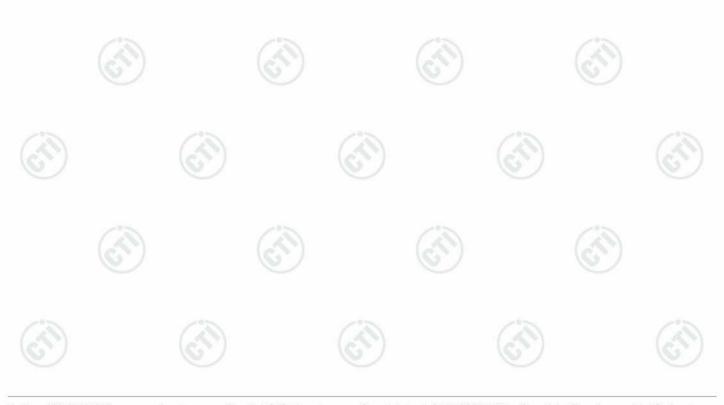
None.



Report No. : EED32J00053001 Page 10 of 77

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	0.57dB (1GHz-18GHz) 4.5dB (30MHz-1GHz)
1	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



Report No. : EED32J00053001 Page 11 of 77

7 Equipment List

	RF test system								
Equipment	nt Manufacturer Model No. Serial Number			Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018				
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018				
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018				
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018				
DC Power	Keysight	E3642A	MY54436035	03-14-2017	03-13-2018				
BT&WI-FI Automatic control	R&S	OSP120	101374	03-14-2017	03-13-2018				
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017	03-13-2018				

Conducted disturbance Test									
Equipment	ipment Manufacturer Mod		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017				
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017				
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017				
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017				
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017				
ISN	TESEQ GmbH	ISN T800	30297	01-27-2017	01-25-2018				

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 12 of 77

	3M :	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374	374	06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Report No. : EED32J00053001 Page 14 of 77

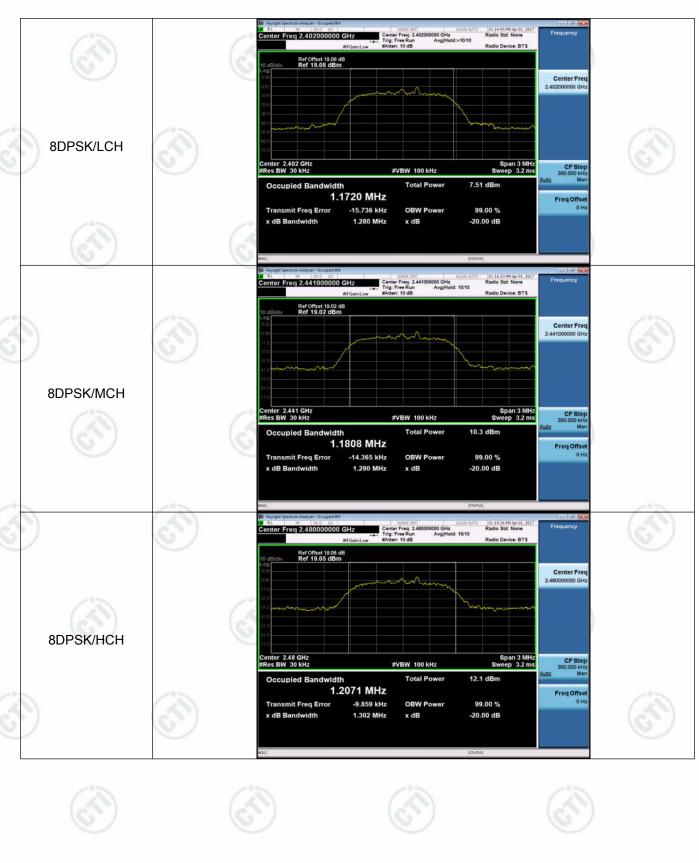
Appendix A): 20dB Occupied Bandwidth

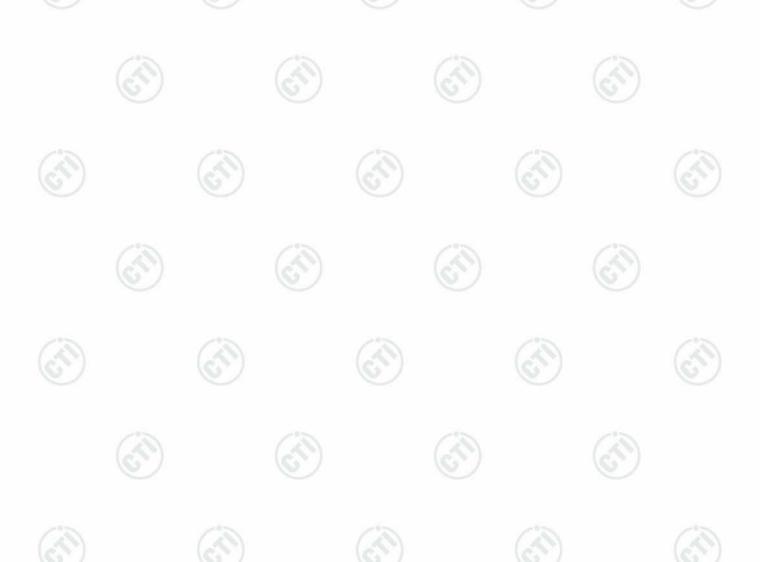
Test Result

Mode	Mode Channel. 20dB Bandwidth 99% OBW [MHz]		99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.9748	0.90447	PASS	0
GFSK	MCH	0.9873	0.91310	PASS	
GFSK	НСН	0.9874	0.91547	PASS	
π /4DQPSK	LCH	1.279	1.1764	PASS	
π /4DQPSK	MCH	1.289	1.1867	PASS	Peak
π /4DQPSK	НСН	1.291	1.2116	PASS	detector
8DPSK	LCH	1.280	1.1720	PASS	
8DPSK	MCH	1.290	1.1808	PASS	(84)
8DPSK	НСН	1.302	1.2071	PASS	

Report No.: EED32J00053001 Page 15 of 77

Test Graph





Report No. : EED32J00053001 Page 18 of 77

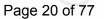
Appendix B): Carrier Frequency Separation

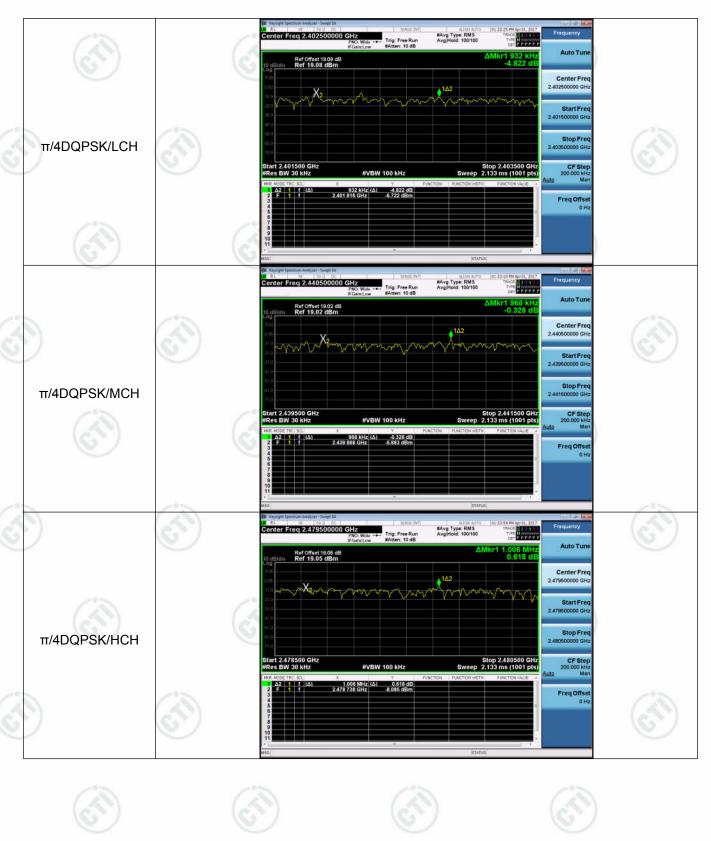
Result Table

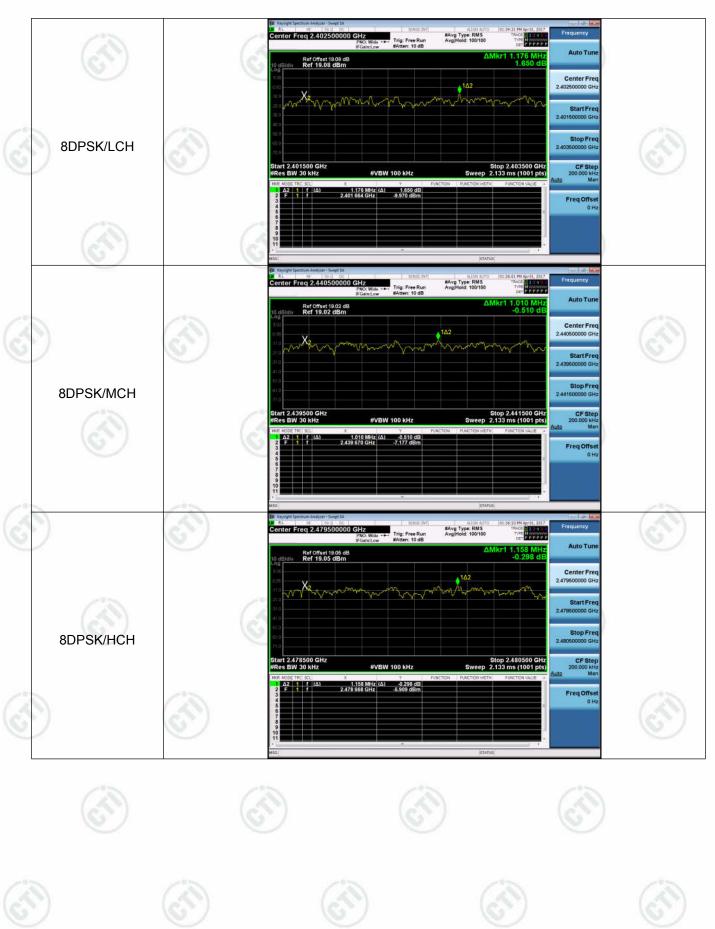
Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.084	PASS
GFSK	MCH	0.916	PASS
GFSK	НСН	0.926	PASS
π/4DQPSK	LCH	0.932	PASS
π/4DQPSK	MCH	0.968	PASS
π/4DQPSK	НСН	1.006	PASS
8DPSK	LCH	1.176	PASS
8DPSK	MCH	1.010	PASS
8DPSK	НСН	1.158	PASS

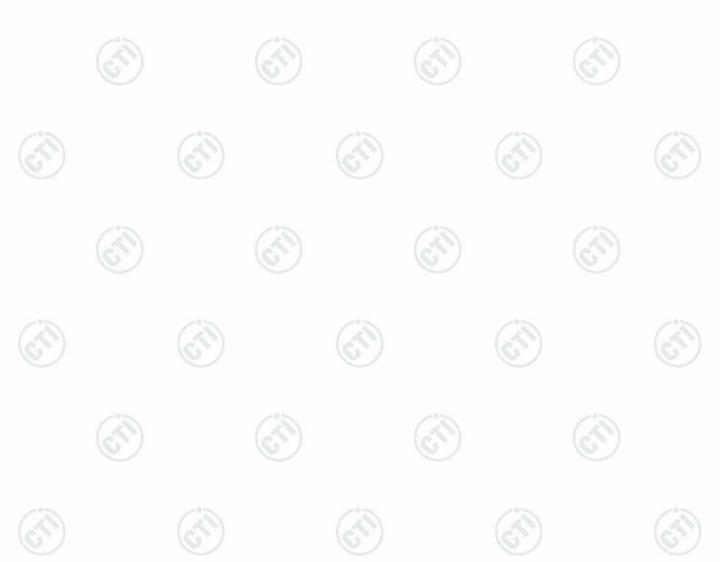
Report No. : EED32J00053001 Page 19 of 77

Test Graph









Report No. : EED32J00053001 Page 22 of 77

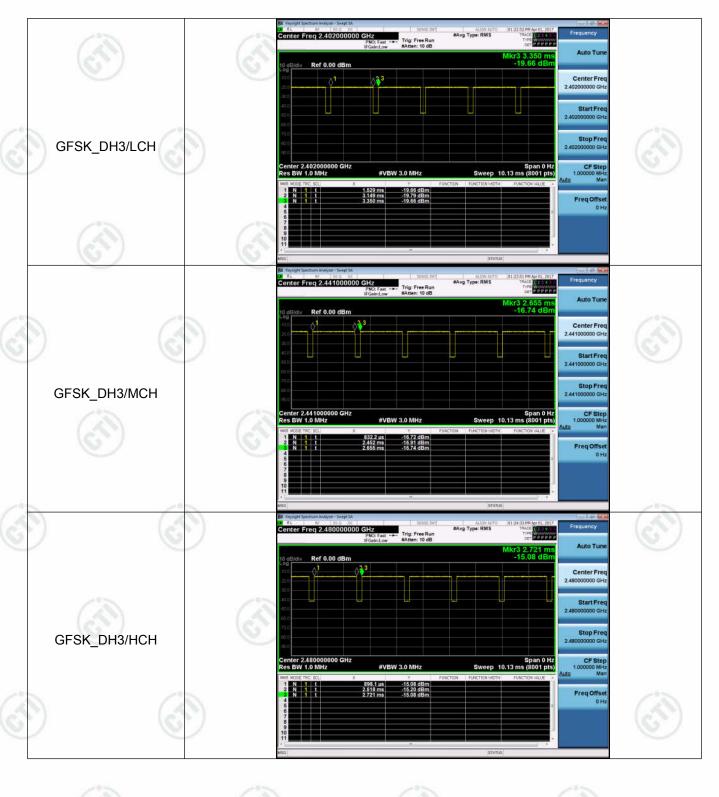
Appendix C): Dwell Time

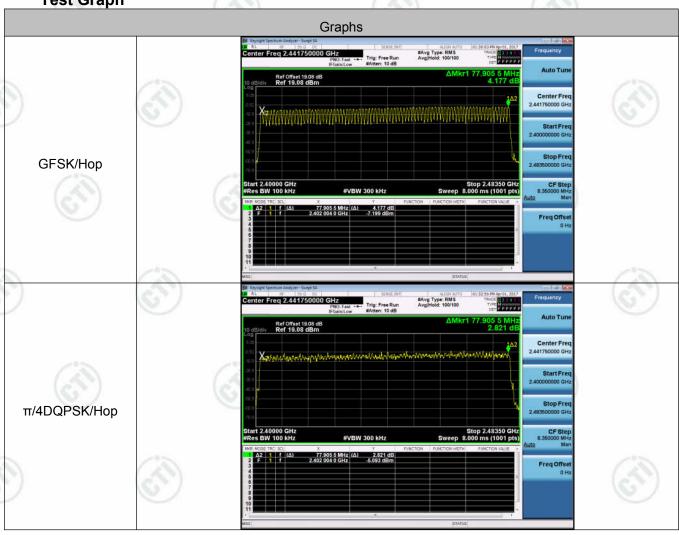
Result Table

Mode	Packet	Chann el	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.3635333	320	0.116	0.64	PASS
GFSK	DH1	MCH	0.363534	320	0.116	0.64	PASS
GFSK	DH1	нсн	0.363533	320	0.116	0.64	PASS
GFSK	DH3	LCH	1.62006	160	0.259	0.89	PASS
GFSK	DH3	MCH	1.62007	160	0.259	0.89	PASS
GFSK	DH3	нсн	1.620063	160	0.259	0.89	PASS
GFSK	DH5	LCH	2.86774	106.7	0.306	0.93	PASS
GFSK	DH5	МСН	2.867733	106.7	0.306	0.93	PASS
GFSK	DH5	нсн	2.86773	106.7	0.306	0.93	PASS

Report No.: EED32J00053001 Page 23 of 77

Test Graph



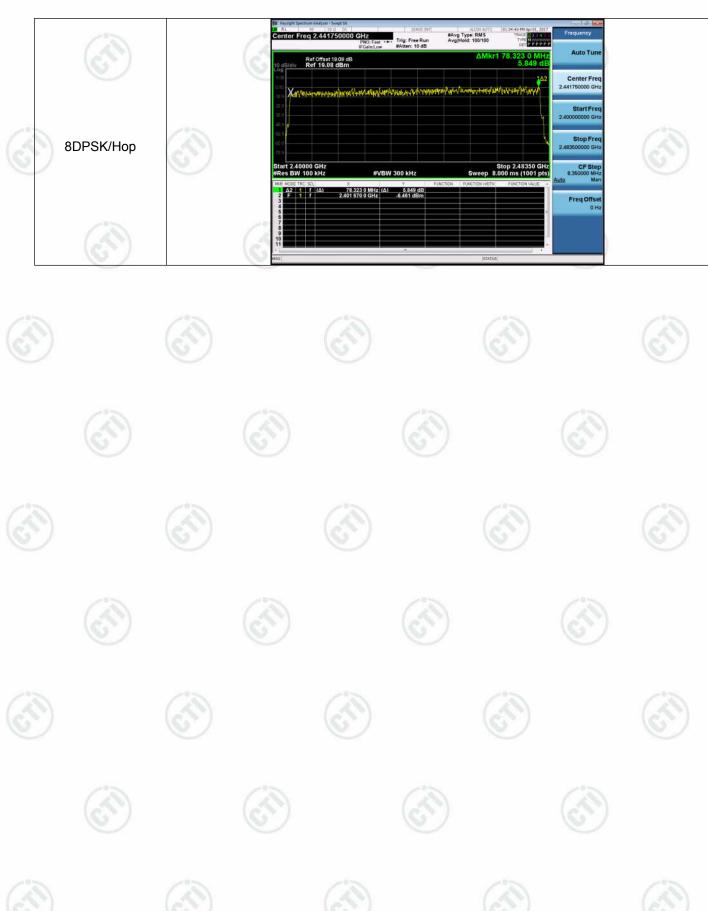

Report No.: EED32J00053001 Page 26 of 77

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

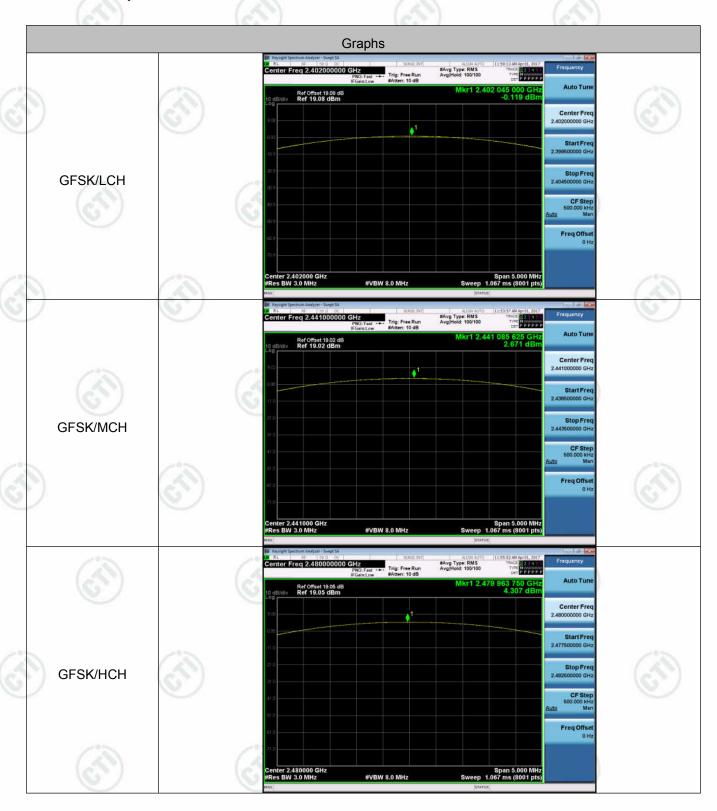
Test Graph



Report No. : EED32J00053001 Page 28 of 77

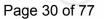
Appendix E): Conducted Peak Output Power

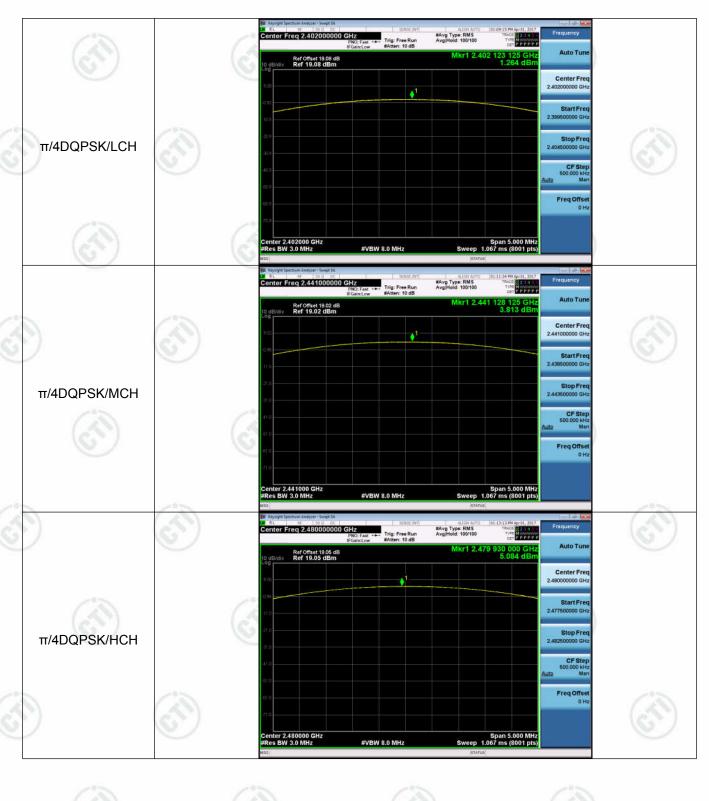
Result Table

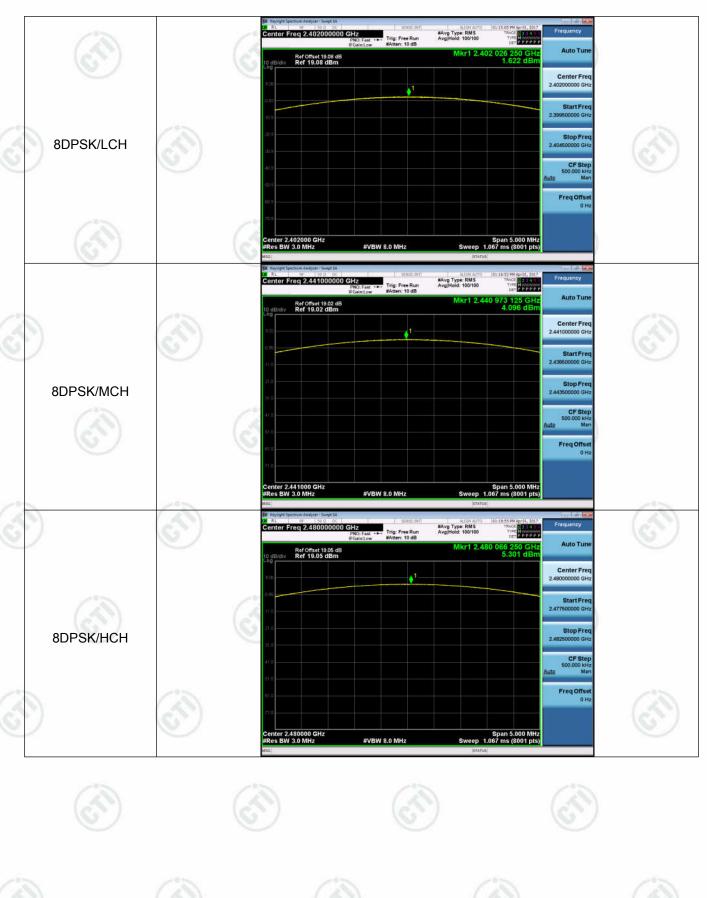

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	-0.119	PASS
GFSK	MCH	2.671	PASS
GFSK	HCH	4.307	PASS
π/4DQPSK	LCH	1.264	PASS
π/4DQPSK	MCH	3.813	PASS
π/4DQPSK	HCH	5.084	PASS
8DPSK	LCH	1.622	PASS
8DPSK	MCH	4.096	PASS
8DPSK	HCH	5.301	PASS

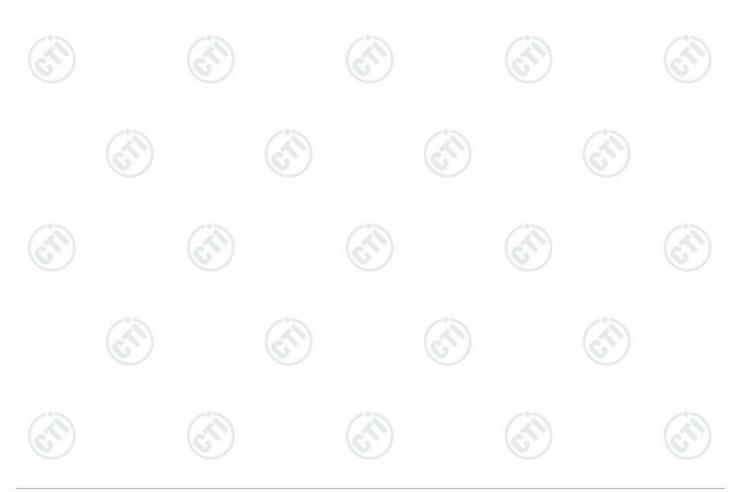
Report No.: EED32J00053001 Page 29 of 77

Test Graph





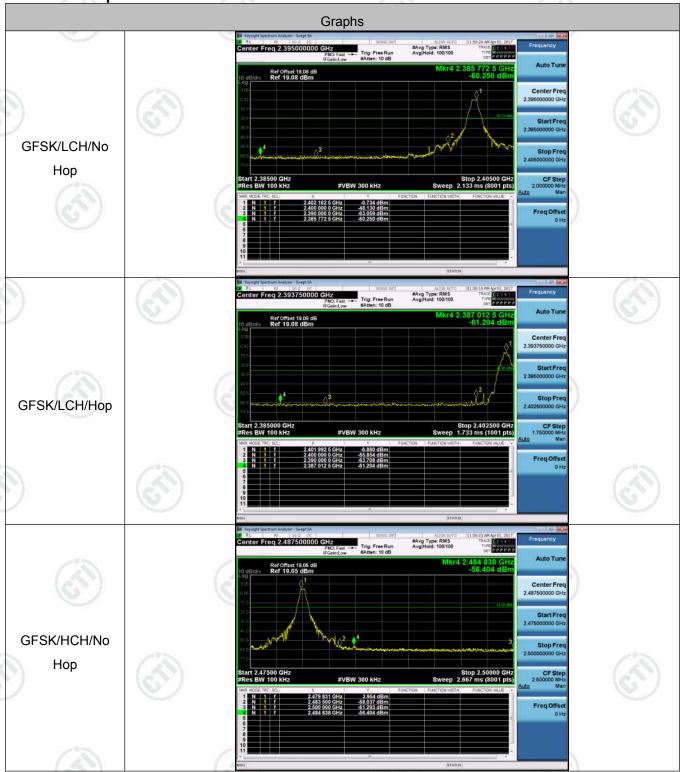




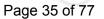
Report No. : EED32J00053001 Page 32 of 77

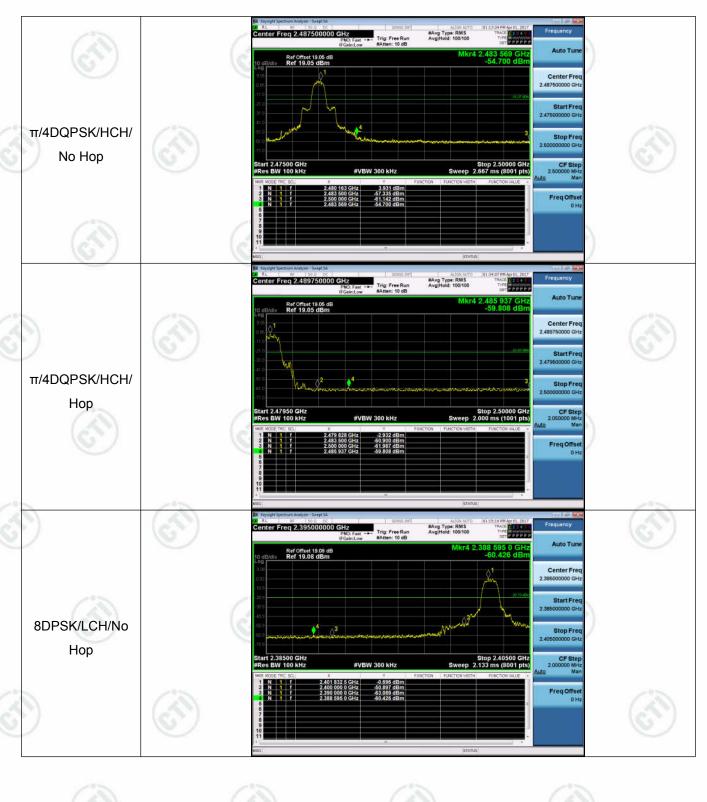
Appendix F): Band-edge for RF Conducted Emissions

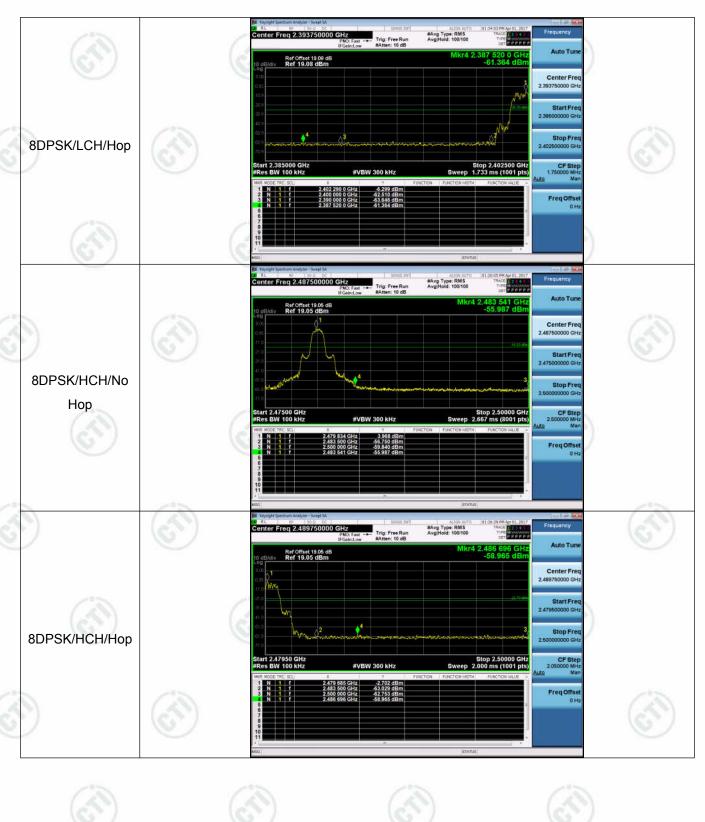
Result Table


Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict		
05014	1.011	0.400	-0.734	Off	-60.250	-20.73	PASS		
GFSK	LCH	2402	-6.880	On	-61.204	-26.88	PASS		
0.50			3.954	Off	-56.404	-16.05	PASS		
GFSK	HCH	2480	-3.369	On	-60.447	-23.37	PASS		
445.0504		2402	-0.599	Off	-60.942	-20.6	PASS		
π/4DQPSK	LCH		-6.476	On	-60.860	-26.48	PASS		
AND ODDOL				0.400	3.931	Off	-54.700	-16.07	PASS
π/4DQPSK	HCH	2480	-2.932	On	-59.808	-22.93	PASS		
			-0.696	Off	-60.426	-20.7	PASS		
8DPSK	LCH	2402	-6.299	On	-61.364	-26.3	PASS		
		(35)	3.968	Off	-55.987	-16.03	PASS		
8DPSK	HCH	2480	-2.702	On	-58.965	-22.7	PASS		

Page 33 of 77





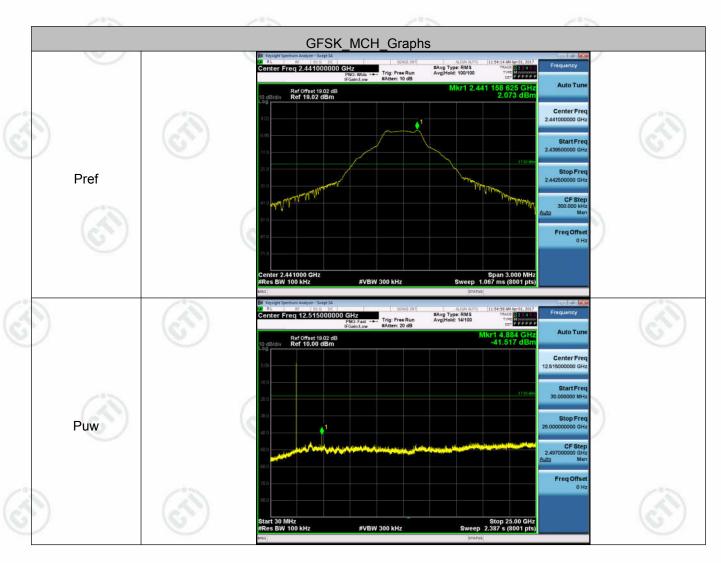


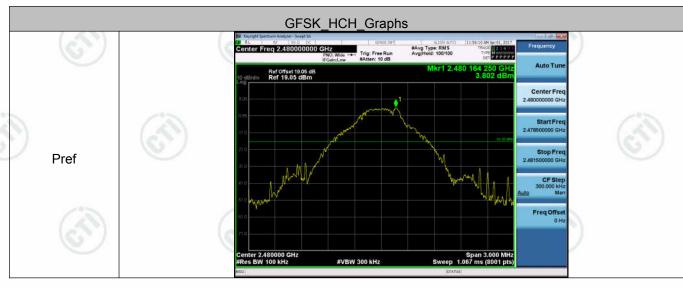
Report No.: EED32J00053001 Page 37 of 77

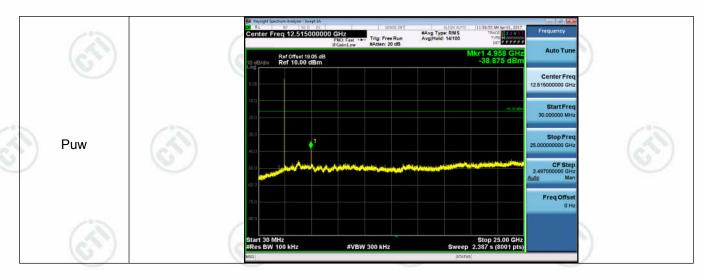
Appendix G): RF Conducted Spurious Emissions

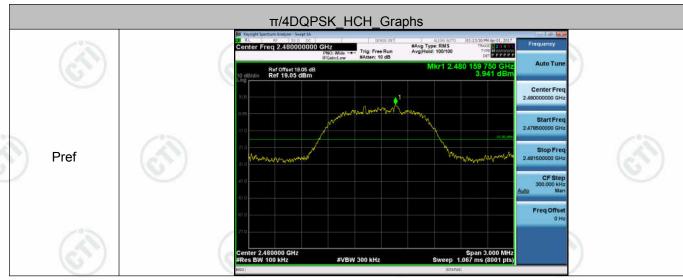
Result Table

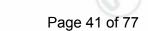
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-0.762	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	2.073	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	3.802	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-2.31	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	2.158	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	3.941	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-0.734	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	2.113	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	3.891	<limit< td=""><td>PASS</td></limit<>	PASS

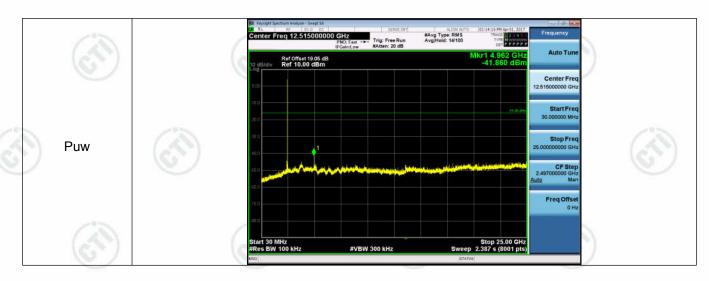

Test Graph

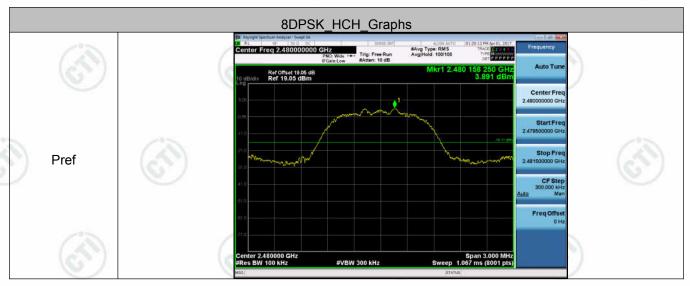














Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 01, 33, 41, 65, 09, 33, 41,40, 56, 72, 09,78, 73, 22, 04, 20, 11, 05, 13, 37, 45,36, 52, 38, 46, 70, 08 24, 40, 56, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 53, 69, 06, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40 48,72, 01, 72, 01, 76, 13, 37, 25, 33, 03, 11, 35, 43, 12, 28, 44, 60, 42, 58, 74 etc.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid

the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32J00053001 Page 45 of 77

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

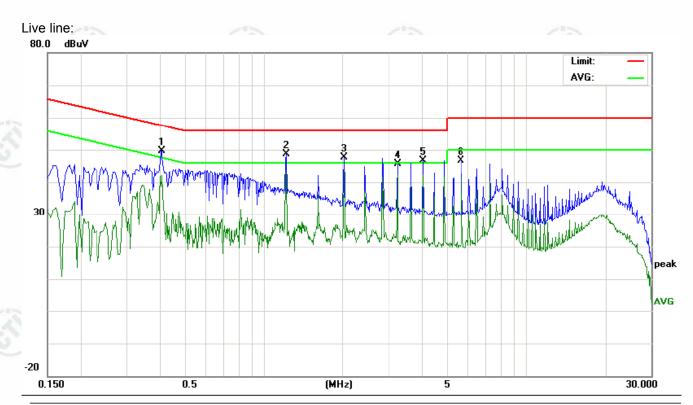
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Monopole Antenna and no consideration of replacement. The best case gain of the antenna is 2.5dBi.

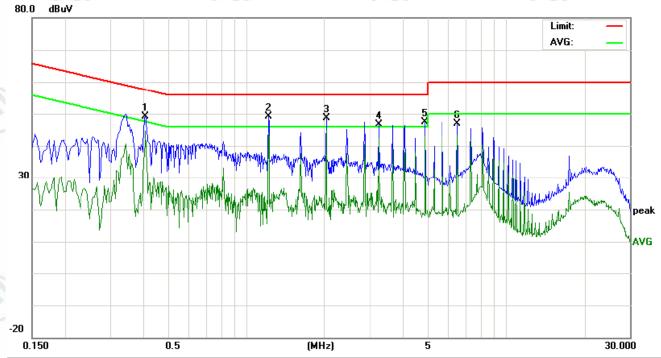
Report No. : EED32J00053001 Page 46 of 77


Appendix J): AC Power Line Conducted Emission

		st frequency range :150KHz			
		The mains terminal disturba The EUT was connected to Stabilization Network) whi power cables of all other of which was bonded to the of for the unit being measure multiple power cables to a	AC power source throch provides a 50Ω/50μunits of the EUT were ground reference planed. A multiple socket of	ough a LISN 1 (Line $_{0}$ H + $5Ω$ linear important connected to a section the same way a putlet strip was use	e Impedance edance. The cond LISN 2, s the LISN 1 d to connect
		exceeded. The tabletop EUT was place reference plane. And for flucture for the horizontal ground reference. The test was performed we EUT shall be 0.4 m from the second s	oor-standing arrangem e plane, ith a vertical ground r	ent, the EUT was peference plane. The	laced on the
	(4)	reference plane was bonded a was placed 0.8 m from ground reference plane for plane. This distance was be all other units of the EUT at LISN 2.	ed to the horizontal gro the boundary of the u or LISNs mounted or between the closest po	ound reference plan unit under test and n top of the grour unts of the LISN 1 a	ie. The LISN bonded to a reference and the EUT.
	5)	n order to find the maximul of the interface cables mus conducted measurement.			
imit:					
			Limit (c		
		Frequency range (MHz)	Quasi-peak	Average	
	130	0.15-0.5	66 to 56*	56 to 46*	(3)
		0.5-5	56	46	(0,)
		5-30	60	50	
		5-30 he limit decreases linearly MHz to 0.50 MHz.	24%	245	e range 0.15
		he limit decreases linearly	with the logarithm of	the frequency in the	e range 0.15
initial pre-scan asi-Peak and A	NC ta was perforr	he limit decreases linearly MHz to 0.50 MHz.	with the logarithm of icable at the transition lines with peak detector	the frequency in the frequency	
initial pre-scan asi-Peak and A	NC ta was perforr	he limit decreases linearly MHz to 0.50 MHz. TE: The lower limit is appl ned on the live and neutral	with the logarithm of icable at the transition lines with peak detector	the frequency in the frequency	
	NC ta was perforr	he limit decreases linearly MHz to 0.50 MHz. TE: The lower limit is appl ned on the live and neutral	with the logarithm of icable at the transition lines with peak detector	the frequency in the frequency	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 47 of 77


No	Freq.		ding_Le	vel	Correct	M	leasuren		Lin (dB)			rgin		
140.	r req.	(dBuV)		Factor		(dBu∀)		(dB	uv)	((dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.4100	37.34	36.70	31.29	9.75	47.09	46.45	41.04	57.65	47.65	-11.20	-6.61	Р	
2	1.2250	37.34	37.33	31.56	9.64	46.98	46.97	41.20	56.00	46.00	-9.03	-4.80	Р	
3	2.0369	37.83	37.34	31.38	9.72	47.55	47.06	41.10	56.00	46.00	-8.94	-4.90	Р	
4	3.2590	35.99	35.17	29.76	9.68	45.67	44.85	39.44	56.00	46.00	-11.15	-6.56	Р	
5	4.0739	36.98	35.89	30.25	9.65	46.63	45.54	39.90	56.00	46.00	-10.46	-6.10	Р	
6	5.7030	36.96	35.48	29.66	9.66	46.62	45.14	39.32	60.00	50.00	-14.86	-10.68	Р	

Report No.: EED32J00053001 Page 48 of 77

Neutral line:

-		_		ding_Le	vel	Correct	M	leasuren		Lin		Mai	_		
	No.	Freq.	(dBuV)		Factor		(dBu∀)		(dB	uV)	(c	iB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.4100	39.32	36.72	30.79	9.75	49.07	46.47	40.54	57.65	47.65	-11.18	-7.11	Р	
	2	1.2220	39.42	38.70	32.99	9.64	49.06	48.34	42.63	56.00	46.00	-7.66	-3.37	Р	
	3	2.0380	38.82	37.69	31.85	9.72	48.54	47.41	41.57	56.00	46.00	-8.59	-4.43	Р	
ř	4	3.2580	37.05	35.37	30.14	9.68	46.73	45.05	39.82	56.00	46.00	-10.95	-6.18	Р	
	5	4.8859	37.80	35.59	30.47	9.62	47.42	45.21	40.09	56.00	46.00	-10.79	-5.91	Р	
	6	6.5180	37.06	34.62	28.45	9.70	46.76	44.32	38.15	60.00	50.00	-15.68	-11.85	Ρ	

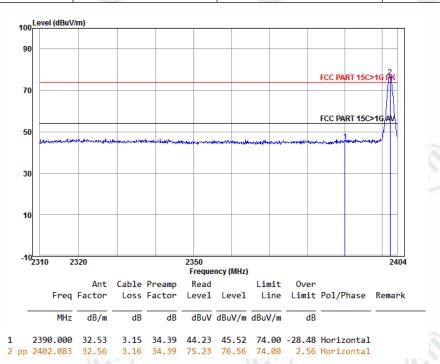
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

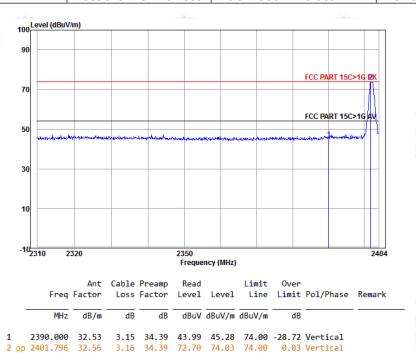
Report No.: EED32J00053001 Page 49 of 77

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:		Frequency	Detector	RBW	VBW	Remark		
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak		
		Ab 4011	Peak	1MHz	3MHz	Peak		
	(35)	Above 1GHz	Peak	1MHz	10Hz	Average		
Test Procedure:	Belo	w 1GHz test proced	dure as below:					
	b \(\)	The EUT was placed at a 3 meter semi-and determine the position of the EUT was set 3 nowas mounted on the The antenna height is determine the maximal polarizations of the a	echoic camber. The nof the highest range of the highest range of the highest range of the fill the fill the highest range of the	he table wa adiation. the interfer neight ante meter to fo eld strengtl	ence-receinna tower. bur meters h. Both hor	360 degrees to ving antenna, vabove the grourizontal and veri		
	d. i t e f. i f. i	the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	- I	or lowest and highes ve 1GHz test proce						
	h. i.	Different between ab o fully Anechoic Chameter(Above 18GHz o. Test the EUT in the Figure 18GHz of the radiation measuransmitting mode, are peat above process.	Imber and change the distance is 1 e lowest channel rements are perfo and found the X ax	e form table meter and , the Highe rmed in X, kis position	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse case.		
Limit:		Frequency	Limit (dBµV	/m @3m)	Rei	mark		
		30MHz-88MHz	40.0	0	Quasi-pe	eak Value		
		88MHz-216MHz	43.5	5	Quasi-pe	eak Value		
		216MHz-960MHz	46.0	0	Quasi-pe	eak Value		
		960MHz-1GHz	54.0	0	Quasi-pe	eak Value		
				16	Averse			
		Above 1GHz	54.0 74.0			le Value Value		



Page 50 of 77


Test plot as follows:

Worse case mode:	GFSK(1-DH5)	(20)	(375)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode: GFSK(1-DH5)

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak

