Vertical Collinear Antenna

The CD2405 is a high performance 4.5dBi meander style collinear base station antenna which covers from 2400MHz to 2500Mhz.

The patented PCB based design delivers superior pattern stability across the entire band, avoiding inherent pattern tilting common in more traditional collinear designs.

This antenna incorporates an N male connector with internal integrated PCB launch. It is covered with black fibreglass radome, matching black cap and delrin connector housing making it ideal for outdoor application.

- · Tightly controlled radiation patterns for optimum coverage
- Integrated N male connector at base
- · PCB design for optimum RF pattern stability
- Small unobtrusive design

Australian Patent Number 2003255049, USA Patent No. 6909403, European Patent No. 03 023406.6, Chinese Patent No. 200310100548.5, and Indian Patent No. 844/CHE/2003

Electrical

Model Number	CD2405	
Frequency MHz	2400 - 2500	
Nominal Gain <i>dBi</i>	4.5	
Tuned Bandwidth MHz	Full	
VSWR (Return Loss)	<1.5:1 (14dB)	
Polarisation	Vertical	
Vertical Beamwidth degrees	33	
Horizontal Beamwidth degrees	360	
Nominal Impedance Ω	50	
Power Rating W	5	

Mechanical

Model Number		CD2405				
Connector/Termination	Integrated N male					
Mounting Area		Integrated N male				
Suggested Clamping/Finish	uggested Clamping/Finish Bulkhead N female/black fibreglass radome and black Delrin connector hour					
Overall length mm		205				
Weight kg		0.1				
Wind Loading	no ice	4				
@ 160 km/h N	with ice	11				
Max. torque at clamps	no ice	1				
@ 160 km/h Nm with ice		3				
Desta de el Area de el 2	no ice	35				
Projected Area cm ²	with ice	97				

The RM-WLF wideband Series are 3 dBi gain broadband antennas. A ground plane is recommended for best performance. These antennas will operate over the entire 694-894 MHz spectrum, along with 1.7-2.7 GHz high frequency spectrum.

The RM-WLF requires a 5/8" hole (16 mm) for mounting and is outfitted with a gasket for weather sealing. The RM-WLF-DN is available with a direct N Female connector.

A magnetic mount version is available in the MGRM-WLF. This model provides all the same performance as the RM-WLF, with a powerful magnet for less permanent installations.

For glass mounting, Mobile Mark's MMF3-700 antennas provide a no-hole installation. This model has two mounting/transfer plates that attach to the inside/outside. They attach using field proven 3M double sided tape.

The short flexible whip on the MMF is fixed in the vertical position and never needs to be removed.

700 MHz Surface, Mag-Mount & Glass Mount

- Rugged construction
- Wideband RM models operate on 700, GSM, AWS, 2.4 WiFi & 2.6 WiMAX
- Surface and mag-mount models handle up to 35 watts
- Window Mount model installs easily to window with 3M tape

Model #	Frequency	Description		
RM-WLF-1C-BLK-12	694-894 MHz & 1.7-2.7 GHz	Body Mount		
RM-WLF-DN-BLK	694-894 MHz & 1.7-2.7 GHz	Direct N Jack (Female)		
MGRM-WLF-1C-BLK-120	694-894 MHz & 1.7-2.7 GHz	Mag Mount		
Color options available for above models WHT-White or BLK-Black				
MMF3-700-1C-BLK-180	` 694-960 MHz	Glass Mount		
RM-MK	Optional pipe mo	unting kit		
NT-MK	Universal wall/pip	e mounting kit		

specifications			
Frequency:	See above	Case Material:	RM, MGRM: ASA; MM3: ABS
Gain:	3 dBi peak gain	RM Stud Depth:	Mount to 1/2" metal (12.7 mm)
VSWR:	2:1 max over range	Operating Temp:	-40° to +85° C
Nominal Impedance:	50 ohms	Hardware Supplied:	
Maximum Power:		RM Stud Mount	Locknut and gasket
RM & MGRM	35 Watts	MMF Glass Mount	3M tape
MMF	10 watts	Cable:	
Antenna Size/Mount:		RM-WLF-1C	1 ft RG-58 (305 mm)
RM Series	1.75"D x 3"H, 5/8" hole required	MGRM Mag	10 ft RG-58 (3 meters)
	(45 mm x 76 mm, 16 mm hole)	MMF3-700	15ft RG-58 (4.5 meters)
RM-WLF-DN	1.75"D x 3"H x .63" hole	Standard Connector:	SMA Plug (Male)
	(45 mm x 76 mm, 16 mm hole)	DN Connector:	Direct N Jack (Female)
MGRM Mag	2.65" base diameter x 3.62" high	Shock & Vibration:	· · ·
	(67 mm x 92 mm)	RM & MGRM	EN 61373, IEEE 1478, MIL 810G
MMF3-700	2" dia. Mount, 3.75"L Whips		TIA-329.2-C
	(51 mm dia, 95 mm)	Dust/Water Ingress:	RM:IP67, MGRM:IPx5

US Office & Headquarters: 1140 W Thorndale Ave, Itasca, IL 60143, USA UK Office: 8 Miras Business Park, Keys Park Road, Hednesford, Staffs. WS12 2FS, UK

TW3320/TW3322 Wideband GPS/GLONASS Antenna

The TW3320/TW3322 is a high performance antenna covering the GPS L1, GLONASS L1 and SBAS (WAAS, EGNOS & MSAS) frequency band (1575 to 1606 MHz). It features a patch element with 40% wider bandwidth than hitherto available in this format. Unlike its competitors, both GPS-L1 and GLONASS signals are included in the 1dB received power bandwidth.

The TW3320/TW3322 has a two stage Low Noise Amplifier with a mid-section SAW. An optional tight pre-filter is available with part number TW3322 to protect against saturation by high level sub-harmonics and L-Band signals.

The TW3320/3322 is housed in a permanent mount industrial-grade weather-proof enclosure. Two options for pole mounting are available an L-bracket (P/N#23-0040-0) or a pipe mount (P/N#23-0065-0)

Applications

Tallysman

- Cost Sensitive Mission Critical Positioning
- Military & Security
- Fleet Management & Asset Tracking

Features

- Low noise LNA: 1 dB typical (TW3320)
- High rejection mid-section SAW filter
- Available Pre-filter (TW3322)
- High gain: 28 dB typ.
- Wide voltage input range: 2.5 to 16 VDC
- IP67 weather proof housing
- Low Power: 9mA typ.

Benefits

14.2

• Bandwidth fully Includes GPS-L1 & GLONASS

TW3320/TW3322

Shown with Low Profile Radome. Conical

Radome also available

4 MAX

49.8

- Excellent multipath rejection
- Increased system accuracy
- Excellent signal to noise ratio
- Great out of band signal rejection
- Ideal for harsh environments
- RoHS and REACH compliant

TW3320/TW3322 Wideband GPS/GLONASS Antenna Specifications

Antenna

Tallysman

Architecture 1 dB Bandwidth 10dB Return Loss Bandwidth Antenna Gain (with 100mm ground plane) Axial Ratio

Electrical

Architecture TW3320 TW3322 Filtered LNA Frequency Bandwidth Polarization Gain (1575.42 to 1606 MHz) Gain flatness Out-of-Band Rejection

VSWR (at LNA output) Noise Figure Supply Voltage Range (over coaxial cable) Supply Current ESD Circuit Protection

Mechanicals & Environmental

Mechanical Size Operating Temperature Range Enclosure Weight Environmental Shock Vibration Salt Spray Wideband Single Feed Patch 31 MHz 45MHz 4.5 dBic <4dB @ 1590MHz, 8 dB typical at band edges

LNA stage 1 -> SAW filter-> LNA stage 2 SAW Prefilter ->LNA stage 1 -> SAW filter-> LNA stage 2 1574 to 1606 MHz RHCP 28dB min., TW3320; 26dB, TW3322, +/- 2 dB, 1575 to 1606 MHz <1500 MHz >35 dB <1550 MHz >25 dB >1640 MHz >35 dB <1.5:1 1 dB typ., TW3320; 2.5dB typ., TW3322 +2.5 to 16 VDC nominal 9 mA typ 15 KV air discharge

66.5 mm dia. x 21 mm H 40 to +85 °C Radome: EXL9330, Base: Zamak White Metal 150 g IP67 and RoHS compliant Vertical axis: 50 G, other axes: 30 G 3 axis, sweep = 15 min, 10 to 200 Hz sweep: 3 G MIL-STD-810 Section 509.4

Ordering Information

TW3320 - GPS/GLONASS antenna33-3320-xx-yy-zzzzTW3322 - GPA/GLONASS antenna w/pre-filter33-3322-xx-yy-zzzzWhere xx = connector type, yy = type and colour of radome, and zzzz = cable length in mm (where applicable)

Please refer to the Ordering Guide <u>(http://www.tallysman.com/wp-content/uploads/Current-Ordering-Guide.pdf)</u> for the current and complete list of available radomes and connectors.

Tallysman Wireless Inc

36 Steacie DriveOttawa ON K2K 2A9 Canada CanadaTel +1 613 591 3131Fax 613 591 3121sales@tallysman.com

The information provided herein is intended as a guide only and is subject to change without notice. This document is not to be regarded as a guarantee of performance. Tallysman Wireless Inc. hereby disclaims any or all warranties and liabilities of any kind. © 2010 Tallysman Wireless Inc. All rights reserved. Rev 3.3

LMR[®]-240 Flexible Low Loss Communications Coax

Ideal for...

- Jumper Assemblies in Wireless Communications Systems
- Short Antenna Feeder runs (e.g. WLL, GPS, LMR, Mobile Antennas)
- Any application (e.g. WLL, GPS, LMR, WLAN, WISP, WiMax, SCADA, Mobile Antennas) requiring an easily routed, low loss RF cable

• LMR^{*} standard is a UV Resistant Polyethylene jacketed cable designed for 20-year service outdoor use. The bending and handling characteristics are significantly better than air-dielectric and corrugated hard-line cables.

LMR*-DB is identical to standard LMR plus has the advantage of being watertight. The addition of waterproofing compound in and around the foil/braid insures continuous reliable service should the jacket be inadvertently damaged during installation or in the future.
LMR*-FR is a non-halogen (non-toxic), low smoke, fire retardant cable designed for in-building runs that can be routed anywhere except air handling plenums. LMR-FR is UL/NEC & CSA rated 'CMR' and 'FT4' respectively, meets FAA FAR25 requirements and is MSHA-P for mining applications.

• LMR*- FR-PVC is a general-purpose indoor cable and has a UL/NEC & CSA rating of 'CMR' and 'FT4' respectively. It is less expensive than LMR-FR, however it emits toxic fumes (HCL) and greater smoke density when burned.

• LMR^{*}- PVC is designed for low loss general-purpose applications and is somewhat more flexible than the standard polyethylene jacketed LMR.

• LMR^{*}- PVC-W is a white-jacketed version of LMR-PVC for marine and other applications where color compatibility is desired.

• LMR^{*}- MA is a flexible cable designed specifically for mobile antenna applications. It has a PVC jacket and un-bonded aluminum tape to facilitate end stripping with automated equipment.

• **Flexibility** and bendability are hallmarks of the LMR-240 cable design. The flexible outer conductor enables the tightest bend radius available for any cable of similar size and performance.

• Low Loss is another hallmark feature of LMR-240. Size for size LMR has the lowest loss of any flexible cable and comparable loss to semirigid hard-line cables.

LMR 240

• **RF Shielding** is 50 dB greater than typical single shielded coax (40 dB). The multi-ply bonded foil outer conductor is rated conservatively at > 90 dB (i.e. >180 dB between two adjacent cables).

• Weatherability: LMR-240 cables designed for outdoor exposure incorporate the best materials for UV resistance and have life expectancy in excess of 20 years.

• **Connectors**: A wide variety of connectors are available for LMR-240 cable, including all common interface types, reverse polarity, and a choice of solder or non-solder center pins. Most LMR connectors employ crimp outer attachment using standard hex crimp sizes.

• **Cable Assemblies**: All LMR-240 cable types are available as pre-terminated cable assemblies. Refer to the section on FlexTech for further details.

Part Description								
Part Number	Application	Jacket	Color	Code				
LMR-240	Outdoor	PE	Black	54021				
LMR-240-DB	Outdoor/Watertight	PE	Black	54090				
LMR-240-FR	Indoor/Outdoor Riser CMR	FRPE	Black	54029				
LMR-240-FR-PVC	Indoor/Outdoor Riser CMR	FRPVC	Black	54214				
LMR-240-PVC	General Purpose	PVC	Black	54140				
LMR-240-PVC-V	V General Purpose	PVC	White	54202				
LMR-240-MA	Indoor & Mobile Antenna	PVC	Black	54046				

Construction Specifications							
Description	Material	In.	(mm)				
Inner Conductor	Solid BC	0.056	(1.42)				
Dielectric	Foam PE	0.150	(3.81)				
Outer Conductor	Aluminum Tape	0.155	(3.94)				
Overall Braid	Tinned Copper	0.178	(4.52)				
Jacket	(see table above)	0.240	(6.10)				

Mechanic Performance Property	al Specifica Units	tions US	(metric)
Bend Radius: installation	in. (mm)	0.75	(19.1)
Bend Radius: repeated	in. (mm)	2.5	(63.5)
Bending Moment	ft-lb (N-m)	0.25	(0.34)
Weight	lb/ft (kg/m)	0.034	(0.05)
Tensile Strength	lb (kg)	80	(36.3)
Flat Plate Crush	lb/in. (kg/mm)	20	(0.36)

MES MICE

Environmental Specifications						
Performance Property	۴F	°C				
Installation Temperature Range	-40/+185	-40/+85				
Storage Temperature Range	-94/+185	-70/+85				
Operating Temperature Range	-40/+185	-40/+85				

Electrical Specifications						
Performance Property	u Units	US	(metric)			
Velocity of Propagation	%	84				
Dielectric Constant	NA	1.42				
Time Delay	nS/ft (nS/m)	1.21	(3.97)			
Impedance	ohms	50				
Capacitance	pF/ft (pF/m)	24.2	(79.4)			
Inductance	uH/ft (uH/m)	0.060	(0.20)			
Shielding Effectiveness	dB	>90				
DC Resistance						
Inner Conductor	ohms/1000ft (/km)	3.2	(10.5)			
Outer Conductor	ohms/1000ft (/km)	3.89	(12.8)			
Voltage Withstand	Volts DC		1500			
Jacket Spark	Volts RMS		5000			
Peak Power	kW		5.6			

TIMES MICROWAVE SYSTEMS

LMR[®]-240 Flexible Low Loss Communications Coax

Connectors		Dort	Stock	Vel	۸/D**	Coupling	Inner Contact	Outer	Finish*		nath	\ A/i .	dth	Wo	vight
Interface	Description	Number	Code	Freq.	(GHz)	Nut	Attach	Attach	/Pin	in	(mm)	in	(mm)	lb	(g)
1. F Male	Straight Plug	TC-240-FM-X	3190-2891	<1.25:1	(2.5)	Knurl	Solder	Crimp	N/G	1.1	(28)	0.45	(11.4)	0.014	(6.4)
2. N Male	Straight Plug	EZ-240-NMH-X	3190-2893	<1.25:1	(2.5)	Hex/Knurl	Spring Finge	r Crimp	A/G	1.5	(38.1)	0.78	(19.8)	0.086	(39.0)
3. N Male	RightAngle	TC-240-NMH-RA-D	3190-2426	<1.35:1	(6)	Hex/Knurl	Solder	Crimp	A/G	1.2	(32.4)	1.22	(31.0)	0.091	(41.7)
4. N Male	Straight Plug	TC-240-NMH-X	3190-2887*	<1.25:1	(2.5)	Hex/Knurl	Solder	Crimp	N/S	1.5	(38)	0.75	(19.1)	0.086	(39.0)
5. N Male	Straight Plug	TC-240-NMC	3190-244	<1.25:1	(2.5)	Knurl	Solder	Clamp	S/G	1.5	(38)	0.75	(19.1)	0.082	(37.2)
6. 1.0/2.3 DIN	Straight Plug	EZ-240-1023M	3190-2512	<1.35:1	(2.5)	knurl	Spring Finge	r Crimp	N/G	1.1	(228.5)	0.33	(8.5)	0.014	(6.63)
7. N Female	Bulkhead Jack	TC-240-NF-BH-X	3190-2888	<1.25:1	(2.5)	NA	Solder	Crimp	A/G	1.7	(44)	0.88	(22.2)	0.115	(52.2)
8. N Female	Panel Mount	TC-240-NF-PM-X	3190-2889*	<1.25:1	(6)	NA	Solder	Crimp	A/G	1.7	(44)	0.88	(22.2)	0.115	(52.2)
9. BNC Male	Straight Plug	TC-240-BMC	3190-242	<1.25:1	(2.5)	Knurl	Solder	Clamp	S/G	1.7	(43)	0.56	(14.2)	0.040	(18.1)
10. BNC Male	Straight Plug	TC-240-BM-X	3190-2890	<1.25:1	(2.5)	Knurl	Solder	Crimp	A/G	1.3	(34)	0.58	(14.7)	0.043	(19.5)
11. BNC Male	Straight Plug	TC-240-BM-RA-D	3190-2869	<1.25:1	(2)	Knurl	Solder	Crimp	A/G	1.0	(25.1)	0.57	(14.5)	0.115	(52.0)
12. TNC Male	Straight Plug	EZ-240-TM-X	3190-2725	<1.25:1	(2.5)	Knurl	Spring Finge	r Crimp	N/G	1.4	(34.3)	0.59	(15.0)	0.043	(19.5)
13. TNC Male	Straight Plug	TC-240-TM-X	3190-2797	<1.25:1	(2.5)	Knurl	Solder	Crimp	N/G	1.7	(43)	0.59	(15.0)	0.043	(19.5)
14. TNC Male	Reverse Polar	ity EZ-240-TM-RP-X	3190-2892	<1.25:1	(6)	Knurl	Spring Finge	r Crimp	A/G	1.4	(36)	0.59	(15.0)	0.043	(19.5)
15. TNC Male	RightAngle	TC-240-TM-RA-D	3190-2798	<1.25:1	(6)	Hex	Solder	Crimp	A/G	1.0	(25.1)	0.62	(15.7)	0.115	(52.0)
16. QMA Male	Straight Plug	EZ-240-QM-X	3190-2894	<1.25:	(6)	Knurl	Spring Finge	r Crimp	N/G	1.2	(30.0)	0.41	(10.5)	0.014	(6.35)
17. QMA Male	RightAngle	EZ-240-QM-RA-X	3190-2895	<1.25:	(<6)	Knurl	Spring Finge	r Crimp	N/G	0.8	(20.3)	0.65	(16.5)	0.019	(8.62)
18. SMA Male	Straight Plug	EZ-240-SM-X	3190-2897	<1:25:	(6)	Hex	Spring Finge	r Crimp	N/G	1.0	(25.4)	0.32	(8.1)	0.016	(7.26)
19. SMA Male	Straight Plug	TC-240-SM-SS-X	3190-2898*	<1.25:1	(10)	Hex	Solder	Crimp	SS/G	1.0	(25)	0.32	(8.1)	0.016	(7.3)
20. SMA Male	RightAngle	TC-240-SM-RA-SS-X	3190-2900*	<1.35:1	(6)	Hex	Solder	Crimp	SS/G	0.8	(20)	0.65	(16.5)	0.019	(8.6)
21. SMA Male	RightAngle	EZ-240-SM-RA-X	3190-2899	<1.25:1	(6)	Hex	Spring Finge	r Crimp	A/G	0.9	(22.8)	0.31	(7.9)	0.019	(8.6)
22. SMA Male	Reverse Polar	ity TC-240-SM-RP	3190-326	<1.25:1	(2.5)	Hex	Solder	Crimp	SS/G	1.0	(25)	0.32	(8.1)	0.016	(7.3)
23. SMAFemale	Bulkhead Jack	TC-240-SF-SS-BH-X	3190-2896*	<1.25:1	(2.5)	NA	Solder	Crimp	SS/G	1.1	(29)	0.31	(7.9)	0.019	(8.6)
24. Mini-UHF	Straight Plug	TC-240-MUHF	3190-445	<1.25:1	(2.5)	Knurl	Solder	Crimp	N/G	1.1	(28)	0.45	(11.4)	0.014	(6.4)
25. 7/16 Din Male	Straight Plug	TC-240-716M	3190-2982	<1.35:1	(3)	Hex	Spring Finger	Crimp	A/S	2.0	(50.5)	1.26	(32.0)	0.186	(84.4)
26. 7/16 Din Male	Right Angle	TC-240-716M-RA-D	3190-2983	<1.35:1	(3)	Hex	Solder	Crimp	A/S	1.4	(34.3)	1.60	(40.6)	0.239	(108.5)
27. TNC Female	Straight Jack	EZ-240-TF	3190-2552	<1.35:1	(6)	NA	Spring Finger	Crimp	N/G	1.1	(27.0)	0.45	(11.4)	0.035	(15.9)

Hardware Accessories

GK-S240TT

Туре	Part Number	Stock Code	Description	
Ground Kit	GK-S240TT	GK-S240TT	Standard Ground Kit (each)	

Туре	Number	Code	Description
Crimp Tool	CT-240/200/195/100	3190-667	Crimp tool for LMR-100, 195, 200 and 240 connectors
Strip Tool	CST-240A	3192-152	Prep tool for LMR-240 connectors
Deburr Tool	DBT-U	3192-001	Removes center conductor rough edges
Cutting Tool	CCT-01	3190-1544	Cable end flush cut tool
Replacement Blade	RB-01	3190-1609	Replacement blade for cutting tool
Replacement Blade Kit	RB-CST	3192-086	Replacement blade kit for all CST strip tools

		1	2	2	<u>л</u>		5			6	7	Q		
Γ		1	2	3	4		5			0	1	ŏ		٦
	JASSET G	PS ANTENNA CABL	EBOM							1				
	Item	Description			Manufacturer	Manufacturer Part No	Qty	Price Ea	Total					
	1	Connector.TNC. s	traight plug (male), cable size	LMR-240-UF	Times Microwave Systems	TC-240-TM-X *	1			-				
A	2	Connector, N Typ	e, male, cable size LMR-240-U	F	Times Microwave Systems	TC-240-SM-SS-X *	1			-				A
	3	Cable, Coaxial, Lo	ow Loss, UltraFlex		Times Microwave Systems	LMR-240-UF	5m			-				
	4	Heat Shrink Tube	, Adhesive lined, Black, Shrink	c Dia 5mm			50mm			-				
										_				
	* Specific	c manufacturer parts	s specified for item numbers 1, a	and 2 are suggested	only. Alternatives may be used	d upon approval by Produc	t Developmen	t.						
В														В
-														_
				_										C
Ĩ			$\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$	1) (4)	3			4 (2					
						//				10072)				
								<u>`</u>		RELCO	2405 Antenna			
_			JAssett			7/				KFI CD	2405 Antenna			-
					/	-5m								
						511								
	WiFi Antenna Cable													
	NOTES													
 Item no 4, heat shrink to be cut to approx 25mm length to provide stress relief at connector entry. N-Type F-F Bulk head adaptor to be supplied with antenna as part of kit, to allow for papel mount of antenna. 														
Е														E
\neg														\vdash
F	EV DATE	DESCRIPTION			DRAWN CHECK APPRVD Le GST BI DH DH	vica Geosystems Pty Ltd O Gladstone Road utton Park QLD 4102 - w	hen it has to be right	Leico	UNLESS O DIMENSIO MILLIMETI TOLERAN	THERWISE SPECIFIED: INS ARE IN ERS <100mm ±2mm CES: 100-300mm ±5mm	Jasset Tracker WiFi An	tenna Cable Assem	nplv	F
E					Au Ph	ustralia n +61 7 3117 8900		Geosystems	S MATERIAL	300-3000mm ±20mm >3000mm ±100mm	DWG NO.		SIZE A A	-
┢					©L ©L Thi	EICA GEOSYSTEMS PTY LTD is document and any information or description	ve matter contained the	rein is communica	ted in		JAS-DWG-016		A3	
F					Cor Ne	interice and is the copyright property of LEI ither the whole nor any extract may be discle- tendering purposes without their written coordinates	UA GEUSYSTEMS PTY osed, loaned, copied, or sent	used in manufactu	agon. Jring SCALE	1 of 1 -	PART NO. 828375		A	
L	1	1	2	3	4		5		I	6	7	8	1	L