

Report No.: EED32I00008402 Page 1 of 47

TEST REPORT

Product Mi Bluetooth Speaker

Trade mark N/A

Model/Type reference MDZ-15-DB

Serial Number N/A

Report Number EED32I00008402 **FCC ID** : 2AFZYMDZ-15-DB

Date of Issue Feb. 19, 2016

Test Standards 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Xiaomi Inc

The Rainbow City of China Resources, No.68, Qinghe Middle Street, Haidian District, Beijing, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

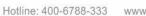
> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

Compiled by:

oproved by

Report Seal


Date:

Feb. 19, 2016

Sheek Luo

Lab supervisor

Check No.: 2212868164

Page 2 of 47

2 Version

Version No.	Date	Description	6	\mathcal{I}
00	Feb. 19, 2016	Original		
			(6,)	(0,)

(4)

Report No.: EED32I00008402

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

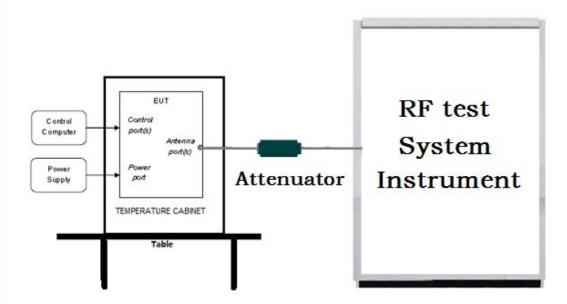
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Report No.: EED32I00008402 Page 4 of 47

4 Content

1 COVER DA	GE						
	•••••						
	MARY						
4 CONTENT.	•••••			•••••		•••••	4
5 TEST REQ	UIREMENT	•••••		•••••		•••••	5
5.1.1 Fo 5.1.2 Fo 5.1.3 Fo 5.2 TEST E	ETUP or Conducted test or Radiated Emission Conducted Emison NVIRONMENT	setup ions test setup ssions test setup					
6 GENERAL	INFORMATION	•••••		•••••	•••••	•••••	7
6.2 GENERA 6.3 PRODUC 6.4 DESCRI 6.5 TEST LO 6.6 TEST FA 6.7 DEVIATI 6.8 ABNORI 6.9 OTHER	INFORMATION AL DESCRIPTION OF CT SPECIFICATION IPTION OF SUPPOR' OCATION ACILITY ION FROM STANDAF MALITIES FROM STA INFORMATION REQ	E EUTSUBJECTIVE TO	HIS STANDAR	D			7
	IT LIST						
	CHNICAL REQUI						
Appendi Appendi Appendi Appendi Appendi Appendi Appendi	ix A) 6dB Occupie ix B) Conducted P ix C) Band-edge fo ix D) RF Conducte ix E) Power Spect ix F) Antenna Req ix G) AC Power Li ix H) Restricted ba ix I) Radiated Spu	reak Output Povor RF Conducted Spurious Emi ral Density	verd Emissions. ssions missiondamental fre	quency (Radi	iated)		
	PHOTOGRAPHS						
APPENDIX 2	PHOTOGRAPHS	OF EUT		•••••		•••••	36



Report No. : EED32I00008402 Page 5 of 47

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

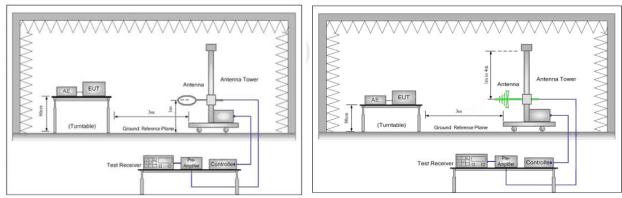


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

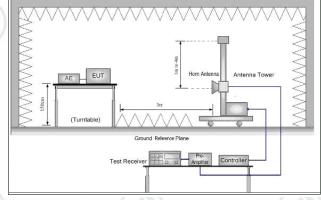
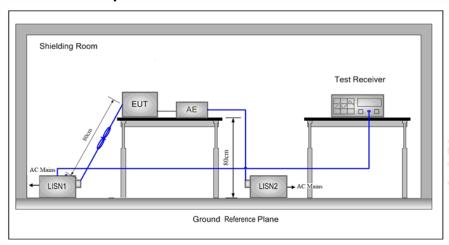
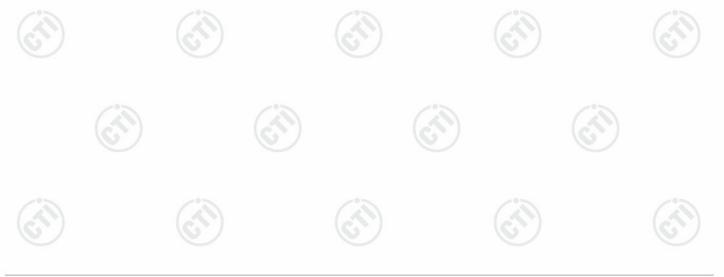



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:				
Temperature:	22°C			
Humidity:	50% RH			
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
	IX/RX	Low(L)	Middle(M)	High(H)	
GFSK		Channel 1	Channel 20	Channel40	
	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Report No. : EED32I00008402 Page 7 of 47

6 General Information

6.1 Client Information

Applicant:	Xiaomi Inc
Address of Applicant:	The Rainbow City of China Resources, No.68, Qinghe Middle Street, Haidian District, Beijing, China
Manufacturer:	Xiaomi Inc
Address of Manufacturer:	The Rainbow City of China Resources, No.68, Qinghe Middle Street, Haidian District, Beijing, China
Factory:	Shenzhen3Nod Digital Technology Co., Ltd.
Address of Factory:	Building D Park 8# Langhui Road, Tangxiayong Village Industrial Zone, Songgang Town, Bao'an District, Shenzhen City, China

6.2 General Description of EUT

Product Name:	Mi Bluetoo	th Speaker			
Model No.(EUT):	MDZ-15-DI	В	-0-		,
Trade mark:	N/A		(41)		
EUT Supports Radios application:	Bluetooth \	/4.0 BLE			0
Power Supply:	Adapter:	Input: AC 100V-240V 50 Output: DC 5V 2A)-60Hz		
	Battery:	DC 3.8V			
Sample Received Date:	Jan. 18, 20)16		(0)	
Sample tested Date:	Jan. 18, 2016 to Feb. 19, 2016				

6.3 Product Specification subjective to this standard

J I I Odu	ct opecini	sation 5	ubjective	to tills s	lanuaru		
Operation F	requency:	2402N	1Hz~2480MHz		(67)	ll .	(6.7)
Bluetooth \	/ersion:	4.0					
Modulation	Technique:	DSSS					
Modulation	Type:	GFSK			2_	/05	h 112
Number of	Channel:	40		(4)	-)	(4)	-)
Sample Ty	pe:	Portab	Portable production				
Test Power	Grade:	N/A (m	N/A (manufacturer declare)				
Test Softwa	are of EUT:	CC256	CC256X (manufacturer declare)				
Hardware	Version:	V1.0 (r	manufacturer o	declare)			
Software \	/ersion:	V1.0 (r	manufacturer o	declare)	6.7		(0.
Antenna Ty	pe and Gain::	Type: Gain: 2	Internal anteni 2.5dBi	na			
Test Voltag	je:	AC 12	0V/60Hz		\	(3)	
Operation F	requency eac	h of channe	el	(6,7))	(6))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
2	2406MH=	12	242614117	22	244614117	22	2466MH=

Report No. : EED32I00008402 Page 8 of 47

4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	SAMSUNG	ETAOU82CBC	FCC DOC	Client

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

Report No. : EED32I00008402 Page 9 of 47

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0	DE source and Col	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
_	Dedicted Consists are incident took	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32I00008402 Page 10 of 47

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(0)	01-12-2016	01-11-2017
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002	· ·	01-12-2016	01-11-2017
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(4)	01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

	Co	nducted distu	rbance Test			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016	
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016	
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016	
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016	
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016	
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016	
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016	
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017	
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017	
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017	

Report No. : EED32I00008402 Page 11 of 47

		[1]				
		3M Semi/full-anech	noic Chamber			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016	
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017	
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018	
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017	
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016	
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016	
Multi device Controller	maturo	NCD/070/10711112		01-12-2016	01-11-2017	
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016	
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016	
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016	
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016	
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016	
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017	
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017	
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017	
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017	
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016	
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002		01-12-2016	01-11-2017	
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-12-2016	01-11-2017	
band rejection filter Sinoscite		FL5CX02CA04CL1 2-0396-002	(42)	01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-12-2016	01-11-2017	

Report No. : EED32I00008402 Page 12 of 47

8 Radio Technical Requirements Specification

Reference documents for testing:

		1 3 -
No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note	
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)	
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)	
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)	
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)	
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)	
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)	
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)	
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)	
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)	

Report No. : EED32I00008402 Page 13 of 47

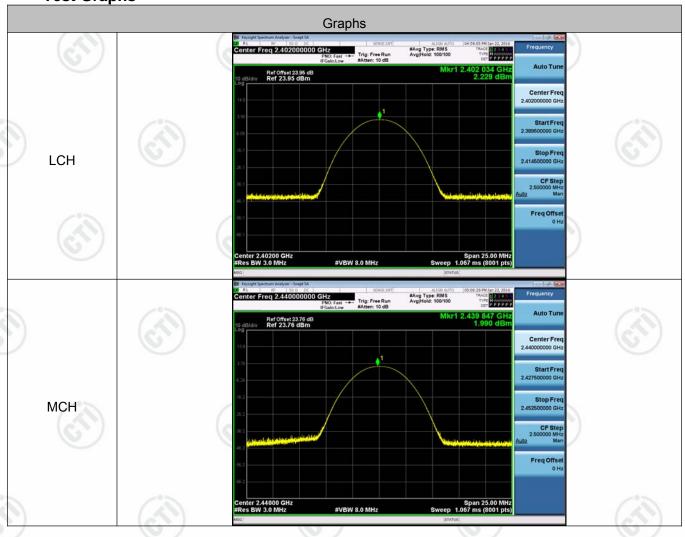
Appendix A) 6dB Occupied Bandwidth

Test Result

N	lode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
	BLE	LCH	0.7024	1.0405	PASS	
	BLE	MCH	0.6999	1.0381	PASS	Peak
	BLE	НСН	0.7081	1.0421	PASS	detector

Test Graphs

Page 14 of 47

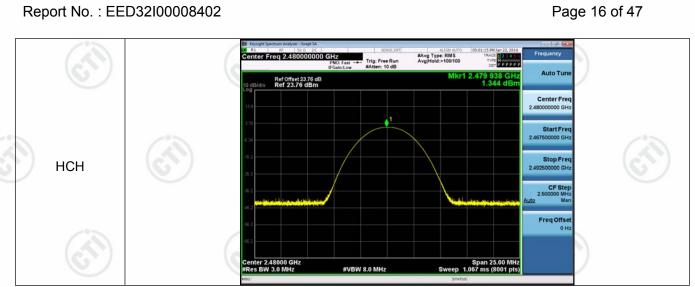

Report No. : EED32I00008402 Page 15 of 47

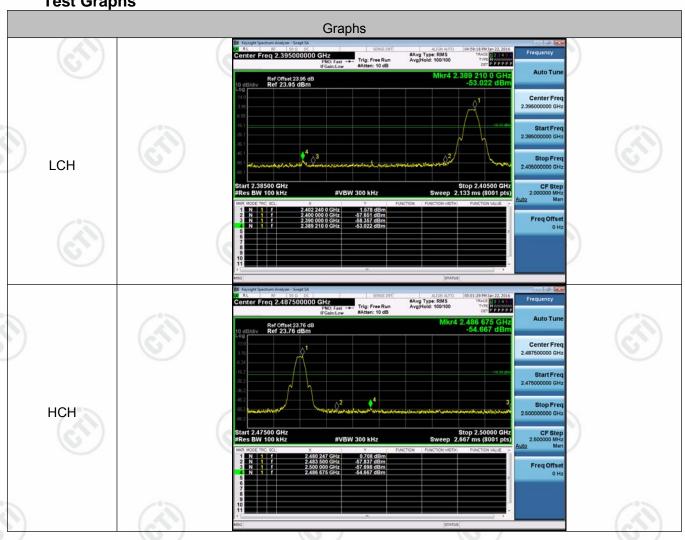
Appendix B) Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.229	PASS
BLE	MCH	1.990	PASS
BLE	нсн	1.344	PASS

Test Graphs



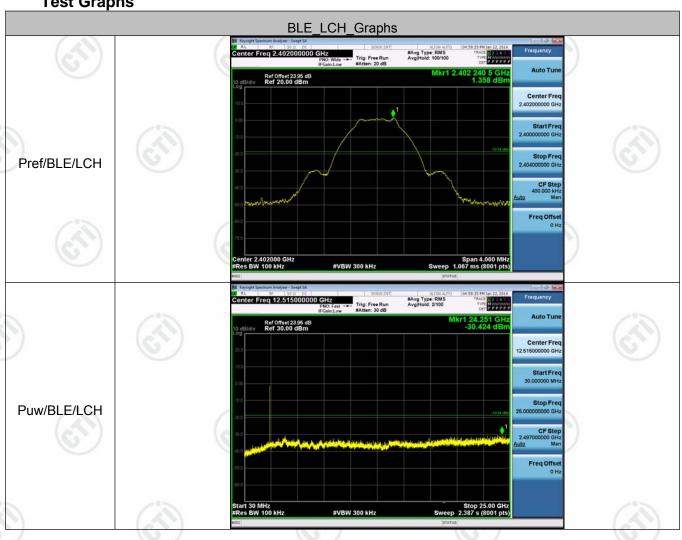


Appendix C) Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
Ž	BLE	LCH	1.578	-53.022	-18.42	PASS	
9	BLE	HCH	0.708	-54.667	-19.29	PASS	

Test Graphs

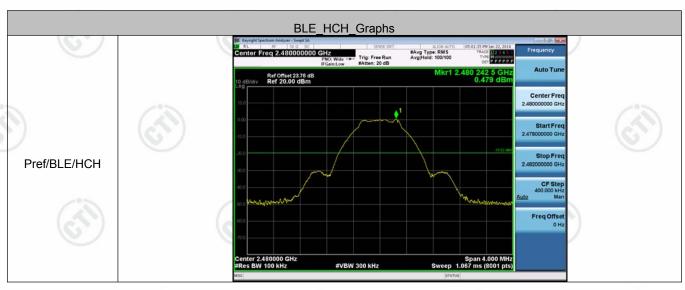

Report No.: EED32I00008402 Page 18 of 47

Appendix D) RF Conducted Spurious Emissions

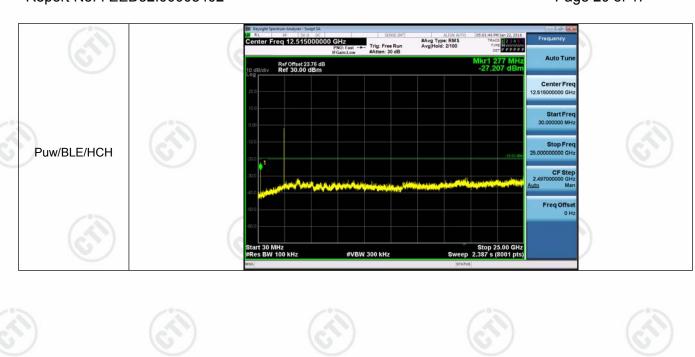
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	1.358	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	1.11	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	0.479	<limit< td=""><td>PASS</td></limit<>	PASS

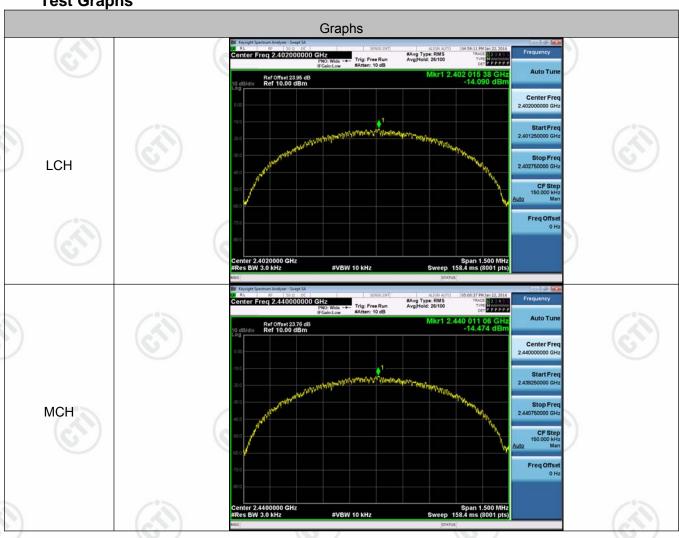
Test Graphs



Report No. : EED32I00008402 Page 19 of 47



Page 20 of 47

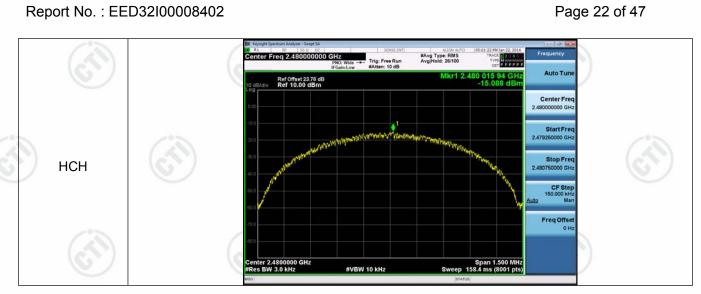


Appendix E) Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-14.090	PASS
BLE	MCH	-14.474	PASS
BLE	НСН	-15.088	PASS

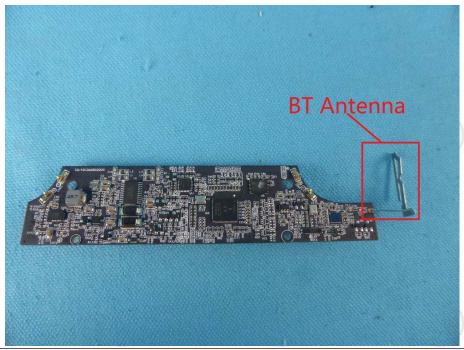
Test Graphs



Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

Report No.: EED32I00008402

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.5dBi.

Report No.: EED32I00008402 Page 24 of 47

Appendix G) AC Power Line Conducted Emission

Test Procedure:

Test frequency range: 150KHz-30MHz

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency range (MHz)	Limit (dBμV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

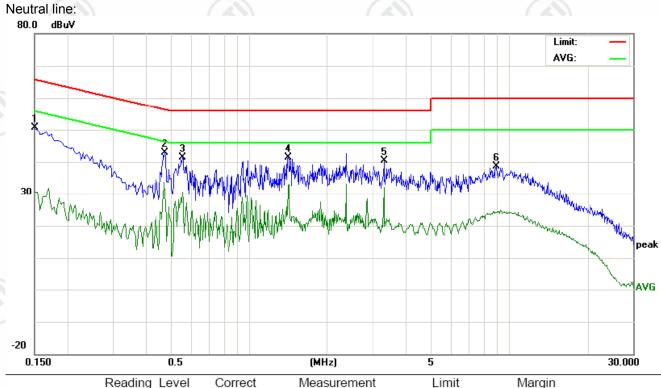
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 25 of 47

Live line: 80.0 dBuV Limit: AVG: 30 4 5 4 4 5 AVG AVG Peak -20 0.150 0.5 (MHz) 5 30.000

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	Measurement (dBuV)			Limit Margin (dBuV) (dB)		_		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1924	28.72	21.66	4.41	9.80	38.52	31.46	14.21	63.93	53.93	-32.47	-39.72	Р	
_	2	0.4740	31.50	11.70	4.02	9.90	41.40	21.60	13.92	56.44	46.44	-34.84	-32.52	Р	
	3	0.5580	29.16	18.56	11.37	9.90	39.06	28.46	21.27	56.00	46.00	-27.54	-24.73	Р	
	4	1.4180	29.69	8.65	2.03	10.00	39.69	18.65	12.03	56.00	46.00	-37.35	-33.97	Р	
	5	2.3660	29.67	8.37	0.53	10.00	39.67	18.37	10.53	56.00	46.00	-37.63	-35.47	Р	
	6	9.2620	23.70	13.26	8.99	10.00	33.70	23.26	18.99	60.00	50.00	-36.74	-31.01	Р	



Page 26 of 47

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	Measurement (dBuV)		Limit Mar (dBuV) (d		rgin IB)			
_		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
Ī	1	0.1500	40.73	30.23	16.11	9.80	50.53	40.03	25.91	65.99	55.99	-25.96	-30.08	Р	
	2	0.4780	32.96	11.53	0.72	9.90	42.86	21.43	10.62	56.37	46.37	-34.94	-35.75	Р	
Ô	3	0.5580	31.53	22.54	13.05	9.90	41.43	32.44	22.95	56.00	46.00	-23.56	-23.05	Р	
	4	1.4180	31.48	16.15	7.08	10.00	41.48	26.15	17.08	56.00	46.00	-29.85	-28.92	Р	
-	5	3.3140	30.26	14.54	7.74	10.00	40.26	24.54	17.74	56.00	46.00	-31.46	-28.26	Р	
-	6	8.9340	28.56	17.56	11.25	10.00	38.56	27.56	21.25	60.00	50.00	-32.44	-28.75	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32I00008402 Page 27 of 47

Appendix H) Restricted bands around fundamental frequency (Radiated)

kadiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-pea	k
(")	AL 4011	Peak	1MHz	3MHz	Peak	(3)
(6)	Above 1GHz	Peak	1MHz	10Hz	Average	6
Test Procedure:	Below 1GHz test procedu	e as below:				
	 a. The EUT was placed or at a 3 meter semi-anech determine the position of the EUT was set 3 met was mounted on the top of the antenna height is videtermine the maximum polarizations of the antena was tuned table was turned from 0 e. The test-receiver system 	the top of a ronoic camber. The highest rates away from of a variable-rated from one of value of the finance are set to degrees to 360 n was set to Person of the property of	ne table wand adiation. The interference interference in the inter	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its v 4 meters a o find the r	above the grizontal and vent. worst case a and the rotal maximum re	to a, which round to vertica and the table ading.
(41)	f. Place a marker at the ending frequency to show complete the control of the con	nd of the restric pliance. Also m	easure any	emissions	s in the restr	
	f. Place a marker at the en	nd of the restrict pliance. Also may manalyzer plother as below: e is the test site per change form meter and table west channel, from the country are performents are performents are performent the X axis.	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 med the Highest rmed in X, kis positioni	or each portions or each portion Semi-metre to 1 are). It channel Y, Z axis programming which it	Anechoic Constitution of the constitution of t	ndulation hambe nove
Limit:	f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of lowest and highest of the fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lower in the radiation measurem that the fully mode, and	nd of the restrict pliance. Also may manalyzer plother as below: e is the test site per change form meter and table west channel, from the country are performents are performents are performent the X axis.	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, kis positioni uencies me	emissions for each position Semi- metre to 1 tre). It channel Y, Z axis ping which it easured was	Anechoic Constitution of the constitution of t	ndulation hambe nove
Limit:	f. Place a marker at the elfrequency to show complete bands. Save the spectrum for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lower in the radiation measurem Transmitting mode, and j. Repeat above procedur	nd of the restrict pliance. Also may analyzer plothannel re as below: e is the test site per change form meter and table west channel, in the ments are performents are performental frequential frequents.	easure any ot. Repeat for the table 0.8 re is 1.5 met the Highest rmed in X, kis positioni uencies med/m @3m)	emissions for each portion Semi-metre to 1 tre). channel Y, Z axis programming which it easured ware recommended to the semi-metric semi-m	Anechoic Constitution of the complete.	ndulation hambe nove
Limit:	f. Place a marker at the ending frequency to show compliants. Save the spectrum for lowest and highest of the lowest and highest of the fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lower in the radiation measurem that Transmitting mode, and j. Repeat above procedur. Frequency	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site per change formeter and table west channel ments are performents are performed the X axes until all frequents (dBµV).	easure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, kis positioni uencies med/m @3m)	remissions for each portion Semi-metre to 1 tre). channel Y, Z axis ping which it easured was Rer Quasi-pe	Anechoic Constitution of the second constitution	ndulation hambe nove
Limit:	f. Place a marker at the ending frequency to show compliants. Save the spectrum for lowest and highest of lowest and highest of fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site per change form meter and table west channel, ments are performents are performent all frequential frequential timit (dBµV, 40.0	easure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, kis positioni uencies med/m @3m)	emissions or each portion Semi-metre to 1 cre). channel Y, Z axis programmed was red was red was red was red was red was red Quasi-pe	Anechoic Constitution of the constitution of t	ndulation hambe nove
Limit:	f. Place a marker at the endirequency to show compliants. Save the spectrum for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site per change form meter and table west channel , ments are performents are performent all frequents (dBµV). Limit (dBµV). 40.0 43.9	easure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, kis positioni uencies med/m @3m)	remissions for each por each each each each each each each each	Anechoic Constitution of the second constitution	ndulation hambe nove
Limit:	f. Place a marker at the ending frequency to show compliants. Save the spectrum for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lower in the radiation measurem Transmitting mode, and j. Repeat above procedur Some South 186Hz 188MHz	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site per change form meter and table west channel, ments are performed the X axes until all frequents (dBµV).	easure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, kis positioni uencies med (m @3m)	emissions for each portion Semi-metre to 1 tre). channel Y, Z axis pag which it asured was Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Constitution of the constitution of t	ndulation hambe nove

Test plot as follows:

Report No.: EED32I00008402

Worse case	e mode:	GFSK	(0,)		(6			(0,		
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	45.38	44.98	32.53	4.28	37.21	74	-29.02	Н	PK	Lowest
2390.00	44.75	44.35	32.53	4.28	37.21	74	-29.65	V	PK	Lowest
2483.50	43.97	44.00	32.71	4.51	37.19	74	-30.00	Н	PK	Highest
2483.50	44.29	44.32	32.71	4.51	37.19	74	-29.68	V	PK	Highest

Note:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

¹⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: EED32I00008402 Page 29 of 47

Appendix I) Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
ADOVE TGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

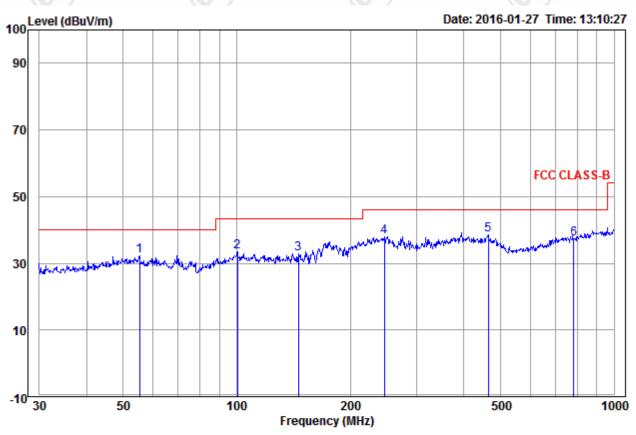
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

:	m	:1.
	m	IT.

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	· ·	300
	0.490MHz-1.705MHz	24000/F(kHz)	-		30
	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
1	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

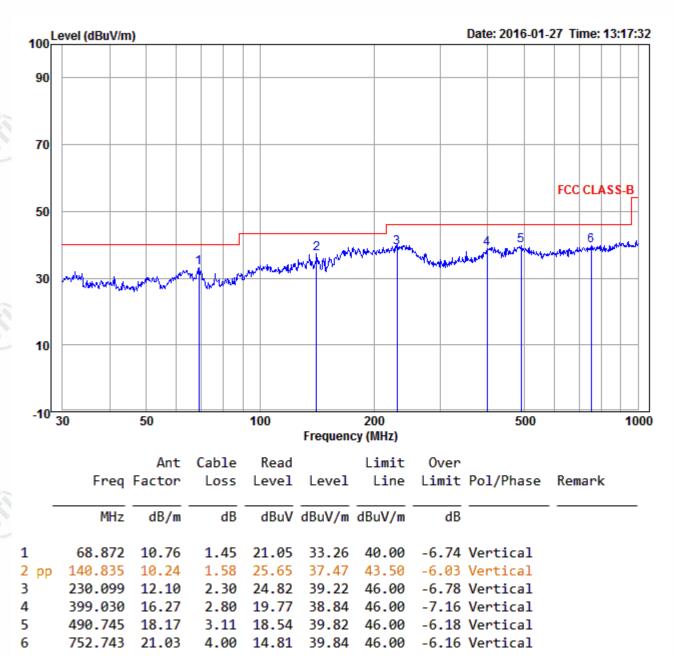


Page 30 of 47

Report No.: EED32I00008402

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-					-ID- 1//-	ID. 1//-			
	MHz	aB/m	ав	aBuv	aBuv/m	dBuV/m	dB		
1	55.221	14.39	1.42	16.54	32.35	40.00	-7.65	Horizontal	
2	100.581	13.15	1.57	18.72	33.44	43.50	-10.06	Horizontal	
3	145.861	9.94	1.58	21.44	32.96	43.50	-10.54	Horizontal	
4	245.951	12.34	2.34	23.28	37.96	46.00	-8.04	Horizontal	
5 pp	463.970	17.48	3.03	17.92	38.43	46.00	-7.57	Horizontal	
6	782.345	21.39	3.89	11.98	37.26	46.00	-8.74	Horizontal	



Page 31 of 47

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test chan	nel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1235.257	30.31	38.41	2.56	47.12	41.58	74	-32.42	Pass	Н
1483.727	30.84	37.99	2.81	46.69	42.35	74	-31.65	Pass	N.
3757.208	32.97	36.94	5.48	45.94	47.45	74	-26.55	Pass	Н
4804.000	34.69	36.82	5.11	43.71	46.69	74	-27.31	Pass	Н
7206.000	36.42	37.46	6.66	43.48	49.10	74	-24.90	Pass	Н
9608.000	37.88	37.82	7.73	42.51	50.30	74	-23.70	Pass	Н
1118.517	30.02	38.64	2.42	46.46	40.26	74	-33.74	Pass	V
1506.563	30.88	37.95	2.83	45.65	41.41	74	-32.59	Pass	V
3350.560	33.29	37.02	5.55	45.78	47.60	74	-26.40	Pass	V
4804.000	34.69	36.82	5.11	40.41	43.39	74	-30.61	Pass	C V
7206.000	36.42	37.46	6.66	42.05	47.67	74	-26.33	Pass	V
9608.000	37.88	37.82	7.73	42.40	50.19	74	-23.81	Pass	V

Worse case	mode:	GFSK		Test chan	nel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1098.763	29.97	38.68	2.39	47.36	41.04	74	-32.96	Pass	H
1613.749	31.08	37.80	2.93	46.23	42.44	74	-31.56	Pass	Н
3410.797	33.24	37.01	5.54	45.14	46.91	74	-27.09	Pass	Н
4880.000	34.85	36.81	5.08	43.19	46.31	74	-27.69	Pass	Н
7320.000	36.43	37.43	6.77	43.85	49.62	74	-24.38	Pass	Н
9760.000	38.05	37.85	7.60	42.74	50.54	74	-23.46	Pass	Н
1296.469	30.45	38.30	2.62	49.84	44.61	74	-29.39	Pass	V
1498.912	30.87	37.97	2.83	47.52	43.25	74	-30.75	Pass	V
3786.010	32.95	36.94	5.47	45.93	47.41	74	-26.59	Pass	V
4880.000	34.85	36.81	5.08	43.43	46.55	74	-27.45	Pass	V
7320.000	36.43	37.43	6.77	44.50	50.27	74	-23.73	Pass	V
9760.000	38.05	37.85	7.60	42.82	50.62	74	-23.38	Pass	V

Page 33 of 47

	1/1								
Worse case	mode:	GFSK		Test chan	nel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1293.173	30.44	38.31	2.62	48.42	43.17	74	-30.83	Pass	Н
1502.732	30.88	37.96	2.83	47.30	43.05	74	-30.95	Pass	Н
4245.509	33.41	36.87	5.33	44.58	46.45	74	-27.55	Pass	Н
4960.000	35.02	36.80	5.05	41.11	44.38	74	-29.62	Pass	Н
7440.000	36.45	37.41	6.88	44.11	50.03	74	-23.97	Pass	Н
9920.000	38.22	37.88	7.47	42.76	50.57	74	-23.43	Pass	Н
1293.173	30.44	38.31	2.62	48.58	43.33	74	-30.67	Pass	V
1663.803	31.17	37.72	2.97	46.42	42.84	74	-31.16	Pass	V
3776.385	32.96	36.94	5.48	45.30	46.80	74	-27.20	Pass	V
4960.000	35.02	36.80	5.05	41.85	45.12	74	-28.88	Pass	V
7440.000	36.45	37.41	6.88	45.06	50.98	74	-23.02	Pass	V
9920.000	38.22	37.88	7.47	42.58	50.39	74	-23.61	Pass	V

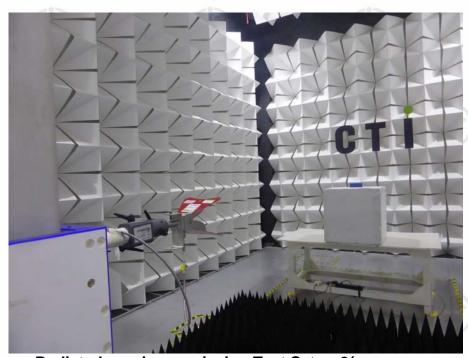

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

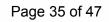

Report No. : EED32I00008402 Page 34 of 47

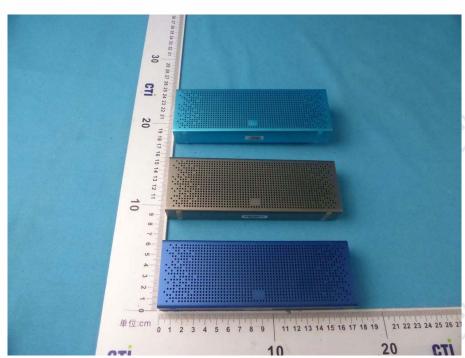
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: MDZ-15-DB

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)



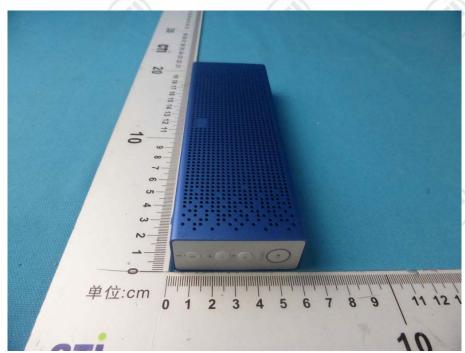


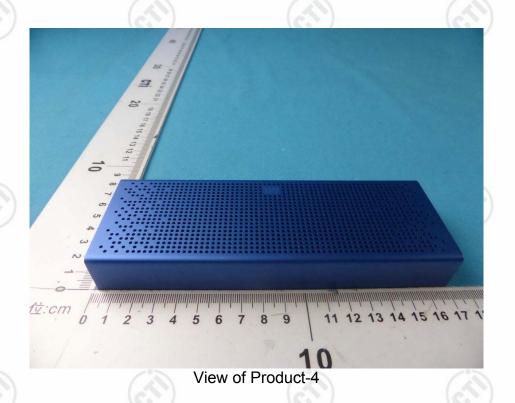
APPENDIX 2 PHOTOGRAPHS OF EUT

Test mode No.: MDZ-15-DB

View of Product-1

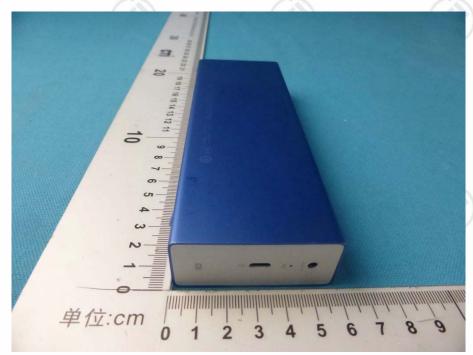
View of Product-2





Page 37 of 47

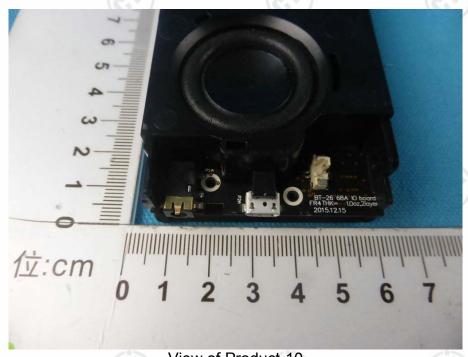
View of Product-3



View of Product-5

View of Product-6

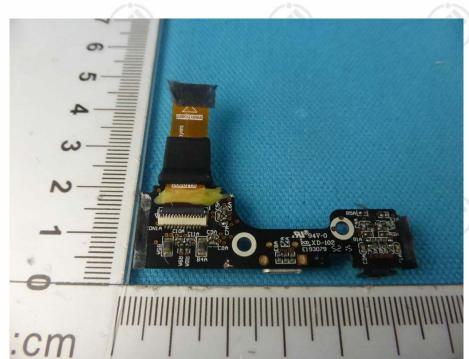
View of Product-7

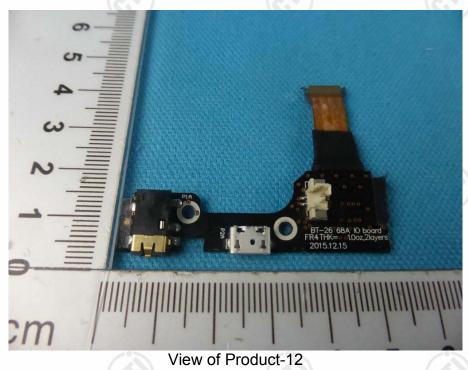


Page 40 of 47

View of Product-9

View of Product-10



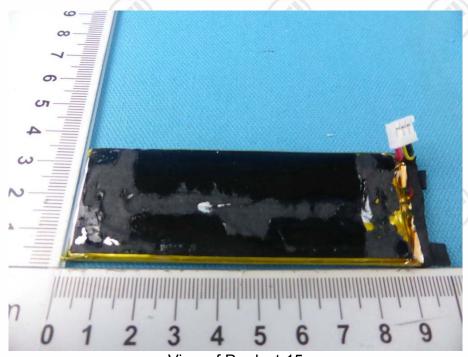


View of Product-11

Cil

View of Product-13

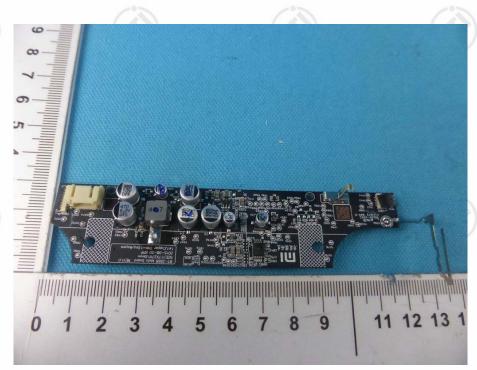
View of Product-14

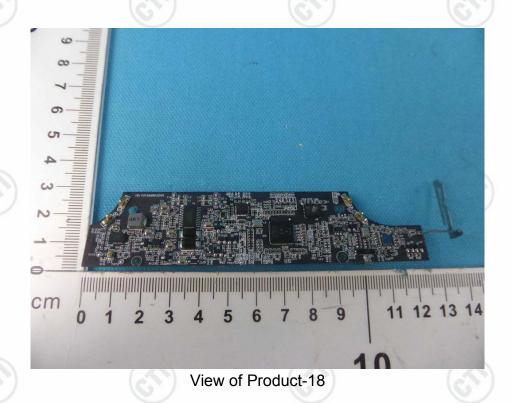


Page 43 of 47

View of Product-15

View of Product-16



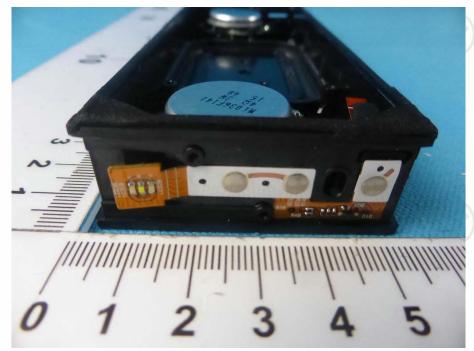


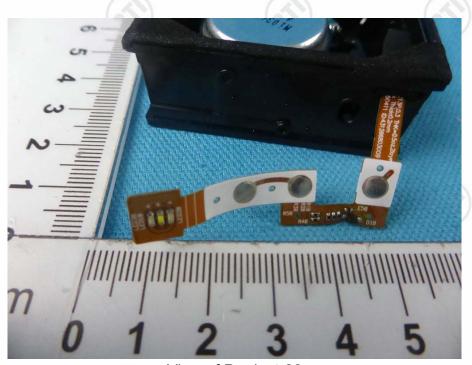
Report No. : EED32I00008402 Page 44 of 47

View of Product-17

View of Product-19

View of Product-20

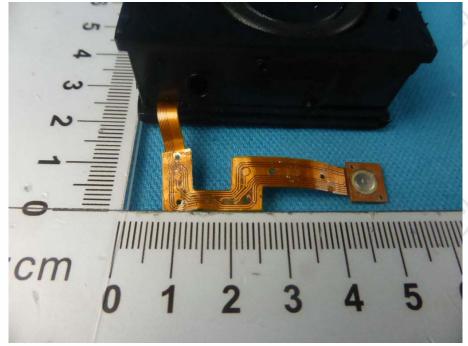




Report No. : EED32I00008402 Page 46 of 47

View of Product-21

View of Product-22



View of Product-23

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

